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ABSTRACT

A two-layer shallow water equation model is used to investigate the linear
stability of a coastal upwelling front. The model features a surface front near a
coastal boundary and bottom topography which is an arbitrary function of the
cross-shelf coordinate. By combining the various conservation statements for the
global properties of the system, a general stability theorem is established which
allows the a priori determination of the stability of a coastal upwelling front.

Unstable waves are found for the modelled coastal upwelling front. The unsta-
ble wave motions are frontally-trapped and dominant in the upper layer. The wave
propagates phase in the direction of the basic state flow and the primary energy
conversion is via baroclinic instability. The effect of varying the model parameters
is presented. Moving the front closer than - 2 Rossby radii to the coastal bound-
ary results in a decrease in the growth rate of the fastest growing wave. Increasing
the overall vertical shear of the basic state flow, by either decreasing the lower
layer depth or increasing the steepness of the interface, results in an increase in
the growth of the fastest growing wave.

A bottom sloping in the same sense as the interface results in a decrease of
the growth rates and alongfront wavenumbers of the unstable waves in the sys-
tem. Linearized bottom friction is included in the stability model and results in a
decrease in the growth rates of the unstable waves by extracting energy from the
system. Since the unstable mode is strongest in the upper layer, bottom friction
will not stabilize the upwelling front.

A comparison between the predictions from the simple two-layer model and
observed alongfront variability for three areas of active upwelling is presented.
Reasonable agreement is found, suggesting that observed alongfront variability
can be interpreted in terms of the instability of a coastal upwelling front.
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Chapter 1

Introduction

Fronts, regions of sharp, horizontal contrast in some fluid property (e.g.
temperature, salinity or density), are a common feature in the ocean and
atmosphere. A drastic change in air temperature from one day to the next
is often the result of an atmospheric temperature front passing overhead.
In the ocean, density fronts are associated with large scale jets such as the
Gulf Stream and Kuroshio as well as with convergence zones which can span
ocean basins. Near coastal barriers, several types of fronts can be identi-
fied. A layer of light water may flow alongshore next to a coast, forming a
coastal current separated from the waters offshore by a density front. An
example of such a current is the Norwegian coastal current. A surface to
bottom density front may separate water masses on and off the continental
shelf, an example of which is the shelfbreak front off New England in the
Middle Atlantic Bight. Another type of front that can form in the coastal
ocean is due to the process of upwelling. An alongshore wind directed so
that the coastal barrier is to its left in the northern hemisphere drives an
offshore Ekman flux in the upper part of the water column. This offshore
flux requires some combination of horizontal and vertical flow to conserve
the volume of seawater. The resulting sharp, near-surface horizontal den-

sity contrast between the less dense surface water offshore and the newly

upwelled water inshore is called the coastal upwelling front.



Upwelling occurs in many coastal regions of the world's oceans includ-

ing the western coast of North America, southwest and northwest Africa,
Peru and Nova Scotia. An example of a vertical section of density ob-

tained off the coast of Oregon during the upwelling season (April-August,

a time of persistent winds from the north-northwest) is shown in Fig. 1.1.

The coastal upwelling front is readily identified as the region of compressed

density contours intersecting the surface approximately 10 km offshore and

continuing seaward at approximately 15-20 m depth. If alongshore winds

were steady and the coastline and bottom topography uniform in the down-

wind direction, the coastal upwelling front would tend to form parallel to

the coastline. Horizontal maps of surface properties (usually temperature

because of its relative ease of measurement) often indicate a great deal of

alongfront (the direction parallel to the front) variability in the offshore

position of the front. An example of this alongfront variability is revealed

in a map of sea surface temperature (SST) obtained from an airborne ra-

diometer off the coast of Oregon (Fig. 1.2). The coastal upwelling front is

the area of compressed isotherms approximately 20 km offshore with cold,
upwelled water lying closest to shore. There exists a wave-like meander in

the front with an alongfront wavelength of 30-50 km. Alongfront variabil-

ity on these scales is a common feature of coastal upwelling fronts. Other

observations suggest that these disturbances can extend alongshore over

many repeated wavelengths (Breaker and Mooers, 1986) and that the am-

plitude of the meanders can grow with time (Petrie et al., 1987). While

several mechanisms can be suggested to explain alongfront variability in

the coastal upwelling front, for example the influence of variations in the

alongshore topography and/or bathymetry, their wavelike nature and ob-

served growth suggest that they may be unstable waves which amplify on

the front in the absence of external forcing.

Fronts are an important feature of the coastal ocean and an under-

standing of their variability is essential to a complete description of coastal
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Figure 1.1: A density section near 45*15' N off the coast of Oregon during
July, 1973. The region of compressed isopycnals intersecting the surface
approximately 10 km offshore and continuing seaward at approximately
20 m depth is the coastal upwelling front. From Curtin (1979).
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Figure 1.2: Sea surface temperature map off the coast of Oregon derived
from aircraft radiometer measurements taken during July 14, 1973. Tem-
perature contours are in degrees Fahrenheit and isobaths are in fathoms
(1 fm = 1.83 m). The coastal upwelling front is the area of compressed
isotherms approximately 20 km offshore. From O'Brien et al. (1974).
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circulation. Fronts in density and other water properties such as nutrient
content play an important role in the biology of the coastal environment.
Large amplitude meanders in the coastal upwelling front direct the nor-
mally alongshelf coastal flow cross-shelf and may, with time, grow to the
point where they break the continuity of the alongshelf flow by forming
detached eddies and contribute significantly to the cross-shelf transport of
water properties. Clearly, it would be useful to understand the formation
of these frontal meanders and to be able to predict their alongfront length
scale, rate of growth and other relevant properties.

The goal of this study is to show that wave-like disturbances with the
properties of observed frontal variability can be produced by hydrodynamic
instability. The approach will be to examine the potential for unstable dis-
turbances to form on a basic state flow which has presumably arisen pre-
viously from the influence of an alongshore wind via traditional upwelling
processes. Small amplitude, hence linear, disturbances of normal mode
form (periodic wave form in space with the possibility of exponential growth
in time) are examined. In this study, the dynamics of shallow, rotating lay-
ers of homogeneous incompressible fluids are considered. The governing
equations employed are the shallow water equations rather than the quasi-
geostrophic equations (Pedlosky, 1986) because the latter, while simplifying
the instability calculation, are inapplicable to frontal regions. Large inter-
face displacements, strong horizontal shears and large slopes in the bottom
topography (which are allowed below) are not allowed in quasi-geostrophic
theory. The inclusion of ageostrophic dynamics will substantially modify
the well known results of quasi-geostrophic stability theory.

A review of relevant frontal instability models will be presented first,
followed by a description of the particular model employed in this study. In
the latter chapter relevant parameters and symbols will be defined, the gov-
erning equations will be stated and an approximation used to simplify the
numerical solution technique will be described. Next, conservation state-



ments are derived and used to obtain general stability criteria. Following

this, results from a numerical solution for a variety of basic states and ge-

ometries will be presented. Next, a comparison of the model calculations

to observations from several upwelling regions will be presented. Finally, a

discussion chapter is presented and conclusions summarized.
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Chapter 2

Background

Fronts in the ocean are of interest for several reasons. They are often re-
gions of large velocities and velocity gradients which are fundamental to the
structure of the circulation. Fronts often separate different water masses
and are certainly important in biological processes. This study does not
concern the formation, internal dynamics or observational description and
classification of oceanic fronts. For a general review of fronts in the coastal
ocean see Bowman and Esaias (1978), Richards (1981) or Simpson and
James (1986). The formation of fronts has been studied extensively espe-
cially in the atmosphere. A discussion of frontogenesis in the coastal ocean
can be found in the above references and a thorough study of atmospheric
frontogenesis can be found in the work of Hoskins and Bretherton (1972).
Models of the formation of the coastal upwelling front are of particular in-
terest because they provide the basic state density and velocity fields whose
stability are investigated in this study. A brief review of relevant models
is presented below. The dynamics and evolution of frontal regions whose
initial structure is assumed known has been studied extensively (e.g. Gar-
vive, 1978ab and 1980). Recently, Cushman-Roisin (1986) has developed a
formalism to study frontal geostrophic dynamics. A large body of observa-
tional work on fronts exists. Studies relevant to the coastal upwelling front
include Curtin (1979), Mooers et al. (1976) and Stevenson et al. (1974).



The formation of the coastal upwelling front has been studied using a

hierarchy of analytic models. The basic physical mechanism for frontal

formation is described in chapter 1 and repeated here. An alongshore wind

stress with the coast on its left in the northern hemisphere drives an offshore

Ekman flux in the upper part of the water column. To conserve mass, water

is upwelled from below creating a density front between the dense inshore

water and the lighter offshore water. Csanady (1971, 1977) considered the

formation of a coastal upwelling front in an inviscid two-layer model. After

the action of an impulsive alongshore wind stress, a steady solution was

found by conserving potential vorticity in each layer. The interface rises to

an exponential profile over a scale equal to the internal Rossby radius of

deformation and intersects the sea surface some specified distance offshore.

Pedlosky (1978a,b) developed a nonlinear inviscid model of upwelling in

a continuously stratified fluid. He modelled the offshore Ekman flux of

fluid in the upper part of the water column as a line sink of fluid at the

coast. The equilibrium solutions obtained by Pedlosky (1978a) have density

surfaces rising to contact the surface and a length scale again given by the

internal Rossby radius of deformation. The density surfaces in a model

with linear stratification all intersect the surface at the coast thus forming a

sharp horizontal density contrast (a front). The time-dependent nonlinear

solutions in Pedlosky (1978b) illustrate the sharpening of the horizontal

density gradients over scales less than the Rossby deformation radius. A

major deficiency of the latter two models is the replacement of the link

between the inertial interior flow and the frictional surface Ekman layer by

the line sink of fluid at the coast. This results in the surface front not being

able to move offshore as is observed in nature (Mooers et al., 1976).

In an alternative approach, de Szoeke and Richman (1981, 1984) include

a simple parameterization of vertical mixing processes in a two-layer model

of wind-driven coastal upwelling. They include entrainment between the

two layers due to wind mixing which keeps the upper mixed layer from dis-



appearing and also allows denser deep water to surface. This entrainment
process permits horizontal density contrasts to form away from the coast in
the upper mixed layer. In response to an alongshore wind stress the pycno-
cline initially rises over a distance equal to the Rossby radius of deformation
to contact the surface adjacent to the coast. This coastal upwelling front is
then advected offshore leaving behind a thin 0(1 km) coastal zone of active
upwelling. The width of the front itself is found to be 0(100 m) in agreement
with the sharp fronts observed in nature (Mooers et al., 1976). Recently,
Rudnick and Davis (1987) have formulated a Lagrangian theory of fron-
togenesis in mixed layers for a variety of entrainment parameterizations.
The model describes the formation of fronts given a specified cross-front
velocity field. For a velocity field associated with coastal upwelling the
mixed layer shoals over a distance equal to the Rossby deformation radius
and eventually forms a thin front which is advected offshore much as in the
model of de Szoeke and Richman (1984).

While the details of the results from each of these models differ, they
each describe the formation of a density front which intersects the surface
of the ocean. The scale over which the interface or density surfaces warp
upward is generally the internal Rossby radius of deformation. The mixed
layer models are able to reproduce the offshore migration of the surface
front, a feature which is observed in nature.

Another approach to describing the formation of coastal upwelling fronts
is through the use of numerical models. These include processes omitted in
the simpler analytic models described above. They serve to provide details
about the structure of the frontal region both in density and velocity but
the essential results described above remain valid. See Brink (1983) for a
review and reference list of some relevant numerical models.

Another direction frontal studies have taken is to assume that the basic
frontal shape is known and investigate the possible existence of disturbances

on this mean state. The form of the disturbance is usually postulated to be



wave-like and can either be stable (constant amplitude in time) or unstable

(amplitude grows with time). The stable modes of oceanic fronts have

been studied using various model basic states. For the most part, these

studies considered the dynamics of one or two homogeneous layers. Garvine

(1983) and Paldor (1983a) used similar linear, reduced gravity models with

uniform potential vorticity in the upper layer to obtain stable, frontally-

trapped waves. Garvine's (1983) model included a thin dissipative zone

adjacent to the surface front where turbulent entrainment may occur. He

did not describe the details of the motion in this dissipative zone and only

considered it as a source or sink of fluid for the inviscid region away from

the surface front. Garvine (1983) obtained only waves with zero phase

speed because of the requirement that there be no horizontal shear of the

alongfront velocity at the boundary between the inviscid interior flow and

the viscous region near the surface front. He also stipulated that there be

no cross-stream flow between the inviscid interior and the dissipative zone.

Paldor (1983a) considered inviscid dynamics throughout the frontal region

and obtained wave solutions which propagated both in the direction of and

against the mean flow. Garvine (1984), in an extension of the reduced

gravity model described above, allowed the exchange of fluid between the
inviscid interior flow and the viscous frontal zone. A finite cross-stream

flow allows nonzero horizontal Reynolds stresses which contribute to the

change in time of the wave kinetic energy. He obtained waves which grew

spatially in the downstream direction when the dissipative zone entrained

water from below and fed cross-stream flow into the inviscid interior and

decaying waves for the reverse.

Several authors have included the effect of an active lower layer in stud-

ies of stable frontal waves. Bane and Hsueh (1980) considered a special

geometry with both the interface and the bottom profile linearly sloping

away from the coast. For the "upwelling" case where the interface is allowed

to warp upward and intersect the surface offshore they obtain a stable wave



which they call a "complementary-mode edge wave". This mode propagates
in the same sense as topographic waves (with the coast to the right in the
northern hemisphere) and consists of a barotropic oscillation inshore of the
front coupled to an oscillating interface offshore. Their basic state flow is
potentially unstable (see chapter 4), but the authors concentrated solely
on the stable modes of the system. Bane (1980) considered a two-layer
model with arbitrary interface and bottom geometries and in addition to
the complementary-mode edge wave found a stable frontally-trapped wave
which propagated in the same sense as topographic waves. Finally, Luther
and Bane (1980) used a continuously stratified model with arbitrary cur-
rent/density structure and bottom topography to examine these same types
of stable waves.

The above studies provide a description of the types of waves which
may be important in considering the stability of a coastal upwelling front.
The one-layer results of Paldor (1983) suggest that frontally-trapped waves
which propagate in either alongfront direction may be important in the
instability process. For a two-layer fluid with a flat bottom one might
anticipate the existence of a wave solution which is frontally-trapped, but
has comparable magnitudes in the two layers (a more "barotropic" mode).
With bottom topography, familiar vorticity wave modes including shelf
waves and the complimentary-mode edge waves of Bane and Hsueh (1980)
and Bane (1980) are introduced.

The study of unstable waves on oceanic density fronts relies quite heav-
ily on earlier quasi-geostrophic instability models. These earlier studies
provide a basic understanding of instability processes and a theoretical
framework upon which the frontal studies have built. The classic quasi-
geostrophic baroclinic instability studies of Charney (1949), Eady (1949),
Fjortoft (1951) and Phillips (1954) detail the mechanism by which energy
is transferred from the potential energy of the mean flow to the growing
disturbance. Studies such as Pedlosky (1964) and Killworth (1980) provide



useful criteria for determining whether a particular mean flow will be un-

stable or not. Since the velocity fields associated with fronts consist of both

horizontal and vertical shear, barotropic instability, the process of energy

conversion from the mean kinetic energy to the growing waves, can also be

important. Studies of this type of instability have a long history going back

to Rayleigh (1880) with more recent contributions by Kuo (1949 and 1973)

and Howard and Drazin (1964). An excellent summary of quasi-geostrophic

instability appears in Pedlosky (1986).

However, for the reasons given in the first chapter, quasi-geostrophic

theory is clearly inapplicable to the study of frontal instability. One of

the first studies of frontal instability using the shallow water equations

was that of Orlanski (1968). He studied a two-layer Margules front in-

tersecting flat top and bottom boundaries and explored a wide range of

Rossby number-Richardson number space finding unstable waves at all

wavelengths. Orlanski (1969) extended the model to include arbitrary in-

terface and bottom profiles with the goal of modelling unstable waves in the

Gulf Stream. He found that bottom topography plays an important role

in determining the properties of the unstable waves. The presence of slop-

ing bottom topography was found to stabilize (decrease the growth rates

of the unstable waves, but not eliminate them) the system in agreement

with quasi-geostrophic results (e.g. Mechoso and Sinton, 1981). Orlanski

concentrated on the Gulf Stream problem (small Rossby number flows) and

did not model a surface front over a continental shelf near a coast such as

the coastal upwelling front.

Many recent studies of frontal instability have employed a one-layer

reduced gravity model to simplify the mathematics. Killworth and Stern

(1982) studied a model of a coastal current with a pool of light water

lying next to a coastal barrier (Fig. 2.1a). They showed that for this one-

layer wall-bounded front, unstable waves exist even if the potential vorticity

of the basic state is monotonic in the cross-front direction. A necessary

18
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Figure 2.1: Examples of reduced gravity, frontal instability model geome-
tries. (a) Coastal current. (b) Two-front current. (c) Isolated front.



condition for instability from quasi-geostrophic theory is that the basic state

potential vorticity gradient must change sign somewhere in the fluid. The

monotonic potential vorticity model of Killworth and Stern (1982) clearly
does not satisfy this criteria yet still yields unstable waves. This difference

from quasi-geostrophic theory will be expounded upon further in chapter 4.

The stability of a coastal current has also been investigated by Paldor

(1983b) and Kubokawa (1986). The nonlinear long wave flow of a coastal

current was studied by Stern (1980) who found solutions representing bores,
blocking and breaking waves.

A reduced gravity model with two fronts (Fig. 2.1b) has also received

attention in the study of frontal instability. Using a f-plane version of this

model, Griffiths et al. (1982) found an unstable mode on a basic state with

zero potential vorticity due to the resonance of two waves each trapped to a

separate front. In addition, a high wavenumber weak instability was found

which involved one front only. Recently Hayashi and Young (1987) have

investigated the stability of a one-layer, two-front model on an equatorial

/3-plane and found unstable modes. Finally, Paldor (1986) found special

nonlinear solutions on a two-front model which represent solitons. These

waves merely propagate with time and do not grow temporally. He con-

siders long waves only and the role of nonlinearity on the stability of the

system with dispersion present is still an open question.

Noting the unstable mode growing on a single front with no apparent

interaction with the other front in the two-front model of Griffiths et al.

(1982), Killworth (1983) relaxed the uniform potential vorticity require-

ment used by Paldor (1983a) in a study of a one-layer reduced gravity

model of an isolated front (Fig. 2.1c). He showed analytically that the

front may be unstable if the upper layer's depth tends to its value at in-

finity more rapidly than the uniform potential vorticity front of the same

depth. Kubokawa (1985), using the same isolated front model, extended

the longwave results of Killworth (1983) to finite wavenumbers and did a



detailed analysis of the energy transfers from the basic state to the unstable
waves. In both studies the unstable mode was weak (i.e. growth rate in
time very small) and the basic state potential vorticity gradient did not
change sign.

These reduced gravity models leave out the effect of an active lower
layer on the stability of a front. Two active layers allow for the possibility
of true baroclinic instability. Many laboratory experiments have explored
the instabilities associated with fronts (e.g. Stern et al., 1982; Griffiths et
al., 1982; Griffiths and Linden, 1982; Chia et al., 1982; and Narimousa and
Maxworthy, 1985). These laboratory models, which all have active lower
layers, exhibit growth rates much larger than those found by Killworth
(1983). A further reason to include an active lower layer is to study the
effect of bottom topography. An active lower layer can also provide damp-
ing to the system via bottom friction. Further, for a model of the coastal
upwelling front the lower layer velocity must satisfy the boundary condition
of no flow through the coastal barrier. Killworth et al. (1984) studied a
two-layer isolated front with a flat bottom. They were able to show analyt-
ically that for long waves and deep lower layers an unstable mode exists no
matter what the distribution of basic state potential vorticity. This mode
has growth rates of the same magnitude as observed in the laboratory mod-
els. They extended their analytic result to finite wavenumbers numerically
and briefly commented on the energy transfer between the mean flow and
the growing waves.

To model a coastal upwelling front correctly, a coastal barrier and bot-
tom topography must be included. These topographic features will be
included in the current study, the details of which are given in the follow-
ing chapter. The previous models show that shallow lower layers destabi-
lize while sloping bottom topography may stabilize the system. Since the
coastal upwelling front environment contains both these features, it will be

interesting to investigate the net effect on the stability of the basic state



flow. This study will also include an examination of the energy transfers
in the system which have not received adequate attention in the previous

studies of frontal stability. In addition, general criteria for a priori de-

termination of the stability of a given flow will be developed. This set of

criteria will be used to recover the results of several of the previous models.

Finally, since bottom friction has been shown to be an important process

in the coastal ocean (e.g. Brink and Allen, 1978; Brink, 1982; Allen, 1984),
the effect of a linearized form of friction on the stability of the system will

be investigated.



Chapter 3

Model Description

The model employed here is a simple, two-layer shallow water equation
model with a rigid lid on an f-plane. The stability analysis will be car-
ried out both in the inviscid case and with linearized bottom friction. The
model explicitly leaves out the effects of wind stress and mixing. Even
though these processes are known to be important in the formation of the
coastal upwelling front (see chapter 2), their inclusion complicates the gov-
erning equations sufficiently that a full numerical model is required. Thus,
this model investigates the stability of a coastal upwelling front which has
previously arisen due to an alongshore wind stress as described in chap-
ter 2. The applicability of a stability model without wind stress may be
rationalized in the following two ways. First, coastal winds often become
"upwelling-favorable" (blowing alongshore with the coast to the left in the
northern hemisphere) for a period of a few days then relax or change di-
rection (Huyer, 1983). Therefore, this instability model may be thought
of as formally applying after one of these upwelling events. Second, the
model may be appropriate even in the presence of a wind stress. In the
real ocean, dissipation (e.g. via interfacial friction) will provide a sink of
energy so that the wind-forced system may reach a steady state. If the
dissipation is strong enough to effect this balance but weak enough to leave

the structure of the unstable waves essentially unchanged, then the wind



stress will only affect the stability analysis indirectly through its effects

on the mean flow field. Since the wind forcing does not directly enter the

stability calculation, an unforced model may be appropriate. However, as

commented on further in chapter 7, time-dependence in the basic state flow

field as forced by a time-dependent wind stress (or for a steady wind stress

before a steady-state is established) may affect the stability properties of

the system.

The model geometry is shown in Fig. 3.1. Two homogeneous layers of

density pi and p2 (P2 > Pl) lie adjacent to a coastal barrier. The origin of

the coordinate system is chosen to be at the coast with z in the vertical

direction, x in the cross-front direction (positive onshore) and y in the

alongfront direction. The entire system is rotating about the z-axis with

an angular frequency f/2 where f is the Coriolis parameter. The layer

thicknesses are denoted by hi and h2, while the bottom topography, which is

an arbitrary function of z but assumed uniform in y, is given by H = h +h 2.
The sea surface elevation is denoted by gl. The surface front, modelled

as the interface between the layers of different densities, lies parallel to

the coast at the point zx (xz < 0), offshore of the coastal barrier. The

sloping interface and bottom adjoin a flat-bottom region (representing the

deep ocean offshore of the continental margin) with constant layer depths

(H,H 2 ) far removed from the surface front. A basic state alongfront flow

(V) which is uniform in y, independent of time (t) and in geostrophic balance

exists in the upper layer (Fig. 3.1b). For simplicity there is no basic state

flow in the lower layer.

Before stating the governing equations, the field variables can be nondi-

mensionalized as follows (e.g. Killworth et at., 1984):

(x.,y.) = R(, y),

(U VI.9 U2 , V2 .) = (gHI)1 2(uI, vlU2,2),

t* = f-1t,
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Figure 3.1: (a) Model geometry (symbols defined in text) and (b) upper
layer basic state flow.



(h., h 2.) = Hi(hi,h2),

1. = 6Hj 1.

The variables subscripted with an asterisk are dimensional and the velocity

(u cross-front, v alongfront) subscripts indicate either the upper or lower

layer. Horizontal length is scaled by the internal Rossby radius of defor-

mation, R = (g'Hi)'/2/f, where the reduced acceleration due to gravity

is given by g' = g(p2 - pO)/p2 = g6. Note that the density defect, 6, is

much less than one. For typical coastal upwelling fronts R ~ 5 - 10 km.

Velocities are nondimensionalized by the internal gravity wave phase speed,
(g'HI)1/2, which is typically 50 - 100 cm s-1. Time is scaled by f-1. Note

that the sea surface elevation and layer depths are scaled such that their

nondimensional versions are of the same order.

The nondimensional, two-layer, inviscid shallow water equations are,
using subscripts to denote partial differentiation,

Dul
D - = - (3.1a)Dt

Dt+ U = -, (3.1b)

hi, + [u (h, + 61)],+ [v, (h, + 6)] = 0 (3.lc)

for the upper layer and

D t2  = - t, (3.2a)
Dt 2

S+ u = -S,, (3.2b)

- hi, + (u2h2). + (v2h2), = 0 (3.2c)

for the lower layer where

T = (1 - 6) -hi



is essentially the lower layer "pressure". Here

D a a a
D +  u + vi (3.3)Dt at az 3y

where i = 1,2. Linearized bottom friction terms will be included in the
latter part of chapter 5.

