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ABSTRACT

The propagation of linear wave motions in inviscid, stratified, ideal
gas atmospheres is described by obtaining the relevant propagators (or
Green's functions for the initial value problem). The transient acoustic
oscillations, buoyancy oscillations, and gravity waves for an unbounded
non-rotating atmosphere are derived.

Introduction of the hydrostatic assumption is found to
eliminate the acoustic and buoyancy oscillations and modify the gravity
wave, Time independent potential vorticity motions result for an atmos-
phere in constant rotation, but these also lose their energy by radiation
when the influence of the earth's variable vorticity is taken into account
by the '8 "' approximation. A '"filtering'' method of synthesizing propa-
gation equations for elementary propagators from their contour integral
representations is given.

The excitation of the L.amb boundary wave from a point heat source is
analyzed. Rossby wave motions and gravity wave motions for an unbounded
planar atmosphere excited by several different kinds of switch-on forcing
are obtained. The quantitative details are obtained by steepest descent
integrations, but the ''group velocity'' concept is adequate for a qualita-
tive description of the resulting motions.

A theoretical analysis of forced hydrostatic atmospheric wave motions
on a rotating sphere is given. A conservation of energy equation is ob-
tained, several related speciral theorems are established, and the inte-
gration of the equation for forced tidal motions on a sphere by expansion
in Legendre polynomials is discussed.

An example of the motion of a convectively unstable atmosphere is
given to illustrate instabilities that grow asymptotically as exp(ct),
exp(ct¥®), and exp(ct"’? ), Rec > 0.

Thesis supervisor: Victor P. Starr
Title: Professor of Meteorology






"if you will have a tree bear raore fruit than it used to do, it is not
anything you can do to the boughs, but it is the stirring of the earth
and the putting of new mould about the roots that must work it. "

quoted from F. Bacon by M. Stone
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I. INTRODUCTION

A. On Atmospheric Wave Propagation

A fundamental goal in the study of the dynamics of continuous
media is to describe the evolution of initial data with time, given various
possible forms of externally imposed forcing. This study is concerned
with the small amplitude motions of ideal gas atmospheres in simple
planar and spherical geometries. We shall obtain Green's functions
for the small amplitude motions of such atmospheres. These functions,
which we designate propagators, following the usage in the physical
literature, provide a dynamical description of motion over a time
period sufficiently brief that the nonlinear effects can be approximatéd
as time invariant spatial functions. The study of propagators leads
to a systematic classification of the various types of atmospheric
motions and provides guidance in the more detailed analysis of specific
dynamical phenomena in planetary and stellar atmospheres.

When a stable continuous medium is displaced, it experiences
an acceleration in the direction of its original equilibrium, waves
are excited which then transmit energy throughout the medium. The
equations governing such macroscopic phenomena are usually nonlinear.
Because nonlinear motions are in general quite difficult to analyze
directly in complicated physical systems such as atmospheres, it is

convenient to consider nonlinear effects as one type of forcing function



which produces a response in a linearized system of equations. This
permits a simpler analysis of the coupling between various scales of
motion. The concept has been used by Lighthill (1952) and Unno-Kato
(1962) in discussion of the generation of acoustic motions by turbulence;
by various authors including Kibel (1955), and Dobrischman (1964) in
analysing the approach to geostrophic balance of large scale atmos-
pheric motions, and by Saltzman (1965) in the discussion of forced
mean planetary scale motions, as well as by many other authors in
other contexts. We shall likewise take this viewpoint so that the
atmospheric wave phenomena considered will be treated as linear
phenomena with nonlinear terms in the equations of motion considered
to be one kind of forcing function. In mathematical terms, we are
concerned with the reduction of nonlinear differential equations to
nonlinear integral equations. This is frequently the first task that
must be done in an abstract mathematical study of a system of non-
linear differential equations.

Observational studies of wave phenomena in the terrestrial
and the solar atmosphere have led to an increased understanding of
the various manifestations of transient motions that occur in com-
pressible ideal gas atmospheres. Unfortunately, little observational
information on the motions that occur in other planetary atmospheres

is yet available. Such studies would assist astronomers and meteor-



ologists in distinguishing between the accidental and the essential
features of the individual systems. This is achieved to a certain
extent by the studies of laboratory generated fluid motions, but
usually, different boundary conditions lead to very different mathe-
matical problems in the analysis of such motions and make direct
comparison somewhat difficult.

Many of the observed atmospheric wave phenomena are excited
by energy inputs that are localized in time and space. Energy sources
are frequently a part of the nonlinear internal dynamics of the system.
Recent astronomical studies have shown the presence of motions in the
solar atmosphere ranging from those associated with the small gran-
ulations and having periods of a few minutes, up to large scale motions
with periods of many solar days and with spatial extent not much smaller
than the radius of the sun itself. Many physical effects including radi-
ative transfer, variable gas constants, and magnetic effects must be
incorporated into a complete dynamical description of stellar motions.
(These are not directly considered in this study). The smaller scale
motions of the solar atmosphere are excited by a zone of convection.
The large scale surface motions are thought to occur as a result of
the baroclinic release of available potential energy associated with
a north~-south horizontal solar temperature gradient. Whatever the

exact mechanism by which these large scale motions are generated,



it is clear that their subsequent propagation will be intimately related
to the solar rotation and will be dependent on the confining effect of
the approximately spherical geometry of the sun. One should also
mention the extensive observational and theoretical study of variable
stars, which are found to oscillate radially with periods of a few hours
to several months,

The smallest scale motions in the earth's atmosphere are the
acoustic waves, and the detailed study of such motions is in itself an
extensive discipline of the applied sciences. The higher frequency
components of these motions are rapidly damped by viscosity and so
it is the "low frequency' acoustic waves which are observed geo-
physically, such as those excited by auroral disturbances and detected
at the ground. Acoustic waves are frequently observed in the form
of shocks or pulses. This is accounted for theoretically by the lack
of dispersion of energy in different wavelengths in the linear theory
plus the tendency of the nonlinear effects to intensify existing pres-
sure differences. At sufficiently low "frequencies'' the motion is highly
modified by gravity and resulting motion is known as an acoustic-
gravity wave,

Acoustic-gravity waves may be excited in all highly turbulent
regions such as thunderstorms, boundary layer turbulence, clear air

turbulence arising as a result of shearing instability of the jet stream,



air flow over irregular topography, or irregular surface heating.
Study of the elementary propagators of these motions permits con-
clusions to be drawn on the common aspects of all such motions and
simplifies the detailed analysis of each individual problem.

When the direction of propagation of a wave motion in a stra-
tified atmosphere is nearly horizontal so that the sine and the tangent
of the angle of propagation, measured from a surface of constant
gravity, are approximately equal, one is permitted a convenient
theoretical approximation known as the long wave, or hydrostatic,
approximation. Oscillatory motions in this case have frequencies
small compared to the parcel frequency. Figure 1-1, taken from
Mahoney (1966), depicts the vertical structure of the horizontal
velocity of a gravity wave imposed on a current of much longer tem-
poral duration. Wind data for such studies is obtained from the radar
tracking of falling spheres. Complicated surface phenomena such as
squall lines and rapidly moving cold fronts are related to ideal wave
phenomena in this approximation, both as sources of wave energy and
as manifestations of essentially hydrostatic degrees of freedom of
the atmosphere.

Many atmospheric motion phenomena are of sufficiently great
horizontal extent that the sphericity of the earth becomes important

in analysis. For example, it has been found observationally and



theoretically that essentially instantaneous local introduction of thermal
energy of order of magnitude of 1024 ergs or greater, produces an
acoustic gravity wave, which propagates radially along the ground and
travels completely around the earth several times. The first realiza-
tion of such phenomena which was subjected to scientific investigation
was the explosion of the Krakatoa volcano in 1883. See the discussion
of Taylor (1929/30). Recent man-made "'aeroclysms' have provided
a repeat performance, but those parties directly responsible have
agreed to discontinue such studies because of the resulting adverse
effects on the health of the planetary inhabitants. Figure 1-2, which
is reproduced from Wexler, and Hass (1962), gives the pressure trace
from atmospheric pulses originating in Siberia in 1961, and Whipple's
composite of the great Siberian meteor of 1908.

When the time scale of motions approaches and exceeds the
terrestrial day, one finds observationally and theoretically a wealth of
new motion phenomena, not directly present in nonrotating systems. It
is found that all atmospheric gravity waves which are excited have fre-
quencies greater than some average Coriolis frequency. Thus trans-
ient gravity waves will have a time period less than a day, except
possibly in the immediate vicinity of the equator, where zonal oscil-

lations of periods up to several weeks may occur. All atmospheric



motions outside the tropics with time periods of several days or more
can be considered a vorticity mode motion. The conservative quantity
associated with this mode is sometimes called potential vorticity. Such
motions are distinguished by an approximate state of balance between
the pressure field and the wind field, which is known as geostrophy.
These motions are a prime concern of dynamic meteorologists, since
it is this mode of motion which releases the available potential energy
and gives rise to cyclonic storms.

As a result of the variation of the earth's vorticity, potential
vorticity motions in a resting atmosphere propagate as waves. When
these waves are analyzed into spherical harmonic components, the
phase propagates to the west. The phase speed is very slow for the
smaller scale potential vorticity waves, so that the distorting effects
of horizontal and vertical wind shears are extremely important in the
prediction of the actual evolution of such motions, and it is necessary
in practice to perform the requisite computations by the use of high
speed computers. One may distinguish between the smaller scale po-
tential vorticity waves and the transient and steady "planetary scale
motions', where the dynamics should be formulated on a spherical
earth, Figure 1-3, taken from Teweles {(1963), shows a stationary har-

monic planetary wave as revealed by observation.



Finally, we mention the study of atmospheric '"tidal" oscillations,

a branch of atmospheric dynamics with perhaps the most interesting,
and certainly the oldest, history of theoretical and observational study.
These are hydrostatic gravity-acoustic waves, occuring on a rotating
sphere. The prevailing opinion over the last century as to the form

of the forcing of these waves has wavered between thermal and solar
gravitational sources. The much greater magnitude of thermal for-
cing has recently been firmly established, but the exact form of the
forcing is not yet certain. Latest computations of Butler and Small
(1963) favor heating in the atmosphericozone layer. Figure 1-4, taken
from a study of Avery and Haurwitz (1964) shows the observed surface

amplitude of the semidiurnal tide over the United States.



B. Historical Notes

The first systematic study of the dynamics of an atmosphere
on a rotating sphere was that of Laplace. He assumed that atmospheric
dynamics could be reduced to the dynamics of a homogenous ocean
with a free surface. The first initial value problem in geophysics
to be studied, was that for a point disturbance exciting a water wave.
The methods of solution, as given by Cauchy and by Poisson, were
rather complicated and the treatment of other wave motions in a
similar fashion was thus discouraged. Most other nineteenth century
wave studies considered time periodic motion., There the motions
were mathematically simpler and at the same time experimentally
accessible.

Within this framework the basic foundations for the analysis
of waves in stratified geophysical media were laid by nineteenth
century physicists, especially Green and Stokes. Hough (1898) con-
siderably advanced the theory of the dynamics of homogenous oceans
with free surfaces. Various meteorologists generalized Laplace's
model of the atmosphere as a homogenous incompressible fluid in
order to consider the release of potential energy in the theory of
cyclones., Lamb (1908), (1910) first gave a formulation of the motions
of stratified atmosphere in a constant gravitational field. Eddington

(1919) and later astrophysicists formulated generalizations appropriate
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for study of self-gravitating gaseous spheres. See the Handbuch der

Physik article of Ledoux and Walraven for detailed review of this
subject. Taylor (1936) and Pekeris (1937) formulated the Lamb theory
of atmospheric dynamics for a spherical rotating earth with the aid

of the Laplace-Hough tidal theory. Rossby (1939) gave simple ap-
proximate dynamic models for Laplace's oscillations of the second
class, and greatly stimulated the development of dynamic meteorology
by realizing the applicability of these models to weather forecasting.
The question of the approach of an initial line disturbance on a geostro-
phic ocean to geostrophic equilibrium was raised by Rossby (1938),
studied by Cahn (1945),and by Bolin (1955) for the motions of a
stratified incompressible fluid between two boundaries. ‘Obukov (1949)
gave a mathematical analysis of the initial value problem for a localized
disturbance on a homogenous ocean, and Kibel (1955) generalized the
analysis of Obukov to a stratified fluid. Monin (1858) simplified and
extended this analysis, while Veronis (1958) gave results for the
initial value problem with the earth's variable vorticity considered

in the g- plane approximation. The propagation of a pulse in a non-
rotating nonhydrostatic atmosphere was first studied by Pekeris (1948)
and has been considered by many later writers, the latest being Van
Hulsteyn (1965).

Eliassen (1949) noticed that the use of pressure as a new
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independent variable in place of geometrical height led to useful simp-
lification in the formulation of the equations of atmospheric motion in
the hydrostatic approximation. Since the pressure is proportional to
mass, the effects of compressibility are eliminated except in the
boundary conditions. A similar but more limited formulation has been
achieved by Weekes-Wilkes (1947) in the theory of atmospheric tides
by using standard mathematical substitutions.

Theories have been developed by Dorodnitsyn, Lyra, Queney,
and later writers, for the study of the motion forced by air flows
over irregular topography or heat sources. Flows over individual
hills and ridges are essentially nonhydrostatic phenomena, unaffected
by the earth's rotation, while for sufficiently large scale motions, the
hydrostatic approximation and sometimes also the geostrophic approxi-
mation are made to facilitate analysis. On the other hand, the earth's
rotation can no longer be neglected for these forced long waves. See
Corby (1954) and Krishnamurti (1964), for reviews and further refer-
ence to the existing theory and observations for small scale topographic
waves, and see Rao (1965) for a brief review of geostrophic planetary
waves forced by topography and heating.

The importance of describing atmospheric dynamics as the
evolution of given initial conditions has been emphasized by Case (1962)

and Pedlosky (1964).
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C. The Purpose of This Study

In this thesis we shall examine various linear models of atmos-
pheric motion, formally considering omitted homogenous terms in the
dynamic equations to be included as part of the externally imposed
forcing. There are some observed atmospheric motions where the
omitted terms will be of smaller magnitude than the retained linear
terms and our results can be directly applied to the description of
these phenomena. When this is not the case, our analytic results will
not be quantitatively correct, but will nevertheless be of physical
interest.

In theoretical study of individual atmospheric phenomena, it
is frequently desirable to discard many dynamic terms in order to
isolate those aspects that are of greatest importance in quantitatively
determining the observed motion. In order rationally to determine
approximations to be applied, it is necessary to understand what is
being omitted. Some omissions can be expected to result only in
numerical errors whose magnitude may be evaluated by estimating
the magnitude of the terms so omitted. Other omissions change the
basic physics described by the equations. Such omissions can be
completely understood only by consideration of the relationship of
solutions of the approximated equations to solutions of the more

correct equations. A fundamental physical law of macrophysics is
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the principle of causality which states that input into the atmosphere
at a given time can only produce a response at some later time. It

is highly undesirable to formulate dynamical models in which this
condition is violated, nor does it make sense to allow inputs to enter

a system from regions exterior to the system under consideration,
when such external sources are not explictly specified. The flow of
information in a physical system which is governed by partial differen-
tial equations is intimately related to time differentiated terms in the
equations and to specified boundary conditions. We may wish to ob-
tain some kind of approximate solution to a well posed system by
obtaining solutions to a more approximate system of equations. These
approximate equations may not by themselves describe unambiguously
some approximate dynamics and it is then necessary to refer back

to the well posed dynamical description in order to determine what
additional conditions should be used to insure a unique approximation
to the well posed system.