To simplify the numerical solution technique the geostrophic momentum
approximation (Hoskins, 1975 and Hoskins and Bretherton, 1972) is made.
Specifically, the approximation will make the governing equations linear
in the eigenvalue making the system easier to solve numerically. The ap-
proximation consists of replacing the fluid velocities (or momentum, hence
the name) by their geostrophic values when acted upon by the substantial
derivative given by (3.3). Specifically, the following substitutions are made:

Du _ au, au, au,,
Dt at ua + at
Dvi avi, avi avi,

= + ui- + viDt at at at
where i again denotes either layer one or two and

U 2  - - T,

V2, = .

are the geostrophic layer velocities. It is important to retain the full advect-
ing velocities (geostrophic and ageostrophic) in (3.3). According to Hoskins
(1975), the approximation is valid when the magnitude of the time rate of
change of the velocity vector is small compared with the magnitude of the
Coriolis force, or, dimensionally,

Dtvr
Dt.

Hoskins (1975) and Hoskins and Bretherton (1972) have shown that the
approximation works well in frontal regions with large horizontal shear



provided the curvature vorticity (the turning of the flow along a streamline)

is not large.

Another way to develop the geostrophic momentum approximation is

to substitute for the velocities acted upon by the substantial derivative in

(3.1a) and (3.1b) from the velocities in the Coriolis terms in (3.1b) and

(3.1a) to obtain

V= Dtly D 2 V (3.4a)
Dt Dt 2 '

U = -1 DI D U (3.4b)
Dt Dt 2 "

The lower layer equations (3.2) can be treated in a similar manner. The

geostrophic momentum approximation is then obtained by neglecting the

last term in each of the two equations. That is

D2vl

Dt2

and D 2u

Dt2

While these inequalities may fail locally somewhere in the fluid, this study is

concerned with analyzing the global behavior of the system. The stable and

unstable (if present) waves represent global solutions and their properties

can be obtained with this approximate set of equations. Confidence in

the geostrophic momentum approximation comes from direct comparison

to the shallow water equation model of Killworth et al. (1984) and the

successful frontal studies of Hoskins and Bretherton (1972 and a series of

later papers).

Rather than relying on some Lagrangian time scale for the rate of change

of the velocity vector being longer than f-1 as Hoskins (1975) suggests, it

is useful to reexamine the ratios of terms in (3.4). Since most fronts are

long in one direction and short in the other, the coordinate parallel to the

surface front will be rescaled as y, = (R/e)y where c < 1. This small



parameter will turn out to be 1, where 1 is the alongfront wavenumber.
With this scaling (3.4) becomes

2D1, E 2 D2v 1

1 = - Dt Dt 2 '

1 = D 1 , E 2 D 1
'= Dt Dt 2

At lowest order, the flow is geostrophic in the alongfront direction. The
0(1) equations have been called "semi-geostrophic" (Pedlosky, 1986). In
order to obtain results at higher wavenumbers (shorter alongfront scales)
it is necessary to include terms of 0(E2 ). The geostrophic momentum ap-
proximation includes the term D,, /Dt in the alongfront momentum bal-
ance, but arbitrarily neglects the final terms in each of the two equations.
The geostrophic momentum approximation will allow results to be found
at high wavenumbers, but may be suspect because of this arbitrary trun-
cation of the 0(E2) equations. In this study, reliable results are found at
all wavenumbers for a flow with uniform basic state potential vorticity in
the upper layer. As discussed further in section 5.3, the geostrophic mo-
mentum approximation fails to accurately predict the growth rate of high
wavenumber unstable modes when the flow field has an interior point where
the absolute vorticity (f + V,) vanishes. However, it will turn out that the
properties of the fastest growing modes on all the model fronts studied here
are accurately predicted using the geostrophic momentum approximation.

In any case, this approximation should be used with caution due to the
arbitrary way in which it is "derived" from the shallow water equations.

The geostrophic momentum equations belong to the set of so-called
"intermediate" approximations because they include physics simpler than

included in the shallow water equations but more complete than in the

quasi-geostrophic equations. In particular, they retain the ageostrophic

advection of the geostrophic velocity field and can thus be used in regions

of large horizontal shear. The geostrophic momentum approximation relies



on low frequencies so, as a result, gravity waves are filtered out of the

system. To reiterate, the desire to make this approximation stems solely

from the simplification it provides to the numerical solution technique.

From (3.4) under the geostrophic momentum approximation, the two-

layer momentum equations are

+ v1 = V 1,, (3.5a)
Dt

DI+ = - 1, (3.5b)
Dt

hit + [u1 (hi + + )] [uv (hi + 6Sl)]y 0 (3.5c)

for the upper layer and

DT+ v 2 = - T,, (3.6a)
Dt

D'+ u2 = -T,, (3.6b)
Dt

- hi, + (u2 h2)z + (v2 h2)y = 0 (3.6c)

for the lower layer where D/Dt is again given by (3.3).

As is traditional in linear instability theory the nondimensional field

variables are expanded into a basic state (denoted by an overbar) and a

perturbation (primed quantities). For the upper layer

h(xz, y,t) = (1 -6)h-(x) - ' (x, y,t),

S,(, y,t) = 1(zX) + 'i(z,y,t),
l(X, y,t) = u'(x, y, t),

vl(x,y,t) = F(x) + v(x, y,t)

and for the lower layer

h,(z,y,t) = Kz(z) + S:(x,y,t),h (x,y,t) = K2(x) + '2(x,y,t),

u(x, y, t) = ) + (, y, t),

v2(,y,t) = v (, y,t)



Note that mean flow only exists in the upper layer. The basic state is
uniform alongshore, independent of time and in geostrophic balance

V = S 1 = hiz. (3.7)

Substituting these expressions into (3.5) and (3.6), linearizing about the
basic state and dropping primes, the geostrophic momentum equations for
the perturbations become

1yt + 'lyj + V1 = l,' (3.8a)

1.t, + '1,, + (1 + Vi)u 1 = -U 1,, (3.8b)

- +T, + (uh )2 + [v1 Kl + (~1 - T)]V = 0 (3.8c)

for the upper layer and

Ty,, + v2 = T., (3.9a)

T., + u 2 = -T ,, (3.9b)

T, + (ut2 )z + (v 2 2), = 0 (3.9c)

for the lower layer where now

T = (1 - 6)" 1 + '2. (3.10)

Note that in (3.8c) terms of 0(6) have also been ignored. While these
equations will eventually be solved numerically for a variety of specific basic
state flows, it is useful to examine them first to see if any general statements
can be established. In the next chapter, conservation statements for several
properties of the system are derived. These lead to general stability criteria
which can be applied to systems governed by (3.8)-(3.10).



Chapter 4

Conservation Statements and a Stability
Theorem

4.1 Introduction

While the existence of unstable waves on a particular basic state flow can

be determined numerically, it would be advantageous to have a general set

of criteria for determining a priori whether that configuration is favorable

for the growth of unstable disturbances. In this chapter, such criteria are

developed through the use of global conservation statements for energy,

momentum and potential vorticity. Most of the detailed derivations are

contained in Appendix A. These conservation statements are also useful

in the dynamical interpretation of the instability mechanism, since they

help to elucidate the details of energy transfer in the system. It will also

be interesting to point out how the form of the conservation statements

derived using the geostrophic momentum equations differs from its quasi-

geostrophic equivalent. While the details of the geostrophic momentum

formulation differ from the full shallow water development, all the essential

differences between the latter and quasi-geostrophic theory are retained in

the approximate set used here. Before developing the set of conservation

statements, it should be mentioned that much of the present development

parallels the work of Hayashi and Young (1987) (hereafter HY) on a one-



layer, reduced gravity, two-front model on an equatorial f-plane.

4.2 Conservation Statements

From the full nonlinear, geostrophic momentum equations (i.e. before ex-
panding in a basic state and a perturbation), (3.5) and (3.6), one can
develop conservation statements for potential vorticity in the upper layer

Dq1
= 0, (4.1a)Dt

where
1 + c. + ,, - , + 1,1,, (4.lb)

ql - hi1

and in the lower layer
Dq2
Dt 0, (4.2a)Dt

where
1+ +, - . +Tr T, (4.2b)

q2 = h+ + T T +ST (4.2b)

(See Appendix A for details.) Again, D/Dt is given by (3.3) and contains
the full advecting velocities. These definitions of potential vorticity are
identifiable with the traditional shallow water forms. One difference is that
the advected relative vorticity has been replaced with its geostrophic value,
consistent with the derivation of the momentum equations in the previous
chapter. The extra terms in the numerators of (4.1b) and (4.2b) contribute
an ageostrophic component to the potential vorticity.

Similarly, an expression for the conservation of energy is

aE
= 0, (4.3a)

where

E = f [h, ( + 1,) + h2 ( + ,) + h,] da. (4.3b)
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The integral is defined over the whole domain of the fluid in the x-direction

and over one wavelength in the y-direction. Again note the geostrophic

form of the kinetic energies. Finally, an expression for absolute y-momentum

is
aM

= 0, (4.4a)at
where

M = f [hi (~ + ) + h (, + x)] da. (4.4b)

The terms in the integrand of (4.4b) proportional to x arise because the

system is in a rotating reference frame and they represent the momentum

due to the Coriolis force. The Coriolis terms are absent in the definition

of energy (4.3b) because the force acts in a direction perpendicular to the

motion and thus does not contribute to the work done on a water parcel.

The expressions for ql,q 2, E and M can be expanded into a basic state

and a perturbation as described in the previous chapter. The potential

vorticity becomes

q, = Q, (x) + q (x, y, t), (4.5a)

where

QI(x) = (4.5b)
h,

represents the basic state and

q(x,y,t) + (1 + (4.5c)

is the perturbation potential vorticity. Q1 has the same form as in the

shallow water equations while q( has the additional term ~,1/,,h 1 . For

the lower layer

q2 = Q2 (z) + q (x, y, t), (4.6a)

where

Q2(X) = 1 (4.6b)
h2



and
(y = , + T,, - 92C2q'(z,y,t) = + - Q2 (4.6c)

Since there is no basic state flow in the lower layer, the basic state poten-
tial vorticity there is governed solely by the change in layer depth. The

linearized forms of (4.1a) and (4.2a) for the perturbation potential vortici-

ties are

qj, + Vq1, + uQ1, = 0, (4.7)

q2, + u2Q2, = 0 (4.8)

where primes have been dropped.

The expansion of the energy conservation statement is slightly more
complicated than that of potential vorticity due to the integration over the

domain of the fluid. The undisturbed upper layer containing the mean

current will occupy the area from xf to -oo in the cross-front direction

(see Fig. 3.1). This can be denoted by f-2f( ) dA where the capital A
represents the undisturbed area of the upper layer. A disturbance in the
fluid will move the front to a position zx+E where E < 1 for small amplitude,
linear theory. This extra area now occupied by the disturbed upper layer

can be denoted by ff+/( ) da'. Note that this area will be an 0(E) quantity.

In other words, the area integral is expanded as

( )da = ( )dA + ( )da'.

The expansion of E can now proceed paying attention to the expansion of

the fluid area at the same time.

The full energy (4.3b) can be written as

E = E + El + E 2 + higher order terms, (4.9a)

where
1 -f (hI2+ 9-2

Eo = 2 R h, ) dA (4.9b)



is the "basic state" energy,

1-

+ fi2 2 1 2)da (4.9c)

is the "mean" energy (really the energy associated with the wave-mean

flow interaction) and

1/
E2= 2 f + - 2 1 2 + h2 ( + (2 )+ 2 dA (4.9d)

is the "wave" energy where primes have been dropped from perturbation

quantities. Note that both E1 and E 2 have 0(e ) energy contributions.

The 0(E2 ) terms in E1 can arise from both the second integral [because

it spans an area 0(i) wide] and from the 0(E2 ) parts of 1 and 2 in the

first integral. Note that in the quasi-geostrophic limit, the second integral

in (4.9c) vanishes (because the front can not surface) so the only 0(E2 )
contributions to E 1 must come from the first integral.

The definition of E 2 contains the kinetic energy (in its geostrophic form)

of the two layers and the potential energy due to the displacement of the

interface. In addition, there is another term -Y1,. 2 which is not pos-

itive definite. This term represents the correlation between geostrophic

alongfront perturbation velocity ( ,. = v1,) and perturbation interface dis-

placement. For this term to be negative the correlation must be such that

the disturbance increases the total upper layer thickness where it decreases

the total alongfront speed. This pattern is illustrated in Fig. 4.1. This term

is not present in the definition of wave energy in quasi-geostrophic theory

because deviations of the interface from its basic state constant value are

assumed small. In the quasi-geostrophic case, the wave energy is always

positive definite.

Since Eo does not change with time (4.3a) can be written as

8 (El + Ez) = 0, (4.10)
at
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Figure 4.1: Correlation between geostrophic alongfront perturbation veloc-
ity (v, = ,) and perturbation interface displacement ( ') which results
in a negative contribution (the boxed expression at the bottom of the fig-
ure) to the unstable wave energy (E2) defined in (4.9d). The basic state
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where terms of 0(es) and higher have been neglected. This statement is

true for both stable and unstable disturbances. The following discussion

is restricted to the case of an unstable disturbance. If this is integrated in

time from some initial state when there is no unstable disturbance present

then

El+ E2 = e = 0.

The disturbance energy, e, is the energy in the disturbed system due to both

the wave (E2) and the modification of the mean flow (El). This allows for

three limiting possibilities of energy distribution in the disturbance between

the wave itself and the mean flow modifications associated with it:

El - -oo E 2  +oo
El 0 E 2  = 0
E, -- +oo E 2 -* -oo

Note that the energies going to infinity are in the context of small-amplitude

linear theory so that the true limiting values of the energies are scaled by e
where e < 1. The first case represents the familiar, traditional instability

process. As the unstable wave grows exponentially its energy increases

while that of the mean flow decreases. The second two cases arise because

of the cross-term present in the definition of wave energy which allows for

the possibility of "negative" energy. An unstable wave may grow in the

system while its energy, as defined by (4.9d), and that of the mean flow,

as defined by (4.9c), remain unchanged. HY term this "zero wave energy"

instability. It will be demonstrated shortly that this case is relevant to a

basic state with uniform potential vorticity. In the last case, as the unstable

wave grows, its energy becomes increasingly negative while that of the mean

increases. This has been termed "negative wave energy" instability by HY.

These statements about the transfer of energy within a system con-

taining an unstable disturbance are certainly counterintuitive. In quasi-

geostrophic dynamics the basic state flow is always identified as a source of



energy for the growing disturbance. Once the quasi-geostrophic approxi-
mation is abandoned these other forms of instability are possible. HY thus
suggest that the idea of instabilities requiring a source of energy must be
abandoned. These growing waves are possible because the total (mean plus

wave) energy of the fluid is unaltered by the wave and the mean flow mod-

ifications associated with it. Note that even though the wave energy is not

positive definite, which leads to counterintuitive ideas about energy trans-

fer within the system, there still remain positive definite quantities which

must increase with time for an unstable wave. One such quantity is the
potential enstrophy (potential vorticity squared) which is positive definite

and will increase with time as the unstable disturbance fluxes perturbation

potential vorticity down the basic state potential vorticity gradient.

The idea of negative energy instability is not new and is quite familiar
in plasma physics (see Cairns, 1979 for a reference list). Cairns (1979) has
shown that for nonrotating stratified shear flows with step function velocity

and density profiles, stable waves with negative energy can exist in the sense

that exciting them lowers the total energy of the system. Specifically, Cairns

(1979) shows that classic Kelvin-Helmholtz instability can occur because

of the coexistence of positive and negative energy waves. Marinone and

Ripa (1984) have studied large-scale instabilities on an equatorial Gaussian

jet in a one-layer, reduced gravity model which have negative energy. Zero
energy instabilities have been studied by HY and also arise, though not

commented on explicitly, in the work of Griffiths et al. (1982) and Killworth

et al. (1984).

In the classic frontal studies of Orlanski (1968, 1969) only the positive

definite wave energy

E= f [h (. + ,) + (i ( + ) + ] dA (4.11)

was considered in the energy balance requiring the definition of an "in-

teraction kinetic energy" which obscured the interpretation of the energy



transfers within the system as outlined here and in HY. The recent work

on frontal models of Griffiths et al. (1982), Killworth and Stern (1982),
Killworth (1983) and Killworth et al. (1984) did not thoroughly address

the energetics of the unstable waves and, as in Orlanski's work, only con-

centrated on the positive definite part of the wave energy (4.11).

In a significant contribution to the understanding of the instability pro-

cess in these counterintuitive cases, HY suggested that the unstable waves

can be thought of as roughly a linear combination of resonating shear modes

each of which would be stable if the other were not present. The two res-

onating waves must have opposite signed disturbance (wave plus mean)

energies so that the unstable mode has zero disturbance energy. The insta-

bility process is then an exchange of energy between the individual wave

modes from the one with negative disturbance energy to the one with pos-

itive disturbance energy. In addition, destabilization by dissipation can be

understood in the same context because it provides a sink for a wave with

negative disturbance energy (Cairns, 1979). That is, the unstable mode

grows as disturbance energy is removed from the mode with negative en-

ergy and lost to dissipation. These ideas will be commented on further

in this chapter and confirmed in the numerical unstable wave solutions of

chapter 5.

The full y-momentum can be expanded in an analogous way to energy
to obtain

M = Mo + M, + M 2 + higher order terms. (4.12a)

Here

Mo =f[h ( + x) + 2 x]dA (4.12b)

is the basic state momentum,

M, f [h11). - 2 + 2 T dA +

fh (v + x) + h2X - V + 2,T da (4.12c)



is the momentum of the mean flow and

M = f (T. - ,) dA (4.12d)

is the wave momentum.

Expressions for the changes in wave energy (4.9d) and momentum (4.12d)
can also be obtained from the linearized perturbation equations (3.8) and
(3.9). The result (derived in Appendix A) for wave energy is

aE = - f[h ,ui,. + Vi'u,C, + Kh (u1, + v1,) j,-

VUij 2 - VV~ui, 2] dA

0Ej

at (4.13)

The first two terms in the integrand can be recognized as the horizon-
tal Reynolds stresses in their geostrophic momentum form. The third term
represents the vertical Reynolds stress while the fourth term symbolizes the
process of baroclinic instability. This latter process involves the cross-front
flux of interface displacement or, in more physical terms, it is the cross-
front movement of water in the two layers whose net effect is to flatten
out the upwarped interface. As described in Pedlosky (1986) it is anal-
ogous to a slant-wise form of convection or a downgradient flux of heat
in a continuously-stratified fluid. The baroclinic instability mechanism ex-
changes potential energy with the mean flow while the Reynolds stress
terms exchange kinetic energy.

The final term in the integrand of (4.13) is not readily identifiable with
a physical energy conversion process. It can, however, be related to the
changes in time of the displacement of the surface front as detailed in
Appendix A. This term can then be combined with the wave energy on the
left-hand-side of (4.13). The final result is

[E2- 1=f dy] = -f VhiY3u1. s + V U1 j1 +



K j 1 (ul. + V1 ) - 12 dA.

(4.14)

Since F < 0 the deflection of the front is a positive definite addition to the

wave energy. Now the change in time of wave energy and the displace-

ment of the surface front due to the wave can be attributed completely

to the Reynolds stresses acting on the basic state flow and the baroclinic

conversion of potential energy.

The conservation of wave energy can also be written in terms of the

cross-front eddy flux of perturbation potential vorticity. The details are

contained in Appendix A with the result

E -- 2, =fhi Vru1q, dA + 9 f dA (4.15)

where E2 is given by (4.9d) and q, by (4.5c). The final term on the right-

hand-side arises solely due to the geostrophic momentum approximation.

While E2 is the exact geostrophic form of the wave energy, q, contains the

geostrophic form of potential vorticity plus an extra term related to part

of the ageostrophic potential vorticity. The integral in the final term in

(4.15) can thus be related to part of the ageostrophic wave energy. To

get an expression relating the time rate-of-change of wave energy to the

flux of perturbation potential vorticity alone [without the extra term in

(4.15)], the full form of the energy (geostrophic and ageostrophic) must be

included in E2. The resolution of this disparity between the shallow water

form of the conservation of wave energy and the expression derived using

the geostrophic momentum approximation is detailed in Appendix A. The

final result is

aE h f uviql dA, (4.16)

where the star (*) denotes the full (geostrophic plus ageostrophic) wave

energy defined by
E, = - [( + - 2 2  + ~( +U ) + ) + ]dA

42



and ql remains given by (4.5c). The energy equation (4.13) can also be mod-
ified to express the conservation of total energy by including the Reynolds
stresses due to the ageostrophic part of the velocity field.

The flux of perturbation potential vorticity in (4.16) can be related to
the dispersion of particles within a basic state potential vorticity gradient.
Using (4.7) and substituting

u1 = ( +u I , (4.17)

where r is the displacement of particles in the upper layer, the conservation
of potential vorticity can be written as

at (qi + iQ1,) = 0. (4.18)

If this expression is integrated with ql assumed initially to be zero, then

q, = -iiQ1.. (4.19)

Substituting (4.17) and (4.19) into (4.16) one obtains

aE;2 afV 1at - t f vQ Q, (l/2) dA. (4.20)

Clearly if the basic state potential vorticity is uniform (Q , = 0) then E2
will not change with time. Integrating (4.20) with respect to time gives E2
equal to a constant and if the initial state contains no disturbance then this
constant must be identically zero. In quasi-geostrophic theory a uniform
potential vorticity basic state does not satisfy the necessary conditions for
instability so E2 will always be zero which is in agreement with (4.20).
By abandoning the restrictions required by quasi-geostrophic theory it has
been shown previously in this section that an unstable mode may exist if
the total disturbance energy (E* + E2) is equal to zero. The existence of
this "zero wave energy" mode of instability has been confirmed by Griffiths



et al.(1982) and by HY and will be shown to exist for the two-layer coastal

upwelling front model in chapter 6. From (4.20) it is also clear that the

sign of E can be determined from the sign of Qx,. For Qx, < 0 the wave

energy will be negative as in the study of Marinone and Ripa (1984) and

it can be shown that the one-layer unstable mode of Killworth (1983) is

also of this type. For Q1, > 0 the traditional positive wave energy unstable

mode is recovered.

Conservation of wave y-momentum derived from the linearized pertur-

bation equations (3.8) and (3.9) (see Appendix A for details) is

aM f [ 2 u , 2
dM -at [fuqi + 2 uq 2 dA+

aO /f ['1 + K T 1 rT,] dA, (4.21)

where the extra terms arise in an analogous manner to those in (4.15).

They can be removed by considering the full y-momentum with the result

a =t [hIuq, + h2 u2 q2] dA (4.22)

where the full (geostrophic plus ageostrophic) wave momentum is defined

by
M; = (v2 - )( 2 dA.

Using (4.17), (4.19) and similar expressions for the lower layer the con-

servation of wave y-momentum can be related to the flux of perturbation

potential vorticity in both layers

aM a- [ Q,(r / 2 ) + h, Q2,(r/2)] dA. (4.23)

It is important to note that an equation like (4.16) relating the change of

wave energy to the flux of perturbation potential vorticity cannot be written
for the positive definite quantity E+ given by (4.11). Consequently, the

time rate-of-change of E+ cannot be related to the dispersion of particles



in an unstable wave like in (4.20). This lack of connection between E+

and particle displacements (a property of unstable waves whose increasing
dispersion with time is a fundamental diagnostic of instability) rules out
E+ as the correct definition of wave energy. Instead, E2 (or E2) is a more
useful measure of energy in a growing wave.

4.3 Stability Theorem

Using the conservation of energy and y-momentum statements, a general
stability theorem can be derived. The method employed here is an extension
of that of Ripa (1983) who developed a theorem for a one-layer, reduced
gravity model on an equatorial f/-plane or sphere. The definitions of E*
and M can be combined using an arbitrary constant y

E= J[((+vu) +(u +v) @-2(U-y)v +

2 - 2-yv 2 2] dA. (4.24)

The integrand can be rewritten by completing the square of the terms
involving vl and v2 with the result

E2- = f ()/2 ]+ 2 V2 (V)1/2 +

hs + KU + - )2 2
S1 2 2 2 hi h2 d.

If the last three groups of terms are combined as

G i , (4.25)
h, h2

the entire integrand will be positive definite if

(V - Y) 2 + 9s7 < h (4.26)



for all x where t = hi/h 2 is the depth ratio. By setting the arbitrary con-

stant -y equal to zero, (4.26) is satisfied if the magnitude of the upper layer

mean flow is everywhere less than the internal gravity wave phase speed

((h ) 1/2 nondimensionally). This type of flow is known as "subcritical".