The primary objective of this thesis is to provide an analytic
description of the role of time differentiated components in deter-
mining solutions for the equations of atmospheric dynamics. These
results may be used for guidance in the rational selection of approxi-
mate equations for the detailed study of individual motion phenomena.

Because the principle of superposition applies when a linear
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model is used, it is possible to arrive at a satisfactory understanding
of all possible motions by consideration of a few selected model
problems. The evolution of given initial conditions can be described
by the elementary solutions to simple impulses. To describe the
excitation of forced motions, it is convenient to study ''switch on''
problems, where the source assumed is suddenly switched on at
t=o . By superposition the same resulting forced motion must
occur when a steady source slightly changes its amplitude. Hence,
regardless of initial conditions, the final motion resulting from a
steady source must be equivalent to that predicted from switch-on
initial forcing. This analysis then gives a satisfactory derivation of
forced wave motions, when the assumption of steady forcing results
in a model equation without time differentiated terms to indicate the

proper direction of energy flow.
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D. Outline of Thesis Content

In chapter Il we present a graphical description of the important
wave propagation parameters for the first one hundred kilometers of the
earth's atmosphere. This material is based on numerical data provided
to the author by Dr. R.E. Newell.

In chapter III, is provided a formulation for the dynamics of
stratified atmospheres. Chapter 1V is devoted to a detailed analysis of
the elementary propagators of an isothermal nonrotating atmosphere in
the Boussinesq approximation. Many of the mathematical techniques to
be used throughout the remainder of the thesis are introduced in this
section. The elementary propagators studied are the 'gravity wave"
and the 'buoyancy oscillation' propagator. These two propagators
coalesce at points of observation vertically above the source.

The general problem of the propagation of an impulsive distur-
bance in a nonrotating isothermal atmosphere is first discussed in
Chapter V. The initial disturbance propagates spherically with the speed
of sound. The '"'wave tail'" consists of an acoustic oscillation, a buoy-
ancy oscillation, and a propagating gravity wave. Next we consider
the propagation of a pulse in a hydrostatic stratified rotating atmosphere.
A gravity wave propagates outward behind a cylindrical front,

leaving behind a residual potential vorticity mode motion. The
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" R -effect' via a simple model leads to several

introduction of the
new modes, the most interesting of which is an unstable inertial os-
cillation. The energy in the potential vorticity mode now propagates
outward as Rossby waves. A brief discussion is given of the 'filtering"
process for synthesizing equations where solutions will be an elemen-
tary propagator, given the contour integral representation of the pro-
pagator,

In chapter VI, we analyze some simple examples of Lamb waves
propagating from point sources. The Lamb waves themselves are
nondispersive (in an isothermal atmosphere) but these waves are
found to excite concomitantly, buoyancy oscillations in a nonhydrosta-
tic nonrotating atmosphere, and inertial oscillations in a rotating
hydrostatic atmosphere.

In chapter VII, we introduce some Fourier integral techniques
which will be used in the following two chapters, and it is shown that
one may approximate details of wave sources, or internal wave dis-
sipation by the use of a multiple stationary phase computation.

Chapter VIII is devoted to several examples of the excitation
of Rossby waves in a stratified atmosphere, and chapter IX provides
several examples of internal gravity wave excitation.

In X is given the fundamentals of normal modes expansions of

the hydrostatic atmospheric wave equations on a spherical earth.
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This subject, initiated by Laplace, is known as tidal theory.

The material of the previous chapters is summarized in XI
and suggestions for further development of the theory of atmospheric
wave propagation phenomena is given. An example of atmospheric
instability is given.

The reader will find a somewhat more detailed statement as to

the content at the beginning of each chapter.
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Figure 1-1. Vertical propagating gravity waves. Taken from Mahoney (1966).
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Figure 1-2. Pressure waves excited by explosions.
and Hass (1962).

Taken from Wexler



~-19-

»'\/\
W
s ‘\\“\ \

“A' lf =
S —=digoy

S ¥ - L

Ve~ N vl X h K y X ;
PN = RIS
e \Ss=== 2 BN ns
) NN =~ 1 2 . ‘) oK
—— - X L
/ i » ,/“. % ’ G /‘\
N X
T JANUARY 1958 .
JANUARY 1958 i . j=
50-MB WAVE | \J ' 50-MB  WAVE 2 —
1 RN R

~

K

£33 "g —JRENITDR
<:’,’f :&@:\\b ¥ Ty :. | AL 2a? by ¥ A
S NS YR =)
WENS A @«
77

i

, AN

7 s ARE, S :

- ( ' , “\\3/\ .I I v \"/‘

i e K NS "" s L L VX
.;D‘ \/ T

50-MB WAVE 3 {7/
/ .

s’(\?\% X

Figure 1-3. ''Standing Planetar;;r Waves'', (geopotential height). Taken
from Teweles (1963).



-20-

Figure 1-4. Amplitude of the ""Sy'' semidiurnal pressure wave over
North America (units are 10-1 mb). Taken from Avery and
Haurwitz (1964),
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II. CLIMATOLOGY OF WAVE PROPAGATION PARAMETERS

This chapter is intended to serve as an introduction to some
of the more important parameters which occur in the theory of atmos-
pheric wave propagation. To facilitate the discussion, we have pre-
pared cross sections and graphs of some of these parameters as they
occur in the earth's atmosphere, Data for the first hundred kilo-
meters was provided to the author by Dr. R. E. Newell.

This graphical data is primarily intended for qualitative use,
and is of less than the highest accuracy achievable by use of present
climatological data sources. This is especially true in the tropo-
sphere and lower stratosphere where many years of global radiosonde
data permit a much more sophisticated description of atmospheric
statistics than is possible by using only a few cross sections.

The atmosphere between 30 and 100 kilometers is studied pri-
marily by meteorological rockets, falling spheres, and meteor winds.
Dr. Newell has processed much of the available raw data for this
region in order to define latitudinal averages of the winds and temp-
eratures as well as the variances and covariances of these parameters.

The mean temperature data, averaged over the six summer
months, and the six winter months, has been used to compute quantities
which are important in the theory of atmospheric wave motions. These

quantities include the "scale height'!, the ''buoyancy frequency', and
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the ''planetary stability'’. The scale heights, buoyancy frequency, and
planetary stability, computed independently from the numerical temper-
ature data, are given as meridional cross sections, and as hemispheric
average profiles computed from these cross sections. Small discrepen-
cies between the various cross sections presented may be ascribed to
random computational error inherent in finite difference computations,
and in the subjective analysis of the cross sections. All the larger
scale features are in general agreement. The results are summarized
by means of hemispheric average vertical profiles, in Figs. 2-3, 2-6
and 2-3. We use the notation (_._- ), to denote hemispheric average
of a quantity.

The scale height (RT/g) shown in Figs. 2-1, 2-2 and 2-3, is
merely the temperature, measured in more convenient units. The
most important features are the rapid decrease from 0 to 15 km; the
minimum at 15 to 20 km, especially over the equator; the increase
from 15 to 50 km, witha maximum found over the summer pole at 50
km; the decrease to 90 km, with minimum at 90-95km, especially
strong over the summer pole. Beyond this level, the scale height
increases monotonically to very large values in the thermosphere.

)2

The speed of sound ¢ = (Y9 H is important as the speed

of signal transmission in the atmosphere. Its inverse, c-l, may be
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considered proportional to an index of refraction which determines
the path taken of acoustic pulses. (Acoustic pulses obey the laws of
geometrical optics). Acoustic motions are refracted downward in
regions of increasing ¢ (20-50 km and above 95 km). It is likely
that viscous dissipation strongly attenuates acoustic motions above
100 km. In this region, c monotonically increases to very large values.
The buoyancy frequency squared, N = = 3/H (x + a%&)
is given in Figs, 2-4, 2-5 and 2-6. Low values are found in the
troposphere, a sharp increase to high values in the stratosphere, a
gradual decrease to a minimum at60 km, increase to high N2 in the
90-120 km region, and a monotonic decrease above this region. The
sharp increase of N2 from the troposphere to stratosphere, may be
considered the tropopause, considerably smoothed out as a result of
taking time and latitudinal averages. At a given time, and a given
location, the increase of Nz, is yet much sharper, and may be consid-
ered a discontinuity in Nz, on the scale which our cross sections are
drawn.

The planetary stability, § , is defined as

s = NHY/undn}
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and shown in Figs. 2-7, 2-8 and 2-9. The large scale features of S
correspond to those on the N2 and H cross sections. Small discrepencies
may be considered random errors. It is not possible to obtain exactly
the hemispheric average of S, from the product of N? and H2 due to
latitudinal variations in S, N and H. That is:

S N /0drd

Furthermore,

S .5...2_.4-.‘3‘5)‘7‘
s;ﬁ._T.(CP 1) A

The most important qualitative features of Sis the large maximum at 40 km
and the broad minimum in the 60 to 90 km region.

The stability parameter S (or other quantities proportional to
it) is important for the theory of hydrostatic atmospheric wave propa-
gation, including atmospheric tides. That is, it often happens that
discussion of the vertical dependence of the motions may be separated
from the horizontal dependence by separation of variables, with the
result that it becomes necessary to solve a Sturm-Liouville equation

of the form:

[3_’.' - g +/\5<*)} 4 = - fiay

22%

where the coordinate 2 is the log of the ambient pressure, ey = Yy,
Y is a dependent variable describing the motion, ft4) is some

external forcing and A is a separation of variables constant.
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The quantity AS(#)- ¢(#) then determines the oscillation
of vertically propagating hydrostatic wave motions. Referring to
Fig. 2-9 , we may think the region from 10 to 60 km as a "resonant
cavity'' for wave energy, with the ground and the region from 60-90 km
acting as ''barriers'. Since S increases monotonically from 90 km,
the upper barrier will always be leaky, and permit some upward wave
propagation into the ionosphere. These considerations are modified
in the presence of wind systems, and especially when applied to discussions
of very low frequency wave propagation. See Charney and Drazin (1961).
In Fig. 2-10, is given the time for viscous decay by the factor
€' of a harmonic wave of wavelength ) . This gives an order
of magnitude estimate of the decay time of a motion where the shortest
"distance scale'"is A . For most atmospheric motions, this ''shortest
scale'' will be a characteristic vertical dimension of the motion. A
simple derivation of the formula used may be obtained by applying the

1 3
one dimensional diffusion operator | fz - vig) ﬁt) to a wave of

any 8/

the form  f1¢) € , obtaining the solution

- v (4T H)e

fa @

(Here wvi® is kinematic viscosity). Viscous decay of more general
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motions occurs due to similar diffusion operators which are in the
equations of motion.

Because of the much greater variability of the wind fields
compared to the temperature, it is more difficult to describe simply
the wind structure which is important for wave propagation problems.
""Mean winds' vary extensively according to geographical location and
the time over which the wind is averaged. For example an annually
averaged wind might be an exceedingly poor approximation to the
mean wind "'seen' by a transient gravity wave with lifetime less than
an hour. (Some approximation to the wind prevailing during the lifetime
of the gravity wave is what would be required). Rather than give a
detailed discussion of many possible atmospheric flows which will
significantly affect results from wave propagation, we have limited
our presentation to a simple model profile, Fig. 2-11, which is
characteristic of the winds observed in middle latitudes in winter.

The profile is characterized by a wind maximum at 15 km, the jet of

the upper troposphere, a minimum at 30 km in the upper stratosphere,
and the mesospheric jet, peaking at 60 km. These jets may be observed
to be as much as double the amplitude shown, in given synoptic situa-~
tions. The tropospheric jet contributes to the trapping of the energy

of small scale orographic waves, while the mesospheric jet provides

an important trapping mechanism for low frequency planetary scale
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wave motions.
Fig. 2-12 gives the average derivative of the scale height. Many
of the less important dynamic terms due to variable stratification can

be represented in terms of this parameter.
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Figure 2-1. "Summer' atmospheric scale height in km.,
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III. FORMULATION
A. On the Mathematical Formulation
The more common mathematical notation of modern dynamic

meteorology is defined in the list in Appendix I. Less familiar sym-
bols are also defined in the text as they are introduced. The general
approach to be used in formulating linearized equations from the non-
linear equations which describe atmospheric motions will be illustrated
below for the equations of inviscid atmospheric dynamics, applicable

to nonrotating Cartesian coordinate systems. These equations are

W 4.(51-73)‘:‘. + 1p Vs P - g = F

2t (3.1)

2 +(T.Mm)e = @/¢, (3. 2)

'?5 + V:s‘|°a =4 (3.3)
k 4

P =R (ees)lr (3.4)
Py

We rearrange the above system of differential equations so
that a tractable linear operator remains on the left hand side of the
system and the remaining terms of the nonlinear system together with
the forcing terms are given on the right hand side. Thus the total
forcing is given by external forcing plus internal forcing due to stresses
which are similar to Reynold's stresses. In order to effect this rear-

ad
rangement, we shall choose some reference wind U , a reference
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potential temperature @ , a reference pressure [V , and a reference
density p, . These are chosen, consistent with the requirement of
mathematical tractability for the left hand side, to correspond to some
climatology of the atmospheric field variables. The total fluid velocities,

pressure, temperature, and potential temperature become respectively

(Uuvw) = (“'* U, v's V, w'oW)
8 = @ + e
T + '

!

(3.5)

fi

p
P = FPoy P

The following constraints are imposed on the selection of the

reference variables,
(1) They are chosen to be time independent.
(2) The reference pressure is related hydrostatically to the

reference density. That is

4T = —e.g (3. 6)
ol

(3) The reference pressure, density and potential temperature

obey the ideal gas law.

m =£(p. ® )
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The previously given system of equations then becomes

-

28 + (Jwy)d’ +(2 W)U + vp, Vs P 4(9p)eR= F,,, (3.7)

! y , - - Q"'*’
2y (Jvs)e s (2 V)0 = = e
%‘: AR R A ] = d it (3.9

(3.10)

l
it
m

The source terms are now dependent on the dependent variables of the
problem. Given proper initial conditions, we may solve linear systems
such as that given above. It is assumed in this discussion that boundary
conditions have been specified, and have been linearized in the same
manner. The "solution' obtained will be a function of the initial con-
ditions and also the dependent variables. For suffiently small amplitude
initial conditions, one may assume for a first approximation that the
dependent variables are zero and by iteration obtain improved approxi-
mations. The present work is primarily concerned with the inversion
of the linear operators, and we do not consider further the nonlinear
equations which are derived by this inversion. We assume that all

the systems of equations used in this thesis are derived in the manner
given above. The terms of the complete nonlinear dynamic equations
which are assumed part of the forcing functions will not be given

explicitly. These may be found in standard textbooks on atmospheric
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dynamics. For the remainder of this thesis, we shall omit the primes
on perturbation quantities and the subscript, "tot", on forcing functions
which has been used in the notation above.