With a deep lower layer (i < 1) allowing -y to be nonzero allows V to be

supercritical somewhere in the flow and still satisfy (4.26). The inclusion

of a finite depth lower layer makes (4.26) very difficult to satisfy for the

frontal flows of interest here.

The conservation statements for E2 and M2*, (4.20) and (4.23), can also

be combined with the use of the same arbitrary constant - to yield

a (E;- yM;) =_ _a f 2 Q ( 2  -2 (2
at at [ V y 1/2) h2 (v. -

2 /2)] dA.

Integrating with respect to time, this becomes

(E - yM) + ( - ) Q 2 (/2) - 2, (/2) dA = constant

where the basic state potential vorticity gradients are defined by (4.5b) and

(4.6b). If each of the three groups of terms in this expression is positive

then no increase in wave properties (e.g. energy, particle dispersion) with

time is allowed. A mixture of positive and negative terms can allow growth

of the wave amplitude while still satisfying this expression. The first group

will be positive if (4.26) is satisfied. That is, even though E* contains

the term -7vl ~ 2, which may make the wave energy negative and -Y may

be chosen so that -- yM2 will be negative, their linear combination will be

positive definite if condition (4.26) holds. Requiring the final two groups of

terms to be positive leads to the statement of a general stability theorem,
viz.:

If there exists any value of - such that

(V - 7)2 + Y2U < hi, (4.27a)



YQ2. < 0 (4.27c)

for all z then the flow is stable to infinitesimal perturbations.

These conditions are suficient to insure stability and (4.27) is essentially
a two-layer version of Ripa's (1983) theorem. The extension to an arbi-
trary number of layers requires the addition of statements like (4.27c) for
each layer. The stability criteria (4.27) are also similar to those of Long
(1987) for continuously stratified, rotating flows. He finds a restriction on
the vertical scale of the disturbance to which the flow will be stable. This
condition is analogous to (4.27a) if the scale of the disturbance is identified
with the vertical wavelength of a long internal wave in a continuously strat-
ified fluid. In the present study, the vertical scale of the disturbances is set
by the layer depths. In either case, the flow will be stable if the mean flow
is everywhere less than the internal gravity wave phase speed [and (4.27b)
and (4.27c) are satisfied].

Quasi-geostrophic flows are generally weak (i.e. slow relative to the
internal gravity wave speed) so they easily satisfy (4.27a). The remain-
ing conditions (4.27b) and (4.27c) are just the familiar requirement that
a change in the sign of the basic state potential vorticity gradient exist in

order to get instability. Specifically, (4.27b) is just Fjortoft's (1950) theo-

rem (with y equal to the value of U at the inflection point) or equivalent
to that of Kuo (1949) and Rayleigh (1880) (with -y outside the range of V).
The additional constraint (4.27c) allows the possibility of instability even if

(4.27b) is satisfied by making the change in sign of the basic state potential
vorticity gradient occur between layers.

For the strong flows associated with frontal regions, unstable waves may

still exist even if there is no change in the sign of the basic state potential

vorticity gradient. This can occur if the first condition (4.27a) is violated

as discussed above in association with (4.26).

( - -) Q1. > 0 and (4.27b)



The stability theorem (4.27) can now be applied to the coastal up-

welling model of interest here by making an explicit choice for h-(x) and

via geostrophy (3.7) fixing the basic state upper layer flow. The choice for

the interface profile is a family of exponentials given by

1 - exp [a (X - X)] X< (
h() = o (4.28a)

so that

V(x) = -aexp [a (x - xf)] for x < x1 . (4.28b)

A uniform potential vorticity basic state will have a = 1.0. For a < 1.0 the

interface is less steeply sloping than the uniform potential vorticity front

(e-folding length greater than 1.0 which in dimensional units is the internal

Rossby radius of deformation) and for a > 1.0 the front is more steeply

sloping (e-folding length less than R).

For a uniform potential vorticity front (a = 1.0) (4.27b) is automat-

ically satisfied. For a deep lower layer, A <K 1 and (4.27c) is automati-

cally satisfied because the lower layer perturbation velocities vanish. For

quasi-geostrophic flow, satisfying (4.27b) would alone be sufficient to in-

sure stability. However, for these ageostrophic models, (4.27a) must also

be satisfied. With (4.28) this condition becomes

[exp(z - zx) + -]y' < 1 - exp(x - xf)

which is satisfied for all x if -y = -1. A one-layer, reduced gravity model

with uniform basic state potential vorticity is thus stable to infinitesimal

perturbations of all scales. This is the same result as that of Paldor (1983)
who used a Rayleigh integral technique applied directly to the governing

equations.

Again, for a model with a deep lower layer, the stability of nonuniform

potential vorticity (a $ 1.0) flows can be determined by examining (4.27a)

and (4.27b). Substituting (4.28) into (4.27a) yields

{aexp [a(z - xz)] + }' < 1 - exp [a(x - xf)] .



Examination of this inequality shows that it will only hold for -1 = -a and
a < 1. With y = -a (4.27b) becomes

{exp [a(x - xf) ] - 1} Qi, < 0.

For a < 1, the upper layer basic state potential vorticity gradient will
be greater than zero and this expression is satisfied for all x. Conversely,
for a > 1, the upper layer basic state potential vorticity gradient will
be less than zero and this inequality will not hold for any x : xf. The
conclusion from this is that for a < 1 or "shallow" interface profiles a
one-layer reduced gravity model is stable. This can also be rationalized by
realizing that a < 1 is the correct limit to recover quasi-geostrophic flow.
For a > 1, or "steep" interface profiles, the one-layer front may be unstable.
This dependence on a of the stability of the front is in agreement with the
results of Killworth (1983) who analytically solved the governing equations
in a long wave limit by a rather complicated boundary layer analysis.

All the above discussion is relevant to a model with a deep lower layer.
Inspection of (4.27) for a finite lower layer depth shows that no choice of
- will satisfy all three constraints even for a uniform potential vorticity
basic state. With this basic state and a flat bottom, unstable modes may
exist because both (4.27a) and (4.27c) are violated. For a basic state with
uniform potential vorticity in the upper layer the bottom topography may
be chosen to satisfy (4.27c). However, the inequality (4.27a) will still not
hold for all z giving the possibility for unstable modes. Note that standard
quasi-geostrophic stability criteria would insure the stability of this flow.
This clearly illustrates the danger in applying stability criteria derived from
quasi-geostrophic theory to frontal configurations.

In summary, the stability theorem derived here (4.27) suggests that the
coastal upwelling front (since it exists in shallow water) may be unstable
no matter what the basic state flow configuration is. In violating sufficient

conditions for stability the flow satisfies necessary conditions for instability.



It is still essential to verify that unstable waves do exist on the coastal

upwelling front and this is done in the next chapter by solving numerically

the governing equations (3.8) and (3.9).



Chapter 5

Results

5.1 Introduction

The results of chapter 4 suggest that unstable disturbances exist on coastal
upwelling fronts. Violation of the sufficient stability conditions (4.27) does
not, however, guarantee the presence of an unstable wave. The purpose
of this chapter is to prove that growing disturbances do in fact exist on a
coastal upwelling front by solving the governing equations (3.8) and (3.9)
numerically. First, the solution technique will be described including a
detailed look at the various boundary conditions required. Next, results will
be presented for a model with an inviscid basic state flow and a flat bottom.
The particular case of a front with uniform potential vorticity located far
from a coastal barrier can be compared to the results of Killworth et al.
(1984). The effects on the properties of the unstable waves produced by
varying the total depth, the distance to the coastal wall and the shape of
the interface profile will be discussed. For one standard case, the energy
transfers in the system will be analyzed in detail and the conservation
statements of chapter 4 will be confirmed. The effect of a strongly sloping
bottom will be presented in section 5.4. Finally, linearized bottom friction

is included and its influence on the unstable waves discussed.



5.2 Solution Technique

Instability calculations generally follow one of two traditional methods.

The evolution on an unstable disturbance can be found by solving the gov-

erning equations as an initial value problem. This usually requires various

transform techniques (Laplace, Fourier) as part of the solution and can be

quite complicated. An alternative approach is to recognize that since the

coefficients of (3.8) and (3.9) depend on x only, solutions may be sought

which are periodic in y. The normal mode form appropriate to this study

using perturbation sea surface elevation as an example is

j (X, y, t) = 1% [l (X) exp i(ly - at)] . (5.1)

Here I is the (real) alongfront wavenumber and both a, the frequency, and

^ (x), the cross-front amplitude function, are complex. R denotes the real

part of the expression in square brackets. Since a = a,. + iai is complex,

unstable solutions with a, > 0 will grow exponentially with time. This

can be seen explicitly by splitting a into its real and imaginary parts and

substituting into (5.1) to get

1 (x, y, t) = [( 1() exp i(ly - at)] exp(oit). (5.2)

With ai > 0 the initial disturbance will grow until the nonlinear terms ne-

glected in the linearized equations (3.8) and (3.9) become large. When this

occurs the linear theory presented here is no longer adequate to describe

the evolution of the unstable waves. Nevertheless, linear theory will suc-

cessfully describe the initial instability process and provide details of the

small amplitude behavior of the unstable waves.

The solution technique proceeds as follows. Substituting (5.1) and sim-

ilar expressions for T and the layer velocities into (3.8) and (3.9) yields

(a - lu)1 1 + v 1 = ,, (5.3a)



- i(a - lv)S,. + (1 + uV)ux = -ilia, (5.3b)

- i(a - I)( T - CT) + (uT7l)z + ilvihl = 0 (5.3c)

for the upper layer and

alUT + v2 = T., (5.4a)

- ioT= + u2 = -ilT,, (5.4b)

- ioT + (u,2 -2) + iIv2 -2 = 0 (5.4c)

for the lower layer. (Note that the hats ^ have been dropped.) Next,
the first two equations in (5.3) and (5.4) are used to solve for the layer
velocities

=i - (5.5a)1 + V,

Vx = 1. - (a - lv7)9, (5.5b)

U, = i(oT . - l T), (5.6a)

V2 = T. - alT. (5.6b)

These expressions can be substituted into the continuity equations (5.3c)
and (5.4c) to get a single equation for each layer. The result for the upper
layer is

h 1 ,, + [V- (1>+ ) - (1+jl 2) (1 +u2 ) 1  + (1 + XT-

Te(w +ae equat1+ ) (1 + ion(e+(m7s

The lower layer equation becomes

h2, _ 1 1 h21
,, + , - + ' + -- = T. (5.7b)

h2 h2h2 rh



These two equations are coupled due to the appearance of , and T in

each. The complex frequency o is the eigenvalue for this problem and only

appears linearly in (5.7). If the geostrophic momentum approximation is

not made the eigenvalue will appear nonlinearly in the shallow water equa-

tion equivalent of (5.7). The numerical solution technique to be described

shortly is greatly simplified by having made the geostrophic momentum

approximation.

Note that the upper layer equation (5.7a) is singular at several points

within the domain of the fluid. Singularities exist where h = 0 (at the

front, x = xf), where the horizontal shear of the mean flow exactly balances

the Coriolis parameter (1 + -, = 0) and at a "critical layer" where the

phase speed of the wave equals the mean flow speed (a = 1V or c = : with

c = a/l being the wave phase speed). These singularities make the analytic

solution of (5.7) [and the reduced gravity version of (5.7a)] very difficult.

Progress can only be made using various approximations such as assuming

long waves [Killworth (1983) for a reduced gravity shallow water equation

model], nearly uniform potential vorticity [Kubokawa (1985) again for a

one-layer model] or long waves and deep lower layers [Killworth et al. (1984)

for a two-layer isolated front]. In all cases the mathematics required are

quite complicated and involve careful matching of solutions across various

boundary layers. In the two-layer case these analytic solution techniques

fail when the bottom topography differs from a flat bottom.

Since little progress can be made analytically on the system (5.7) a

numerical solution technique is desirable. It should be mentioned that nu-

merical solution techniques are not infallible. Problems will arise when the

growth rate of the unstable waves approaches zero. Nevertheless, the so-

lution technique described next will yield useful results away from these

points. The coupled layer equations can be cast in the form of an algebraic

eigenvalue problem by splitting the cross-front domain into finite intervals

and approximating the derivatives in (5.7) by finite differences. The prob-



lem becomes, after multiplying by the eigenvalue a,

A 1 = aB (5.8)

where A and B are matrices containing the finite difference equivalents of

the derivatives in (5.7) and r1 is the column vector defined as

L-1=

L-1

4L+1

In the definition of ?7 the superscripts on q' and ' denote the values of
these variables at the ith grid point in x. The x-domain runs from i = 1
at z = -oo (in the numerically truncated domain i = 1 corresponds to a
location several Rossby radii from the front), through i = L, which denotes

the location of the surface front, to i = N at the coastal barrier. Note that

I only exists from i = 1 to i = L while 'T is defined at every point in the

numerical domain. Since (5.8) contains both the coupled layer equations



simultaneously, A and B are (N + L) x (N + L) in size. Another property

of (5.8) is that A and B are real so that (5.8) is a real algebraic eigenvalue

problem of general form. The eigenvalues (a) and eigenfunctions (7) can

be found numerically by using, for example, a QZ algorithm. The solutions

presented here were found using the IMSL (International Math Subroutine

Library) routine EIGZF.

In setting up the finite difference grid in the x-direction several choices

must be made concerning the number of points, the size of the interval

between grid points and how far away from the surface front the model will

extend. The distance between grid points was chosen to be 0.06 Rossby radii

(R) so that for a front with uniform basic state potential vorticity 16 points

would lie within an e-folding length of the surface front. The numerical

domain was chosen to extend 4 R from the surface front. Reducing the

interval between grid points to 0.04 R or increasing the distance of the edge

of the numerical domain from the front resulted in less than 0.5% change in

the eigenvalue a. Results produced with a coarser grid or a smaller domain

were generally not reliable. For a typical model configuration with the

surface front lying 2 R from the coastal barrier, the number of points (N)

was 93 with L = 61. This made A and B 154 x 154 and execution time on

a DEC (Digital Equipment Corporation) MicroVAX II was approximately

18 CPU minutes.

The two second order, ordinary differential equations (5.7) require four

boundary conditions to specify a unique solution. The development and

numerical application of the necessary boundary conditions are detailed

below. The difference in the form of the boundary conditions for both an

isolated front over a fiat bottom (Fig. 5.1a) and a front next to a coastal

barrier with arbitrary bottom topography (Fig. 5.1b) will be discussed.

Note that since the logical reference point in the cross-front direction for

the isolated front (Fig. 5.1a) is the point where the front intersects the
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Figure 5.1: Pictorial representation of the boundary conditions for (a) an
isolated front, where the origin of the coordinate system is located at the
surface front, and (b) a front over arbitrary cross-shelf bottom topography
next to a coastal barrier.
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surface, the origin of the coordinate system has been placed there. The

solutions given below can be tailored to this case by setting xz = 0. One

general requirement is that the solutions to (5.7) be frontally-trapped. Far

from the surface front in the two-layer region of the x-domain (x -+ -oo)

the interface becomes flat. In addition, this region is assumed to have a flat

bottom (Fig. 5.1). The governing equations (5.7) reduce to a coupled pair

of constant coefficient ordinary differential equations which can be solved

analytically. The solutions which satisfy the boundary conditions

fIfT --' 0 as z -+ -oo

are

f = cl exp [ri(z - z1 )] + c2 exp [r2 (z - z/)]

T = - exp [rl(z - z,)] + c 2exp [r2 (z - Xz)]

where cl and c2 are arbitrary constants, H1 and H2 are the constant layer

depths (see Fig. 3.1),

r,= ( + H + H ) 1/ 2

is an inverse decay scale containing the two-layer form of the internal Rossby
radius of deformation and

r2 = I

is an inverse decay scale based on the alongfront wavenumber. The con-

stants c1 and c2 can be eliminated by requiring continuity of , and T at
the edge of the numerical domain (i = 1). Finally, the boundary condi-

tions may be incorporated into the numerical scheme using standard finite

difference techniques.

On the one-layer side of the front, one of two boundary conditions is

required. For an isolated front far from any coastal barrier (Fig. 5.1a) the

solution must satisfy

T -* 0 as z --, +oo.



In this case the simplest model geometry is one with a flat bottom and an

analytic solution to (5.7b) can be found which satisfies the above boundary

condition. The solution for x > 0 where, as noted above, the x-origin is
now assumed to lie at the surface front (xz = 0) is

+ = c3 exp(-ax) (5.9)

where
6

a 2 = 12 +
H'

This solution can be used to match to the two-layer region at x = 0 by
requiring continuity of sea surface elevation and normal velocity between
the lower (z < 0) layer and the single (x > 0) layer. Continuity of sea
surface elevation

can be expanded in a Taylor series about the unperturbed frontal location

(z = 0). Keeping only the first two terms in the expansion yields

+ e E, + ]I = + I< .=O,
S=o 2=o ==o z=o

where the overbar represents a mean quantity and E is a small displacement
of the front. Since = 0 at z = 0 by definition and V = this becomes
to 0(E)

+ V= at z = 0.

At the perturbed frontal position (z = e) the total upper layer depth van-
ishes

h1 + 6" 1 = 0 at z = e.

This can be expanded in a Taylor series to get an expression valid at the
undisturbed frontal location

[(1- 6)(h+ 6b?+ - rT] + -(1- 6)hi+ 6+ t - = 0.z=0 o a8x z= o



Since hi = , - = 0 at x = 0 and hi, = , = - this reduces to the 0(E)
expression

(S1- ) = -YE. (5.10)

Combining the above two expressions yields

1 - (5 - ) = ,+

or

-' = 1+  at x = 0.

On the one-layer side of the surface front, + is just equal to +, so this

boundary condition becomes

Sr = 4f at x = 0. (5.11)

Continuity of normal velocity can be expanded in the same manner to give

at 0(E)
U- = u+  at x = 0

or using (5.6a)

Combining this expression with (5.11) yields the final boundary condition

for T,

a = . at x = 0. (5.12)

The right-hand-side can be obtained by differentiating (5.9). This matching

condition can now be incorporated into the numerical scheme by approxi-

mating , by a finite difference.

The above discussion was for an isolated front. This type of model is

relevant to many oceanic fronts and was the subject of the work of Killworth

et al. (1984). The emphasis of this study is the coastal upwelling front

which requires a coastal barrier for its existence. Further, coastal upwelling

fronts often occur over bottom topographies which are not flat (Fig. 5.1b).



These features require a different treatment of the boundary conditions in
the single-layer region (x > xf). The origin of the coordinate system has
returned to the coastal wall as defined in Fig. 5.lb. Note that the boundary
conditions as z -- -oo remain the same for either model. The boundary
condition at x = 0 is no flow through the coastal barrier

or using (5.6a)

a , l . (5.13)

For a flat bottom the solution to (5.7b) which satisfies (5.13) can again
be found analytically and matched onto the two-layer region as outlined
above. Another approach is to extend the numerical domain through the
front all the way to the coastal barrier and to apply (5.13) at z = 0 using
standard finite difference techniques. This method automatically satisfies
continuity of properties across z = x! and has the advantage of allowing
solutions for bottom topographies which are not flat. This latter approach
is used in the numerical solutions presented here.

The final boundary condition required to specify the problem uniquely
is applied to the upper layer equation at the front. It was noted previously
that the governing equation (5.7a) was singular at z = xf so one way to
express the boundary condition is that , remain finite at the front. This
qualitative condition must be made quantitative in order to implement it in
a numerical scheme. This is done by realizing that the surface front must
be a material surface. This can be expressed mathematically as

d [z - ( +E)] = 0

or
( +ul +9+vl) [z-(xj+E)]=0 (5.14)t + z By +yV



where again E is the small displacement of the surface front from its equi-

librium position at x = x1 .By definition

dz
= 

dt

so (5.14) becomes

x - + u +  + -+ +  ( + )=0.U1 (t x y By ) ( +

This can be expanded in a Taylor series about the unperturbed frontal

location and linearized to 0(E) to obtain

Ul - --+ e=0 at z= ZXy.

Assuming the perturbation frontal displacement (E) has normal mode form

as in (5.1) this becomes

ul + i(o - I7)E = 0 at x = Xf.

Again using the 0(E) version of vanishing layer depth (5.10) and dropping

the minus superscript this can be written as

Ui + = 0 at z = Xy.

Substituting ul from (5.5a) this boundary condition becomes

1, - (1 + V,) + (1 + u) X = -- [?1 - V f. + (1 + V.) T

at x = xf. (5.15)

This boundary condition derived from assuming that the surface front

is a material surface is exactly the same as the governing equation (5.7a)

expressed at x = x] where hi = 0. That this derivation based on physi-

cal reasoning reduces to the governing equation suggests that, even though



this is a singular point, the upper layer equation should remain regular
and , should be well behaved at the front. The redundancy between the
boundary condition and the governing equation leads to difficulties in an
analytic attempt to solve (5.7a). Previous studies [e.g. Killworth (1983);
Killworth et al. (1984)] avoid this difficulty by using an integral solution
technique which accommodates the regularity at the front rather than ex-
plicitly applying a boundary condition there. In the numerical solution
technique used here the expression (5.15) is simply finite differenced to the
same accuracy as the rest of the numerical domain and evaluated at the
front. Results indicate that this works well.

One final consideration is the special case of a uniform potential vorticity
basic state flow. From (4.5b) uniform potential vorticity requires 1+ V" = 0
at the front so (5.15) becomes

(a - l)C. = If at x = x,. (5.16)

This boundary condition is different from the upper layer equation ex-
pressed at x = x1 . This can be demonstrated by writing (5.7a) in terms of

Q1 as defined by (4.5b)

- .Q1 . - (1 + Tl 2)Q'li + Q1 T =

I F1,j1 . - + (1 + h11 )Q1 t + QlTJ (5.17)

and then setting Q1 = 1 and Q1, = 0 to obtain

(a - Iv) [1,- (1 + Kil 2)C1 + T] = 0.

If a k IF this can be expressed at x = zx where hi = 0,

1.., - 1 + rT = 0.

This expression is clearly different from (5.16). In fact, (5.16) is just the
result of requiring the coefficient of Qi/91 to vanish. In other words,



a front with uniform basic state potential vorticity allows the requirement

that the front be a material surface to provide a unique boundary condition

which can be incorporated into the numerical scheme by standard finite

difference techniques.

The actual solution of (5.7) with the appropriate boundary conditions as

detailed above proceeds via (5.8) by first choosing a basic state flow as given

by (4.28). Choices are then made for the offshore distance to the surface

front (xz), bottom topography and/or lower layer depth far offshore (H2 ;

see Fig. 3.1). These choices completely specify the basic state and model

geometry. This allows (5.8) to be solved for the complex eigenvalue (a)

and the complex eigenfunctions (17) for a given alongfront wavenumber (1).

The value of I is varied to investigate the potential instability of the basic

state to perturbations of a given alongfront scale. The analyses can then

be repeated for different choices of the basic state flow or model geometry.

5.3 Inviscid, Flat-Bottom Model

In this section the solution technique just described is applied to a sim-

ple model geometry consisting of a flat bottom adjacent to a coastal wall

(Fig. 5.2). A surface front lying over a flat bottom is relevant to many geo-

physical phenomena, but it must be remembered that the distinguishing

feature of many coastal upwelling fronts is the presence of strongly slop-

ing bottom topography. This more realistic geometry will be addressed in

the next section. Here, the stability properties of various basic state flows

over a flat bottom will be discussed in detail. Initially a uniform potential

vorticity basic state flow will be considered followed by a discussion of the

effect of a finite mean potential vorticity gradient.

The choice of the basic state interface profile is motivated by several

considerations. The intent is to select a model state which represents a

fully mature coastal upwelling front. The density and flow structure arises
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Figure 5.2: Flat-bottom frontal model geometry. The constant offshore
depths of the layers are normalized by the depth of the upper layer (HI in
Fig. 3.1) so that the upper layer depth is equal to one and the total depth
becomes r = (HI + B2)/IH.



from the upwelling process described in chapter 2. Essential to this for-

mation process is an alongshore wind stress. The model developed here

explicitly leaves out wind stress and considers the stability of a basic state

which is the end product of an alongshore wind event. Another point is the

lack of cross-frontal mixing which is likely an important physical process

in the formation and evolution of a coastal upwelling front (e.g. Garvine,

1979a, b, 1980). One obvious way to choose a basic state configuration is

to use observations to specify an interface profile. This may be the most

realistic, but can be problematic for several reasons. Subsurface observa-

tions of density, particularly vertical sections perpendicular to the front, are

often not available for the coastal upwelling front of interest. Even without

detailed knowledge of the subsurface density structure, it would still be

useful to predict the scales of this variability based on an instability model

whose inputs (e.g. layer depths, density difference between layers) can be

set using historical data or a few hydrographic casts. When observations

are available, they include small scale features in density due to mixing, in-

ternal waves and mixed layer dynamics. These complicate the specification

of a basic state and may obscure the understanding of the stability of the

front to larger scale processes. Finally, observations of subsurface proper-

ties in frontal regions are never truly synoptic which may create problems

in specifying a correct basic state configuration.