The boundary conditions are chosen from physical considera-
tions. One should consider the boundary conditions as important in
determining the atmospheric dynamics as the system of differential
equations. One or more of the horizontal space variables must be
taken to extend to infinity if a spherical geometry is to be approxi-
mated by a planar geometry for describing motions with distance
scales small compared to the radius of the earth. For sufficiently
small time after an initial disturbance is started, solutions will be
independent of the boundary conditions assumed, while for large enough
times the solution may be very dependent on the type of boundary con-
dition. If this is so, and furthermore, if it is not possible to specify
the boundary condition very accurately, then the accuracy of results
obtained will decay in time,

The most appropriate boundary condition that may be used when
a boundary extends to infinity is a specification as to how the region of
integration is to be continued to infinity. Since in practice, a solution
is only required for a finite domain, the specification of the medium
beyond this domain is only important insofar as it affects the solution

in the finite domain. One may use the term internal domain to refer
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to the region in which a solution is required. When the differential
equations have constant coefficients, we assume that the coefficients
remain constant out to infinity. For variable coefficient problems, the
boundary conditions are given as the asymptotic behavior of the coeffi-
cients outside the internal domain. This asymptotic behavior is to be
selected to reproduce the effect of the external domain on the in-

ternal domain, and not necessarily to reproduce faithfully the actual
variability of the coefficients outside this domain. For instance, if

an acoustic wave problem is considered in which the external region

is known to dissipate through the action of viscosity all acoustic wave
motions which leave the internal domain, then we would choose an ex-
ternal domain‘transparent to the acoustic waves. This may be achieved

by assuming that the speed of sound monotonically decreases in the
exterior region. It is unimportant whether this condition is contrary to

an actual monotonic increase of the speed of sound in the exterior region

or even whether it leads to a negative sound speed at great distances. All
that is necessary is that the solution of the inviscid equations with the as-
sumed sound speed is correct within the internal domain. The assumption of
monotonic decrease of the sound speed in the external domain is made since
it leads to wave solutions where practically all the wave energy leaving the

internal region will radiate to infinity. More generally, one may choose the
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asymptotic behaviour of coefficients so that wave energy will be
radiated outward whenever most of the energy leaving the internal
domain is dissipated rather than being down-reflected. In most cases,
the rate of energy dissipation can only be roughly estimated, and
furthermore will be dependent on the form of the disturbances excited.
Thus upper boundary conditions obtained by the above considerations
will in some cases give only a crude approximation to the actual wave
behaviour which would result from inclusion of dissipation. These
effects of viscous dissipation become important for large scale atmos-
pheric motions above one hundred kilometers, and furthermore the
actual winds and temperatures above this region are very poorly known.
Hence any motions in the lower atmosphere which are highly dependent
on conditions above one hundred kilometers are at present basically
unpredictable.
B. The Equations for a Nonrotating Resting Atmosphere,

The linearized equations for the small amplitude motions of a

resting atmosphere in a nonrotating frame are:

Y7 > - 2
< ° lpy V3 P+ 9K /p, = F (3.1
36 3@ o (3.1
¥ TV = Ve,
(3.1
X 2% ‘=
3% + W 3 + P V3 ru ‘4
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P=c (p+ 08/®) =o0 (3.14)
where
- )
¢ = X
7 (3.15)

These follow from system (3. 7) - (3.10), when the reference wind
is taken to be zero. An equivalent system was first discussed by Lamb
(1910). It is convenient to introduce the "Brunt V&isdld" or buoyancy

frequency, N , defined by
/
2@ ) 2
N = (9/@ 32 (3.16)

To simplify the reduction of this system to a single P. D. E., we assume
the forcing functions are zero. Theymay be reintroduced as needed.
The reduction is as follows:
1). Take %, * R+ (3.11), eliminate p by (3.14), and

(3.12), to obtain
9_L * i i on |
( Jet *N ) wo+ p, ( 53 + 9/¢‘) " =0 (3.17)

2) Take ( % A %5‘ ) « (3.11), and ?;,. (3.13), and

eliminate 33; ( g-‘-: + %;-') from these equations. Eliminate g by (3.14)

and by (3.12), use %f: +(?°/®) %-;@ = =fY/er to get

(.L 2:_" - ot +at
¢ et (3—;‘ 6-7"-)) P+ Po 2 (2 - Q/C\)w = 0 (3.18)
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The variability of coefficients due to vertical decrease of density may

be largely eliminated by introduction of the new variables

V:f\ = (’o//t w
(3. 1¢
“\ .—"
P = P " P
It is useful to use for further reduction, the scale height H,
H = /g (3. 20
and Eckart's parameter M defined by
=/9 o1 2% - 1y, N . 24 (3.2
X (c"' als ae)'H(§ 3) IH %
Also useful is the identity
3
N/ = 1 * aH 3.2
We assume the approximation
L P/« o Y (3. 2¢
"t ¢ 9z P H

to apply to the first term in (3. 18) whence £ may be eliminated from

(3.17) -(3.18) in terms of w defined by (3.19). This gives the scalar

hyperbolic P. D, E.

2t ( A, ~ 1+ &) ¥ " (3.2¢
N 3 ———— + t YN EL* w = 0 -4
[ 5t o N™ a4, ler Sov



-47-

where € (2) 1is given by

e = [ = T
Comments: a) The approximation (3. 22) is not suitable for discussion
of the one dimensional vertical oscillations of a variably stratified
atmosphere, but another easy reduction is available in this case, c. f.,
Lamb, p. 541. b) The parameter ¢¢#) will be determined primarily
by the first term ‘I/a, %’g , which in the earth's atmosphere ranges
from approximately -2 in the troposphere to +1 in the stratosphere,
and vanishes for an isothermal atmosphere. If we were to carry out
similar reductions for other dependent variables, we would obtain
different expressions for & . The variable P,"" \"’ ; may be shown
to satisfy (3. 24) with ¢re) = © . (c.f., Moore and Speigel, 1964).
¢) The inviscid equation (3. 24) should be augmented by viscous and
thermal diffusion terms for discussion of motions above the first one
hundred kilometers of the earth's atmosphere. If we use the simplifying
assumption that the viscous and thermal diffusion coefficients are equal
and vary slowly relative to the scale of motion then it may be shown
that the motions of a viscous atmosphere are obtained from (3. 24) by

substituting in (3. 24) for the time derivative

a_?é - (%-'\’(;)4}3)

(3. 25)

(3.26)
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The inviscid equations are satisfactory for descriptions of the atmos-
pheric wave motions in the first one hundred kilometers of the earth's
atmosphere. d) Since 100 km ¢ ¢ Ve » We may assume with negligible
error that the L.aplacian operator in spherical coordinates, may be

given by

~ (2%
Ay = (5, +Loa) (3.27)

where &. is the Laplacian on the surface of a unit sphere. We
may hence use (3. 24) for describing motions in a spherical nonrotating
earth, provided the Laplacians are interpreted as above. e) The deriva-

tion of (3. 24) may similarly be carried out for a coordinate system in

constant rotation.

The result is that (3. 24) is replaced by

T : 1+ €(3) 1 L4 L ~
[( ‘a)/t!-‘;’t) %’é" - -—:f—)}—’- ¢+ %-)) +(§‘€,-."~")(Al —{/(.‘%Ee)]w = o (3.28)

Some useful mathematical approximations to (3. 24) are obtained

by assuming the following limits:

a) H 2o , we obtain
ot x ¥ i
[ 2. 05 + N —&;h_y]w = © (3. 29)
b) ¢ 5 e
;{.(AS “?Tﬁ,z "] (3.30)

c) C,LH - w0
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[ 2.2, sG] % = o (3.31)

S 1% A
R S L

The physical justification for use of these more approximate equations,
is that for certain types of sources and for sufficiently large intervals
of time after the application of the source, the motions excited often
can be described by a more approximate equation than (3. 24).

It may be shown that in a) certain "acoustic'’ oscillations with

the frequency

J,
wy = & (1rew)’t (3.33)
24

are no longer present, so we should refer to (3. 29) as the "acoustic
oscillation filtered'' model. This equation still is hyperbolic, and
allows "acoustic motions' and ''gravity wave' motions. In the approxi-

"anelastic'' model b), acoustic motions have been suppressed

mate
and disturbances propagate with infinite speed. The model ¢), is
usually referred to as the equation for a Boussinesq incompressible

fluid. The model d) is referred to as the "hydrostatic model" for

atmospheric motions, or the ''long wave' approximation, and due to
pp
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C. Formulation of Hydrostatic Atmospheric Dynamics.

The horizontal equations of motion, the thermodynamic and

continuity equations and the equation of state are written

log of the reference pressure.
sin &

velocity field.

Also h

T
2t

¢o)' % - (%)

n—

Vv

L2
®

The vertical coordinate used here is

w = Dp
D¢

>
(=

-~

“Ar

-—

% L L Ra2 s Voh

2

w

-

1
H 2

for the Coriclis parameter,

= F

-
4

-

h

=(r C,0) 9

Q.

——

!
™ a3

v/

h

~—

See Eliassen (1949).

7 = Jos ', the

We use =2 e

= ut¢ +vy  is the horizontal

2 _
¢ " fow

@ mean potential temperature, H

h

P

is scale height.

The vertical motion is described by w,

is perturbation geopotential height, & is perturbation, and

The "heights"

and H are related hydrostatically to the perturbation pressure

and mean pressure [

, by

(3. 34)

(3.35)

(3. 36)

(3.37)

(3.38)
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h = P/ee9
}{ = fT/pog

The vector operators, ¢ , V., written in terms of latitude ©

and longitude A are given in Appendix I,
It is often convenient to replace the equations of motion (3. 34)
with the vorticity equation and divergence equation, which may be

written

Ye BF 12¢ a)_:—

Fe PV rve K. vxF

%e O ¢

4

22

Re
Ve ?

i

>

- V.- $f oy *4Ah = V . 2

where A=z V'V is the Laplacian on the surface of the
sphere. This system was first obtained by Love (1913).

We have substituted

0O
it

v # + ,? x Vv #I/
Assuming boundary conditions have been specified to make Laplacian
invertible, ¢ and ¥ may be obtained from ¢ by
oYy = x vxi
Acp = v 2

The first of these expressions gives the vorticity written in terms of

¥ or g , and the second, the horizontal divergence either in terms

(3.39)

(3. 40)

(3.41)

(3. 42)

(3.43)
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of ¢ or z .
We may eliminate & and w in (3.35) - (3.37), to relate )

and the divergence as

= Law L/ 9t 9h _
A ¢ T -5—{ Y bZ((NH)‘ [ 380t %}) (3. 44)
P

2 + 2Q2e .y
i 53—\)‘/’ L vevsT (Lom o o, O
/ it e wuit)i
where
Y -l
A = (K VxF}a.V.V.'. _Q_(TTj_AQ
‘ f m o Wee® (3.46)
The equation (3. 45) is known as the inhomogenous potential
vorticity equation. The potential vorticity ¢ , is defined as
= D + [ V-5 ¥ “(.L,a_ JI_. (3.47)
? ¥ o+ [ o7 (&2 I e
so that (3. 45) may be written
23 4 ale ¥ o (3. 48)

¢ re S-IT

We likewise eliminate ¢ in (3.41) to obtain

> 3.49
[" 13(’%l5‘3}9h + O 9h —V-+V9"]=" 949

WH)
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where we define J1g as the operator

le = I+ ’-&3&-@— A)q

re & (3. 50)
and r the source, is
-
r = V- F +pls L 9—,,(3_“’_*_*_ Q (3.51)
e T AEL WA B
To further carry out the elimination, we define the "Coriolis
operators', F and F. by
-
FFo= Vo5 7 0o 1g)
(3.52)

F:. = (\7'{ V)A-’

We eliminate $ in (3.49) and (3. 45) to obtain

al. 1 -l
= 1 +F.F)_'-3_II_ h = $V[0 3.53
[(at— T P 33 (NH)L % + A ]3 r + 0§ (S.;O'la)S( )

We shall call (3. 53) ''Laplace's tidal equation'' since a similar
equation was first discussed by Laplace in regard to the theory of tides
in the ocean and atmosphere.

The essential physical approximation involved in the above deri-
vation are:

a) the motions are hydrostatic, e.g., é%‘ ¢ e N}

b) the atmosphere is a thin shell relative to the radius of the

earth.

¢) viscous and thermal diffusion are neglected
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d) the earth is approximately spherical

The nonlinear terms omitted in the above equations may be
considered as part of the forcing functions f and $ . See Lorenz
(1960) for the nonlinear terms appropriate to the above system.

Assumption a) may be relaxed (c.f., Eckart's book) pro-
vided we do not include Coriolis terms in the vertical equation of
motion. Assumptions b) and c) are consistent. That is, the in-
viscid equations are only applicable in the first 100 km of the earth's
atmosphere and the vertical scale of this system is small compared
to the earth's radius. In order to remove assumption b), itis
necessary to carry out a more careful analysis in using geometric
vertical height, as done for instance by Yanowitch (1963). One re-
sulting modification is that in the continuity equation a term like %&-‘
is replaced with a term like %, +;.2::; g; , the second term resulting
from divergence of the radial coordinate lines. Such terms as the
latter are of some importance for long distance propagation of radio
waves on a spherical earth, even though they may be quite small,
since they lead to a certain amount of downward refraction of the waves.
For atmospheric motions, the variable temperature and winds have a
much greater refractive effect on wave propagation, and the neglect

of radial coordinate line divergence may be neglected on this account.

(This approximation is sometimes referred to by radio engineers as
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the flat earth approximation).

In order to introduce viscous and thermal diffusion effects into
the above system, one may assume the coefficients of viscous and
thermal diffusion are the same, and that their spatial variability may
be neglected in reducing the equations. Then one merely substitutes
whereever there is a time derivative ;ée , the term ()3-&. -VAs3 )
where <« = V(xvt) is the diffusion coefficient. More exact {reat-
ment greatly complicates the gystem.

Agsumption d), the neglect of the earth's eccentricity, is
generally accepted without question. For an analysis of this question,
see Hough (1897).

It is sometimes convenient for discussion of motions over
distance scales small compared to the radius of the earth, to approxi-
mate the Coriolis operators, F, and F by a mean scalar Coriolis

parameter f, . Thatlis

F, = Fa > 'fc

and likewise to approximate the operator 18 by unity.

1e ~ 1]

or
(L A +:_§_1_ga>~ 2 A
e re A Y

(3.54)

(3. 55)
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whence Laplace's tidal equation reduces to

t T
w(Be)F B o

'y ] gh = 2¢ (3.586
o SEvaYas TO e + fos
which is known as the equation for internal gravity waves.
Alternately, we may assume the low frequency approximations,
Fn = 'Fc 13
(3.57

Fa < ;°

f): < & 407_

set
whence the Laplace tidal equation reduces to
P "2 -ty I 2 (3.58
e li(r  Tip ) oh cagn] 2822 o

F V- $V 1eaY s

which is known as the equation for atmospheric Rossby waves.

This
low frequency tidal equation may alternately be derived by approximat-

ing potential vorticity given by (3. 47) b
g q y y

BT S R R A PR Y ] (3. 5¢
Mt wH) % £
and approximating (3. 49) by the geostrophic relation
A 9h -f, A ¥ = o0 (3. 60
and eliminating either h or ¥

in (3. 48).
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These approximations apply for motions with frequency small
compared to the rotational frequency of the earth, and for the motion
scale small compared to the earth's radius. For yet smaller distance
scales of the motion, a planar approximation to the sphere may be
appropriately applied. That is, we may introduce a local Cartesian

system centered at As , Bo by

x = re (cos @) (A-4o)

Yy = e (9'@@)

We shall use the usual notation
8 = :.‘.ﬁ—"-' Cos Q4
re

so that for the planar approximation

afle 3, o 8 Hi
Ve

We shall for the purpose of discussion, assume one further
approximate equation obtained by combining the low frequency Rossby
wave equation (3. 58) with the high frequency, gravity wave equation.
This may be written in Caresian coordinates as

or t\/1a T

+ Lo T 2 ., h o+ o
‘)e[( 4°)(rra§‘(~ )‘aé‘) A ] ox ©

Variations of this equation have been used in the literature in an effort

(3. 61)

(3.62)

(3.863)
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1 1

to extend the ¢ -plane'' model to 'non-geostrophic" motions. One
of the conclusions obtained from analysis of this equation is that it is
not suitable for the integration of initial value problems since it pre-
dicts unstable 'inertial oscillation''.

Since boundary conditions are frequently expressed in terms of

vertical motion w it is useful to relate the geopotential h to w

Eliminating « from (3.38), (3, 39) and (3. 44) gives

wos o .9 [-M , HOQ
2 ¢ NH | 33t ca@
Further details concerning sources, boundary conditions, and

more approximate equations will be introduced when required in the

following chapters.

(3. 64)
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IV. SOME PROPAGATORS-MATHEMATICAL METHODOLOGY
FOR INVERSION OF DIFFERENTIAL OPERATORS
The purpose of this chapter is two-fold. It is intended to present
in detail the simplest theoretical model for combined gravity waves and
buoyancy oscillations, and at the same time to present systematically
some of the mathematical techniques to be used in the remainder of
this thesis. The theoretical model we study is the "incompressible"

system given by (3. 31) which may be written

X Az +NTaL]R =sFrinyes) (4.1)
w

where here Fyix,v,8,¢t) is an arbitrary forcing function. We assume
N to be constant. The most highly differentiated terms in (4. 1) give
the motions of an "ideal" fluid while the lower order term N Q. gives
a correction for stratification.

We shall first study the motion due to the simplest possible

localized source. That is we replace Fv  with dnFuy) rti) dit)

Fp = SImdier e (4.2)

An understanding of this motion is helpful in the more difficult task
of studying the motions due to actual physical sources, E , @ » and
A . Such studies are necessary for complete understanding of a

given kind of wave motion, but for understanding the gross features
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of the many different possibilities for atmospheric wave motions, it
is desirable to discuss first solutions for the most elementary sources.
We define the propagator of (4. 1) to be the solution W (x,¥,2,¢)

for the source (4.2). That is

[%E& Oz ¢+ NLA;]W = - Jtx) Sey)Ste) See) (4.3)

It is possible without loss of generality to take W and all of
its derivatives to be identically zero for €40 since by using proper
delta function sources at £€=¢ , one may obtain the same results as
if the initial conditions were nonzero.

The time delta function may be written in terms of a Laplace

contour integral as

,’oD’-é‘
g€
{(¢)y = 1 2 e oo (4.4
a0 and /bt( =
~|‘,f~é

where the variable of integration is taken to be a complex variable, and
the path of integration is taken to run to the right of the imaginary axis.
This permits a natural association (isomorphism) of differential opera-
tors in time, acting on W , with the complex variable ¢ .

It is seen from (4. 4) that a function of the operator 54t , F( ?/“J
operating on Ji9 may be written

ot &

2 = (. \"_t
F(/Sg) Stey = ( /ae) e F(:) eae-d‘r

(4.5
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where the term (%c\;‘ outside the integral and the term ¢ in the
integrand are seen to cancel each other formally. The integer n is
to be selected large enough to insure existence of the integral. It is
assumed that

a) The contour is taken to the right of all singularities of F(v) /gn

b) n is chosen large enough so that

bim Fla)/ . I - oo
> o0 ‘ /"

Re ¢ 2 0
uniformly with respect to -y, & ary & £ Ly P

The condition a) insures that the integral of F(e¢)/s" taken
over a large semicircle around the origin in the right half plane will
go to zero as the radius of the semicircle is taken to infinity. The
fact that the semicircle integral vanishes under these conditions is

known as Jordan's lemma. From a) and b) it follows that

F( B/aé) §¢¢) = o
for gc o
which is the condition of causality. No response can occur before
the source &(t) is applied.
For ease in writing we shall introduce the convention that ¢
may be used both for the operator %t occurring outside contour
integrals as well as for the complex variable ¢ which occurs under

the integral sign. In this notation (4. 5) is written
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;ﬂl-&
Fle) S(¢) = on L [ Fle) €%y, (4. 6,
and 'ﬁ*’cn

The direct manipulation of equations involving an operator such as
¥%e = ¢ and evaluation of the subsequent expressions by contour
integration is known as the direct operational calculus.

Using the above notation we write (4. 1) as

(d"'&;* Ntbz)W: ~dUx)Jty)Sle) I te) (4.7)

Assuming ¢% 0 , we define a new variable
" ‘12 ¢
Z = (N“o¥) o' (4. 8)
and the delta function
v -2
T(2) = o (N-+s") S (4.9)

where (WN*+ ‘L),/z , taken as a complex function of ¢ , is defined
so that the branch cuts are those of Fig. 4~1. Equation (4. 8), using
(4.7) and (4. 8) becomes
ot -7 4.1¢
(;—i“ + D2 ) w = "(N‘*GL) U"J(JIJ!V):(%)J(,)( -1
The operator on the left is a Liaplacian, which is inverted to give

(NL*O"'!”,LO'" “N e
W = . w2 J(T‘) = _! @’Rt*NzeL)(N‘*O") J\(t) (4. 11
a(xt+ye 3 2y
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where /
R = (xtey' +2-) "

The contour integral used to evaluate the above fractional operator is

rm e
P-4 4
W = - L e _de
97 R ame (o ‘*N‘)'/!—(a'- *_Nt?!—/Rt)I/L
-t &

where the path of integration is taken to lie to the right of the imaginary

6 - axis,

- L
Let W(¢) - (‘-/77 R)-‘(d'l* NL) IL@,L + N?—z /RL)

- l/l

be the Laplace transform of W . The contour in (4.12) may be de-
formed so as to enclose the singularities of W(cr) as shown in Fig. 4-1
provided the integral around a large semicircle in the left half of the
Riemann sheet under consideration becomes vanishingly small as its
radius is taken to infinity. The examination of contour integrals around
large semicircles will frequently be necessary but will not be explicitly
discussed further in this thesis, since the requisite manipulations are
not of physical interest. The reader may assume, unless it is stated
otherwise, that such integrals have been verified to be vanishingly
small.

An integral such as (4. 12) may be evaluated directly by numer-
ical integration, so there is no need to reduce it to other complicated
functional relationships, such as in this case, a convolution integral of

two Bessel functions. However, in a study such as this one, which is

(4.12)
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intended to lay bare the essential features of the dynamics, it is desirable
to approximate complicated solutions such as (4. 12) by means of func-
tions sufficiently simple that their numerical graph can be visualized
without the need for detailed figures. These simple, approximate
functions are usually applicable only over a certain range of parame-
ters. Laplace contour integrals such as (4. 12) may be approximated

by polynomial functions for small enough time, and also by other simple
functions for large enough time. The graph for intermediate time may
then be visualized by mentally interpolating between the readily visu-
alized expressions for small and large time.

An expression useful for small time may be obtained from (4. 12)

by expanding W () in an inverse power series of & . This gives
{ o>
»”°>
gt 2K o0 2x4+/
w = L e’ AT SNaxx o M) oL N E) (4.13)
4n R ¥ x:o O2F

YTPNR x:o (Ax#)!

AT

x -ty -2\ /2 20k+3)
A = z)( )(.—-)
3:2., ( 3 K-} R

The series is seen to converge for all finite ¢ , and hence W is an

where

entire function of time. Keeping only the first two terms of this power

series solution, we write

= (¢) - L v 2Y/ 1) 3
W TR [t I?.N (l + 2/ ) t? o+ O(Nvt’j) (4.14)
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which is the desired simple expression for small time., The first
term may be intepreted as giving the motion of an ideal (inviscid incom-
pressible unstratified) fluid for a special kind of point source, and the
higher order term as giving corrections for stratification.
Expressions valid for large time are somewhat more difficult
to obtain but are often of much greater physical interest, since they
describe the ultimate evolution of the dynamical system. For large
time, we consider the contour integrals around the singularities of
W{c) , which are obtained by deformation of the original contour
integral. In Appendix III, A, we establish the complete asymptotic
solutions of the branch 1line contour integrals which occur in this
chapter. The numerical values of the singularities of Wyvs) in the

problem presently being considered are branch points which occur at
o= = (N
(4. 15)
T =+ (' Nﬂ‘/R
The term ''buoyancy oscillation" is used to refer to an oscil-
latory motion with oscillation frequency N . The two contour integrals
around the branch points £¢N describe such a motion as ¢ 9e , and

hence we refer to the sum of these contour integrals as the buoyancy

oscillation propagator.
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d't —
Mg '

In textbooks the term ''gravity wave'' is used to describe plane

wave solutions of homogeneous equations corresponding to (4.1). For

such a solution to satisfy the homogeneous equation, the "dispersion

relation"

T = NL(‘: v)t,")
(Febs Kyt ""t‘)

must be satisfied. (The restoring force of gravity is expressed through

the buoyancy frequency N). This expression may be written

w = N s g

where

. 2
e - S'M*’LKXL*KY ]

kxt ¥ hyb #Ke"

is the angle which the direction of propagation of the sinusoidal wave
motion makes with respect to the horizontal. The term %/ in (4.15)
is likewise the sine of the angle of an observation point Wi‘éh respect to
a source lying in the plane Z=o . Furthermore the contour integrals
around branch points at o=+ (N é/R give, as t-e¢ , an oscil-
lation with frequency, N%/R . Hence we call the sum of the contour
integrals around the branch point singularities at * (N&/R  the

gravity wave propagator.

(4.16

(4. 17

(4. 18
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3
W, = “-‘,-‘-‘.ye’ W) de (4.19)

e

The propagator W is thus decomposed into ""elementary'’ pro-
pagators associated with the different singularities of \7\7(«) and we

write

= « W
w W ¢ (4. 20)

where Wjg refers to the buoyancy oscillation propagator and We

refers to the gravity wave propagator. ., . i
The integral of Wie) =(¥7R AR AP, z(d"'- P TR /RL)

around the two contours [g , given in Fig. 4-1, is evaluated by use

of the asymptotic solution given in Appendix III, A. of this chapter. The

contribution from the integral taken around ¢=-.N is the complex

conjugate of the contribution from the integral taken around e= <A .

We find

(Ne -i“ﬂ' e -*
)[, +Een 7’75:)0“) ]

0 )-'uth)-l;,, R e.’
N} (xteyt) (3 Qe
Wy =(4mN) L (4.21)

where
L]

5optaed) .
in = J%, ﬁ-) —T_-l—(;‘—)-— Fr-s (4.22)

and §,.; is defined by the generating function
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- /‘1— ~ > £
([4. 26A - = E.'F-{A

1= /R 1= YR

We thus find a simple expression for the buoyancy propagator for large

time

’/L

—_ |2 -37
We = «irrNQW-r')”'-(Nrrt) [cos cne %) ”63]

where

-
6= O [(-#7g)(we)"]

The gravity wave propagator is likewise found by integrating

V—V {c) around the two contours r'o

‘ , Wa ; NP/R) € - $ My
- S ——————— ————————— -
W = rn xeevt)™ Nﬂ'(*/R)t) Re © [' " .2'

where ax 18 given above, but the fx, used are generated by

~l

(l* zc./\R/l + AL .
(R‘[ib") Rt/?.""

L
fe A

{1
My

£=0

We hence find the simple expression

{ 3 "
We = — -
¢ amr N ey v ¥/t l. cos(%%t- - ’77‘,) + 63]

where

ot CUL¥*E)

(4.

—

(4.

(4.

4,

.23)

. 24)

25)

26)

27)

28)
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€y = O (I-R%)" (/.V_e-_t:)"
R (4.29)

The parameters N and %k are characteristic frequencies at

which the atmosphere oscillates. Note that for (/- zl/;;ﬂ-) <c] , the

time that must elapse before (4. 24) and (4. 28) are applicable is much

greater than if (V= #/R*)x | . When the above strong inequality

holds, the gravity and buoyancy propagators will oscillate together for

many periods before there is effective separation between these two

different kinds of waves. To handle this situation, we obtain an approx-

imate solution useful for the time interval (%3)-‘ cE ¢ (N—g -; ' - *‘/,p).'

R

Consider the integral

oy &
¢
W = I de €° (4. 30)
ymrR and T N N U
IR ALY I CRA )

where €& = “"y‘)/R; ¢¢e | . We find an expansion:

(NE -;IT/;

- f o .
W—‘NPNR Re € [l+§‘3,‘g}

where

.

[

- - -4
8, = q ( 5= e 1 )
and in general

(4.31)
T———————— .
&t

B = Nikrin) g Goi)t LV_.E—)‘—;
newy (k1Y Jxe u&—:‘)ﬁ.i.’(
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To a first approximation

wW = P sin{ng)
ymrnNR
provided

- -\ -
(%i) te t cc (l_\)ﬁ_g—) ("’Z?‘)

The present results are summarized as follows:

a) For #c¢o , the atmosphere ig at rest.

b) A delta function source is applied at #=o
At this instant a vertical motion is excited throughout the atmosphere.
At first it increases from zero as a linear function of time and decays
in space away from the source like R™' . Astime increases, the
growth of the wave becomes less than linear,

¢) For some time which is the order of N”' the vertical motion
is oscillatory in time, with a frequency N and an amplitude that de-
cays in time. There is an amplitude decay in space like (x'*Y ")-”"
This motion with frequency N is called a buoyancy oscillation.

d) At some later time of order LN?’/R)-, , another motion with
frequency (N 3/r) is also observed. This motion is called a gravity
wave. One may consider the motion for times ¢< n! to be a con-
sequence of the gravity wave and buoyancy oscillation being nearly

completely superimposed and hence cancelling each other by destructive

(4.32)
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interference. For times greater than (¥ l'/R)—‘these two wave components,
as defined by the singularities of WIr) | have dispersed into separate
motions. For very large time the buoyancy oscillation and the gravity
wave amplitudes decay like t”/" . This decay is a consequence of the
energy flow out of any finite region surrounding the source. Such decay
is commonly found in wave problems where the domain of solution is
open to infinity.

In order to obtain a feeling for the accuracy of the description
of atmospheric motions afforded by the asymptotic solutions of this
gtudy, it is instructive to examine a simple example where the "exact"
golution is readily computed from mathematical tables. For this pur-
pose, we use the gravity wave propagator obtained from (3. 41) with the
assumption (N tyet )”"e-_ NY . This is equivalent to making the
hydrostatic approximation so we shall call this propagator "the hydro-
static gravity wave propagator'. This propagator has the contour in-

tegral representation

Joad €
st
We = A e dd—‘-'llt_ (4. 33)
9N R (c**NE/p)
3.4 4

The small time representation to second order is

4T NR We = | - [ Sl O(Na.e) (4. 34)
R> ¢
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The large time representation to lowest order is

lll
2
< - {———— cos(NEg -7
4MNR Wg = n-/v@./g)e) OS(Qt /‘1)

The exact solution is

4ON R W, = Jo(%—*— 6)

where Js is a zeroth order Bessel function.

In Fig. 4-2, we have plotted (4. 34) and 4. 35) and denoted points
of the exact solution (4. 36) in the region of worst fit by x . We have
only plotted the first half oscillation of the solution. The asymptotic
solution (3. 64) gives results within (1%) for N #¢R >4 | The
conclusion reached is that We is approximated by (4. 35) with error
less than 5% for "_/’_1?}’7 .8, while W& is approximated by (4. 34) by
error less than 5% when UR.}.! « 1.2,

If the transition from the large time solution to the small time
solution were smoothly drawn in by hand, the resulting graph would
describe the entire solution with only a few percent error.

The point to be made here is that in an inherently inaccurate
science such as that of atmospheric motions, the approximate solutions
such as’'obtained in this study provide as accurate a description of the
dynamics as is warranted, given the defects in the physical model.

Approximate solutions are frequently much more useful than exact

(4. 35)

(4. 386)
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solutions since they may be more easily manipulated and are easier to
"understand'. In the remainder of this thesis we shall determine only

the lowest order approximations to wave propagation problems.

Imgo

f

bt
jt-

o

Figure 4-1. Branch line contours for integration of gravity waves and
buoyancy oscillations.

First two terms
of the power series

solution.
T T

‘s = points of exact solution

Fust term of asymptohc

/ solution

4 ] 1
1 2 3 4
NEjpt —

Figure 4-2. Matching of the small time power series solution to the
large time asymptotic solution for the hydrostatic gravity
wave propagator.
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V. PROPAGATORS OF A STRATIFIED
COMPRESSIBLE ATMOSPHERE
A. Propagators for a Nonhydrostatic Atmosphere

In this chapter we consider equation (3. 24). We shall confine
our attention to solutions for elementary point sources (the propagators)
and do not consider the analysis for actual physical sources, which
may be studied once the propagators are well understood.