Another approach is to consider interface profiles which arise from sim-

ple models of the coastal upwelling process. Many such models exist as

briefly reviewed in chapter 2. A particularly simple model is that of

Csanady (1977) for a flat-bottom two-layer ocean. The upwelling of the

interface due to an alongshore wind stress is developed by considering the

conservation of potential vorticity in each layer. The resulting interface

profile is exponential with an e-folding scale equal to the internal Rossby

radius of deformation. The upwelled state has uniform potential vortic-

ity in the two layers as a necessary result of conserving potential vorticity

66



throughout the upwelling process. This model oversimplifies the forma-
tion process, but certainly provides a realistic physical explanation for the
shape of a coastal upwelling front. A great number of observational studies
have suggested that the internal Rossby radius is a relevant decay scale to
consider. An effort to select a simple, yet physically realistic basic state
configuration based on this type of upwelling model led to the selection
of the exponential profiles given by (4.28). Interface profiles evident in
vertical sections of density for many coastal upwelling fronts appear to be
realistically represented by the exponential form employed here. In partic-
ular, a uniform potential vorticity basic state flow in the upper layer will
be considered first. Since no mean flow exists in the lower layer, the po-
tential vorticity there will be dictated by the change in layer depth. The
presence of unstable waves in a system with this distribution of potential
vorticity (i.e. lack of a change in sign of the potential vorticity gradient)
will distinguish these ageostrophic flows from traditional quasi-geostrophic
dynamics.

The stability of this uniform basic state potential vorticity model with
a flat bottom as sketched in Fig. 5.2 will now be presented. The depth of
the upper layer far from the surface front (H 1 in Fig. 3.1) will be chosen to
be always equal to one. Using this, the total depth H = H1 + H2 can be
denoted by r so that the lower layer depth is equal to r - 1 (Fig. 5.2). The
stability theorem (4.27) suggests that this basic state will be unstable if
the lower layer is sufficiently shallow. The first model geometry considered
will have equal upper and lower layer depths, r = 2, and the surface front
will be located two Rossby radii from the coastal barrier (xz = -2 R).
This model geometry with uniform potential vorticity flow will serve as a
standard case with which to compare the results for models with different
parameter choices.

Given the basic state flow and the model geometry, the governing equa-
tions (5.7) are solved for a range of alongfront wavenumbers (1). The com-



plex frequency (a), which is the eigenvalue for the problem, yields two

important properties of the unstable wave. The imaginary part of a is the

rate at which the unstable wave will grow with time (see 5.2). The growth

rate (ai) is plotted as a function of alongfront wavenumber in Fig. 5.3a. No

unstable modes exist above I = l, ! 1.50 where ai = 0. This "short wave

cutoff" is related to restricting the vertical shear in the system to occur

across an infinitely thin layer at the interface and is a common feature of

stability models which use homogeneous fluid layers (Pedlosky, 1986). The

wave with the largest growth rate occurs at I = I = 1.05 where ai, = 0.09

(the subscript m identifies the maximum growth rate). Within the limits

of the linear, small amplitude theory presented here, this is the wave most

likely to be observed as its amplitude grows most rapidly from an initial

condition containing many wave components. As the disturbance grows to

finite amplitude, nonlinear effects may alter the properties of the fastest

growing wave.

The real part of the eigenvalue (ar) divided by the wavenumber (1)

yields the phase speed of the unstable wave (c,). This quantity is plotted

as a function of alongfront wavenumber in Fig. 5.3b. The solid curve for

1 < l4 is for the unstable mode whose growth rate is given in Fig. 5.3a.

The values for cr are all negative which correspond to propagation to -y.

This downstream direction for phase propagation can be anticipated by
invoking a common guideline for the phase speed of unstable waves. In

general, the phase speed of an unstable wave must lie within the range of

the mean flow speeds. These so-called "semi-circle" theorems have been

rigorously derived for many layer models of instability both using quasi-

geostrophic dynamics (Pedlosky, 1964) and ageostrophic dynamics (HY).

Since V is in the -y direction the unstable wave should propagate in the

same direction with a phase speed less than the maximum flow speed. This

result is confirmed in Fig. 5.3b, remembering that maximum flow speed

occurs at the front (X = zx) and is equal to -a, which for the uniform
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potential vorticity case considered here is equal to -1. At I = I, the real

part of the phase speed splits into two stable waves (dashed curves) which

for I < 1, had been resonating to produce the unstable mode. In addition

to these stable waves, there exist many more stable vorticity modes with

c, < 0 which are not plotted in Fig. 5.3b.

Before expanding on this idea of resonating modes and taking a look at

the structure of the unstable wave, it is useful to consider the dimensional

properties of the fastest growing wave. The length, time and velocity scales

used for the redimensionalization are defined in the beginning of chapter 3.

To find the wavelength of this mode multiply 1-' by 2irR. The e-folding

period [the time it takes the perturbation to grow to exp(+1) of its initial

amplitude] is obtained by multiplying ao,~ by f-1. Finally, the dimensional

phase speed is recovered by multiplying c, by Rf. For R = 5 km and

mid-latitudes the fastest growing wave has a wavelength of ~ 30 kinm, an

e-folding period of ~ 1.5 days and a phase speed toward -y of - 3 cm s- 1.

This standard model, which has not been tuned to the configuration of a

coastal upwelling front for any particular geographic location, yields spatial

scales for the fastest growing wave which are of the same order as the ob-

served scales of alongfront variability off, for instance, the coast of Oregon

as displayed in Fig. 1.2 (O'Brien et al., 1974). Values for growth rates and

alongfront phase speeds are more difficult to obtain from observations, but

when estimates of these properties are available (e.g. Petrie et al., 1987)
they are comparable to the values predicted by this simple instability model.

To make a more detailed comparison between the model-derived properties

of the fastest growing wave and observations, it is necessary to understand

the effect of varying the basic state flow and model geometry. For example,

the influence of sloping bottom topography beneath the surface front, a

physical characteristic of upwelling fronts in nature, will be investigated.

After a discussion of these effects in the remainder of this chapter, a com-

parison between the model predictions and observed alongfront variability



will be made in chapter 6.

The structure of the most unstable wave is displayed in Fig. 5.4. Properties

of the upper layer are presented in Fig. 5.4a where the dashed line at x = -2

represents the surface front. The solid and dashed curves represent contours

of i, the sea surface elevation, whose maximum value occurs at the front

and is normalized to 1.0. This normalization is done because the linear

stability analyses presented here does not allow the amplitude of the un-

stable disturbance to be determined. The perturbation upper layer velocity

field follows from (5.5). For presentation purposes, the velocities are scaled

such that the vector beneath the legend represents one velocity unit. Lower

layer velocities and contours of 'T [given by (3.10) and is essentially the

lower layer "pressure"] appear in Fig. 5.4b. The normalization and scaling

procedure is identical for the two layers so that comparisons of properties

between them can be made.

All the fields are frontally-trapped with a cross-front e-folding scale of

~ 1 Rossby radius (R). Upper layer velocities exhibit a pattern consistent

with a wavelike deflection of the surface front. If the velocity field were

completely geostrophic the contours of 1 would serve as streamlines for

the flow. The crossing of , contours by the velocity vectors, especially

near the surface front, is indicative of a significant ageostrophic component

to the velocity field. Velocities in the lower layer are much weaker and more

geostrophic than those in the upper layer. The velocity and 'T fields form

closed cells with maxima occurring - 0.75 R to the two-layer side of the

surface front.

As is apparent from the discussion in chapter 4, the interpretation of en-

ergy transfers within an unstable system can be thought of in two ways. In

traditional instability theory the flow of energy to the unstable disturbance

from the basic state and vice versa can be analyzed. For nondivergent flow

fields instability requires that the sum of the energy conversion must re-

sult in the flow of energy from the basic state to the disturbance [positive
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wave energy (E*) and negative mean energy (Er)]. For the flows consid-
ered here it was shown (see chapter 4) that unstable waves can exist even
if the net flow of energy between the basic state and the disturbance is zero
or even when the transfer is from the disturbance to the basic state flow
creating negative wave energy and positive mean energy. These cases are
certainly counterintuitive, but as described in chapter 4 it is not difficult
to find physical systems which can be unstable without the flow of energy
from the basic state to the disturbance (e.g. an inverted pendulum). The
instabilities found here on a uniform basic state potential vorticity flow will
have zero net energy flow between the basic state and disturbance fields (see
4.20). Nevertheless, it still is useful to analyze the energy conversion terms
as described in conjunction with (4.13) to understand the primary physical
mechanism for the instability (e.g. baroclinic or barotropic conversion).

The other interpretation of instability involves the exchange of distur-
bance energies between two resonating stable modes. The unstable mode
will grow with time keeping its disturbance (mean plus wave) energy equal
to zero. The flow of energy in this case is between the two stable partners.
Depending on the basic state configuration, the unstable mode may gain
from, lose to or leave unchanged (as is the case here for a uniform poten-
tial vorticity flow) the energy of the basic state flow. A good description
of these ideas can be found in HY. Since both interpretations yield useful
information, both will be considered here.

The contours of 1 and T provide phase information for the unstable
mode. The sense of phase tilt in an unstable disturbance is useful in in-
terpreting the direction and mechanism of energy transfer in the system
(Pedlosky, 1986). In chapter 4 the possibility of conversion of energy via
Reynolds stresses and baroclinic instability was mentioned. The signature

of an unstable wave extracting energy from the basic state potential energy
field via baroclinic instability is that the wave in the upper layer lags the

wave below. This sense of phase tilt, such that the perturbation is "leaning"



against the basic state vertical shear, is apparent in Fig. 5.4 and it may be

anticipated that the term on the right-hand-side of (4.13) representing this

process will be positive. The sign of the conversion of kinetic energy via the

horizontal Reynolds stress is more difficult to determine by just inspecting

Fig. 5.4a. The first horizontal Reynolds stress term on the right-hand-side

of (4.13) will be positive (conversion of basic state kinetic energy to the

perturbation) if the phase of the perturbation is again leaning against the

basic state horizontal shear. This is clearly the case in Fig. 5.4a, but the

presence of the additional term in (4.13) proportional to the horizontal

Reynolds stress, but with opposite sign, complicates the interpretation. In

fact, for this uniform basic state potential vorticity case the wave energy

should be zero from (4.20), so if the baroclinic conversion is from the basic

state flow to the perturbation then the conversion of kinetic energy via the

Reynolds stress must be of the opposite sign. A numerical evaluation of

the energy balance presented below does indeed confirm this result.

The solutions obtained numerically can be used to calculate explicitly

the terms in the energy statements of chapter 4. The following calculations

were performed using the full energy E* including the geostrophic and

ageostrophic parts. The terms in the definition of wave energy (4.9d) are

plotted as a function of cross-front distance in Fig. 5.5. The solid curve

is the positive definite sum of the kinetic energy in each layer and the

potential energy. The long dashed curve is the correlation between vl and

interface displacement which results in a negative contribution to the wave

energy. This results because the unstable disturbance decreases the total

speed (vI > 0) where it deepens the upper layer [( 1 - T) > 0]. The sum

of these positive and negative contributions to the wave energy is plotted

as the short dashed curve in Fig. 5.5. Its integral over the domain of the

fluid vanishes, confirming the result that unstable waves on basic state flows

with uniform potential vorticity have "zero wave energy".

The energy conversion terms in (4.13) due to the action of Reynolds
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stresses and baroclinic instability are plotted as a function of z in Fig. 5.6.

The values to the right of the figure result from integrating the various

terms over the domain of the fluid. Only the Reynolds stress terms are

plotted in Fig. 5.6a. The first term in the integrand of (4.13) representing

the horizontal Reynolds stress -hltulvl is positive as was inferred from

the examination of the phase tilt in the unstable disturbance. The second

term - 2ulvl is negative and large with the result that the net horizontal

Reynolds stress acts to convert energy from the perturbation to the mean

flow. The vertical Reynolds stress term -hlV(ul + vl,)vl is positive and

the final term in the integrand of (4.13), which earlier had been related to

the deflection of the surface front, is large and negative. The sum of the

Reynolds stress terms plotted in Fig. 5.6a is plotted as the dashed curve

in Fig. 5.6b. The solid curve in Fig. 5.6b represents the baroclinic energy

conversion term, whose integral over the domain of the fluid is positive and

exactly balances the integral of the sum of the other terms. The integrand

in (4.13) can be related to the mean energy E* through the use of (4.10).

Specifically, aE/OIt = -i9E2/ot = f( energy conversion terms ) dA. The

fact that the sum of the terms in the integrand is zero confirms that the

mean energy as well as the wave energy (as illustrated in Fig. 5.5) are

zero for this basic state flow with uniform potential vorticity. The ra-

tio of the magnitude of the baroclinic conversion term to the magnitude

of the Reynolds stress terms [neglecting the contribution from the term,

-'VZu ( I - ST), which is related to the deflection of the surface front] is

- 2.6 which indicates that the energy conversion process, although mixed,
is primarily baroclinic.

The results for momentum confirm the signs inferred from (4.23). Even

though Qi, = 0, the gradient of the lower layer basic state potential vor-

ticity (Q2) is nonzero and negative. The calculated value for the wave

momentum (M2*) from (4.12d) is positive while that of the mean momen-

tum (Mr), from (4.22) and the fact that aMr/at = -8M2/8t, is negative.
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These two exactly balance such that the total disturbance (mean plus wave)

momentum is zero.

The structures of the two stable waves at I = 2.0, which for I < 1, had

been resonating to produce the unstable mode, are presented in Fig. 5.7.

The velocities are again scaled for each wave such that the vector beneath

the legend represents one unit. Both stable waves are frontally-trapped

and have highly ageostrophic velocity fields. The wave with a, = -0.5444

(or c, = -0.2722) (Fig. 5.7a) is primarily trapped in the upper layer while

the wave with a, = -0.1155 (or c, = -0.0578) (Fig. 5.7b) has comparable

velocity magnitudes in each layer (a more "barotropic" mode). The two

waves have the same sign of phase propagation, but oppositely directed

group velocities (defined by c, = aal/1). The wave with a, = -0.5444

has a negative group velocity and thus propagates energy toward -y. The

opposite is true for the other stable wave. When the stable waves have

the identical wavenumber and phase speed they can resonate to produce

the unstable mode. The fact that the stable waves have different energy

propagation directions allows for the transfer of energy between them to

form a growing unstable disturbance. This idea is elaborated on below.

An explicit calculation of the terms in the energy statements of chapter 4

can also be performed on the two stable modes whose alliance results in

the unstable mode analyzed above. The wave with a, = -0.5444 has

negative disturbance energy while the wave with a, = -0.1155 has positive

disturbance energy. As described above, when these two waves have the

same wavenumber and phase speed they can exchange disturbance energies

to form an unstable mode which has zero disturbance energy. Thus, the

unstable mode can grow through a transfer of disturbance energy from one

of its partners to the other.

The previous paragraphs detail the existence of unstable waves on a

uniform basic state potential vorticity flow, confirm the energy statements

of chapter 4 and discuss the mechanisms for their existence. The variety
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of mean flow profiles and layer depths associated with coastal upwelling

fronts found in nature suggests an investigation of the effect of changing

the model parameters. The first parameter to be varied is the distance

from the front to the coastal wall (z,). The maximum growth rate (ai.)
is plotted versus IxIf in units of R in Fig. 5.8. The wavenumber of the

fastest growing wave (l, = 1.05) does not change appreciably (less than

1%) as Ixlz is varied. Moving the front closer to the coastal wall results

in a decrease of the maximum growth rate. This decrease is - 34% for

the surface front next to the coastal wall. The growth rate asymptotes to a

constant value as Izfl increases with the choice IxfI = 2.0 R being similar to

the no wall case considered by Killworth et al. (1984). In fact, comparison

of their numerical results (see their Fig. 4) are in excellent agreement with

the results presented in Fig. 5.3a. This agreement also supports the validity

of the geostrophic momentum approximation for this choice of basic state

flows. In summary, maximum growth rates decrease as the surface front is

moved closer than ~ 2 - 3 R from the coastal wall.

Since the theorem (4.27) establishes the stability of a uniform basic state

potential vorticity flow with an infinitely deep lower layer (a reduced grav-

ity model) and the results of this chapter show the existence of a strong

instability (large growth rate) for equal layer depths, a dramatic depen-

dence of the growth curve on lower layer depth may be expected. Growth

rate versus alongfront wavenumber with z1 = -2.0 R for various values

of r, the nondimensional total depth as defined in Fig. 5.2, is plotted in

Fig. 5.9. Deep lower layers decrease the range of unstable wavenumbers,

shift the fastest growing wave to longer wavelengths (smaller 1) and dramat-

ically decrease the growth rate of the fastest growing wave. These results

are similar to those of Killworth et al. (1984) who, in an investigation

concurrent with this study, solved the shallow water equations numerically.

Since the source of energy for the unstable wave is primarily baroclinic, the

decrease in growth rate can be understood in light of the decreasing over-
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all vertical shear of the basic state flow. For continuous stratification and

velocity the growth rate due to baroclinic instability for a given wavenum-

ber is limited by the magnitude of the vertical shear (Pedlosky, 1986). An
analogous statement for layer flows may be established (Pedlosky, 1986)
using a finite difference form of the vertical shear where Az is the depth of

the water column even though, in reality, the vertical shear in the system

is concentrated at the interface. As the lower layer depth increases the

overall vertical shear decreases and the baroclinic energy conversion pro-

cess becomes weaker. The absolute stability of the flow with an infinitely

deep lower layer occurs essentially because the lower layer becomes so mas-

sive that interaction with the upper layer is removed. In other words, the

baroclinic conversion of energy is absent and thus the flow becomes stable.

The numerical solution presented in Fig. 5.9 is correctly converging to this
limit.

The discussion in chapter 4 illustrated the importance of the shape of the

interface profile (as denoted by a) to the stability of a coastal upwelling

front. It was also shown that the signs of the wave and mean energy

components of the unstable disturbance depend on the signs of the basic

state potential vorticity gradients. The effect on the stability properties

of the system of varying a will now be addressed. Growth rate versus

alongfront wavenumber for three values of a are presented in Fig. 5.10.

The wavenumber of the fastest growing wave decreases slightly (- 5% for

a 20% increase in a) as the interface becomes "steeper" (i.e. cross-front e-

folding scale less than a Rossby radius of deformation). A more significant

effect of increasing a is the increase in growth rate of the fastest growing

wave. Growth rate (oa) and the real part of the frequency (o,; not displayed

in Fig. 5.10) as a function of a for I = 1.0 are plotted in Fig. 5.11. The

growth rate and the real part of the frequency increase smoothly as a passes

through 1.0. Since the growth mechanism is via baroclinic instability, this

increase in growth rate is related to the increase in overall vertical shear
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between the two layers.

Numerical evaluation of the definitions of energy for the most unstable

wave shows that for a < 1.0 (cross-front e-folding scale greater than the

Rossby radius of deformation) the instability has E2 > 0 and E' < 0 and

thus can be labelled "positive wave energy" instability. In other words, for

a < 1.0 the traditional form of instability is recovered. This may be ratio-

nalized by realizing that in the limit as a becomes small the horizontal shear

in the system decreases and (ignoring the fact that interface displacement is

still large) traditional quasi-geostrophic dynamics appear more applicable.

For a > 1.0, the unstable mode has E2 < 0 and E* > 0. This "negative

wave energy" instability is in the same class as those recently analyzed by

Marinone and Ripa (1984).

The growth rate curve for an interface profile with a = 1.2 shows an-

other mode of instability at high wavenumbers (Fig. 5.10). This unstable

mode was not found for any value of a < 1.0. The growth rate for this

mode increases without bound for increasing wavenumber. As I becomes

large the trapping scale (which goes ~ 1-1) becomes shorter and shorter.

Inspection of this mode reveals it to be an instability whose energy con-

version is from the kinetic energy of the basic state to the disturbance.

It should be noted that observations of fronts often show a great deal of

mixing near the surface front. Inclusion of this process [as is done in the

models of Garvine (1983,1984)] may greatly influence a high wavenumber

mode trapped closely to the surface front as found here. It is possible that

mixing at the front could quench this mode of instability completely. The

structure of , the surface displacement, shows a rapid phase change across

the point where the phase speed of the wave equals the mean flow speed

(V = c,). This points to the instability being a "critical layer" phenomena.

This is in fact the result of Killworth (1983), who found unstable modes in a

reduced gravity model only when a was greater than 1.0. He obtained long

wave solutions by a careful matching of solutions across a critical layer. For



finite wavenumbers he solved the shallow water equations numerically and

found a high wavenumber mode. Comparing the real part of the eigenvalue

(ao) as a function of I for I greater than - 1.5 calculated here to Killworth's

(1983) result, shows them to be in excellent agreement. However, his re-

sults indicate that the growth rate of this mode decreases with increasing 1

for I greater than - 1.5.

To check that this mode with unbounded growth was not a result of

including an active lower layer, solutions were found for the same model

but with a very deep lower layer. The results for growth rate and phase

speed versus alongfront wavenumber using both the geostrophic momentum

equations (solid curves) and the shallow water equations (dashed curves)

are shown in Fig. 5.12. The values for c, agree well for both sets of equations

differing by less than 1% for I < 5.0. The values of oa for the shallow water

equation model decrease with increasing I for 1 greater than - 2.0. The

a curve for the geostrophic momentum equations diverges from that of

the shallow water equations at I - 0.4. For I greater than ~ 1.5 the one-

layer geostrophic momentum results for a exactly reproduce the values

displayed in Fig. 5.10 for the two-layer model. This confirms that this

mode represents a one-layer instability.

The next possibility to investigate is that the numerical solution tech-

nique may be failing to find the full eigenvalues for these high wavenumbers

correctly. To check this the reduced gravity geostrophic momentum equa-

tions were solved using a numerical "shooting" technique (the code for

this technique was generously provided by Glenn lerley and Bill Young).

This solution technique yielded the exact same eigenvalues as found by the

global algebraic eigenvalue solution technique as displayed in Fig. 5.12. This

points clearly to the failure of the geostrophic momentum approximation

for this type of basic state (a > 1.0), deep lower layers and wavenumbers

greater than ~ 0.4. It was stated earlier that the results for a = 1.0 at all

wavenumbers compared well with the solution for the shallow water equa-
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tions found by Killworth et al. (1984). The growth curves in Fig. 5.10
at wavenumbers of - 1.2 and less for all three values of a appear rea-
sonable. This implies that the geostrophic momentum approximation is
finding the behavior of this baroclinic conversion mode correctly. It should
also be noted that the high wavenumber mode does not violate the criteria
a, < 1.0 until an alongfront wavenumber of - 2.5 (see Fig. 5.12).

In an effort to understand why the geostrophic momentum approxima-
tion fails for values of a > 1.0 and wavenumbers of - 0.4 and greater (for a
deep lower layer), several simple reduced gravity models both with shallow
water dynamics and with the geostrophic momentum approximation were
attempted. Since the mode is highly trapped to the surface front a model
with a linear interface (V = constant) was considered. Analytic results were
found which proved to be absolutely stable at all wavenumbers. Including
horizontal shear (i, # 0) as a modification to the local Coriolis parameter
predicts instability for a > 1.0 at all I with a decay in growth rate for large I
for both sets of equations. To determine the difference between the two sets
of equations it appears necessary to include the curvature (-ff, 0) in the
mean flow. Unfortunately, this rules out analytic solutions and essentially
reduces the problem to that solved numerically above.

Clearly, the geostrophic momentum approximation is failing to produce
accurate results at these high wavenumbers for flows with values of the
interface parameter (a) greater than one. This unreliable behavior at high
wavenumbers is a symptom of the arbitrary truncation of the governing
equations at 0(E2 ) as discussed in chapter 3. Another complicating factor
may result from the fact that for a > 1.0 the absolute vorticity (1 + iV)
vanishes in the domain of the upper layer. For a = 1.0, 1+V, vanishes at the
surface front which is already a singular point of the governing equations.
When a < 1.0, 1+V. does not vanish in the domain of the fluid. For a > 1.0,
there may be terms neglected in the geostrophic momentum formulation
which become important in a thin boundary layer about the point where 1+



V. vanishes. This singular structure of the governing equations is analogous

to the equations governing large scale flow on a sphere where the equator is

a singular point (f = 21 sin e vanishes for E = 0*).The dynamical balance

in the equatorial region must be developed in a boundary layer structure.

Though this discussion is speculative, the latter effect may contribute to the

failure of the geostrophic momentum equations to accurately predict the

behavior of unstable frontal waves at high wavenumbers on basic states with

a > 1.0. Accurate results for this parameter range may only be obtained

through consideration of the full shallow water equations (e.g. Killworth,

1983).

In conclusion, a two-layer, flat-bottom model of a coastal upwelling front

with uniform basic state potential vorticity in the upper layer is unstable.