An important difference between the solutions of (5. 1) and those
of the incompressible model (4. 1) is that the solutions of (5. 1) are iden-
tically zero outside of a sphere with radius R =c¢t. The set of points
on the sphere Rz ¢t is known as the acoustic front. This sphere
is a characteristic surface of the wave equation and propagators de-
fined on this sphere will have discontinuous derivatives of some order,
or may themselves be discontinuous or have delta function singularities.
Discontinuous or singular functions may be used in two different ways
for describing the state of the atmosphere in the theory of atmospheric
motions.

(1) They may be used as idealizations of functions which are
continuous but change their magnitude over a very small distance as
measured on some distance scale. For instance, the temperature
across a ''cold front' on a hemispheric weather map is often idealized

to be a discontinuous function.
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(2) They may be used to represent the response of the atmos-

phere to physically unrealistic, but mathematically convenient, ele-

mentary sources. This is how they occur in this thesis.

One integrates

over the solution for the elementary source to get the solution to the

physical source. In many cases usage (2) reduces to (1).

That is,

at sufficient distance from a source, the atmospheric response may

be asymptotically equal to the response to some elementary source.

We now consider the inhomogenous acoustic gravity wave

equation

at?

[2 Dz + N* A, -(wA"+ 3‘)' 2 = - 3¢

a.T._t. xS Jer

where we define the acoustic oscillation frequency i,

wa? = gy (Vs e

R) J(¢)

by

For purposes of mathematical simplification, we shall assume that

the parameters W, , N , ¢ are independentof 2

where

Wa > N »> Ne/R

, and that

The formal solution to (5. 1) may then be written as

-1 -’
W= rpleremt) ot atye) "t e

&
P (o',R) is defined as

_ P(r, R)
Jile)

(5.1)

(5.2)

(5.3)

(5. 4)
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LS Iy
P(d)ﬁ) - R/C[(-UL"'WA")”'(G"*’VIt/R")

N o TN ) e (5. 5)

The fractional differential operator in (5. 4) differs from that for the
~pP(e, R)
incompressible atmosphere solution (4.11), by the factor ’ )
which may be considered to give a finite propagation speed for waves
in a compressible stratified atmosphere.
In order to evaluate the propagator (5. 4), we represent it by

the contour integral

1+ &
-
) O't - P(‘:;I?)
ame Ld-t*_NL)i/L(U;+NLe1/Rt)IIL

-(Ds e
For ¢ <« R, we may close the contour inthe Re & » o plane, and
hence by Cauchy's theorem obtain anull result. For (e - R/c) cce ),
it is convenient to evaluate (5. 6) by expanding Pl(e, R‘) in a power
series in 01 , and then to also expand the integrand of (5. 6) in a
series in 671, That is

O"e—PIc)k‘) d't"?/ca.

3
° = 4L € (1-%8%2 v o0ey) (5.7

ety (e N

N
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Substitution of (5. 7) in (5. 6) and integration gives

v RW = H(t-Rg) [(t"?/c) ~ g%i(*'a’cf*o:t"/‘)z] (5. 8)

The integration is carried out by the method of steepest descent.

The
integrand has saddle points where 5—0_ (a't - Ple, 'a)) = O
That is
-> 1 1 S |
t = ¢ P(e,R) [‘,..M: i NW‘] (5.9)
which for sufficiently large time has the eight roots
Cw (5.10)
* ¢ A R/
F = Cph =~ (I ~ Rl/c‘t‘-y" ) T > <
(5.11)
4 NEIR — "
c = 65 =~ - A\ ___) )
( | (T:&) (ct t >>WaR
NC
yy !
. w R 3 %3 (R
e = By = z‘N(l-r(a-ﬁ‘z;) ) (5.12)

In the vicinity of 64 , ¢ x 0y Pte, ﬁ) may be approximated by

- //
Ple, R) = l?,c'(a"-l»(».u,“')z (5.13)

In the vicinity of &g x> Ug P /o, R ) may be approximated by
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,IZ
w Tt
NA(OL’—N /Rl)

v

P(os, R) =

-~
while in the vicinity of Oy y U X 0y + Pls;R) may be approximated by

! -c'n/
P(rsR) = R wa(Wn)™e™
(¢ -cN)n
For large time the integral (5. 6) may be approximated by evaluation

in the neighborhood of saddle points, and hence

W x WA + WB ”-WG

where
:.001-&
‘t
w = J vt -lorrwat)’tg,,
_““"
l.dbée
s
2 ! i et ~a(octeney )\t
A% = — R
¢ ymrN 21 |77 € )
“ied g (JL* Nlél/f?k))/l
(P e ,
. ~ . =l 3\ _/m
Iy _3)1’(/,4 ot _“i(a.-‘N) /L(d_) o N "‘/
Wp = (I/N) Re € do € 2
———— e —en——— l’
4 NR amé fo-cnN)™

‘:0’4&

(5.14)

(5. 15)

(5.186)

(5.17)

(5.18)

(5.19)
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where we use

R wa

PV (5. 20)
and we make use of the assumption (5. 3) that the characteristic frequencies

are widely separated in order to simplify the integrals.

It is assumed that £ is sufficiently large that the value of these
integrals can be determined asymptotically by integration in the neigh-
borhood of the saddle points, and so the sum of Wa , Wg and Wg
differs from the value of (5. 6) only by quantities that are asymptotically
zero,

The functions W, , Wg and W, may be evaluated exactly

using Appendix II, 3 and 7. We find

Wa = - Hle-Re) e 2 ~ R\
A €- -'-)q” TR Jo wy (e* (g)) (5.21)
We = H(t-a) h [N} 1/
—— -—- (er-al) ‘]
YmRN <) (5. 22)

Wp =  Hie-a) WRN (") (::'T-—_% cosl;v(t pé(taj'ﬁ)_gj
(5.23)

where we use Appendix III, C, to evaluate the integral for W

asymptotically.
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The asymptotic error & is
-4
¢ = O(N'a*¢¥) 3)
The term W, is designated the "acoustic wave'' propagator. Note
in particular than an expansion of W, in powers of ( £ - R/c_ )
matches the first two terms of W given by (5. 8).

The term Wy and W, are designated the buoyancy and
gravity wave propagators respectively. A precise estimate of the
solution in the neighborhood of ¢ *ea  is quite complicated, but it
is adequate for descriptive purposes to assume (5. 22) and (5. 23) give
the motion up to this point. The actual transition, somewhere in the
neighborhood of t=2 &« , to asymptotically negligible buoyancy and
gravity wave oscillations will occur smoothly, so that when (5. 22) and
(5. 23) are differentiated the derivative of Hit-a) should be neglected.

The motion described by (5. 18) consists of: a spherical acoustic
front traveling outward with speed ¢ , beyond which the atmosphere
is at rest; a tail of acoustic oscillations of frequency which decreases
to @wa  with increasing time; which is joined somewhere back of the
front by buoyancy oscillations whose frequency asymptotes to N  as

t-» 0 ; and gravity wave motions whose frequency approaches

N%/fz P S .
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B. Propagators for a Rotating Hydrostatic Atmosphere
In this section we examine (3. 56) for perturbations on a resting
planar atmosphere in the absence of boundaries. We shall assume
NTRY , and €&(¥in (3.55) are constants (not necessarily corres-
ponding to isothermal atmosphere values). It is convenient to use the

-

"geostrophically scaled'' Cartesian coordinates, ﬁ = (%Y, %-H- A)
(-2

That is, we define the stretched height coordinate 2

NH 3
— =
fo 2
. .
4 1 IR N."H' Al 2 :
We shall use the notation R = [X +Y-r 'f'.'i' 2 ] for radial
(-]
distance in these coordinates, P = tayr)it for horizontal
~lpy

radial distance, and C = (.'._'_%L for the velocity of internal

g N

(5.24)

gravity waves. Assume also that time is scaled so that o = 20e $InQ, =1

The propagator for a rotating hydrostatic atmosphere is defined to be

the solution to

a 2‘; a‘ Vol _ —
£ [( bt“’,)(a—i—" ._'/CL)4- A]h = -J(R)Jre)

where S(?) = 8wy Siy)ydlz) . In the remainder of

A

7
this chapter, we omitthe " ~ "on h = ﬂl-i “*h The spatial
Y

operator is inverted to obtain the operational solution

’
-4 Tpept "'7-]’1
L[a et + R

h= € o' T re)

gn @_lpz* ﬁl)’l}.—

(5. 25)

(5.28)
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The operator may be expanded in powers of g1t obtain a power series

evaluation
h=z (4rre)”
which is useful for
(t -¢e) «< 1

According to the hydrostatic model, the atmosphere is at rest beyond
the surface ( ¢ - p/C ), a cylinder with vertical axis through the
source. Signals propagate vertically with infinite speed. This infinite
speed of vertical signal transmission is a consequence of the hydro-
static relationship. The more correct nonhydrostatic model of the
previous section shows that actually the gravity waves propagate behind
the sphere (p*+ 2" )’/‘3 %ct x Ct , and that the amplitude
of all derivatives smoothly asyrr:ptotes to zero, rather than discon-
tinuously as in the hydrostatic model.

In order to evaluate the integrand for points of observation far

behind the wave front, we express the solution (5. 26) as a contour

integral

£ o + €

h =

Py () 9%y,

~tad 4 ¢

H(t-®c) [(t-‘”c) -2 .E-;(g{e-e/c) +§.{¢-—§)2) +] (5.27)

(5.28)
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with
- . S - Yo [P+ R
heo) = wr) '[cp*+ R?] o' € el ]
The contour is deformed into steepest descent contours about
the branch points of his) at g0 = +¢ R7p , and a loop around

the pole at ¢ = ¢ . The potential vorticity propagator, h, _ o, 1s

defined to be the integral of 3= hi©ye°®  taken around the pole at

=0 and excluding the branch points. The gravity wave propagator

hg is defined to be ;‘-;é/ae of the integral of M) €°F taken around
‘

the branch points at o = & ¢ ﬁ/p and excluding the pole at the

origin. Hence

X
~Z' — \,
h(X)\/) )t) = hv{x) Y ) 211) + ha()‘)y)i',t/) dt’
t
where
If) foed -._'._ e P
v am, | hee) g”t el
€z 0)
and (

h - { T -2 =
9 ame O'I": (o ) e de
(b=2(R /9)

The above definition of hg 1is suchthat h 4 & Wge given

by (5. 22) when rotation is negligible and the hydrostatic approximation is

valid. The conditions under which the hydrostatic and nonrotating atmos-

phere assumptions are tenable may then be investigated by comparing

(5.29)

(5. 30)

(5.31)



-84-

hy and Wg

The integral for hy is evaluated by Cauchy's residue theorem:

- Rre
9n R

The integral for hg is evaluated as

hg = H(e=-P) ) T, [ﬁ,p (¢ pt/c,,)"’j (5.33)
anp

For more complicated sources, the simplest "'exact'' solution possible
is the Laplace integral solution, and approximate description of the
ensuing motion by series solutions asymptotically valid for small and
large time is appropriate. In Fig. 5-1, is shown J’o(‘lz‘—l)l/z . This
figure illustrates the initial front and the oscillatory tail of the gravity
wave propagator.

If we compare hg  with the earlier obtained Wy, it is seen
that the primary difference in the motion far behind the wave front in
the two cases is the difference of the oscillation frequencies: the present

propagator has the dimensional frequency

Ty = ( NHEZE 4 £, "2 A\ (5.34)
= o) (18
while the oscillation frequency of (5. 22) is
w R\ 72
oofp = NE(i-wan(E)) (5.35)

R
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For comparing these two frequencies, we use time parameters appro-
priate to the earth's atmosphere. These are
$0 ~ 1079 sec!

N ~ 0% sec-’ (5.36)

This leads to the conclusions for the earth's atmosphere that

a) The effect of rotation is negligible at points of observation
such that *+e» ® = @ >>/0° " where 6 is the declination of the point
of observation with respect to the source.

b) The hydrostatic approximation is valid for points of obser-
vation such that sim e = 8 << }

The present criteria are a consequence of the directional dis-
persion of a locally generated gravity wave motion. The atmosphere
acts as a prism, such that the more horizontal the point of observation
with respect to a local source, the lower the wave frequency. An
equivalent statement of the above criteria is that the hydrostatic ap-
proximation is applicable to motimn s with oscillation frequencies very
small compared to N , and the earth's rotation is negligible for
motions with frequencies large compared to +$, , the Coriolis frequency.

There is yet another class of motion possible on a rotating

plane, which are known as inertial motions. These are motions with
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an asymptotic frequency for large time which is the Coriolis frequency,
fo . One type of inertial motion arises as a limiting case of the gravity
mode of motion. As seen from the frequency relationship (5. 34), a
gravity wave which propagates in a horizontal direction is an inertial
oscillation with frequency £, . Such motimms commonly occur as a
result of the horizontal guiding of a gravity wave, either as a Lamb
wave, or as a trapped internal gravity wave guided by boundaries or
thermal inhomogeneities, It is also possible to excite inertial oscil-
lations which are independent of the gravity wave mode. We find such

a motion as one of the modes of oscillation present in h the

v
propagator for the @ -plane equations. The physical significance of
this oscillation is somewhat obscure, but it is of mathematical impor-
tance for the equation considered, since it is found to represent a
motion that grows in time; that is, an instability.

In summary, for arbitrary impulsive point sources for the
equation (5.25) one would expect to observe a motion consisting of

a) Gravity waves which decay algebraically for large time as
their energy is lost to infinity.

b) A potential vorticity motion which is independent of time,
In the presence of a mean flow, the motion will be approximately

carried with the fluid particles. In a resting atmosphere, this mode

loses no energy to infinity.
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¢) Possibly some inertial oscillations, which will decay in
time (in the present case), as a result of wave radiation to infinity.

(This decay follows from conservation of energy of solutions).