The unstable mode propagates phase in the same direction as the mean

flow (toward -y) and converts potential energy of the basic state flow to

perturbation energy via baroclinic instability. Simultaneously, the pertur-

bation transfers kinetic energy back to the basic state flow so as to leave

the basic state flow unaltered. This results in both the mean and wave

energies of the disturbance being identically zero. The unstable mode still

grows with time and energy transfer occurs between the two resonating

wave partners. The proximity of the front to a coastal barrier affects the

growth rate of the unstable mode. The growth rate of the fastest growing

wave decreases the closer the front is to the wall once that distance is less

than - 2 - 3 R. The depth of the lower layer dramatically influences the

properties of the unstable mode. Shallow lower layers increase the range of

unstable wavenumbers and increase the growth rates at all wavenumbers.

Increasing the vertical shear in the system (greater a) increases the growth

rate of the unstable mode. For a > 1.0 an unstable mode with negative

wave energy is found while for a < 1.0 the unstable mode has positive wave

energy. In addition, for a > 1.0 there exists a one-layer instability whose

phase speed is correctly found using the geostrophic momentum approxi-



mation, but whose growth rate is severely miscalculated. Caution should
be used when modelling flows in this large wavenumber range (and with
points in the flow where the absolute vorticity 1 + f, vanishes) using the
geostrophic momentum approximation.

5.4 Inviscid, Sloping Bottom Model

In this section the effect of sloping bottom topography on the stability of
a coastal upwelling front will be investigated. All of the regions where
coastal upwelling fronts are known to occur contain sloping continental
shelves (e.g. Oregon, see Fig. 1.1). These shelves, specifically the region
between the coastal barrier and the continental slope, may be gently slop-
ing as off the east coast of Nova Scotia or steeply sloping as off the coast
of the northwest United States. In either case, the bottom slope can be
classified as strong, in the sense that the change in water depth across the
shelf is large compared to the total depth. As mentioned in chapter 1, these
strong bottom slopes are not allowed in quasi-geostrophic theory where the
fractional change in depth must be the same order as the Rossby number
which is assumed small. However, the model used here, which employs the
geostrophic momentum approximation applied to the shallow water equa-
tions, will permit strongly sloping bottom topographies. The two-layer
models of instability by Orlanski (1969), who used the shallow water equa-
tions, and by Mechoso and Sinton (1981), who used the quasi-geostrophic
equations, both show that bottom topography sloping in the same sense as
the slope of the interface stabilizes the system (i.e. reduces the growth rates
of the unstable waves). The model of Orlanski (1969) did not consider the
stability of a flow with a surface front in the vicinity of a strongly sloping
bottom. In the previous section, the strong destabilizing effect of a shallow
lower layer was demonstrated. Since coastal upwelling fronts usually form
in shallow water over a sloping bottom, it is of interest to find out the net



effect of these two opposite influences on the stability of the front.

In this section the effect of a linearly sloping bottom on the stability of a

front with uniform basic state potential vorticity in the upper layer will be

discussed. The total depth will take the form H = ho + sx, where ho is the

water depth at the coastal barrier (x = 0) and s < 0 is the bottom slope.

As discussed in chapter 3, the sloping bottom will join a flat-bottom region

at a distance several Rossby radii offshore of the surface front. In chapter 6,
the influence of bottom topography which is an arbitrary function of z and

specifically chosen to model actual continental shelf profiles is presented.

Since the depth of the lower layer has such a profound effect of the growth

rates of unstable waves, it is desirable to try to keep the change in the

depth below the surface front as small as possible while varying the bottom

slope. From Figs. 5.6 and 5.7, most of the energy conversion occurs within

- 1 Rossby radius of the surface front. For these reasons, the sloping

bottom was pivoted about a point fixed directly beneath the surface front

(see Fig. 5.13b). The values of the bottom slope given in Fig. 5.13b are

obtained by multiplying the actual physical bottom slope by R/H 1. This

makes one unit of vertical distance equal to one unit of horizontal distance.

Before presenting detailed results, the effect of a sloping bottom on the

stability of the front can be anticipated by examining the general stability

criteria developed in section 4.3. For a basic state with uniform potential

vorticity in the upper layer, the second inequality (4.27b) is satisfied. If

-y is again chosen to be equal to -1, which satisfies the first inequality

(4.27a) at the surface front (z = x) (but not at other values of x, see

below), then to satisfy the last inequality (4.27c) the gradient of the lower

layer potential vorticity must be greater than or equal to zero. This is

really a requirement that the gradient of basic state potential vorticity not

change sign anywhere (i.e. within either layer or between layers) in the flow.

This echoes the familiar quasi-geostrophic requirements for stability, but

remember now that much larger physical bottom slopes are allowed. The
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only way to arrange this is to have the lower layer continuously thickening as

z -+* -oo. For a linearly sloping bottom, this requires the bottom slope to
be greater than the maximum slope of the interface. For the exponentially

sloping interface, the maximum interfacial slope occurs at the surface front

and is equal to -1 for the uniform potential vorticity front considered here.

Therefore, the inequalities (4.27b) and (4.27c) will be satisfied for a < -1.0.

However, the flow will still violate (4.27a) (i.e. for some range of z _ zx) so

the possibility for unstable modes still exists. This mode will be analogous

to the unstable mode found for the one-layer reduced gravity model with

a > 1.0 (see discussion in section 4.3). Note again, that traditional quasi-

geostrophic stability criteria applied to this model would predict stability

for a = 1.0 and a < -1.0.

Growth rate (oa) versus alongfront wavenumber (1) for models with var-

ious values of a (Fig. 5.13b) are displayed in Fig. 5.13a. The solid curve

for a flat-bottom model is the same as that in Fig. 5.9 for a total nondi-

mensional depth of three (r = 3). The long dashed curve is for a = -0.125
and the short dashed curve is for . = -0.50. The presence of a sloping

bottom decreases the growth rate of the unstable wave at all wavenumbers.

The high wavenumber cutoff (I) becomes smaller for increasing slope. The

sloping bottom also shifts the wavenumber of the fastest growing wave (,.)
to longer wavelengths. Note that even though the depth of the lower layer

beneath the interface is increasing with decreasing a, the fractional decrease

in the growth rate of the fastest growing wave (ai.) is more than would be

expected from a depth increase alone as can be calculated from Fig. 5.9.
The slope itself is stabilizing the system. The shift of the unstable modes

to smaller wavenumbers occurs because the wave's cross-front velocity in

the lower layer is restricted by the sloping bottom topography. In other

words, the wave motion in the lower layer is forced to be more alongshore.

In order to maintain a circulation in the lower layer roughly equivalent to

that found in the flat-bottom case (Fig. 5.4b), the closed cell, which has



been compressed in the cross-shelf direction due to sloping bottom topogra-

phy, elongates in the alongshore direction. This leads to a larger alongfront

wavelength or a smaller value of the alongfront wavenumber. For a bot-

tom slope of a = -1.0 no unstable modes were found. Above, the possible

existence of unstable waves even when 8 < -1.0 was anticipated by an

examination of the general stability criteria. Violation of the necessary

condition for instability is, in this case, not enough to insure the existence

of an unstable mode.

Properties of the unstable modes which exist in the presence of sloping

bottom topography are examined by focusing on the case a = -0.5. Growth

rate (oa) and alongfront phase speed (c,) versus alongfront wavenumber (1)

are plotted in Fig. 5.14. In Fig. 5.14b the unstable phase speed is denoted

by a solid curve and a number of stable modes are plotted as dashed curves.

As in Fig. 5.3b, the stable vorticity modes with c, < 0, except for the two

modes which resonate for I < 0.8 to produce the unstable mode, are not

plotted. The phase speed of the unstable mode is less negative than in

the flat-bottom case (compare Fig. 5.3b). This results because the sloping

bottom induces phase propagation to +y, which is the same direction as

topographic vorticity waves propagate. In fact, the dashed curves for c, > 0

are stable vorticity modes propagating with shallow water on their right.

Only the first four stable modes with c, > 0 have been plotted. There exist

many more stable waves with c, > 0 whose phase speeds decrease with

increasing mode number. Among the stable vorticity modes are familiar

continental shelf waves and, for this case where the interface intersects the

surface, the complimentary-mode edge waves of Bane and Hsueh (1980)
and Bane (1980).

The structure of the unstable mode for an alongfront wavenumber near

the fastest growing wave is presented in Fig. 5.15. The upper layer structure

is very similar to that for the flat-bottom mode (Fig. 5.4a). The main effect

of the sloping bottom is apparent in the lower layer structure which can
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be compared to Fig. 5.4b. As mentioned above, the unstable mode is more

confined in the cross-front direction and the velocity field is more along-

shore. The small growth rate for this mode is due to the upper and lower

layer perturbations being more nearly in phase indicating a less effective

conversion of potential energy from the basic state flow.

The transition from an unstable front over a flat bottom to a front

completely stabilized by a linearly sloping bottom (s < -1.0) is illustrated

in Fig. 5.16. The phase speed (c,) is plotted versus alongfront wavenumber

(1) for both stable (dashed curves) and unstable (solid curves) modes for

a range of the values of a. For the flat-bottom case (a = 0, Fig. 5.16a)
there are no stable modes with c, > 0. A number of stable modes exists for

c, < 0, but only the modes with the three largest values of ic,r are plotted.

The front is unstable over the entire range of I plotted in Fig. 5.16 (0.1 <

I < 1.2). With a small amount of bottom slope (a = -0.06, Fig. 5.16b)

stable modes with c, > 0 are introduced. As in Fig. 5.14b, only the first

four stable modes with c, > 0 are plotted. The phase speeds of the stable

modes with c, < 0 have become less negative. The front is still unstable

for wavenumbers in the range 0.1 < 1 < 1.2, but now the unstable mode

propagates to +y for I less than approximately 0.37. The fact that these

unstable modes with c, outside the range of the mean flow speeds (which

is negative for all values of z) exist, can be rationalized by realizing that

the topographic slope in this study is analogous to the effect of 3 (the

north-south gradient of the Coriolis parameter) in a flat-bottom model. In

a quasi-geostrophic model with P, a semi-circle theorem can be established

which allows unstable waves with phase speeds outside the range of the

mean flow velocities (Pedlosky, 1986). Analogous possibilities are allowed

in this study due to the linear bottom slope.

For a greater value of (a( (Figs. 5.16c-e), the phase speeds of the stable

modes with c, > 0 become greater. The phase speeds of the stable modes

with c, < 0 become more positive and appear as a thick line near c, = 0 in
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Figs. 5.16d and e. Unstable waves exist for a smaller and smaller range of

I as Isl increases. Finally, for a = -1.0 (Fig. 5.16f) no unstable modes are

found and there exists only one stable mode with c, < 0.

Another useful set of calculations involves keeping the bottom slope

constant and increasing the lower layer depth. Intuitively, one might expect

the stability of a surface front over a deep lower layer not to depend on the

bottom topography. Growth rate (ai) versus alongfront wavenumber (1) for

a range of lower layer depths [ht(z) = 4,10, 20] over a flat bottom (solid

curves) and a sloping bottom (a = -0.125, dashed curves) are displayed

in Fig. 5.17. The analogous curves for h2(zx) = 3 appear in Fig. 5.13a.

The stabilizing effect of a sloping bottom is not diminished by a deep lower

layer. This result is consistent with the stability theorem (4.27), since no

matter how deep the lower layer is, there still exists a change in sign of

the lower layer basic state potential vorticity gradient for a > -1.0. In the

real ocean, surface-intensified features are often independent of the bottom

topography. The model discussed here has a homogeneous lower layer so

that bottom effects are transmitted to the entire water column. In the

real continuously stratified ocean, the underlying density field may negate

the effect of the bottom topography on the stability of the surface front.

This omission in the simple model investigated here is discussed further in

chapter 7.

The above results indicate that a large absolute value of the bottom

slope parameter a may stabilize a coastal upwelling front. For realistic bot-

tom topographies and flow fields associated with coastal upwelling fronts

observed in nature, stabilization by a sloping bottom may not be realized

for at least two reasons. As illustrated in Fig. 5.13a, a large absolute value

of the bottom slope parameter a is needed to stabilize the front. Where

can these large absolute values of a come from? The bottom slope lsl will

be large if the actual physical bottom slope is large or if the scaling fac-

tor R/HI is large. Since R = (g'H 1)1/ 2/f, this factor can be written as
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(g'/Hi)'1//f. Clearly, this factor will be large for a big density difference

between layers or a shallow upper layer depth. Many of the coastal up-

welling fronts in nature (e.g. Fig. 1.1) are of this form, so Ia) may be big

enough to satisfy the inequality (4.27c), thus leaving only the possibility of

the weakly growing unstable mode associated with the violation of (4.27a).

As mentioned above, this unstable mode was not found numerically. One

resolution to this is to realize that if H1 is small then the maximum dimen-

sional velocity (which occurs at z = xs) will also be small. The basic state

flow field associated with the front can then be made to violate (4.27c)

by increasing the slope of the interface (i.e. by increasing a). This will

result in an increase in the maximum nondimensional upper layer velocity.

However, since H1 is small, the required maximum dimensional velocity

will often not exceed speeds observed in conjunction with coastal upwelling

fronts (e.g. Kosro, 1987). This discussion is intended to demonstrate one

way that reasonably realistic flow fields over linearly sloping bottom topog-

raphy can be potentially unstable through their violation of the inequality

(4.27c).

Another more likely explanation for why alongfront variability is com-

monly observed on coastal upwelling fronts over sloping topography (i.e.

the front is not stable) is that modelling the continental shelf as a constant

linear slope is not very realistic. Upwelling regions of the world's oceans

contain quite variable bottom topographies with both steeply and gently

sloping sections. Since, in their formation process, coastal upwelling fronts

migrate offshore (e.g. de Szoeke and Richman, 1984), they will pass over

regions of varying bottom slope. Therefore, the front's stability will depend

on the local bottom slope near (within ~ 1 Rossby radius) the surface front.

Including a realistic bottom topography will provide a range of the values of

the bottom slope parameter a which contains small enough absolute values

to allow for the possibility of unstable waves. A model with bottom to-

pography which is an arbitrary function of z, the cross-shore direction, will
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be used in chapter 6 to verify the existence of unstable waves on realistic
coastal upwelling fronts.

5.5 Linearized Bottom Friction

The previous results have all been for an inviscid model. Since coastal
upwelling fronts form in regions of shallow water, bottom friction will cer-
tainly be present. In addition, viscous effects may be present at the sharp
density interface between layers (Simpson and James, 1986). This latter
process is modelled in the studies of Garvine (1983,1984) by including a
thin, dissipative zone adjacent to the surface front. In fact, as discussed in
chapter 2, turbulent entrainment from this zone to the inviscid interior was
necessary in order for Garvine (1984) to obtain spatially growing wave so-
lutions. Since friction can be an important process in shallow coastal seas,
its effect on the stability of a coastal upwelling front will be investigated in
this section. First, the modifications to the governing equations and their
solution due to the inclusion of dissipation will be discussed. Following
this, changes in the growth rate curve due to frictional damping for one
particular model configuration will be presented.

In the model investigated here, damping will be provided to the flow
by linearized bottom friction. While interfacial friction may be important
in the formation and evolution of a coastal upwelling front, its inclusion
makes even the basic state flow difficult to solve analytically. Without
a known basic state flow, the solution for the perturbations is precluded.
The choice of damping by linearized bottom friction is also motivated by
its importance in studies of wave motion over the continental shelf (Brink
and Allen, 1978; Brink, 1982; Allen, 1984).

With linearized bottom friction, the lower layer geostrophic momentum
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equations for the perturbations (3.9) become

A

A
T., + U2 T= -, T",

where A, the nondimensional friction coefficient, is related to the dimen-

sional version (which has units of velocity) by

A. = fHA.

Note that the friction velocities have been made geostrophic, consistent

with the geostrophic momentum approximation. Substituting normal mode

form for TT [from (5.1)], the momentum equations become

+ A T + v 2 = T.,

- i - T. + u2 = -i T .h2 )
Lower layer velocities will now be given by

U.=2-i(, + to r . (5.18a)

v2 = ~T - + 2 >T. (5.18b)

Finally, substituting (5.18) into the lower layer continuity equation (5.4c)

results in an ordinary differential equation for T

+2\ 1 12 +1 1 iA +1 A t12
+T o h2 + I 2)

(5.19)

The finite difference forms of this equation and the former upper layer

equation (5.7a) are again combined to yield an algebraic eigenvalue problem
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of general form. The interior equations (excluding the boundary conditions

which will be described below) are still linear in the eigenvalue a, but the

coefficient matrices A and B are now complex. Complex eigenvalue solu-

tions to this nonhermitian system need not occur in conjugate pairs as was

the case for the former inviscid system (5.8). Boundary conditions at the

wall and at the offshore edge of the two-layer region are modified by the

presence of bottom friction. At the wall, lower layer cross-shelf velocity

(5.18a) is again required to vanish. Implementing this condition in the fi-

nite difference scheme results in terms proportional to a 2 . This appears

to destroy the gains made by making the geostrophic momentum approxi-

mation (i.e. the algebraic eigenvalue problem was linear in the eigenvalue

a), but this setback will be resolved below. At the offshore edge of the do-

main where the interface and bottom are flat, the solution can be matched

onto the two-layer frictional solution of Allen (1984). For finite depth lower

layers the solution in this region will have a decay scale which depends

on frequency. Only for deep lower layers will the decay scale become in-

dependent of frequency. Matching the frontal model to this solution will

introduce terms proportional to a2 , a3 , a4 ... which will greatly complicate

the numerical solution technique. To avoid this difficulty, a solid wall was

placed at the offshore edge of the domain and normal velocity in each layer

was required to vanish there. Inviscid model runs with this offshore bound-

ary condition showed less than a 1% change in the eigenvalue compared to

the open offshore boundary condition model. The finite difference forms of

these boundary conditions, as mentioned above for the coastal boundary

condition, introduce terms proportional to a2. The total problem, with

boundary conditions, can now be written as

A 1 = oB 7 +a C', (5.20)

where t1 is as defined in section 5.2. The matrices A, B and C are all com-

plex. This algebraic eigenvalue problem which is nonlinear in the eigenvalue
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a can be made linear (e.g. Webster, 1987) by defining a new column vector

- a . (5.21)

Substituting this into (5.20) gives

A r = B l+ C ). (5.22)

Finally, (5.21) and (5.22) can be combined and written as

A 0 7 BC 
Ad S ~ R I (5.23)

where I is the identity matrix and 0 is a null matrix. The system (5.23) is

now a complex algebraic eigenvalue problem of general form which can be

solved using a QZ algorithm as implemented by the IMSL routine EIGZC.

The memory requirements for the problem have increased by a factor of

eight (a factor of two is due to the need to store complex values in the

coefficient matrices). The same procedure may be used to reduce systems

with terms proportional to higher powers of the eigenvalue to problems

linear in the eigenvalue. The only expense is the requirement for a large

amount of computer storage space. In this study, no terms proportional to

powers of a greater than two were retained in order to keep the problem

computationally tractable.

The first model used to study the effect of bottom friction is the uni-

form potential vorticity flat-bottom model discussed in section 5.3. The

offshore constant lower layer depth is chosen to be twice the upper layer

depth (r = 3). The value of A chosen for the study was 0.2 which cor-

responds for an upper layer depth of 20 (50) m and mid-latitudes to a

dimensional value of 0.04 (0.10) cm s- '. Typical values for the continental

shelf are from 0.015 cm s- 1 to 0.08 cm s- 1 (Brink et al., 1987). The model

friction parameter of 0.04 cm s - 1 for H = 20 m (roughly corresponding
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to the upwelling front in Fig. 1.1) lies within this range while the value of
0.10 cm s- ' for Hi = 50 m is probably an overestimate.

To determine what effect friction might have on the stability of the
coastal upwelling front, it is useful to compare the frictional time scale (de-

fined as the ratio of water depth to the friction parameter) to the e-folding

time scales of the growing, inviscid, unstable waves. For the fastest grow-

ing wave on a uniform potential vorticity front with the offshore lower layer

depth equal to twice the upper layer depth (r = 3, growth curve displayed

in Fig. 5.9), the dimensional e-folding time scale is ta.fd - 1.8 days. If

the total depth is used, the dimensional barotropic frictional time scale is

tbf = 3H/A,. - 1.7 days. Since these time scales are comparable, it may

be anticipated that bottom friction will play a major role in the stability

of a coastal upwelling front. In fact, previous quasi-geostrophic instabil-

ity results including damping show that friction may destabilize a system

by introducing new modes of instability which were absent in the inviscid

cases (Holopainen, 1961; Romea, 1977). However, since the wave motion

is concentrated in the upper layer (Figs. 5.4, 5.15), the effect of bottom

friction will be reduced due to the insulating presence of the lower layer.

Following Allen (1984), the effective friction parameter due to stratification

is obtained by multiplying A. by (1/2)(HI/H2 ). Since (H/HT2 ) = 1/2, the

effective frictional time scale will be ~ 6.8 days. Now the unstable wave

grows on a time scale faster than the damping time scale, so the effect of

friction on the wave will be weak. That is to say, friction will not signif-

icantly modify the structure of the growing wave, but can be expected to

decrease its growth rate since it extracts energy from the system. These

results are confirmed below.

Growth rate (o,) versus alongfront wavenumber (1) for a viscous (solid

curve) and the previous inviscid (dashed curve) model are displayed in

Fig. 5.18. The inviscid growth rate curve is the same as plotted in Figs. 5.9

and 5.13a. Bottom friction has decreased the growth rates for waves with
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Figure 5.18: Growth rate versus alongfront wavenumber for an inviscid
(dashed curve) model front and a model with linearized bottom friction
(A = 0.2, solid curve). Both models have a flat bottom (a = 0, r = 3) and
uniform upper layer basic state potential vorticity (a = 1.0).
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wavenumbers less than ~ 1.3. The growth rate for the fastest growing wave
has been decreased by ~ 40%, but bottom friction has not significantly
shifted its wavenumber. Bottom friction has also increased the unstable
modes' phase speeds toward -y. This latter effect can be quite large, with
several numerical experiments yielding increases as large as a factor of 3 or
4. At high wavenumbers, the presence of bottom friction has introduced
a slowly growing unstable mode. This mode is due to the additional vor-
ticity source provided by bottom friction. Its growth rate decreases with
increasing wavenumber in a similar manner to the high wavenumber mode
discovered by Killworth (1983) for a one-layer reduced gravity model. Ex-
amination of the fastest growing mode's structure in the upper layer (not
shown) shows very little difference from the inviscid case. In the lower layer,
the magnitude of 'T and its cross-shelf extent are decreased compared to
the inviscid model. Overall, though, the structure of the viscous mode is
very similar to the unstable inviscid mode.

With linearized bottom friction the conservation of wave energy (4.20)
becomes

= -- Q, dA - X f z + Y dA.

Since Q1. is zero for this particular basic state flow, the wave energy at all
wavenumbers will be negative. As mentioned above, a high wavenumber
mode exists in the presence of bottom friction, but is absent in the invis-
cid case. For large wavenumbers friction is destabilizing the system. The
existence of this high wavenumber mode may be rationalized be recalling
the comments made in section 4.2 about the potential for instability due
to resonance between a stable wave and bottom friction. For the unstable
alliance to occur, the wave partner must have negative disturbance (wave
E2 plus mean E*) energy so it can lose energy to dissipation. The resulting
unstable wave has zero net disturbance energy as the wave transfers dis-
turbance energy to dissipation. The high wavenumber mode found here is
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an example of this process which is described further by Cairns (1979).
The high wavenumber mode found here in the presence of friction can be

compared to the high wavenumber mode found in the inviscid model with

a > 1.0 (see section 5.3 and Killworth, 1983). Both modes have negative

wave energy. For the inviscid model with a > 1.0, the vorticity source for

the perturbations is the nonzero basic state potential vorticity gradient in

the upper layer. In the viscous case, bottom friction provides the vorticity

source for the perturbations. In either case the high wavenumber modes

are trapped closely to the front and have small growth rates. As mentioned

in section 5.3, these modes may not be observed in nature not only because

they grow slowly, but also because cross-frontal mixing near the surface

front may quench them completely.

Results for a model with a flat-bottom and a j 1.0 are qualitatively

similar to those discussed here for a = 1.0. Specifically, the growth rate of

the fastest growing wave for all a is decreased and a slowly growing, high

wavenumber mode exists in the presence of friction for a < 1.0. The high

wavenumber mode for a = 1.2, whose growth rate is miscalculated using

the geostrophic momentum approximation (see section 5.3), is essentially

unaffected by the presence of bottom friction.