C. The @ -Plane Propagators and a Method of Filtering
We now consider motions ona @ ~plane. The @ -plane
propagator for hydrostatic atmospheric motions is defined to be the
solution to
2 [g;w ( '/c‘) + A]h L6 o -N(Ry T (5.37)
where we use the notation introduced in B. Time is scaled so that

§o = | . Inversion of the 1. h. s. gives

_ (5.38)
h (x,y, T,€) = h (r) T(t)
where we define l;(c) by
87 " 2y
hie) =(yro) [‘c‘{) 4?"] eXP[ C 874 ) (0*P* +R ") ] (5.39)
aH o e))
We shall evaluate (5. 38) for large time by means of contour integration
cont &
(5.40)

h(x:‘/,é,t) - _.‘-: E(O‘) ee*dd‘
arme

-t.br(,-
The principle part of hir) as ¢ is
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- ollc

hie) ~@mp)'e (1+0s)

Thus as in B. the motion is confined within the cylindrical hydrostatic

gravity wave front
¢t = fle

The solution may be expanded in powers of ( ¢ - ) behind this
front. We omit this computation. To evaluate (5. 40) asymptotically
for large time, we must determine the saddle points of the exponent
of hee) . As ¢+ 2.0 , these s.p. approach the singularities of
h (¢) which are

a) branch points at

o= £ wg = £ /3/@

b) branch points at the four roots of

Ho¥(ex+1) + c2p® = o

For values of @8, N, H , Fo=1 s appropriate to the earth's atmos-
phere, these roots are widely separated so that the following approxi-

mate formulae may be used for these b, p.
T = o4 owe =tl.(l~ @l z)
8

C = £ (Wey = £ ¢ [ C,.@("“B:Ql)]
2 8

(5. 41)

(5. 42)

(5. 43)

(5. 44)
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c) essential singularities at

o= z ¢ (5. 45)

c=o0 (5. 46)

We deform the path of integration into the K& o ¢ o plane, and

hence into contours encircling these nine singularities of hta)

3

and thus decompose htx* v, é‘,{) into the elementary propagators
od
- .47
h —fthgltl)a,f/ ¥ he, vhey + hg ""‘ev (5.47)
¢ 8 ‘Vlwq
Assuming e A} , the gravity wave propagator,

hg , will again be given approximately by (5. 33).
The propagators h,, and h¢, , not previously obtained, are
tentatively labeled compression propagators. They appear to result
from ''coupling'’ of atmospheric compressibility with the inertial wave

mode and potential vorticity wave respectively. In the limitas o <9 (we,

’,L
o, (ot Fet)

- (5. 48)
hic) ~ b, @ {1+ O(U-¢’w¢,))

where
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A= flwer wee )t (B - pr) Tl |
clw "™l (549
- ~ -l{" ‘—-—3 -.
by = (4m wc—:) ,(R"-w::P" e+ 2w ‘?.rr)
As e > (Wea
hie) ~ ba @ ) (14- O(a-_"w‘,)) (5. 50

where the parameters @a , b, are obtained from (5. 49) by exchanging
the subscripts 1 and 2. The large time behavior of he, and hca can
thus be computed by application of Appendix III, B. We omit this compu-

tation and merely quote the result that as ¢ = oo

-3
h ct ~ (WC' ﬁ) :

-3 (5.51
hea ™~ (wy, ) 2

so that he, and hca will be asymptotically negligible relative to the
other propagators in (5. 47) for sufficiently large time.
The inertial mode propagator hx is determined by the behavior

of hie) in the vicinity of o =1/ . As o = ¢ , we have

/S |V
e “

(l + O[d'—('))

—alo~C) (5.52

hie) ~ b €
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where
s 72
a = e * gilavne

. -} ,'GX/L
b (Hmed) 4

Referring to Appendix III, C for the approximate evaluation of hg

a saddle point integration, we find

by

(5.53)

'/3 Tt i
o b ‘(erm TN
L‘I &~ hI; k-4 2 R@ lt) Gﬂt),"’ exp[-t{ ‘J "e %(q 9](5.54)

and hence

113
hy A~ e K€ X algebraic terms in ¢

2/
= 1r)3 82\"3
where K (‘°sq ’T);: (";_’)

A rough estimate from parameters appropriate to the earth's atmosphere
gives the e-folding growth and decay time for h;* to be an order of 10~

100 days. Since the p -plane equation does not have any simple energy

integrals, it is not possible to discuss this instability of the inertial

oscillation in terms of the release of some kind of potential energy.
This instability does not correspond to any actual physical process,

but appears to be a numerical instability of the approximation scheme,

(5.55)
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and hence an undesirable feature of equation (5. 37).

The last propagator which occurs in the @ -plane problem
considered is hgv , the potential vorticity propagator. The
asymptotic behavior of this propagator may be determined by expanding
hi(s) ina power series in ¢ and integrating the series term by
term with the kernel function ;1—'; e? ¢ . Keeping only the principle

part of h(s) in expanding it in a series in ¢ , we find

- By *R)
2¢q (‘ ( ] + O((j’))

H

hie) = ynReo

The asymptotic solution for the propagator is

/
(1 ¢ 0(6'3))\]- N 517
= em—— XBE(x+ R ]
The wave oscillation frequency is seen from (5. 57) to be given

by

e

[26¢(xm)] = [fxf- R) B/é] "

d

dt
At fixed time, lines of constant phase will be located on paraboloids of
revolution in the coordinate system ( X, ¥ , N.;-ii ) ). The focii are
located at the origin.

That part of the initial disturbance which goes onto the potential

vorticity propagator contains all wave lengths. Along the positive axis

(5.56

(5.57

(5.58
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at fixed x , the wave number of the disturbance is seen to be

_d,@(e X e)'/‘] = @erx)®

ax
The very long wave length components are first past the point x
The asymptotic formula is not valid along the negative X axis, and
there is no wave propagation in this direction.

It is of interest to compare the B -plane potential vorticity
propagator with the potential vorticity propagator (5.37) in a constantly
rotating coordinate system. It is seen that the introduction of a gradient
of potential vorticity in the @ -plane approximation transforms a time
invariant potential vorticity propagator into 4 wavelike propagator,
which decays in time as a result of radiation of energy to infinity.

A question that arises is whether this elementary propagator
can be studied independently of the other modes of motion. These
other modes may be of no physical interest. This will be so, if it is
possible to find a propagator equation which has only a single elementary
propagator, namely hgy . Itis not possible to obtain such an equa~-
tion which gives hay exactly, but it is possible to obtain an equation
with a propagator which is asymptotically equal. To achieve this re-
sult, we define a propagator hg by retaining only the principle part

of his) in expanding it about 6=¢ . Thatis we define

he = (‘I/TE)-'@' .g_‘_r(xrl?) Sy

(5.59)
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Apply the operator

- [_Ag _ 3"/20_,__18

6X/2¢a

to both sides of (5.59) to obtain the propagator equation
| o 03 +3%‘ ]ha = - J(R) Jte)

It is clear from the manner in which equation (5. 60) was synthesized
" that it has the same asymptotic behavior as the potential vorticity
propagator h, . The contour integration evaluation of (5. 59) may be

carried out exactly to obtain the first term of (5. 56).
- Uy
he = (vmr §) Jofl(xrﬁ)ﬁé]

See Fig. 5-2 and Fig. 5-3. We shall refer to hgr as the "Rossby
wave propagator'' and refer to (5. 60) as the Rossby wave equation. We
shall return to the general theory of this equation in Chapter VIII.

It is possible to derive further equations which have golutions
asymptotically equal to elementary propagators, by exactly the same
procedure of expanding the Laplace transform of the propagator about
its principle part, in the vicinity of other singularities. We call this
process the 'filtering'' of the propagator to obtain an equation for the
elementary propagator. One more example of this filtering process

will suffice.

(5. 60)

(5. 61)



-95-

Let us obtain from the nonhydrostatic acoustic wave, gravity
wave, and buoyancy oscillation propagators, defined by (5.17), (5.18)
and (5. 19), the corresponding propagation equations. After a little

algebra, one finds the following equations for W, , W, , and Wy

(5. 62)

33?'-{ A3 = (wa™+ %sz)}WA = - S(R)Ie)

Yo o
38 95 4/ LNt _jwa ot I gf_) Jee) (5.63)
[‘? )2 * )t‘+~ (A‘ “N:‘) e Wi {“N‘ JEr T(r)It)

<

[()?'314/\!") A¥ —(y#)L]WB = ",ﬁ-,,%i.)%ﬁﬁ)flt) (5. 64)

The above equations for W, , Wg , and Wg have solutions
which are asymptotically equivalent to the elementary propagators de-

fined by (5.17) - (5.19) or by (5. 21) - (5. 23).
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Figure 5-1. 4Tt p ¥ hydrostatic gravity wave propagator, when we

let T= N2ty , and we assume N/ = !
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1.0
{ Jo (')

Figure 5-2.

~

4™ R x Rossby wave propagator. i ={3t(x + (yr+ N“/-#;,_)uz)
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The trough-ridge pattern associated with the three
dimensional Rossby wave propagator ( ————
line, —~ = -« —~-

= trough
= ridge line (units are in tens).
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VI. THE LAMB BOUNDARY WAVE IN A
STRATIFIED COMPRESSIBLE ATMOSPHERE
A. Introduction.
If we eliminate w in (3.17), (3.18) in terms of p defined
by (3.19), we find that P satisfies a hyperbolic P.D. E. similar to

(3.24). This is

03 - ’*&'(i‘, + Nt _l/ a“' ” -
[be 3R D2 ct Sev P = - fixiy,a,¢)

where

&) = €e(2) + gL

o

We have assumed

w 3 N* . ce
N + ) l
e A g
and may be neglected. The form of §£{xv,2,¢) depends on the

energy sources assumed to be present. If the only energy source is

addition of heat, @ , then {£(x,v;2,6¢) is

fix.v,2,t) = [3(3—5—;") ,.(N+ )J e 'aé—

Cr ®

where 7 is defined by (3.21). From (3.17), the boundary condition

wz=0 may be written

(3%+P)';:o , t=o

(6.1)

(6.2)

(6.3)
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It was first recognized by Lamb that for the isothermal atmosphere

approximation, (6.1) has a homogenous solution

~Ne
S = & P(X;)')

where P v , the pressure amplitude at the lower boundary

satisfies the equation for horizontally traveling acoustic waves.

ot ot 3t R .
derloe T T ﬁu}f""” = o

For this isothermal atmosphere mode, the vertical motion is identically

zero, and P decays exponentially away from the lower boundary. We

shall follow the text of Eckart in referring to this mode as a Lamb wave.

In recent years there has been a renewed interest in two classical prob-
lems of atmospheric dynamics in which the Lamb wave is fundamental
to the theory. These are:

a) The propagation of ''pulse' around the globe from a point of
origin. The high frequency nonhydrostatic components of this motion
have been of interest for the discussion of the long distance propagation
of energy from a nuclear blast, recorded as pressure fluctuations by
microbarographs. The low frequency, hydrostatic components (on a
rotating earth) are of interest for the discussion of the manner in which

wind systems attain a state of "'geostrophic balance'.

(6. 4)
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b) The theory of atmospheric tides. The Lamb wave modes of
oscillation on a spherical rotating earth have been extensively discussed
as possibly the largest amplitude component of the pressure fluctuations
in atmospheric ''tides' observed at the earth's surface. In particular,
present evidence indicates, that the semidiurnal traveling pressure wave,
corresponds to a Lamb wave forced by thermal heating in the stratosphere.
In tidal theory, the Lamb wave is usually designated simply as the low-

" 'the equivalent

est mode, or more explicitly as the mode with "' hn
height'', being approximately 10 km.
In order to synthesize the solution of the inhomogenous system

(6.1) and (6. 2), one might use a "'spectral expansion'. That is, we

seek solutions of the homogeneous system depending on the parameter A

LL[(Q; ,L_f_flﬂ.),:.a__i] +4)PA<3,¢3_—.0

yetr 4 H- ¢t 2t

T—

2\~
r’

™

(6.5)

0P . - ,
- =
> * Pa o (o)
such that an arbitrary function of 2 and & may be expressed as

an integral over ) (the spectrum of (Pp ). Then in particular, we
might express ﬁ , and the forcing fix,y,2,¢t) as integrals

over the A . Thatis



-102-

fiex,v,v,¢) = (al Patz, &) Fix,y,A)
A

Il
Pix,¥,2,¥¢)

[d Patea, &) Prx,v,A)
A

and hence reduce the solution of (6. 1) to evaluation of the much simpler

inhomogenous problem

[Az - /\J P‘x)\,) - — F(XJY) (6. 6)

In general, the spectral expansion will be of some mathematical difficulty
to establish, but in the simple case that the coefficientsin(6. 1) are for an
isothermal atmosphere and hence independent of 2 , it is quite straight-
forward, to separate out the 2 dependence by expansion in the spectrum

of the singular Sturm Liouville system

L] - 0
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The expansion is obtained ' by integrating around the singularities of
the Green's function. " (See chapter 10, B). The result may then be

expressed as

o0 oo ’
. 'rll#i)
-Plzed) Ak o+ 2 &+ I !
#-2') dK - - e
8‘*"3') - 2 "e = :osx‘ ) Re ’“0‘,’_‘ dr

To derive more complicated expansions for physical problems, it is
often necessary to proceed heuristically by contour integral techniques,
but here theory is rigorous. See for instance Titchmarsh, Vol. L

The physical intepretation of (6. 8) is that we may express any
function of 2 , as a Lamb wave and two Fourier integrals. The first
integral is the Fourier expansion for an unbounded medium and may be
associated with motion that arises in the absence of boundaries, while
the second term may be considered to represent image motion due to
the lower boundary.

We shall make use of the expansion (6. 8) to discuss in the re-
mainder of this chapter, propagation of Lamb waves in an isothermal
atmosphere. In the next section, we continue the discussion of Lamb
waves given by the nonhydrostatic model, while in the last section, we
shall consider Lamb waves given by the rotating hydrostatic model for

atmospheric motions.

(6.8)



-104-

B. The Propagation of a Lamb Wave in a Nonhydrostatic Isothermal
Atmosphere.
We consider the equation
) (éi—rv‘) Yy 8¢ _ b, ok ]5: ~fixy,#,¢)
b v + (N 3.‘& (A'— /C el

with a point heat source . (See (8. 2)).

e = [ofl =)+ (90 )3, 58 200

and the boundary condition
(& + r)f =o
3z
We shall assume the isothermal atmosphere approximation so that
pr = L - Ny
For simplicity we shall first develop the theory of (6. 9) for
unbounded planar coordinates and then sketch the extension to spherical
coordinates.

We use the eigenfunction expansion (6. 8) to separate out the

dependence in the 2 variable. This gives

P = P. + Pp +£F:

(6.9)

(6.10)

(6.11)

(6.12)
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where PL is the Lamb wave propagator for a point heat source; PD ,
and Pr are referred to as direct source and image propagators,

respectively.

Here [ , Pp and Pr aregivenby

_Mie+2’) (6.13)
Po = are Potxv)
e ‘xl2-8')
It
PD = ‘TZ;'- Re fopk (x)Y)k) e dx {6.14)
od
. Fetles
Pr = % Re fpk(")'/)k) k+"ﬁ>e d ‘
24 ) k=cp (6.15)

and P, , and P,‘ satisfy the P.D. E.

-y +Nt)(Az "lc—* %‘Ezv.)Po =-(-—2Pg +(N'~+{)§£_"))§ Semr 0wy Jeay (6.18)

- v L 2t Y v
350002 8) e fir gy
We are not here particularly interested in the analysis for Py
and PI , 80 we merely here give the solution for P;: , and mention

that f, can be expressed as a line image source of P» . We find
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3 - Pto,R)
P, = [a(—-r’) * (Nlur")] e o Jte) (6.18)
b 13- N L) teNEE
4 mR GV ) (o //?")

which is essentially the result (5. 06), manipulated to give the gravity
waves and acoustic waves excited by a point heat source in an unbounded
atmosphere. For further approximate reductions, we refer the reader
to the discussion following (5. 06).

We now proceed to a more detailed discussion of the Lamb wave

propagation. Inverting the spatial operator in (6. 16) gives

— - r'i
Fo "[l ;tf-NL v Koo fe) Sy (6.19)

The first term gives

{ - 2 (e— %) ‘
Py F’ ko (e P/g)] $ie) = ;;—r- 5t ( -g—,_-——;;/——)"l-) (6. 20)
_ e

The second term may be evaluated exactly as a contour integral or con-

volution integral using

t

[ g Ko(ﬂ’/c)]é'/” = [-ll' COs N (6-T)
sr+NT o, (CL—(Q/‘)\)’/,_ (6.21)

[4
‘g
= A st
s | e e’ Kol p/_‘._)_ da
(s+NY)
I
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An approximate description for large f/¢ 1is given by

[;"fN‘ k"(o_;:e)] Slf) - H[t",/‘_) (;SP_),Z.[;(*—P/‘ ) ’L_ -& NL("-V/g)‘Z‘_G) (6. 22)
1K

€= OfNTLem o) 2(e-t)")

/
[‘,:r*,v; Ko(%’)] Jier = (%,L:_V)’z[;os(/v (e—?/c)-g_-) 5 O(t—P/C_)'" -

Here (6. 23) is suitable for evaluation near the front (¢ "°/¢_) , and
(6. 23) suitable for N (¢~ €) 2 4

Now an actually excited Lamb wave motion will be greatly com-
plicated by the details of the physical source. Any reasonable source
will smooth out the singularity of (6.20) at ¢= €, , and lead to a
damping of the oscillations described by (6.21) and (6. 23). The motion
then predicted is :

a) A sharp, essentially nondispersive pulse traveling horizontally
with the speed of sound.

b) A long decaying tail of buoyancy oscillations, with a period
of 5-10 minutes, (depending on what part of the troposphere or lower
stratosphere determines the buoyancy frequency). Comparison with

Fig. 1-2, (from Wexler and Hass) suggests that the above theory may
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account for the initial observed pulse and low frequency tail of the ob-
served pressure wave, but that without elaborate hypothesis as to source,

we can not expect to explain the higher frequency intermediate portion of

the trace, or the frequently observed very high frequency waves. Rather
extensive numerical computations of the acoustic-gravity wave normal
modes have been presented by Pfeffer and Zarichny, (1962), (1963) and
Press and Harkrider, (1962) and Harkrider (1964). These studies have

been relatively successful in explaining the observed pressure wave in
terms of the nonisothermal atmosphere Lamb wave and the first few

internal gravity wave and acoustic wave modes. These internal modes

may account for discrepencies between the present isothermal atmos-

phere theory and the observed wave. As a contribution to further under- '
standing of this phenomenon, we wish to emphasize that the term (?{—L t+ N 1)-
in the solution operator will convert an otherwise nondispersive wave

motion into oscillations with the buoyancy frequency. This point appears

to have been anticipated by Pekeris (1948), but has been somewhat

neglected in more recent studies, which have emphasized thoge aspects

of the motion which are related to dispersive wave propagation theory.

In order to extend the above analysis to a sphere, it is convenient
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to use a two dimensional spherical coordinate system with the source
located at the ''north pole''. We take & to measure colatitude -
that is re @  is the great circle distance from the source. The Lamb

wave propagation equation (6. 16) then is equivalent to

ol gs;nea -~ L)t = — Jdtty Ste)
l 3 ae (_2. att] PD gn—‘f,‘g (6. 24:)

We have here simplified somewhat the forcing so that it is a simple unit
impulse. It is simple to obtain the Green's function for a unit heat im-
pulse, by analogy to the analysis following (6. 16), once the result of
(6.24) is known. The inversion of the spatial dependence of (6. 24)

(c.f., for instance Friedlander, p. 170) gives

Po = ( cosh [m(=2=) "M}L—Fl ALY, g Yon) /5 Lreet®) Spe)(6. 25)

One finds a uniformly valid approximation for large time is given by

_oreé —a) o e
_ore (M-8) _imre /e
P, = ("/_,___..__w) .Le se % Jfe Sty (6.26)
am (e, SMQ) >Te

7

*2 [ wigy-ree) W 1Ty - re(r-6)) ,
= 2.11' zrgsme i —— - ) (6.27)

R (r:;-—r.é) (Ty-retnr 6)

where we have assumed in (6. 25) that

M
E S A
(e 8- y) ~ ree
v 3
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and where

(6. 28,

T, = t- anjrg

(A result similar to (6. 26) has been found by D. B. Van Hulsteyn, (1965),
The first term in the brackets of (6. 21) gives the wave directly
from the source plus the contribution for the waves that have circled the
earth ) times (y =1, 2,--- ), refocused at the poles, and propagated
out again, while the second term in brackets gives the wave that has
propagated around the globe , times (4 ®/,2,---), refocused at the
antipodal point and propagated out from there. (Because of dissipation,
the number of actually observed waves is limited to the first few terms
in this series).
The solution to (6. 24) for an unbounded plane approximation is

(c.f., (6.20)).

'/; "'r G Y
P ="[Ko(”"°/¢\)] Str) :(——&*') 4 Hlz—Te ‘e ) (6.29)
Y, 2re d air (t -r‘ae/,_)"’-

This is the first term of (6. 27) multiplied by (sine /g y* . For small

© sothat (s8/¢) =| , the unbounded planar model gives the
) 43

correct direct source wave. However for (‘ f..e) > [ , the planar

model overestimates the geometrical attenuation by this factor. After

the wave passes the equator of the coordinate system, the planar model
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continues to predict attenuation of a spreading wave, while the spherical
solution correctly predicts that the wave amplitude begins again to in-

crease as a result of propagation inward to the antipodal point.

C. The Propagation of a Lamb Wave in a Rotating Hydrostatic Atmosphere

We discuss the equation

d at t\ /3% _ . 30
31'[ "‘”"’)bé‘ W‘) HVLA‘Jﬂ"% = fuv,a,e) (6. 30)
where == 432
and
(6.31)

A
? ~4 L1 9

Eq. (6. 30) is the "internal gravity wave'' equation (3. 56), where we assume that

the atmosphere is isothermal and that the only forcing is a heat input @,

The boundary condition assumed is w=o , at 2:=4 , or from (3. 614).
iy [ 2
n - - _f__ ) ped /,‘ - .32
(n £) n ()b = o (6. 32)

We shall take for $(x,v,%,¢)

- 3 6.33
'f"‘:)ﬁilt) = ((’:’;; +‘;o‘) )é_i :(f?) J-/H ( )
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which according to (6. 31), is a unit impulse of heat. The projection
of this unit heat pulse forcing ontc the Lamb wave mode is given by

(6.8) as §, , where

- _prrEed’) 0 N
/ 4 1 3
“'1_ (xyv,¢,¢) = 2r [d& Frond o) e =-3r C’?#{‘ )Su}i/ﬂjﬂ) (6.
.
Let the projection of the perturbation geopotential height
onto the Lamb wave mode be written as
oo 4
, ~Peerd’)
h, = lr'[dz e " hie-2') (6.
Then h, satisfies the P.D. E.
- 1 AL 2 h - {L
%[A‘ e [ 5o o4 )] ‘ o (6.
with $,_ defined by (6.34) and ¢ is the speed of sound
, 2 = - (a— H),/l
N el B (s.
The Lamb wave is then obtained by inversion of the spatial dependence
of (6.36) as
T //L
8
he = <l (er44,) 6! kc[f’”*‘ ) P/c7 J (6.
Tt
which has the exact evaluation
¢ (6.

- n? 'y
< i " - N ’
e [(1) c'* g‘t P/c) + Hit- P/‘)(:—;L*{o]) cos fotrl_(p/‘)).)lf;lr

e (TV-()9)'™

J

34)

35)

36)

37)

38)
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For o4 t—% < one may use
’/l.
h, = ~L+ "2 H/t-t’/‘)[cos fo(i“("/c)‘ﬁ ] (6. 40)
n PV £ 4 (¢ % _(9/")1)'/1
while for ( ¢ - % ) >} , we may use

T
hL " ._J-'-.’:-—' (—,T) Cos‘{ot) PL'LP

- ITN" ¢t
where h,p is given by
- t '1
he, = L o Ko(f—-f’/c) (6. 41)
mat

The term h,p, , which does not decay with time, is interpreted as a
geostrophically balanced Lamb wave.

Thus in summary: The Lamb wave motion excited by a unit impulse
of heat consists of

a) An outward horizontally propagating inertial-gravity wave,
consisting of a discontinuous front ¢= . , and a long train of decaying
inertial oscillations,

b) A residual time independent motion, associated with geo-
strophically balanced motions.

Variations of the above problem are common in the meteorological
literature. Earliest analytic work is that of Cahn (1945) for one dimen-

sional shallow water waves (or a rotating ocean), and Obukhov (1949) for
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two dimensional shallow water waves.

If the variability of the earth's vorticity is introduced through
the " @ -effect’, it is found that the residual geostrophic motions
also radiate to infinity. See Dobrischman (1964). Assuming a constant
Coriolis parameter, the planar approximation results may be extended
to the direct source solution on a sphere, by weighting the solution by

/
a geometrical factor (;7;‘5) " to account for the focusing of the
spherical coordinate system, ( & = angular great circle distance
from source). Further wave terms representing the contribution from
waves that have refocused one or more times at the source point and
at the antipodal point may be added, if dissipation is sufficiently small
to permit propagation for great distances. The quantitative generali-

zation of (6.40) to inviscid propagation on a sphere is

o

Z H (z; - reg) Fj+ + H{g-re(r-g) E,_]

‘
M, ~ {-—9-——- rt g
L= lare sime TANE It |

where
F' - cos ['fo (t".;_(&‘e),_)'lz]
T g -ren)” “
Fs- cos [4o (z;2- (re (222))*]
(z;-res)™

(6.42)

(6. 43)
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and Tj; is givenby (6.28).

Presumably a more realistic model, including the variability

of the Coriolis force would give results qualitatively similar to (6. 42).
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ViI. APPLICATION OF FOURIER INTEGRAL METHODS TO
ATMOSPHERIC WAVE MOTIONS

A. Alternate Methods of Analysis for Atmospheric Wave Motions -
The Method of Multiple Stationary Phasge

In the preceeding chapters, we have presented solutions for
various types of atmospheric wave motions excited by point sources.
While the scale of motions ranged from acoustic motions to Rossby
waves, it was possible to discuss all these motions by similar math-
ematical techniques., This uniformity in procedure was possible be-
cause the spatial dependence of the solutions could be determined by
the inversion of second order constant coefficient elliptic operators,
and thus exact solutions could be obtained as certain operational ex-
pressions .

The purpose of this chapter is to introduce some convenient
Fourier integral techniques which may be used as alternate methods
for solution of the problems previously discussed, We can gain in
this manner further insight into the physical content of the theory and
obtain some modifications that are not possible to derive by means of
the techniques previously employed.

In this section we describe,in the context of a simple example,
the various alternate procedures which may be employed for solution

of the preceeding problems. Our primary result will be an approximate
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method for the evaluation of multiple Fourier integrals, known as the
method of multiple stationary phase.

We discuss here the two dimensional hydrostatic gravity wave
equation for a point implusive source. It is to be remembered that
these results are somewhat artificial since the ultimate rate of decay
of the motion will depend on the spatial dimensions of the source, The
equation considered is

2., N‘K)a, = -2 3d2)dte)
(waz‘ Ix* x

The previously employed operational technique gives the solu-

tion to this problem as

-t
D= = X (erxPe N2 S
anN

Evaluation of this expression by contour integration gives

ces (A/bt/x)

h-
w = -

AT NX

Alternatively we may use a Fourier integral approach based on the

spectral expansion
o0 .
| e,‘xau ri
Sixdty) = Trr‘{[ ded v
- o>

We hence seek solutions of the form

(7.1)

(7.2)

(7.3)

(7.4)
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o
" ) e PaF 2 3
wiX,2,t) = ‘;5_1. Winet) @ axed ¥ (7.
- o0

which will satisfy (7. 1) provided W satisfies the ordinary differential

equation
(vt 23 +x=N")W = k8
et (7.
which has the solution -
- ¢. Sl.ﬂ [(" N/ ¢ ]
W= == ) (7

Three obvious integration procedures for the evaluation of (7. 5)
are a) integrate over k , then ¥ , b) integrate over ¥ , then » , c) carry
out both integrationssimultaneously. These proceed as follows:

a) After integrating in x , (7.5) reduces to

]

o P o
& - [ Ttxsntr) ~le-~t/a-)] @ olr (7.
A - anNy

The ¥ integration then gives (7. 3).

b) After integrating in ¥ , (7.5), reduces to
S Rx

ob
! "
V= oA [.,J,[zwne) 1 e a 1.

The integration in & may then be carried out exactly by introducing an
integral representation for the Bessel function, and by carrying out the
integration under the integral sign. This reduces the integral to (7. 8),
and is hence equivalent to a). We may also evaluate (7. 9) approxi-

mately by the method of stationary phase. That is, we take

5)

8)

.7

8)

9)
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J, 2 (N'fié)'" s —t—  Cos [lWru)”‘-ir,,]

n "e(wxadf? (7. 10)

2,
Points of stationary phase occur when k' = gvet) "/,,

Omitting the details of this computation, we find

& T oarANX c;os(/!;g_'e) ( I+ O[?N{)Au]-) (7. 11)

The lowest order term is actually the exact solution previously obtained.

c) The x and ¥ integrations are now carried out jointly by
the method of multiple stationary phase. Since this is frequently the
most powerful method for the analysis of more complicated atmospheric
wave propagation problems, we shall describe the method, abstractly,
in some detail.

The integral under consideration is of the form

- o

Tkt ¢ ¥ ot e
Wik, &,¢) ﬁ#/“""’) dicd ¥y Q‘ ! (7.12)

~oht =)

where it is assumed that x , 2 , and ¢ are large parameters.
Rigorous derivations of the multiple stationary phase technique
are available in the mathematical literature. See for instance, Jones
and Kline (1958). We give here a simple derivation of the theory which
shows the computational procedure used. We shall assun{e that firr)
has no singularities on the real * and ¥ axes, and that the curvature in

x and ¥ sgpace of the phase surface
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v¢([¢,y) = KX *l’}iw(")r)t (7.13)

does not vanish.

The phase is stationary at the points in ( x , & ) space and

( x,2 , ¢t )where
X . W
€& ok
2 . dw (7.14)
t p:]

This forms a nonlinear system of equations in * and # , which
we assume may be inverted to obtain the wavenumbers of stationary

phase
Ksp = Kgp (X, 3,¢)

Ysp = ¥sp(x, 2,¢) (7.15)

For simplicity, assume there is only one ( k55, ¥;, ) point of sta-
tionary phase in ( =« , ¥ ) space. We evaluate the partial second
derivatives of & ( x ,¥ ) at the point of stationary phase. Let

these be:
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2
.L(-—-')w\) = a
2\ 2K* Jkyp
Ysp
Y7
L(2 ) _
2 axn"w = b
ip
Tt
2 d¥Y/xs»
¥sp

We expand the phase & in a Taylor's series about the point of

stationary phase.

N L 3
Birys) = Plrsp¥3e) 4 aumt +2 bt 49 + R{umm)

- - Kgp
4 ]

n = rorsp

and R(,u,‘?) are all the cubic or higher order term of the Taylor's

series expansion of <€

We likewise expand 4 (ky¥) in a Taylor's series.

2t 2 ¥ - .
£ inr) = ik rse) /“(3/“")3.». +7('3—;)s.» "

"pin,T)
[3
and furthermore expand € in a power series in R {4, w),

"

L, oo
‘-4‘“-",)"0) +* a,&dt *)b/"" < ) é R M,H)
n=-o

——
n!

;¢¢x,v)= ( e

The product of 4 M')/-f-lku rir) and this sum may then be expressed as
13

(7.18)

(7.17)

(7.18)

(7.19)
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a power series

3 s
J K~)

Grj A

M:r

«Flk,f) 2 R"(ﬂ"’) - é

firsn, Ysa) °* IS T

11
L]

The first few terms of the series will usually be easy to obtain.
The quadratic form es* +2bun+cy* may be transformed

to normal form

8 /\KL
aut +2bmn et = AK e AT

where ( K, , Ki) are normal coordinates and A ,4r are the eigen-

values of the matrix, M

We introduce the polar coordinates K , # by the substitution,

/s
Ki 2 A 'K cos @

-l -
k’_ [ &K S g

t

and expand ( 7.20 ) as

£ é gus Aurs = E éK'x G (C°5°) sw‘*)

xs ’-. 't Y} 390

Assuming the analysis (7.15) - (7. 24) has been carried out, the

integration of (7. 12) reduces to

(7. 20)

(7.21)

(7.22)

(7. 23)

(7. 24)
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¢‘K$P) vse)

ney 9=

q’rtu‘A‘)"t

The integration may now be explicitly carried out, with the result

[ @ lhse, rip) =t Ny

& = 'F{K:r,l’sr) e {1+ 5)
H”(/‘:I‘l-)’h'
where
< il a, -m. R
E = 2 e r (3— ) JE-‘ Gn, In, /\l 2—

3 .
Ins = 35 f.“’* ©) (six8) " a 9,, "
This is an asymptotic power series in )\: b, and '\z— .