The primary effects of bottom friction on the unstable modes discussed

above is to decrease the fastest growing mode's growth rate and increase

its phase speed in the direction of the mean flow. This results because the

frictional damping time scale is much longer than the e-folding time scale

of the growing wave. When these time scales are more comparable, friction

may destabilize the system (Holopainen, 1961; Romea, 1977). To illustrate

this effect, the model was run with a uniform basic state potential vorticity

flow in the upper layer (a = 1.0) and a sloping bottom such that s = -1.0.
As shown in section 5.4, the inviscid version of this model is absolutely

stable. When bottom friction is added to the system, a weakly growing

[oi, -- 6.0 x 10 - for a model with h2(z,) = 3.0; compare to growth rates
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in Fig. 5.18] unstable mode appears. This destabilization by friction in the

presence of topography is analogous to the quasi-geostrophic models with

the 8 effect and bottom friction (Holopainen, 1961; Romea, 1977).
The destabilization of the flow through the introduction of viscosity is a

counterintuitive result. This effect can be rationalized in several ways. One

simple explanation is that bottom friction breaks the connection between

the interior flow and the bottom slope. That is, the strong constraint for

flow along isobaths is broken by the presence of bottom friction. A second

explanation relies on the fact that friction introduces a phase shift in the

disturbance. This phase shift allows the wave to release energy from the
basic state flow. It can be shown that the gain in energy is larger than

the loss of energy to dissipation so the disturbance amplifies. The final

interpretation, as mentioned earlier, involves an alliance between dissipa-

tion and a stable wave with negative disturbance energy. The stable wave

propagating to -y in the inviscid model with a = -1.0 (see Fig. 5.16f) has

negative disturbance energy. This mode grows as it transfers disturbance

energy to dissipation in order to maintain zero net disturbance energy.

In conclusion, bottom friction, which is known to be an important pro-

cess in the coastal ocean, is not expected to completely quench the unstable

waves present on a coastal upwelling front. This is mainly due to the fact

that the motion of the unstable wave is concentrated in the upper layer and

is thus insulated from the damping effect of bottom friction by the pres-

ence of the lower layer. However, bottom friction does provide a sink of

energy to the system so a decrease in the growth rate of the fastest growing

mode can be expected. For a value of the friction parameter in the range

of observed values and for a constant offshore layer depth equal to twice

the upper layer depth, this decrease in growth rate is on the order of 40%.

For weaker friction or deeper lower layers this effect will be less. Finally, an

example of destabilization by bottom friction is provided by a model with

a steeply sloping bottom (a = -1.0). The unstable mode in this case has a
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very small growth rate.

5.6 Summary

In this chapter the existence of unstable waves on model upwelling fronts

has been demonstrated. For a front next to a coastal wall over a flat bot-

tom, the fastest growing wave gains energy from the basic state potential

energy via baroclinic instability. Numerical confirmation of the conser-

vation statements set forth in chapter 4 was obtained. In particular, a

negative contribution to the wave energy form the cross-term -vl ~ 2 was

found. For a front with uniform basic state potential vorticity in the upper

layer, this negative contribution exactly balances the positive sum of the

kinetic and potential energies to make the wave energy identically zero.

A decrease in the fastest growing wave's growth rate was obtained when

the surface front is moved closer than - 2 R to the coastal barrier. Deep

lower layers decrease the growth rate for all values of alongfront wavenum-

ber due to the decreased overall vertical shear. Increasing the steepness

of the interface by increasing the parameter a results in a gain in the

fastest growing wave's growth rate. For an interface profile steeper than

a front with uniform basic state upper layer potential vorticity, a high

wavenumber mode was found whose phase speed is correctly found with

the geostrophic momentum equations, but whose growth rate is badly mis-

calculated. A linearly sloping bottom decreases the growth rate for all

values of the alongfront wavenumber. A large enough bottom slope can

completely stabilize the front by removing the change in sign in the poten-

tial vorticity gradient of the lower layer. However, realistic continental shelf

topographies contain a wide range of bottom slopes and are not expected

to completely stabilize a coastal upwelling front. Finally, linearized bottom

friction decreases the growth rates of the unstable waves since it extracts

energy from the system. For a < 1.0, a high wavenumber unstable mode
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exists because of the presence of bottom friction. In general, this mode

has small growth rates. Bottom friction may also destabilize a flow which

is otherwise stable in the absence of dissipation. The resulting unstable

mode has a very small growth rate. In the next chapter, the predictions for

the properties of the fastest growing wave in a realistic stability model will

be compared to observations of alongfront variability on coastal upwelling

fronts.
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Chapter 6

Comparison with Observations

6.1 Introduction

The results from the simple stability analysis presented in the previous

chapters show that unstable waves do exist on model coastal upwelling

fronts. The alongfront wavelength, e-folding time and propagation speed

of the fastest growing wave depends on various properties of the basic state

flow and model geometry. Observations of upwelling fronts in many regions

of the world's coastal oceans show alongfront variability in the offshore po-

sition of the surface front. As noted in chapter 1, these alongfront meanders

often appear wavelike and can extend alongshore over many repeated wave-

lengths. Observations also yield evidence for temporal growth in the size
of these alongfront disturbances. The purpose of this chapter is twofold.

First, observations of coastal upwelling fronts from several regions of the

world's oceans will be examined for evidence of unstable frontal waves.

Second, the scales of the observed alongfront variability will be compared

to the properties predicted by the simple stability model presented in the

previous chapters.

Sea surface temperature (SST) maps from almost any region of active

coastal upwelling show meanders in the surface temperature front. The

discussion presented here is not intended to be a comprehensive worldwide
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survey of frontal variability nor is it meant to be a detailed examination
of the physical dynamics of coastal upwelling. References to studies of this
type are included in chapter 2. Rather, case studies from selected upwelling
regions will be analyzed concentrating on the properties and evolution of
wavelike perturbations in the coastal upwelling front. These regions are off
the coasts of Oregon, Nova Scotia and southwest Africa.

As mentioned in section 5.4, the bottom topography of the continental
margin contains regions of varying bottom slope. In order to include realis-
tic bottom profiles, the stability model will be modified to include bottom
topography which is an arbitrary function of x, the cross-shelf coordinate.
This more physically realistic model with the appropriate input parameters
will then be used to determine the properties of the fastest growing wave.
According to the linear theory developed here, this is the mode which will
be observed in nature as it grows most rapidly from a small initial distur-
bance containing many wave components. The model presented here does
not determine the unstable waves' properties at finite amplitude but, nev-
ertheless, provides estimates which can be compared to observed frontal
variability. In fact, reasonable agreement between the properties of the
predicted unstable waves and observed frontal variability suggests that the
linear model predictions may hold at finite amplitude.

6.2 Oregon

The coastal ocean off Oregon is an area of active upwelling during the
summer when winds become predominantly upwelling-favorable (blowing
with the coast on the left)(e.g. Curtin, 1979). An example of a coastal
upwelling front in this region was presented in chapter 1 (Figs. 1.1, 1.2).
Two time periods during which almost daily aircraft SST maps are available

(O'Brien et al., 1974) will be examined for the presence of unstable frontal
waves. The first time period is July 12-15 after the peak of a strong (wind
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stress greater than 4 dyn cm - 2 ) upwelling-favorable wind event (Fig. 6.1).

A SST map from the middle of this period (July 14) was shown in Fig. 1.2

and is repeated in Fig. 6.2, which also contains maps earlier (July 12) and

later (July 15) in time. On July 12 (Fig. 6.2a), active upwelling is indicated

by the presence of cold water near the coast. At this time the surface front

is not very sharp. That is, the temperature change between inshore, cold,
upwelled water and the warmer, offshore waters occupies a region at least

35 km wide. Note the tendency for the surface isotherms to run parallel

to the coast. However, they are not absolutely parallel to the coast or the

bottom topography. An alongfront meander exists in the surface isotherms

(e.g. the 490 contour).
On July 14 the wind stress has decreased (Fig. 6.1) as the upwelling-

favorable wind event finishes. The SST map (Fig. 6.2b) shows a sharp,
pronounced surface front ~ 20 km offshore. An alongfront meander pattern,
which appears wavelike and extends alongshore over approximately two

wavelengths, is clearly evident. The northern part of the disturbance has

a larger wavelength than the southern part. A quantitative estimate of the

wave properties is presented below. Tracing isotherm position (e.g. using

the 490 isotherm) from the SST map of July 12 to July 14, shows that the

alongfront meander has essentially grown (larger cross-front peak-to-peak

amplitude) without the whole pattern moving much alongshore. Growth

in time of a meander pattern does not alone justify the interpretation of

the phenomenon in terms of an instability process. For instance, stable

wind-driven motions will change in amplitude as the forcing changes in

time. However, growth in time and propagation of the meander pattern in

the same direction as the basic state flow (which will be established below

for the case studies from each of three geographic locations) do support

the idea that the observed wavelike perturbations result from an instability

process.

The wavelike pattern evident in Fig. 6.2b does not have a symmetric
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Figure 6.1: Wind stress measured off Oregon during summer, 1973. The
lower panel shows alongshore wind stress where negative (equatorward)
values represent upwelling favorable winds. From Halpern, 1976.
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Figure 6.2: Sea surface temperature (in degrees Fahrenheit) from aircraft
surveys off the coast of Oregon on (a) July 12, (b) July 14 and (c) July 15,
1973. Flight path is shown as a dotted line. Depth contours are in fathoms
(1 fm = 1.8 m). From O'Brien et al., 1974.
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sinusoidal shape. There is clear evidence that the surface front's position

moves more quickly from offshore to onshore than from onshore to offshore.

In other words, the wave is steeper downstream of regions where the up-

per layer is shallow. This type of pattern is consistent with the alongfront

advection of layer height implied by the negative contribution of the term

-~vl,S2 to the wave energy discussed in chapter 4. As displayed in Fig. 4.1,

this contribution implies that regions where the upper layer is shallow travel

more quickly downstream than regions with thick upper layers. A planview

of this pattern as obtained from a conceptual model of wave steepening is

displayed in Fig. 6.3. Two comments can be made on the wave steepen-

ing effect. The first is that wave steepening is a nonlinear effect and the

unstable wave motions modelled here are strictly linear. However, wave

steepening is consistent with the predicted linear solution and does appear

in observations of alongfront variability. The second point is that the wave

steepening observed here is in the opposite sense to that predicted for stable

waves over sloping bottom topography in the presence of a surface front.

Gill and Schumann (1979) show that for a surface front over a linearly slop-

ing bottom, only stable waves with poleward speeds les than the mean flow

speed exist. They further note that for this supercritical flow, the inshore

part of the wave moves more quickly to -y than the offshore part. This

leads to wave steepening downstream of the region where the upper layer is

deep. Therefore, the observations presented here are more consistent with

unstable frontal waves than with stable topographic waves in the presence

of a surface front.

Compression and rarefaction of surface isotherms within the frontal zone

is apparent in Fig. 6.2b. This pattern may be due to the presence of a shal-

low bottom and a coastal barrier on one side of the front. On the inshore

side of the front, the bottom and coast restrict the cross-shelf movement

of the surface isotherms which leads to their compression. On the offshore

side, the peaks grow without restriction so no compression occurs and the
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Figure 6.3: Modelled example of surface isotherm pattern due to wave
steepening effect. The coastal barrier lies at the top of the figure. At a
constant offshore distance seaward of the surface front (e.g. -1.2), the
upper layer will be deep when the front is closest to the coast and shallow
for the front farthest from the coast.
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isotherms appear spread apart compared to the inshore peaks. Evidence
for this topographic effect is apparent in the widely spaced isotherms at the
offshore peak near - 45* 15' N and the tightly packed isotherms at the in-
shore peak just to the south. While the above discussion may explain some
of the observed compression/rarefaction of surface isotherms, the structure
of the frontal zone is clearly more complicated. A stability model with bet-
ter resolution of the frontal zone is needed to fully understand the observed
surface temperature patterns.

The SST map from July 15 (Fig. 6.2c) exhibits a sharp surface front
in the north (45* 10' N) connected with a weaker temperature gradient
region to the south. The vertical section of density presented in Fig. 1.1
was taken across the sharp front in the north at - 450 15' N. There still
exists alongfront variability in the position of the upwelling front, but the
amplitude of the disturbance appears less than in the July 14 SST map.
Furthermore, tracing the change in time of isotherm position (e.g. using
the 49" isotherm) shows that the entire meander pattern has propagated
to the south. This propagation speed is quantified below. The sharp front
in the northern part of the July 15 map is presumed to have come in to
the study region from the north. This would be consistent if the wavelike
meander pattern of July 14 repeated northward of the study area. Although
measurements do not exist to prove this conjecture, the alternating pattern
of closely packed isotherms at inshore peaks and widely spaced isotherms
at offshore peaks would indicate, if the pattern did repeat northward, the
existence of a region to the north of closely packed isotherms associated
with the next inshore peak of the disturbance. This sharp frontal region
would then presumably have propagated into the northern part of the SST
map of July 15.

The next available SST map (July 16, not shown) exhibits a less orga-
nized pattern and contains several eddies of ~ 30 km length in the along-
shore direction. It is difficult to identify a surface front connected in the
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alongshore direction.

The above results provide a qualitative description of the growth of an

alongfront meander on a coastal upwelling front off the coast of Oregon.

In order to compare the observations to the stability model predictions, a

quantitative estimate of the meander properties must be made. To estab-

lish an alongfront wavelength, individual SST maps are used to measure

the alongfront distance between peaks of the wave. As noted above, the

wavelength is different between the northern and southern parts of the dis-

turbance. This difference may be due to an alongshore change in the shelf

geometry or basic state flow, a feature which is absent in the simple stabil-

ity model presented in the previous chapters. This subject will be discussed

further in chapter 7. An estimate of the range of alongfront wavelengths

may be obtained by measuring peak-to-peak distances from all three SST

maps. Individual values obtained in this manner are contained in Table 6.1.

The range of alongfront wavelengths is 32-52 km.

While estimating alongshore phase propagation for the meander pat-

terns is difficult, an attempt is made at least to establish the direction

and get a rough estimate of the magnitude of the propagation speed. Two

methods are used to determine the alongshore propagation speed. Changes

in the alongshore position of the wave peaks between July 12 and July 14

and between July 14 and July 15 are averaged to obtain a propagation

speed of ~ 9 cm s- 1 to the south. The individual estimates used in this

average are contained in Table 6.1. The second method involves measuring

the distance between the intersection of individual surface isotherms with

the 50 fm isobath from one SST map to the next. This method yields an

average propagation speed of - 8 cm s- 1 toward the south, which is fairly

close to the estimate from the first method.

An estimate of growth rate for this frontal wave can be found by ex-

amining the change in time of the cross-front peak-to-peak wave ampli-

tude. This is most easily done between the July 12 and July 14 SST
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maps, with the result (individual values in the average are contained in

Table 6.1) oa-'f - I  4 days. This estimate of growth rate as well as those

for alongfront wavelength and propagation speed should be treated as ap-

proximate, given the certain amount of subjectivity used in drawing the

contour maps of SST. However, they provide reasonable estimates to com-

pare to the properties predicted for the fastest growing wave in the stability

model.

Before comparing observed frontal wave properties for this geographic

location to those obtained from the stability model, a second time period

will be examined. SST maps from July 22 and 23 are displayed in Fig. 6.4.
The winds during this period (Fig. 6.1) vary daily between a 1 dyn cm - 2

stress in an upwelling-favorable direction to little or no wind. A surface

temperature front is evident in Fig. 6.4a separating cold, inshore water from

the warmer water offshore. As during the previous time period (discussed

above), a wavelike meander exists on the surface front. No SST information

is available in the 3 days before the July 22 map, so the previous time

history of the meander pattern is unknown. The wavelength of this feature

is comparable to that of the July 12-15 meander, with the same tendency

for a longer length scale in the northern part of the study region. The

properties of this wave are quantified below. A continuously connected

alongshore front is less obvious in the SST map from July 23 (Fig. 6.4b).

In fact, the wavelike pattern of July 22 seems to have amplified and perhaps

broken into closed or nearly closed eddies. Note the offshore eruption of

the 56* isotherm at the northern end of the study region, the deepening

of the trough just to the south and the strengthening of the cold eddy

at - 44* 50' N. (Note that the above interpretation is only one possible

explanation for the evolution of the surface temperature pattern and that

processes such as mixed layer deepening could make following the motion

of individual surface isotherms between maps problematic.) This behavior

of the alongfront meander pattern is surely a finite amplitude phenomenon,
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which suggests that the unstable waves predicted by the small amplitude

model in the previous chapters can grow to finite amplitude. This sequence

of SST images may offer an example of an alongfront meander beginning

to disrupt the alongshore flow field by the formation of detached eddies.

The same techniques as used for the first time period are used to quan-

tify the properties of this wavelike perturbation. The individual estimates

used are contained in Table 6.2. The range of alongshore wavelengths is

31-60 km. An alongshore phase speed of - 14 cm s- 1 to the south is ob-

tained from noting the change in time of the alongshore position of wave

peaks. From examining the movement of individual isotherms along the

50 fm isobath, a value of - 11 cm s- 1 is obtained. Growth rate is again a

difficult property to estimate, but the e-folding time during this time period

appears to be - 2 days, somewhat shorter than observed in the previous

sequence of images.

The results from these two case studies of alongshore meanders in the

coastal upwelling front off Oregon provide estimates of wave properties

which can be compared to predictions from the simple two-layer stability

model. The observed wave properties are

alongfront wavelength - 31 - 60 km,
phase speed - 8 - 14 cm s - 1 to the south,

e-folding time - 2 - 4 days.

Since the properties of the fastest growing wave (i.e. the wave most likely

to be observed as it grows rapidly from an initial disturbance field con-

taining many wave components of varying alongfront scale) predicted by

the stability model are greatly affected by the choice of layer depths and

bottom topography, it is necessary to have an accurate estimate of these

values for the study region off Oregon.

A constant upper layer depth far offshore of the surface front can be es-

timated from examining the vertical section of density displayed in Fig. 1.1.

The value of H1 is chosen to be 20 m with a density defect of 6 = 0.002.
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Date Wavelength Phase speed cross-front
estimates (km) estimates ( cm s-1 ) peak-to-peak

amplitude estimates (km)
7/12/73 32, 47 6, 7

-9, 11,15,12
7/14/73 47, 52, 34 9, 10, 14

-33, -36, -20, -12
7/15/73 39, 34

average = 41 km I average = -9 cm s- 1

Table 6.1: Estimates of the properties of observed alongfront variability off
the coast of Oregon.

Date Wavelength Phase speed cross-front
estimates (km) estimates ( cm s- 1) peak-to-peak

amplitude estimates (km)
7/22/73 60, 37 7, 8, 4, 6

-10, -21, +9, O
7/23/73 31, 31, 47 15, 9

-28, -33
7/24/73 47

average = 41 km average -= -14 cm s- 1

Table 6.2: Estimates of the properties of observed alongfront variability off
the coast of Oregon.
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With these values, the internal Rossby radius of deformation (R) is 6.2 km

and the long internal gravity wave phase speed ((g'H) 1/2 ) is 63 cm s- 1.

From Fig. 1.1 it is difficult to determine the interface profile due to the

presence of many small scale features. In the stability model, the interface

is modelled as an exponential with an adjustable e-folding scale. It was

decided to use a = 1.0 as a reasonable first guess, rather than estimate

an appropriate e-folding scale for the interface from observations. As de-

scribed in section 5.3, increasing a will make the interface rise more steeply

to the surface, increase the maximum velocity at the surface front and, as

a result, increase the growth rate of the fastest growing wave. However,

the wavenumber of the fastest growing mode will not be greatly affected

by a change in a (see Fig. 5.10). With a = 1.0, the maximum upper layer

mean flow velocity is 63 cm s- 1 to the south at the surface front. This value

is consistent with the geostrophic velocity estimates of Curtin (1979) who

found velocities of - 40-50 cm s - 1 at 20 m depth near the surface front.

For the above reasons, the model interface parameter is chosen as a = 1.0.

The cross-shelf bottom topography varies alongshore in the study region

(Fig. 6.2), an effect which is not included in the simple stability model.

This omission is discussed further in chapter 7. The cross-shelf bottom

topography used in the stability model is displayed in Fig. 6.5. Other

cross-shelf sections in the region will have more steeply or more gently

sloping continental shelves, but the topography displayed in Fig. 6.5 is

fairly representative. As discussed in section 5.4, an increase in the bottom

slope will decrease the growth rate and the alongfront wavenumber of the

fastest growing wave and a decrease in the bottom slope will have the

opposite effect. Again, in an effort to use the simple stability model to get

an estimate for the unstable wave properties, the topography displayed in

Fig. 6.5 is deemed a realistic choice. Also shown in Fig. 6.5 is the scaled

bottom slope parameter s as a function of cross-shelf distance. This value

is obtained by multiplying the actual physical bottom slope by R/H. As
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noted in section 5.4, with a = 1.0 a value of s < -1.0 beneath the surface

front will stabilize the front. The bottom topography in Fig. 6.5 contains a

range of the values of a, so it may be anticipated that the offshore location

of the surface front will determine its stability properties. Another point

to keep in mind is that deeper lower layers decrease the growth rate and

alongfront wavenumber of the fastest growing wave (Fig. 5.9). Therefore,

it may be anticipated that the fastest growing mode will occur when the

surface front lies over a weakly sloping bottom in shallow water.

Partial growth rate curves for three values of the distance between the

surface front and the coast (z) are displayed in Fig. 6.6. The dimensional

offshore position of the surface front is obtained by multiplying the nondi-

mensional value z1 by R = 6.2 km. In addition, no unstable waves are

found for a model with z! = -2.0 R (-12.4 km). The largest value of the

fastest growing wave's growth rate occurs for z! = -3.0 R (-18.6 km).

This mode has an alongfront wavenumber of I = 0.75. The maximum

growth rates for z1 = -2.5 R (-15.5 km) and z! = -3.5 R (-21.7 km)

are less, but occur at a wavenumber only slightly less than that found for

zf = -3.0 R. The dimensional properties of these fastest growing modes

are obtained by multiplying 1-' by 2?rR to get alongfront wavelength, ao'

by f-1 to get e-folding time and c, by (g'H,)1/2 to get alongfront phase

propagation. The results for this range of z, are:

alongfront wavelength 52 - 56 km,
phase speed 1 - 2 cm s-1 to the south,

e-folding time 5 - 8 days.

The alongfront wavelengths predicted by the two-layer stability model are

within the range of the observed values. However, the model underpre-

dicts both the phase speed toward the south and the growth rate. These

properties may be modified by adjusting the model input parameters. For

example, increasing a (i.e. making the model front rise more sharply to

the surface) will increase the phase speed toward -y and decrease the e-
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(1).

135



folding time due to the increased vertical shear. The vertical section of

density in Fig. 1.1 provides an indication that the pycnocline may rise to

the surface sharply. Another possible explanation for the underprediction

of phase speed and growth rate is the lack of stratification beneath the

model front. Underlying stratification may isolate the upper water column

form the influence of the sloping bottom. This point is addressed further

in chapter 7 below. However, given the best guess input parameters used

here, the simple two-layer stability model predicts properties of the fastest

growing wave which are fairly close to the observed values. Therefore, the

existence of growing alongfront meanders on coastal upwelling fronts in this

region may be interpreted in terms of an internal instability process.

One final note concerns the effect of linearized bottom friction on the

unstable wave. As discussed in section 5.5, when the frictional damping

time scale is long compared to the e-folding time scale of the most unstable

wave, the effect of friction will be to decrease the growth rate of the fastest

growing mode, increase its phase speed toward -y and shift its wavelength

only slightly (see Fig. 5.16). An estimate of the frictional time scale for the

model front off Oregon using A. = 0.04 cm s- 1 is 18 days. Since this time

scale is long compared to the growth rates predicted by the inviscid model

(5-8 days), bottom friction is expected to decrease the fastest growing

wave's growth rate and increase its phase speed to -y. In fact, running the

viscous stability model with a bottom friction parameter of A. = 0.04 cm s - I

results in the following wave properties

alongfront wavelength 37 - 43 km,
phase speed 3 - 6 cm s-' to the south,

e-folding time 7 - 11 days.

In summary, bottom friction shifts the predicted phase speed closer to the

observed values, but contributes further to the model underprediction of

growth rate.
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6.3 Nova Scotia

Recently, Petrie et al. (1987) presented observational evidence for unstable

waves on a coastal upwelling front which formed off the east coast of Nova

Scotia. During the month of July 1984, a weak but persistent alongshore

wind blew in an upwelling-favorable direction (Fig. 6.7). In response, cold

saline water was upwelled at the coast forming an offshore surface front. An

alongfront meandering with wavelike characteristics was observed to grow

on this surface front. A satellite SST image from July 25 near the end of

the period of upwelling-favorable winds is presented in Fig. 6.8a. A chart

with a latitude-longitude grid, place names and the offshore location of the
shelf break (as indicated by the 200 m isobath) is included in Fig. 6.8b.
The waters along the coast which appear white have a temperature of

10-14* C. The gray areas inshore of this band have temperatures as low

as 40 C. The dark gray waters offshore of the white upwelled band are

warmer than 14* C. The light area to the southeast has temperatures of

18-22* C. A Gulf Stream ring with temperatures - 26* C is represented by

the nearly black, circular region in the center at the bottom of the figure.

Three large meanders in the coastal upwelling front extend offshore between

Halifax and the southwest tip of Nova Scotia. There is also evidence for two

more, smaller amplitude, meanders along the front to the northeast. These

perturbations are fairly evenly spaced alongshore and have a wavelength in

the range of 50-75 km (Petrie et al., 1987).
The growth of these meanders can be seen in a time sequence of satellite

SST images presented in Fig. 6.9. The earliest image taken on July 7

(Fig. 6.9a) shows very little cold upwelled water near the coast. The image

from a week later (July 14, Fig. 6.9b) shows a much larger region of cold

water along the Nova Scotian coast and around into the Bay of Fundy.

The alongfront perturbations in the surface front have begun to form at

this time. The three southernmost wavelike meanders grow to rather large
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Figure 6.8: (a) Satellite (NOAA-7) sea surface temperature image for
July 25, 1984. (b) Location map for Nova Scotia case study. From Petrie
et al., 1987.
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Figure 6.9: Series of satellite SST images: (a) July 7; (b) July 14; (c)
July 21; (d) July 25; (e) July 31; and, (f) August 6. From Pet r1 et al.,
1987.
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amplitude by the July 21 SST image (Fig. 6.9c). The image in Fig. 6.9d

is the same as that shown in Fig. 6.8a, and shows the fully developed

meanders extending up to - 75 km away from the initial surface front.

In the following weeks (July 31, Fig. 6.9e and August 6, Fig. 6.9f) the

area of upwelled water decreases in size and warms. At the same time the

alongfront meanders decrease in size.

From this series of satellite SST images the existence of growing frontal

perturbations is clearly established. Note the very small propagation speed

of the meander pattern. By superimposing successive images, Petrie et

al. (1987) find a phase propagation to the northeast in the range of 0-
2.0 cm s-'. These features grow quite rapidly as is evident in Fig. 6.9. Petrie

et al. (1987), using additional SST images not presented here, estimate

the e-folding time to be of order several days. In summary, the observed

unstable wave properties are

alongfront wavelength 50 - 75 km,
phase speed 0 - 2 cm s- 1 to the northeast,

e-folding time several days.

As was done for the case study off the coast of Oregon, estimates of
layer depths and bottom topography need to be made in order to predict
wave properties from the two-layer stability model. No detailed subsur-
face density sections across the upwelling front are available from this time
period, but two hydrographic stations were occupied on July 29 and 31
(Fig. 6.10). One station is located just off the coast near Halifax within the

band of cold water and the other is located - 75 km offshore, outside the

cold band. The inshore station has lower temperature and higher salinity

(hence greater density) in the upper 15 m of the water column. As Petrie et

al. (1987) note, these characteristics are consistent with coastal upwelling.

The offshore station allows an estimate of 20 m for H with a density defect

of 6 = 0.003. This gives a long internal gravity wave speed of 76 cm s - 1

and an internal Rossby radius of deformation equal to 7.4 km.
t
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off Halifax. From Petrie et at., 1987.
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The bottom topography off the east coast of Nova Scotia is rather com-

plicated. The water depth increases rapidly nearshore reaching a value of

100 m within 10-12 km of the coast. Offshore of this the bottom slopes

gently with a nearly constant linear value of - 1 x 10- 3 (Petrie et al.,

1987) to a deep trough - 80 km offshore. Finally, an offshore bank gives

way to a steep continental slope beginning at - 180 km offshore. Since

the satellite SST images indicate that the surface front lies over the region

of approximately constant bottom slope, the two-layer stability model was

run with a linearly sloping bottom next to a vertical coastal barrier as in

section 5.4. The final necessary model input is the offshore distance to the

surface front which is estimated from the satellite SST image to be - 2

R (- 15 km). This places the surface front in water of 110 m depth or

5.5HI. Since no details of the cross-front subsurface density structure are

available, the interface parameter a is chosen equal to one.

With these choices the stability model predicts the following properties

for the fastest growing wave

alongfront wavelength 74 km,
phase speed 1.0 cm s-' to the northeast,

e-folding time 10 days.

The predicted wavelength and phase speed are within the range of observed

variability. However, as was the case off Oregon, the model underpre-

dicts the growth rate of the fastest growing mode. Again, the model input

parameters may be varied. For example, a 20% increase in the vertical

shear (obtained by increasing a to 1.2) results in no change in alongfront

wavenumber, but increases the alongfront phase propagation to 2 cm s - '

to the northeast and decreases the e-folding time to 7 days. Another possi-

bility, as mentioned in conjunction with the example from Oregon, is that

underlying stratification may isolate the upwelling front from the stabilizing

effect of the sloping bottom.

Another consideration is the reversed bottom slope between the deep
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trough - 80 km offshore and the bank which reaches its shallowest point -
160 km offshore. Even though the satellite images show that the upwelling
front is never found that far offshore, it is of interest to analyze the effect
of the reversed bottom slope on the properties of the fastest growing wave.
Running the model with the surface front 100 km from the coast where the
water depth is - 200 m and the bottom slope is reversed, results in an e-
folding time for the fastest growing wave which is approximately half of the
value state above. This shows the strong influence of bottom topography
on the stability of the two-layer model. Again, the presence of underlying
stratification may isolate the upwelling front from the destabilizing effect of
a reversed bottom slope.

Bottom friction may also be included in this model. Since the water
depth is large beneath the surface front, the frictional time scale is expected
to be long. Using a value of A,. = 0.04 cm s- 1 (most likely an overestimate
for this shelf region), this scale will be - 30 days. Clearly, the fastest
growing wave in the inviscid model grows on a time scale shorter than this.
Running the viscous stability model with A. = 0.04 cm s- 1 results in little
change in the unstable wave's growth rate, but shifts its wavelength to
- 60 km and its alongfront phase speed to - 4 cm s- 1 to the northeast.

Petrie et al. (1987) use a three-layer quasi-geostrophic model to study
this phenomenon since they find that a two-layer quasi-geostrophic model
without horizontal shear is completely stabilized by the strong bottom
slope. The presence of a lower layer with zero mean flow effectively iso-
lates the two upper flowing layers from the stabilizing influence of a sloping
bottom. Even though the large interface displacements associated with
coastal upwelling fronts make the quasi-geostrophic models formally in-
valid, they obtain unstable waves with the properties of the fastest growing
wave in the range of observed values. Their predicted alongfront phase
speed of 4-5 cm s- 1 to the northeast is larger than that expected from the

observations. They suggest that adding a 3 cm s - ' depth-independent flow
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to the southwest in the system will bring this predicted value in line with

observations. The authors also apply a constant depth two-layer shallow

water equation model (Killworth et al., 1984 and section 5.3 in this study)
to the problem. Again, predicted wave properties are within the range of

observed values except for an excessive northeastward phase propagation.

The results presented here are from a model which is more physically

realistic than either of the above two models. Large interface displacements

and strong bottom slopes are allowed. Two points are noteworthy. The first

is that sloping bottom topography representative of the continental shelf off

the east coast of Nova Scotia does not stabilize the two-layer frontal model

as it did the two-layer quasi-geostrophic model with uniform mean flow in

each layer. Second, as discussed in section 5.3, a sloping bottom induces a

shift in the phase speed of the unstable waves. The sense of this shift is to

add a component in the direction that topographic vorticity waves propa-

gate (with shallow water on the right in the northern hemisphere). Since

the modelled unstable frontal waves propagate in the downstream direction

(toward the northeast off the east coast of Nova Scotia during the period of

active upwelling described here), a sloping bottom will decrease the mag-

nitude of the phase speed. The small values of alongfront phase speed to

the northeast observed for unstable waves in this area and predicted by the

stability model is likely due to this effect.

6.4 Southwestern Africa

The coastal ocean off the southwest tip of Africa is an area of active up-

welling (Bang, 1973). During the austral summer, winds from the southeast

drive an upwelling circulation which creates coastal upwelling fronts. Up-

welling has been observed from south of Cape Point (34* S) to well north

of Hondeklip Bay (300 S) (Fig. 6.11). A number of regions of locally in-

tense upwelling exist within this area (Taunton-Clark, 1985). Though these
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Figure 6.11: Location map for southwest Africa case study.
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upwelling structures are three-dimensional, there are areas where a fairly

two-dimensional front forms alongshore. One such area is west of Cape

Town between Cape Point and Cape Columbine. A number of observa-

tional studies have taken place in this region including the collection of a

large set of aircraft derived SST maps (Taunton-Clark, 1982). The purpose

of this section will be to describe the growth of an alongfront meander on

the coastal upwelling front as portrayed in a series of daily SST maps. Es-

timates for the scales of the disturbance and a comparison to the results of

the simple stability model will be made.

During January 17-28, 1980 the wind consistently blew in an upwelling

favorable direction (Jury, 1984). Within this period, the wind stress is

fairly constant at - 1 dyn cm - 2 from January 21-27. On January 22 an

aircraft SST survey was done from south of Cape Point to north of Cape

Columbine (Fig. 6.12a). The alongshore spacing of the sampling grid (not

shown) is - 25 km. Cold water is found adjacent to the coast with an

upwelling tongue extending northward from the Cape Peninsula (340 S).

Offshore of this tongue is a region of compressed surface isotherms running

alongshore over most of the survey region. This coastal upwelling front,

centered on - 50 km offshore, is the region of interest here. On January 22

there appears to be an alongfront meander with two peaks away from the

coast at ~ 33* 15' S and ~ 34* 15' S. The distance between these two peaks

is - 125 km. On January 23 (Fig. 6.12b), most of the SST features are

still present from the previous day. The offshore surface front seems to have

sharpened in the southern half of the study region. The alongfront meander

is still present and appears to have shifted slightly northward (e.g. see the

15*isotherm). At the southern end of the survey region another peak in the

alongfront meander is now evident.

The SST map from January 24 (Fig. 6.12c) shows the amplification of

the alongfront meander. All three peaks away from the coast increase in

amplitude whereas the inshore peaks do not. This is most likely because
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the bottom topography restricts their movement cross-shelf. Again, there

is some propagation of the meander pattern to the northwest. The final
SST map in this case study is from January 25 (Fig. 6.12d). Growth in
the alongfront meander is evident, but the pattern has not shifted in the

alongfront direction significantly. Note the sharpening of the surface front

at the inshore peaks especially near 33* 45' S. This apparently occurs be-

cause the cross-shelf movement of the inshore meander peaks is restricted by
the topography resulting in a compression of the surface isotherms. There

is some evidence that the wave is steeper downstream of regions where the

upper layer is shallow (e.g. the peak near 34* 15' S). This pattern is con-

sistent with the wave motion in the unstable mode found from the simple

stability model as discussed in section 6.2 above. It should be noted that

wave steepening is a nonlinear effect, but the predictions of the linear wave

motion suggest that this effect will occur.

As in the previous studies off Oregon and Nova Scotia, quantitative

estimates can be made for the properties of the observed waves described

qualitatively above. The results are, where individual estimates used are

given in Table 6.3,

alongfront wavelength ~ 81 - 150 km,
phase speed - 10 cm s - 1 to the northwest,

e-folding time - 6 days.

To obtain predictions for the same properties, the simple stability model

is run with bottom topography from a cross-shelf section originating near

330 35' S (Fig. 6.13a). The bottom slope parameter a is shown as a function

of cros-shelf distance in Fig. 6.13b. No subsurface density information is

available during the time the SST maps discussed above were calculated. To

get a value of HI and 6 for input into the model, vertical sections through

similar upwelling fronts during the same season but for a different year are

used (Bang, 1973). The values used are H1 = 70 m and 6 = 0.0015 which

lead to a Rossby radius of 12.4 km and a long internal gravity wave phase
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speed of 101 cm s- x. Again, the interface parameter a is chosen equal to
one as a reasonable first guess. From the aircraft SST maps (Fig. 6.12) the
front is - 40-50 km offshore which, given the bottom topography displayed
in Fig. 6.13, places the front in 150-170 m of water. The properties of the
fastest growing waves using the above model inputs and varying the offshore
position of the surface front are

alongfront wavelength 111 - 120 km,
phase speed 1 - 2 cm s-1 to the northwest,

e-folding time 14 - 16 days.

While the predicted alongfront scale compares reasonably well with the
observed values, the phase speed and growth rate are too slow. Both these
values could be increased by increasing the steepness of the interface profile
(i.e. making the overall vertical shear near the surface front larger). As in
the previous case studies, the presence of underlying stratification, an effect
omitted in the present stability model, may isolate the upwelling front from
the stabilizing influence of a sloping bottom.

To assess the influence of bottom friction on the stability properties of
the system, a comparison between the e-folding time of the fastest growing
wave and the frictional damping time scale can be made. Using a value of
A. = 0.04 cm s - 1, the frictional time scale is estimated as - 14 days. This
time scale is comparable to the e-folding times found above, so the possi-
bility of destabilization by friction, as discussed in section 5.5, is possible.
Results from a viscous model using the above value of A. yield the following
wave properties

alongfront wavelength 85 - 92 km,
phase speed 5 - 10 cm s- 1 to the northwest,

e-folding time 8 - 10 days.

Linearized bottom friction does improve the model estimates of phase speed

and growth rate, but the model still underpredicts the growth rate. In
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summary, even in the presence of frictional damping the simple stability

model predicts unstable wave properties in the range of observed variability.

One difference between this case study and the previous observations

off Oregon and Nova Scotia is the presence of a constant upwelling favor-

able wind stress throughout the observation period. In the previous case

studies, upwelling favorable winds occur in events separated by periods of

weak or downwelling favorable winds. The simple stability model developed

here does not include wind stress and should, therefore, only be compared

to observations obtained during these periods of weak winds between up-

welling events. However, as discussed in the beginning of chapter 3, the

stability model may apply equally well to basic state flows which exist as

a result of a steady-state balance between wind forcing and dissipation. In

other words, these two processes will not enter the stability analysis other

than through their effects on the basic state flow field. This case study off

southwestern Africa suggests that the simple model may be used to ana-

lyze the stability of a coastal upwelling front in the presence of wind stress.

The introduction of time-dependence in the basic state flow field from the

action of wind stress may, however, affect the stability of the front. This

point is discussed further in chapter 7 below.

A final caveat that should be mentioned, which applies to all the obser-

vational comparisons, is that the observed meanders are finite amplitude

phenomena while the model predictions are formally valid only at small am-

plitude. Nevertheless, given the inaccuracies in specifying the basic state

flow field as well as the model limitations, the alongfront variability ob-

served on coastal upwelling fronts off the southwest tip of Africa can be

interpreted in terms of unstable frontal waves.
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6.5 Summary

Observations from three regions of active upwelling show the existence of
alongfront variability on coastal upwelling fronts. The properties of the
observed wavelike disturbances and the predictions from the simple two-
layer stability model are in reasonable agreement. Although the observed
meanders are finite amplitude, they still appear to be growing which sug-
gests that the predicted growth from the linear theory may continue as the
flow becomes nonlinear. The model prediction is best for the alongfront
scale of the meanders. Discrepancies between the model estimates and the
observations can be due to several factors. Inaccuracies in specifying the
basic state flow due to limited subsurface density information will lead to
differences between observed and modelled wave properties. There are also
a number of omissions in the present stability model (e.g. no wind stress)
which are definitely present in the observed upwelling systems. These omis-
sions will be discussed further in the next chapter. However, the fact that
the simple stability model presented here predicts wave properties in the
range of the observed values, supports the idea that alongfront variability
can be interpreted in terms of unstable frontal waves.
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Date Wavelength Phase speed cross-front
estimates (km) estimates ( cm s-1) peak-to-peak

amplitude estimates (km)
1/22/80 125 4, 9,10

5,16,6,6,9,12
1/23/80 150, 81 11, 2, 14, 16, 4

54,9,34,21
1/24/80 132, 95 6, 2, 10, 5, 7

-29, 2, -26, 4
1/25/80 125, 90 12, 8, 11, 11, 20, 16

average = 114 km average = 10 cm s- 1

Table 6.3: Estimates of the properties of observed
the southwest coast of Africa.

alongfront variability off
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Chapter 7

Discussion

7.1 Introduction

In the previous chapters the existence of unstable waves on model coastal
upwelling fronts has been demonstrated. Observations of alongfront vari-
ability from SST maps of the coastal ocean provide evidence for the ex-
istence of these unstable waves in nature. A more detailed connection
between the stability model and the real ocean is difficult because of the
omissions made in simplifying the model. The first part of this chapter will
be a discussion of these omissions, concentrating on the possible weaknesses
of the present model. Possible future modelling efforts will be outlined
which include the more important processes omitted in the present study.
Following this, the possible connection between the finite amplitude form
of the unstable frontal waves and the cross-shelf flux of water properties
will be commented on.

7.2 Simplifications and Omissions

Some of the simplifications made in the stability model presented here are
potentially more serious than others. The less troublesome simplifications
will be addressed first, followed by a look at three of the more serious omis-

157



sions beginning with the small amplitude restriction of the model. Mod-

elling the density structure associated with a coastal upwelling front as two

homogeneous layers can be criticized for several reasons. Layer models are

usually employed to simplify the analysis, but severely restrict the vertical

resolution of motion in the system. This restriction is certainly present in

the model developed here. Further, since the interface rises to the surface,
lack of vertical structure in the density field necessarily becomes lack of

horizontal structure in the surface front. Vertical sections of density across

coastal upwelling fronts (Fig. 1.1) show a thin region of compressed isopy-

cnals. Thus, modelling this region as a sharp interface between layers is

reasonably realistic. Representing the water column beneath the interface

as a single homogeneous layer omits the possible influence of the under-

lying stratification apparent in Fig. 1.1. Since the motion of the unstable

mode discussed in chapter 5 predominates in the upper layer, the density

structure beneath the interface is not expected to affect greatly the wave's

properties. However, as discussed in section 5.4 and chapter 6, the underly-

ing stratification may isolate the upper water column from the influence of

the bottom. As a result, a sloping bottom may not stabilize the front to the

degree it does with a homogeneous lower layer. In addition, the damping

effect of bottom friction may be reduced. The result of both these effects is

that the front may be more unstable than predicted here. In addition, an

increase in the wave propagation speed in the direction of the basic state

flow would result. The underprediction of phase speed and growth rate

by the model when applied to observed frontal meanders is discussed in

chapter 6.

Layer models in the presence of finite bottom topography have also

been criticized for their incorrect description of the topographic vorticity

waves present in the system (Chapman, 1983). This problem is not an-

ticipated to affect the instability results presented here because the sta-

ble modes involved in the unstable resonance are frontally-trapped not
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coastally-trapped.

The lack of cross-frontal mixing or interfacial friction which may lead
to mixing is another weakness of the model. These processes are likely to
be important in the formation and evolution of a coastal upwelling front.

The removal of energy from the upper layer via interfacial friction and the

degradation of the sharp interface and surface front by mixing would most
likely lead to a decrease in the growth rates of the unstable waves predicted
by this simple model. Observations of frontal variability suggest that these

processes do not completely quench the unstable waves.

Linear instability theory is restricted to describing the small amplitude
behavior of unstable waves. A nonlinear calculation is formally required

to describe the evolution of the instability once it reaches finite amplitude.
Sometimes, waves which grow exponentially with time at small amplitude
stop growing or go into limit cycle oscillations upon reaching finite ampli-
tude. The reader is directed to Pedlosky (1986) for a description of these
processes and a reference list. The small amplitude unstable frontal waves
found here may be subject to this type of behavior after the initial period
of predicted exponential growth. However, observations show that mean-

ders in the coastal upwelling front can grow to finite amplitude and even

break into detached eddies. Since these features have scales comparable to
those predicted here, it is believed that the linear, small amplitude theory
provides results which are likely to hold up, at least qualitatively, at later
times as the flow becomes nonlinear.

A potentially fruitful way to study the finite amplitude behavior of these

unstable waves is to use a fully nonlinear, time-dependent numerical model

of a coastal upwelling front. A model with a number of homogeneous layers

of different density or one with continuous stratification would be appropri-

ate. The coastal upwelling front could be established by specifying the basic

state velocity and density fields such that they are in geostrophic balance.

This could be problematic, since a small amount of noise (present in any
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numerical model) would upset this equilibrium and lead to transient cir-

culations as the fluid adjusts to geostrophic balance. This may complicate

the stability analysis. Another way to establish the coastal upwelling front

is to spin up the model from a state of rest by applying an alongshore wind

stress. Once the front is established, a perturbation of a specified scale

could be imposed. The time-dependent flow field could then be analyzed

at later times looking for growth or decay of this perturbation. A series of

experiments of this nature can be carried out to detail the finite amplitude

behavior of the unstable frontal waves.

Another possible weakness of the model presented here is the lack of

wind stress. As described in chapter 2, an alongshore wind stress is es-

sential to the formation of a coastal upwelling front. The stability model

presented here takes the fully developed, wind-formed front as its starting

point. Some observational evidence suggests that coastal upwelling fronts

are more stable (i.e. two-dimensional) in the presence of a strong, steady

wind (Curtin, 1979). After the cessation, reversal or weakening of a wind

event, the front is observed to meander. Other observations, such as those

presented here off the southwest coast of Africa, show that alongfront me-

anders can exist in the presence of a steady wind. The laboratory models

of Narimousa and Maxworthy (1985) include a steady wind stress which

creates a coastal upwelling front. They observe unstable waves for all values

of the wind stress. The time between the onset of the surface stress and

the appearance of unstable waves is shorter for higher values of the wind

stress. This is most likely due to the increased vertical shear driven by the

stronger wind. Comparison of Narimousa and Maxworthy's (1985) labora-

tory models with coastal upwelling fronts in nature is suspect since their

experiments reach an equilibrium state while an actual upwelling front will

migrate continually offshore under the effect of a steady upwelling-favorable

wind stress and in the absence of dissipation. The above observational and

experimental evidence does not establish clearly the effect of wind stress
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on the stability of a coastal upwelling front. The present study also does
not answer this important question.

The stability properties of the front may be affected by changes in the
basic state flow field which arise due to wind forcing. Specifically, a steady
wind stress will drive an upwelling circulation which depends on time until
a steady-state balance between the forcing and dissipation is established.
Prior to the steady state, the alongshore flow speed will increase with time
and the surface front will migrate offshore. Time-dependence in the basic
state flow will also result from the action of a time-dependent wind stress.
The stability model presented here employs a fixed basic state flow. To
model the effect of a wind stress realistically, a model with a time-dependent
basic state flow should be developed. A wind stress may also affect the
stability of a coastal upwelling front through the interaction of the wind-
driven Ekman flow with the front. To model this potential effect, motions
in each of the various Ekman layers must be resolved. Offshore Ekman
flux in the upper part of the water column, flow in Ekman layers adjacent
to the upwelled interface and motion within an Ekman layer at the ocean
bottom must all be included. Analytic solutions to these problems would
be quite complicated. Progress could be made on this problem through the
use of a numerical model. As discussed above, an alongshore wind stress
could be used in a numerical model to establish a coastal upwelling front.
The growth or decay of imposed perturbations could then be studied in the
presence of a steady alongshore wind stress. Alternatively, the wind stress
could be weakened, reversed or removed completely and the stability of the
ensuing flow analyzed. A series of experiments of this type could answer
the question posed above.

A final major weakness of the model, as alluded to in chapter 6 in a dis-

cussion of observed frontal variability, is the lack of alongshore variability
in the bottom topography and/or the shoreline configuration. In chap-

ter 5, the profound influence of the local lower layer depth and the bottom
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slope on the properties of the unstable waves was presented. Surely the

stability of the upwelling front will be different as the alongshore jet flows

between regions of different topography. The theory presented here is valid

for wave motions with alongshore scales much smaller than the alongshore

scale of the topographic variability. This may hold true in some regions

of active upwelling and the comparisons between the model predictions

and observations is legitimate. However, other observations have suggested

that alongshore topographic variations are important to coastal circula-

tion. Studies off the northern California shelf have suggested that regions

near capes and points are areas of enhanced upwelling (Kelly, 1985) and

vigorous cross-shelf velocities (Davis, 1985). How does the alongshore to-

pographic variability affect the stability properties of a coastal upwelling

front? Does the topography create local regions where instability is more

likely? Another possibility is that the scale of the topographic variability

may influence the scale of the unstable frontal waves. To address these

questions, the periodic dependence on y of the wave form must be aban-

doned or the topographic variations may be made periodic in y in which

case the differential equations will have coefficients which depend on y. Ei-

ther case leads to a system which is difficult to solve analytically. Perhaps

the best solution is to analyze a numerical model of a coastal upwelling

front as discussed above. A series of experiments with different alongshore

bottom topographies and/or coastline variations would help to resolve the

questions raised above.

Even with the omissions discussed above, the simple stability model

presented here predicts the existence of unstable waves with properties in

the range of observed variability. It is believed that any future numerical

modelling efforts would serve to refine, but not refute, the processes and

results presented here.
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7.3 Implications

The unstable frontal waves discussed in this study could have an important
effect on the circulation associated with a coastal upwelling front. As men-
tioned briefly in the introduction, the wave may grow to finite amplitude
and redirect the normally alongshore flow in the cross-shelf direction. The
waves may grow large enough to form detached eddies which remain on
the shelf disrupting the alongshore flow. Some observational evidence for
this behavior was presented in chapter 6. Another possibility is that the
finite amplitude wave peaks away from the coast may grow in the offshore
direction until they disrupt the alongshore flow and create strong flows off
the shelf. This would serve to transport large amounts of upwelled water
off the shelf. These so-called offshore jets or squirts have been documented
in a number of studies off the west coast of the United States (e.g. Davis,
1985; Kosro, 1987). The redirection of the normally alongshore flow by
large amplitude unstable frontal waves is only one possible explanation for
the existence of these strong, narrow, offshore flows. While other mecha-
nisms involving variations in alongshore bottom topography, and/or coast-
line configuration and/or wind stress have been proposed (Hartwig and
Brink, 1985), the instability of the flow field associated with the coastal
upwelling front remains a likely candidate. Currently, an observational and
theoretical research program (Coastal Transition Zone) is taking place to
help elucidate the processes which lead to the formation and evolution of
these offshore squirts of cold, upwelled water.

Unstable waves on coastal upwelling fronts may also contribute to the
cross-shelf eddy flux of water properties. In their study of the heat budget
off the coast of Oregon in 1973, Bryden et al. (1980) found that the cross-
shore eddy heat flux is an important process. They note that the eddy
heat flux is directed down the mean horizontal temperature gradient and
thus removes potential energy from the mean circulation. This behavior is
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consistent with the unstable waves discussed here which gain energy from

the mean circulation via baroclinic instability. The presence of a coastal

upwelling front during the time period of their study (Figs. 1.1, 6.2 and

6.3), lends further support to the possibility that the eddy flux came from

the type of instability modelled here. Since Bryden et al. (1980) only ana-

lyzed data from one current meter mooring they were unable to estimate an

alongshore scale for the eddy motions. Recently, Lentz (1987), using data

from three alongshore moorings deployed as part of the Coastal Ocean Dy-
namics Experiment (CODE), found alongshore variability in the cross-shelf

eddy heat flux with alongshore scales less than 56 km. This alongshore scale

provides an upper bound to compare to the size of the finite amplitude ed-

dies which may evolve from the unstable frontal waves modelled here. That

these eddy motions may be due to instability associated with the coastal

upwelling front is further corroborated by the presence of the front near

the moorings during the analysis period of the above study (Lentz, 1987).

Davis (1985), using drifter data from CODE, also found vigorous eddy vari-

ability on scales of 40 km or less. Neither of the above two studies clearly

establishes a lower bound for the alongshore scale of the eddy variability.

The above studies indicate the importance of cross-shelf eddy heat flux to

the heat budget for an area of active upwelling. The cross-shelf eddy flux

of other water properties (e.g. nutrients) is also of practical importance.

The unstable waves discussed here provide a mechanism for the existence

of these eddy fluxes.

I
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Chapter 8

Conclusions

This study of a coastal upwelling front over topography shows that observed
alongfront variability can often be explained in terms of an instability pro-
cess. An unstable mode is described which gains energy from the basic
state flow associated with the upwelling front via baroclinic instability.
This wave amplifies in the absence of any external forcing. The proper-
ties of the fastest growing unstable wave in the system are in the range of
observed alongfront variability.

The simple two-layer model developed here uses the geostrophic momen-
tum approximation applied to the shallow water equations. This system
allows the presence of a surface front, large horizontal shears and strong
bottom slopes, features which are not able to be represented in a model
using quasi-geostrophic dynamics. Allowing divergent flow introduces a
term in the conservation of wave energy which is not positive definite (see
chapter 4). The presence of this term allows the growth of unstable dis-
turbances with positive, zero or negative wave energy. In the absence of
external forcing, the total disturbance energy (the wave energy plus the
change in the mean energy due to the presence of the unstable disturbance
with the latter contribution hereafter called the mean energy) must be zero.
Therefore, if the wave energy is positive then the mean energy must be neg-
ative and vice versa. The other possibility is that both the wave and mean
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energies are identically zero. In other words, an unstable wave can grow

while exchanging energy with the mean flow so that the net change in the

energy of the system remains zero. The nonintuitive idea of the growth of

a wave with zero or negative energy can also be rationalized in terms of the

exchange of disturbance energies between two stable modes whose alliance

creates the unstable wave.

By combining the various conservation statements for the global prop-

erties of the system (potential vorticity, energy, momentum), a stability

theorem is established in chapter 4 which allows the a priori determina-

tion of the stability of a coastal upwelling front. This theorem is basically

a two-layer version of Ripa's (1983) theorem. The theorem differs from

the traditional quasi-geostrophic theorem by including an additional con-

straint on the basic state flow in order to insure stability. This additional

constraint can be attributed directly to the presence of the term which is

not positive definite in the definition of wave energy. The theorem success-

fully indicates the stability or possible instability of previous frontal models

and of the flows associated with the coastal upwelling front of interest here.

An unstable wave on a coastal upwelling front over a fiat bottom next

to a coastal wall is described in detail in chapter 5. The structure of the
unstable wave is dominant in the upper layer and is trapped within - 1
Rossby radius of the surface front. The upper layer flow field is partly

ageostrophic. The lower layer flow is weak, more geostrophic and consists

of closed cells of circulation beneath the surface front. The unstable wave

propagates phase in the direction of the basic state flow. The energy con-

servation statements involving the new term, which is not positive definite,

are confirmed by direct numerical evaluation using the solutions to the

generalized algebraic eigenvalue problem. The effect of varying the model

parameters is presented. Moving the front closer than - 2 Rossby radii to

the coastal wall results in a decrease (by a maximum of - 34% when the

surface front lies immediately adjacent to the coastal barrier) in the growth
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rate of the fastest growing wave. Increasing the overall vertical shear of the
basic state flow, by either decreasing the lower layer depth or increasing
the steepness of the interface, results in an increase in the growth rate of
the fastest growing wave. The effect of changing the lower layer depth is
particularly dramatic, leading to complete stability for uniform potential
vorticity flows over an infinitely deep lower layer.

Since realistic coastal upwelling fronts occur over continental shelves,
the effect of sloping bottom topography on the stability of the system is
investigated. A model with a linear bottom slope indicates that a bot-
tom sloping in the same sense as the interface decreases the growth rates
of the unstable waves in the system. The sloping bottom also decreases
the alongfront wavenumber (increases the alongfront scale) of the fastest
growing wave. When the bottom slope exceeds the maximum slope of the
interface, the flow is completely stabilized. This result is the same as in
traditional quasi-geostrophic theory. However, this complete quenching of
the unstable frontal waves is not likely to be relevant to realistic coastal
upwelling fronts for two reasons. First, continental shelves contain regions
of varying bottom slope so that somewhere the interface will slope more
steeply than the bottom. This result is verified in a comparison of a model
with arbitrary cross-shelf bottom topography to observed alongfront vari-
ability (chapter 6). Second, the presence of any density structure (either
additonal layers or continuous stratification) beneath the interface may in-
sulate the upper part of the water column from the effects of a sloping
bottom. The present model excludes this effect since the lower layer is
assumed homogeneous. In summary, for realistic coastal upwelling fronts
the presence of sloping bottom topography decreases the growth rates of
the unstable waves and increases the alongfront scale of the fastest growing
mode, but is not expected, in general, to completely quench the instability.

The importance of bottom friction in coastal circulation motivates its
inclusion in the present stability model. When the e-folding time scale of
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the unstable wave is short compared to the frictional damping time scale,

bottom friction decreases the growth rates of the unstable waves by extract-

ing energy from the wave. The presence of bottom friction also introduces

a slowly growing mode at high wavenumbers due to the additional vorticity

source. Since the fastest growing unstable mode is strongest in the upper

layer, the presence of the lower layer insulates the wave from the influence

of bottom friction. Bottom friction may also destabilize flows which are

otherwise stable in the absence of dissipation, but the resulting unstable

modes will have very small growth rates. This result is analogous to the

destabilization of quasi-geostrophic flows by friction in the presence of the

3 effect. The main result for typical coastal upwelling fronts is that bot-

tom friction will not completely quench the unstable frontal waves. Other

forms of dissipation (e.g. interfacial friction) might possibly have larger ef-

fects, but observations of alongfront variability suggest that unstable frontal

waves are not eliminated by their presence.

The predictions for the properties of the fastest growing waves from the

simple two-layer model are within the range of observed alongfront variabil-

ity from several areas of active upwelling as described in chapter 6. Even

though the model is only formally valid for small amplitude disturbances

and the observed motions are definitely finite amplitude, the model pre-

dictions are in fair agreement with observed properties. A more detailed

comparison would require refinement of the present stability model. Three

possible improvements are the extension to finite amplitude, the inclusion

of wind stress (and thus a time-dependent basic state flow) and alongshore

topographic variations. A potentially successful way to study these effects

is to use a full nonlinear numerical model of a coastal upwelling front.

However, even without these refinements, the results presented here sug-

gest that observed alongfront variability in the coastal ocean can often be

interpreted in terms of the instability of a coastal upwelling front.

168



Appendix A

This appendix contains the algebraic details of the derivations of many

of the conservation statements in section 4.2.

Conservation of Potential Vorticity

The derivation of the conservation of potential vorticity in each layer

from the full, nonlinear geostrophic momentum equations (3.5) and (3.6)

is as follows. Note the differences from the traditional shallow water equa-

tion development (Pedlosky, 1986). Details of the derivation for the upper

layer are presented with the lower layer derivation following in an anal-

ogous manner. Taking the curl of the upper layer momentum equations

[8(3.5a)/8y + a(3.5b)/laz] yields

Dt (c.. + .,,1) + (U1, + v11) + (vti + u 1,) 1, + UIS1,,. + v1 , , = 0.

(A.1)

Rewriting (3.5c) as

1 D
(ux, + vi,) = + (hi + 6) (A.2)

(h1 + 6 S) Dt

allows (ul, + vi,) to be replaced in (A.1) to yield

D 1 D
(-- + 1,,) - (h 1 + ) (hi + 6b1)+Dt (h, + 691) Dt

(Vi. + ux,)(y., + UiSf,.. + V1 ',1,, = 0. (A.3)

To replace the term in (A.3) involving (vi, + ul,) take a(3.5a)/az and add

to a(3.5b)/ay to obtain

D
2gtS l + (vi, + tl,) + (u1, + vl,) ',, + (vl, + 1)+ 1 , + (ul, - 1)i1, = 0.
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Substitute for (ul, + vl,) from (A.2) and rearrange to get

D '1,, D h
(VI, + U1 ,) = -2 x + (h (h + 6) -

Dt ** (hi + S 1) Dt

(V1, + 1)1,, - (u1, - 1)xj.. (A.4)

Multiplying (A.4) by 1j, and substituting in (A.3) yields

D (g ,- 1) D
D(. + 2 - i.) + " (h, +-1j+

Dt 1)+ (hi + 65 ) Dt (h + )+

l,[Ul. - Cx,,(ul, - 1)] + 1 [,,[i1, - l,,(vi, + 1)] = 0. (A.5)

Finally, the last two groups of terms in square brackets are replaced using

1., times (3.5a) plus (, times (3.5b) or

D (x ,, ) + 1,. [ vi, + (Ul, - 1)Yl, + vi, , ,] +

1,, [U, + (VI, + 1)Xi., + u. 1i,] = 0.

As before, (A.2) is used to replace terms proportional to (ul. + v1,) with

the result

D 1 D
--- ("1, 1, )  - (C '£1, + Clx. + '1,,) (h1 + ) Dt(h + 6 )-

ij[tsi. - I,(u1, - 1)] - i,[VI,V - 1 ,(vz 5 + 1)] = 0. (A.6)

Adding (A.5) and (A.6) yields the final result

D +

Dt( I.. + VY ixy x Y

(1+ I.. + I,, - I., + ,,) (hi + ) Dt 6 1 ) =

or
D (1+ ++ -i s fi) =

Dt hi + 6,z
from which (4.1a) and (4.1b) follow. The derivation of potential vorticity

conservation in the lower layer follows from a similar manipulation of (3.6).
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Conservation of Energy

The derivation of the conservation of energy (4.3) begins by forming

expressions involving the kinetic energy in each layer. Multiplying (3.5a)

by (hi + 61)C1, and (3.5b) by (hi + 6'1)C1, then adding yields

(h + 6 1)(D + i h) T + TY2

-(h, + 6 ,)(ul 1, ,+ vj ,) - h2(U22. + V2'T,), (A.7)

where
D D 8 a
Dt= + u + v- i = 1,2.
Dtj Dt dz 8y

Now, (3.5c) times ( ,1 + Y)/2 plus (3.6c) times (T + )/2 gives

) +) - (h, + 6 1)+

(. 2 1) {l[u(hi + 6b)Ij + [vi(hi + 6b)1} +

( 2 dh,+ ( a + T(u 2h2) + (v2h2)y] = 0. (A.8)

Adding (A.7) and (A.8) yields

a 1d + + d 2

t 1 (h + ) 2 I)2 ) T 2 j

- 1v(hi + 6 1) 2  + 2h2 2

-(h, + 6 1)(ui 1, + vj,,) - h2(U2 T + V2 T). (A.9)

The terms on the right-hand-side of (A.9) can be eliminated by forming

an expression involving the potential energy. Multiplying (3.5c) by j and
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(3.6c) by T = (1 - 6)1 - h1 then adding gives

- (L + 6~1 h1  + 1[ul(hi + 6 )I + ~l[v(hi + 6 ) +

T(u2h2)Z + T(v2h2) = 0. (A.10)

Adding (A.9) and (A.10) yields

iat i+ 61) 2 u 2 ( 2 +

a (h + E ) 2 + 0" 2 +  S2+
9 [ u.(hi + 6) + u2h2] +

ay+ [v2 + vh 2

Clvi(hi + 6 1) + rv2h2] = 0.

This expression is then averaged over one wavelength in y and over the full

x-domain. For the upper layer, the integration is carried out from -oo to

the surface front. The integration in z requires the application of boundary

conditions which are discussed in detail in section 5.2. Basically, the cross-

front velocity in each layer vanishes far from the surface front or, in the case

of the lower layer, vanishes because of a coastal barrier. The final result is

[ J(hi + ,b) i ) + h 2 ( -) + 6 h] da = 0,

where f( )da represents the integration described above. Equations (4.3)

follow by neglecting terms of 0(6).

Conservation of Momentum

Derivation of the conservation of momentum (4.4) begins by taking

(3.5b) times (hi + 6 1) and adding to (3.5c) times ,. to obtain

+ +
a [(h + bli f i,)+ as [ I(h t + 6 ) u ]+
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aU[ft(hr + 6 91)vi] + (hi + 691)ui = -(hi + 61)1. (A.11)

The final term on the left-hand-side can be written as

8 8
(hi + 64)ul = a(h, + 6 1 )ujx] - x+ [u(hi + 61).-

The last term in this expression can be replaced using (3.5c) times x

x a ul(h +[(h + 6) -[z(h v(h + 6) [V(h + 6)J.ax at o9
With these substitutions (A.11) becomes

a a
+ [(hl + + x)] + + x)(hi + 61)ut],+

a [(. + z)(hi + 6 1)uvj, = -(h, + , (A.12)

A similar manipulation for the lower layer yields

t (1 - 6) ( T + )] + a (1 - 6) (T + ) +

S (1-.) (T + )= -h Ty. (A.13)

Adding (A.12) and (A.13) and then averaging over the domain of the fluid

gives the final result

-f [(h, + 61)( ,. + z) + (1 - ) ( + )] da = 0.

Equations (4.4) follow by ignoring terms of 0(6).

Conservation of Wave Energy

An expression for the time rate-of-change of the wave energy (4.9d) can

be obtained directly from the linearized perturbation equations (3.8) and
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(3.9). Multiplying (3.8a) by hl, and (3.8b) by hl 1 , then adding yields

a [ - a [ +
at 2 +x 2

-7(1 + v.)ul~,. - hjl,,1. (A.14)

A similar operation on the lower layer equations (3.9) yields

hat 2 = -(u~,, + V2 T,). (A.15)

To include the potential energy due to the displacement of the interface,

multiply (3.8c) by 1 and (3.9c) by 'T then add to get

a- t(2 + 1 (uIKi)2 + [~1[vi7V - U 2]Y+

T(X2) + T(V2I2)y = 0, (A.16)

where terms of 0(6) have been ignored. Adding (A.14)-(A.16) yields

9 A 2 + + q 2 +

at 2 2 21

a+(h u1 i + ,U 2 T) +

ay I[ V 2 ) + hjvj 1 + hV2T = -jzhjlut + 1 (U2)Y

(A.17)

The cross-term appearing in the definition of wave energy (4.9d) is obtained

by multiplying (3.8b) by - iS 2 and (3.8c) by V~, then adding. The result

is

(-*a1,)t - (1 + uV)IVuI 2 + V 1 (u 1 )+

Uhl , V l- 2( 1, 2 ) - !U2 1, = 0. (A.18)
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Adding (A.18) to (A.17) yields

( - 2 'l " h2 2 -+ +

-vJ,_hu 1 , + (1 + 17) i712 - ( 1) - 1a 2 = -, + iTU+~
Ou 2 (u1  + i,) 1 -BS, - i 2 -2l1dA

dEz /[ 1 UI 1. + BZU12 +

hl(Ul. + t )hljvuj - l u" - h-' U1ldA

which is equation (4.13).

Displacement of the Surface Front

As mentioned in section 4.2, the final term in (4.13) can be related to
the changes in time of the displacement of the surface front. Consider the
0(62 ) upper layer continuity equation derived from (3.5c):

(Ul1 2 )3 + (v 1 2 )y = 0.

The y-average of this equation over one wavelength is

f (ul 2 )zdy = O.

The final term in (4.13) can be written as

2f 2 = z=z

- 2f (U,) d, + - f ,U, .=- dy.
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From the 0( 2 ) y-averaged continuity equation the first term is zero. Since

the disturbance will be assumed to be frontally-trapped (see section 5.2 for

details), then ux -- 0 as x -+ -oo so that the second term is only evaluated

at the front x = xf. At the displaced position of the front (x = xz + E) the

total depth vanishes

hi + 6 =0 at x= x+E.

This can be expanded in a Taylor series to get an expression valid at the

undisturbed frontal location

[(1 - 6)K + ~ + - T1] + e~[(1 - 6) +6 + 1 - 1 = 0,

but since h= S= 0 at x = z, and h1 , = , = U this reduces to the 0(E)

expression

(1 - T) = -VE at X = xf.

Since ( 1 - T) = 6S1 - 2 from (3.10) and if terms of 0(6) are ignored this

can be written as

2 = Ve at x = xf. (A.19)

The velocity of the front in the z-direction can be written as

S1 -= + E. (A.20)

Substituting (A.19) and (A.20) into the term evaluated at the front in the

energy equation one obtains

- ] i.:,

a 176y
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Finally, this can be written on the left-hand-side which yields equation

(4.14):

-E2 - - JzE dy = -f [iu 1 1. + 2 u1 1. +

K u (u, + VI, S , - VU1 dA .

Derivation of 8E 2/at oc u1 q1

To relate aE 2/at to the cross-front eddy flux of perturbation potential

vorticity, the Reynolds stress terms and baroclinic energy conversion term

on the right-hand-side of (4.13) must be rewritten:

aE2
-t f -(hU.u11, + V uj1. + hvuu. jj+

hPJvuiQ, j- hilvj,,]dA. (A.21)

The term in parentheses can be rewritten as hluljl,, because d(hVlul 1,)/dx

vanishes over the integral. To rewrite the final term in the integrand of

(A.21), multiply (3.8a) by 1,, and (3.8b) by 1,, then add to obtain

1,, 1,, -+ 1,,'1, + v  1,, - (1 + ,)lut1,, = ay 2

Multiplying by hlU then averaging over the domain of the fluid yields

f Ih l ,,[l,, - 1,,91,, + v 1 ,, - (1 + v,)ul~1,,]dA = 0. (A.22)

The first two terms may be replaced by

f/hV,, ,, dA = -f h v,.1,, dA,

- f hj1 ,,,, dA = f hV[-(I,, ,,)t + ',. dA.
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so (A.22) becomes

J 7[-(i 1,,It) + 1 1 ,, -(1 +;.)u 1 1 ,,]dA = 0.

Rearranging gives the desired result

- f hi o, 1 , dA = f hi[(1+ .)u l 1, + (l,,l,,)tldA.

Substituting into (A.21) yields

aE2  f K-2 u + (1 + f)f1,, + Q1 2
at hi v dA +
t hi

which is just (4.16) since ql is given by (4.5c). [Note that a term of 0(6) in

the definition of ql has been ignored.]

To understand why the final term in (4.16) exists, rewrite the definition

of q1 given by (4.5c) in a slightly different form

ql = " + h---- (A.23)
q -Q1 + (A.23)

The first group of terms is the exact geostrophic form of the perturbation

potential vorticity. The final term represents part of the ageostrophic per-

turbation potential vorticity. To recognize this, the ageostrophic potential

vorticity
f
a - U4
I , 1

hi

(where the superscript "a" denotes an ageostrophic quantity) can be related

to geostrophic quantities through the definitions of ageostrophic velocity

obtained from (3.8a) and (3.8b). Substituting

1
= - 1 (Vtu + v9, + evg,), (A.24)

(1 + ,)
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and

v = u9 + U (A.25)

into the definition of qa yields

qi = + (u, + u, + Fug,). (A.26)

Since uf = -',, the first term in the parentheses, multiplied by (1 + ~,),

can be identified with the final term in (A.23). Now, the flux of ql by the

full cross-front velocity (Ul = tu + u) will necessarily contain a purely

ageostrophic quantity [i.e. ut times part of (A.26)].

This ageostrophic flux can be related to the time rate-of-change of that

part of the ageostrophic energy consistent with the geostrophic momentum

approximation as follows. The terms neglected in the derivation of the

upper layer geostrophic momentum equations (3.8a) and (3.8b) provide

expressions which govern the ageostrophic velocity fields:

ua + ~, = 0, (A.27)

, + Uva = 0. (A.28)

Multiplying (A.27) by Khl(1 + V)(tu + ua) and (A.28) by -(vg + va) then

adding yields

h" [(1 + -'2) +(2 - [ + [(1 + V)u o-u, + v ] =

- [(1 + uuu, + v v ].

(A.29)

The terms on the right-hand-side of (A.29) may be replaced using the y-

derivatives of (A.24) and (A.25):

VI, a , tUO+ ,

(1 + B)u , --- u - v, - Uv1,.
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The result is

h 1 + u.) + i) + 1[(1 + v~)u u + vv1,j =
+2T ) +A) ++]

2 2 1 vi dA. iwhich when averaged over the domain of the fluid is

geostrophic momentum approximation, whose existence was anticipated,- af-" k h lUl dA.Since vg = 1, and ug - '1, the term on the right-hand-side of this
expression is just equal to the final term in (4.16). The terms on the

left-hand-side represent the ageostrophic energy field, consistent with the

geostrophic momentum approximation, whose existence was anticipated

above from examination of the flux of part of the ageostrophic potential

vorticity. [Note that the term f{(1+v,)u,+v,va}dA, absent on the left-

hand-side, can be obtained by multiplying (3.8a) and (3.8b) by hi(1 + V)u1

and hlva respectively, in the derivation of the conservation of wave energy

- see (A.14).]

A relationship between the time rate-of-change of E2 , defined in (4.9d),

and the geostrophic momentum forms of the Reynolds stresses and the

baroclinic conversion of energy is given by (4.13). However, the relationship

of aE 2/t to the flux of potential vorticity is complicated by the presence

of additional terms as sketched above. This is clearly a disadvantage of

the geostrophic momentum approximation. To be able to relate the time

rate-of-change of the wave energy to the change in time of the particle

dispersion [see (4.20)], it was decided to use the full form of the wave energy

(geostrophic plus ageostrophic) rather than just the geostrophic part. The

full wave energy (E*) is used throughout the analysis presented in the

remainder of chapters 4 and 5.
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Conservation of Wave Momentum

Conservation of wave y-momentum can be derived from the linearized

perturbation equations (3.8) and (3.9) as follows. Multiplying (3.8b) by

- 2 and (3.8c) by l, and adding yields

-( 1)- ( 1,)v - (1 + 5)ui 2 +

(U1 1)z' 1, + 1 hl l, = 1, y2' (A.30)

A similar operation for the lower layer [(3.9b) 2+ (3.9c) T] gives

(S 2T)t + u 2 2 + (u2)z T . +

h2V2,lT, = -, - ( . (A.31)

Adding (A.30) to (A.31) and averaging over the domain of the fluid yields

at( f - 1,)T dA = f(1 + V)U 2 - (ulhs )z 1 -

'.K2 - (ts2h) 'T. - h2V2,T.

The right-hand-side is rewritten using manipulations similar to those used

in the derivation of the conservation of energy with the result

fM2 - 2  f + (1 + Vf +  (2

at hi at

f7 2u [!ST.f + d,- Q2 dA + 9 hf. dA, (A.32)

where Qx and Q2 are defined by (4.5b) and (4.6b). The quantities in square

brackets are just the perturbation potential vorticities in each layer given

by (4.5c) and (4.6c) so that (A.32) becomes (4.21). The extra terms not

included in the flux of ql and q2 are related to part of the ageostrophic

momentum field in a manner similar to that discussed above for energy.

Again, these extra terms are removed by considering the full form of the

wave momentum (geostrophic plus ageostrophic) as incorporated in (4.22).
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