The following modifications of the above analysis will frequently
be necessary.

1) When more than one point of multiple stationary phase is
present in ( = , ¥ ) space, the sum of the contributions from all sta-
tionary phase points must be included.

2) When &, b , and ¢ all vanish, it is necessary to retain
in the exponential the third order terms in the expansion of b LX)

Generally the parameters Ay and Aa will increase as t P

so that the first term in the sum will be adequate to describe the large

COSO ;me
~ e’ $iksp, ¥s0) fe K"K[(HE ZKG” /\"‘ ))JO (7.25)

(7.26)
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time evaluation of the system.

Returning to the integration of (7.5), we see from (7. 7) that
the denominator has a pole at ¥=© .| However, because of the rapid
oscillations of the numerator, the integrand is integrable at this point,
as may be seen by mapping the point to infinity.

The points of multiple stationary phase of the integrand are

given by

Xt = F N/b’

which may be solved for x and ¥ to obtain

‘s_,P = iNl‘:E/!x"-
(7.28)
xi sp = F A__,__t,
X
Expansion of the phase about these points gives
= NEt X (k-kgp)(¥-rg,)
x| NE (7. 29)

t+ 5—% l?"?sp)z + R(K’ b"';)
Nt
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where R (K'¥®7’)  is the remainder involving cubic or higher
terms.

The integral (7. 5) is hence approximated as

oo oD
¢ N3t/x| CjxE 2 (K% "]
¥ = Re € ok d¥ (1+€) o ‘{Nt}[‘;"""”""&-) *‘l,;-, ’)(7,30)
rr— S———
ymr* N 2
- e0
Tod

where

= o) + OL5E)

ryr

Application of the multiple stationary phase computation then gives

_ =
& = __;”4,“ c_os(zg}g_g) o Ol(’*é)”‘] ‘) (7.31)

It is known from the above analysis that

¢ N2E/x

-}
W lxX,2,¢) = -(2)7'!\“‘) Fe € (7.32)

and also that
o0

-1 Jy Crx sl E ,'(l!f;#-_w:)
= - yT*N) "—-—-—'Y € geée (7. 33)
o

WX gie) =

has (7.32) as an asymptotic stationary phase approximation. This per-
mits a rapid asymptotic evaluation of the stationary phase contribution

to the Fourier integral
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0
] ) "Kﬁ ﬁlra‘.(~;t_;)
P ix,2,¢) = = (yﬂ'"N) //E%’_‘_’I_ € Re C drdr (7. 34)
- oo

where we assume that F(x») has no singularities that contribute to (7. 29),
nor to a first approximation does it alter the phase. Then it will follow
from application of the stationary phase method that
1 DN et/x _ ¢ NEEy,

eoone) = (4N ) [Flan, sy @ o Flrwn vu) © ) (7. 35)
Knowing that the exact solution (7. 32) is asymptotically equal to the sta-
tionary phase approximation to (7. 33), we can obtain (7. 35) by inspection,
provided we can obtain the points of stationary phase ( Kasp , ¥& sp ),
here given by (7. 28).

More generally, let ¥ %¢) be a Fourier transform of a function
¥ixy,4,¢)  to be evaluated, and let %0"” *¢) be the Fourier transform of
a known comparison function #/x,&,¢) . Assuming that the asymptotic
integration of P and % is determined by single points of stationary phase
which are approximately equal, then ¥ (% &¢) is given approximately by

Fxspy s, &)

$ln2,t) = Pix,2,e) (7.36)
%(K;p 1 ¥sp, t)

where Xsp , ¥, is the stationary wavenumber for the Fourier integral
representations of ¥ and < .
This procedure will be applied to some further atmospheric wave

propagation problems in the next section.
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B. Approximate Evaluation of Atmospheric Wave Propagation Problems
by the Method of Stationary Phase in Conjunction with Comparison
Functions.

In this section we discuss some more applications of the stationary
phase technique to the solution of atmospheric wave propagation problems
when a comparison problem hasg a known exact solution. Two possibilities
may be distinguished: a) The solution for a simpler source is known
exactly. b) The solution for a simpler equation is known exactly. Prob-
lem a) may be referred to as a source perturbation problem, and b) as
an operator perturbation problem.

We sghall first illustrate the operator perturbation procedure by
reference to the problem of determining viscous corrections to inviscid
atmospheric wave propagation in an unbounded medium

Assuming for simplicity that the coefficient of viscosity, wv,
may be equated to the coefficient of conductivity, and that these coefficients
may be considered locally constant, we may introduce dissipation into

the inviscid equations by making the substitution in the wave propagation

equation

2 3 (7.37)
e T 5 - vAas

wherever the operator 5/“ appears.

Assume we have found Fourier plane wave solutions for inviscid
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motions of the form € ' ¢ where

$. = FcRR P W) e (7. 38)
Then the addition of viscosity will be equivalent to replacing <. by
¢, where <, is given by
e, = &, - vIflTe (7.39)
is a small

- 2
with  [K] = K+ Ky " k" We shall assume that v

parameter,

Let wy/iny, 2,¢) be a known inviscid solution for a localized

source, which has the Fourier integral representation

-]

iy o ¢"1:) (7.40).
W (x,Y,B,t) T Jk f(ke) €

-ob

.A -h
and let Ksp be the only wave number which makes b 1¥) stationary:

Then in the limitas v <o , the solution to the viscous problem,

Wy (K7, 8,¢) will merely be

- vikss) e (7. 41)
- W, Ix,y, E,t}

Welx,y, 2,¢)

It is necessary to modify this procedure if there exist two or more points

of stationary phase, & , & , such that IR]* #IK/*®
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The derivation of (7. 41) follows from noting that the Fourier

integral representation of w, is known from (7. 39) to be

-
-3

- - Py tx)
Wy (R,¢) = [//dx F(R,e) @ (7. 42)

hat

and that approximate evaluation of the integrand (7. 42) for small v is

determined by the same stationary phase points as in (7.40). That is

v ‘f’v Otv) = o

~
for x evaluated at Xs,

As an example, consider the viscous gravity wave equation

=
[(z.us; O3 + &‘;;,«N‘AL] w, = © (7. 43)

The phase to the inviscid problem is given by

-

> ’ll
¢6 “ = ‘- ( K’ R + i;% ["“L K'L + NL ( xy‘ l-ky‘j] ) (7. 44)

where kK= (xx,ky,nx3) is the vector wave number for plane

gravity waves. The points of stationary phase are given by

Ve @.. = o (7. 45)
- G‘ —

X

This provides three equations for x» , xy , xa which may be solved

to obtain
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Kxsp x &
xt eyt
Ky sp = xvt ty‘ Gilxy,2) (7. 46)
klsr ~t/e
where
1/
¢ ) = (N‘e‘ + f."lr’*v‘J) :
(X1 = 7. 47
RE (7. 47)

Let the solution to a given inviscid problem for motions propa-
gating from a local disturbance, te known as w; (%x,v, 3, &)
Then the solution to the viscous problem, (7.43), for the same I.C.,

may be approximated by

e-vt-’[———-— + "}

tiyr

w, = Ww; (7. 48)

From this result, the decay rate for viscous damping will increase
like ¢* for increasing time and will be most rapid in the neighborhood
of the source. This result is only accurate for Wv & w; | but will
give qualitative information concerning the damping over a wider range
>
of ¢ and R
As another useful example, we consider the viscous Rossby

wave equation
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2 ., A g & -
[u v 3)A3 + DX] ¥, o (7. 49)

The phase for inviscid Rossby waves may be written

Pri = ¢ [R"'ﬁ + Ex_é_ﬁ) (7. 50)

Then the stationary phase condition, Vg <p,, = O , inverted for wave-

number gives

x:., ‘, ¥ "R
- _ (F8e)”
Ko = Free | F (7.51)
-] " R *
Kisp (X ¢ R)
Assuming the same initial disturbance, then solutions the the viscous
Rossby wave equation, ¥, , are related to the inviscid solutions,
¥, , by (7.41), which using (7.51) gives
e 3
-Bvt/R 7.52
¥, = ¥ e (7.52)
. g VtY/R
again provided e x>

As an example of the source perturbation procedure, assume

the Rossby wave equation

é ) - - 2 7.53
‘.;mw;)y«- f(R) S (7.53)
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We know that for $(R) = S(R) (7. 53) may be inverted

to obtain the propagator

4= Yo = :;'r—f-e J'c,(zet(mre))/z (7.54)

Let F(¥) betheF.T. of f(R) . (The F.T. of &IR) is 1).
Then (7. 53) may be solved as
o0
. ,‘ ; kxf8¢
¢ = — f] Fzyde o KR T G (7. 55)
gn?d R

- oo

Then by comparison with @, given by (7. 54), we see that the stationary

phase contribution of the integral (7. 55) is approximately

}
Yor = R

45. F(ksﬁ.p) H:,(l()t(x-i)?))}l” + F{Ks,,h) H(:.)(ze“”m)"} (7.586)

where kg, ¢ 1is given by (7.51).

We shall find these procedures useful in the next two chapters.

s
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VIII. ROSSBY WAVES EXCITED BY TIME
DEPENDENT DISTURBANCES

A. Preliminary Remarks

The first class of problems analyzed in this chapter concerns
the Rossby wave motions excited by various point sources in a three
dimensional unbounded atmosphere. In section B, we discuss the mo-
tion which ensues after switch-on of the sources proportional to
Ht¢) costw.t), and Hie) Jotwoe). These are simple models for un-
damped and algebraically damped oscillatory sources respectively. The

sudden switch-on excites transient forerunner motions of all frequencies,

and a forced wave motion of frequency we. . For comparison, we ex-
‘ _ . N %3N
amine in C, the motion excited by the source e Cos{wet), an oscil-

latory source smoothly switched-on and off by a Gaussian modulation
factor. In this case, only a forced wave packet motion is excited, which
for not too large time, propagates ocutward without change of shape.

In D, we discuss the Rossby waves excited by switching-on a
traveling disturbance. When the source is taken to travel in the posi-
tive X -direction, the only wavelike motions excited are switch-on
transients; the forced motionexcited attenuates exponentially away
from the source. In contrast, a source assumed traveling in the

negative x -direction excites wavelike forced motions as well.
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One of the major defects of horizontally unbounded models for
atmospheric motions is that wave energy propagating from a source
around the earth one or more times is not included in evaluating the
excited motion. At present it is not possible to estimate the impor-
tance of this energy relative to the wave energy arriving directly from
the source, but it is possible to describe qualitatively the propagation
of these secondary waves. We consider, in E. ,Rossby's one dimensional
wave equation for propagation in a domain that is periodic in x . The
motion for an impulse, and x unbounded, was given by Rossby (1945).
Charney and Eliassen (1949) previously discussed the solution to various
problems for a periodic domain by summing numerically the Fourier
series representation of the solutions.

Many of the results of this chapter may be described in terms
of the asymptotic phase for the Rossby wave motions excited by a point

impnlse. The phase 5 1is given by

"= (2 @t)”z(x ,,_(,z,_\,;,,v‘,ﬂ‘z,z)‘lz)o‘ + C (8.1)

which may be considered a surface defined over the space x.v, &, & .
A surface of constant phase in time-space is the four dimensional mani-~
fold obtained by the intersection of the " (xv,#,¢) gurface with the

plane 4= ", . The projection of these constant phase surfaces onto
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the R , ¢ plane is a family of hyperbolas, while the projection onto
Y
the x , ( vy* +N/%4p2 »* )" plane is a family of parabolas.
One may consider each point of the phase surface to be approxi-

mated by its tangent plane, and hence to be considered locally a plane

wave, the local wave number, frequency, being the same as the normal

vector to 1 . Thatis
Ky 3"/»
Ky Mpay
Ky = ')'I/u {8.2)
w 7’)/n

Y
we find from differentiating (8. 1) and using B = (x*ryts+ N )™

Ky /x*ﬁ

7 (sen)” Y (8.3)
2 8.3
K. : z.—-———-——’
¥ aeR)Y O F
N \ e R (k)"

which is the same as the stationary phase wave number given by (7.51).
The results obtained in the next section may be described as

follows. As soon as a point source is switched on, at a given point, very

high frequency Rossby wave motions of very small amplitude are excited.

As time increases the frequency decreases proportional to ¢ " we

use the usual term forerunners to describe the transient Rossby wave
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motions of all frequencies that are so excited by the switch-on of the
source. Eventually, at a given point of observation, the frequency
decreases to w, , the forcing frequency. At this time there is a
resonance-like increase of the wave amplitude to the value which is
forced by the time dependent source. This forced motion propagates
outward with the same time dependence as the source, but delayed by
a given phase factor.

We shall coin the term the Brillouin front to describe the sur-

face within which the forced wave motion is confined. The transition
from only forerunner motion ahead of the front to forerunner and forced
motion behind the front occurs over a transition region of finite but ever
decreasing thickness. (L. Brillouin, in the theory of electromagnetic
wave propagation in a dielectric medium, first described such a transi-
tion zone). The velocity with which the front progresses outward is

known as the signal velocity. This velocity may be identified with the

local group velocity for motion with frequency we

The Gaussian wave packet of section C, propagates outward,
centered on the same Brillouin front, and attenuated by the Gaussian
factor fore and aft.

The traveling disturbance problem described in section D. shows

that when forced wavelike motions are excited, they are confined
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within another Brillouin front. The front in this case, for a westward
traveling disturbance, is a sphere intersecting the «»-axis at the loca-
tion of the source and at a distance 2 Ut downstream (to the right

of the source). The signal velocity of this front corresponds to the
group velocity for motions with a scalar wavenumber equal to (MU)I:‘

The one dimensional motions of E. are similar to those de-
scribed above except that the Brillouin fronts propagate only in the
positive x -direction and travel around the system to give secondary
wave motions.

In F., we discuss the upward propagation of internal Rossby
waves for horizontally sinusoidal sources. The primary intent here
is to determine the initial excitation of disturbances. This section
incidentally provides a rigorous verification of the internal wave
upper boundary condition selected by Charney and Drazin (1961), in
a discussion of the steady forced Rossby wave motions in a variably
stratified atmosphere.

In G. is given a discussion of a modified form of Rossby waves
which are frequently postulated in physical applications. When a
"divergence" or '"compressibility'' term is added to the Rossby wave
equation, the group velocity has a maximum, so that two modes, a

Rossby wave and a compression wave, are present for points
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sufficiently near the source, but in the neighborhood of the ( x , & )
region propagating outward with the maximum group velocity, the two
modes coalesce into an Airy front.

In Figures 8-1 - 8-5, are sketched some of the features of the

various Rossby wave solutions.

B. On Rossby Waves Excited by Oscillating Sources

Consider the Rossby wave equation

20 *3:—,)'}' = - fte) S(R) (8. 4)

where the vertical coordinate has been assumed to be stretched so that

N/4, =1 . The motion forced by a source beginning at t=e6 is
given by
¢ i
¢ = [flt-t) Jo (28T (x+RY) ~ 4
Yy R F (8.5)
We obtain explicit approximate solutions for
i) $ie) = Hit) cos (we t) (8. 6)

For this purpose we use the contour integral representation of (8. 5),
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written
(O kE
= L L[k R AL
t AR ams te) € e ole (8. 8)
-;"‘é o
-d
-t
Fre) = /p@ fre) ot (8.9)
Sources (8. 5) and (8. 6) give
[e-o't-
F,re) = . Cos(wet) oo = o (8. 10)

AR

*° - ¥ )
Fore) = f e Jelwet) de =
° (gr+ewet) t (8.11)

The path of integration for (8. 8) is deformed into one of steepest descents.

Saddle points are located at

’,{
r= 6gp = %/ é‘!;txfkj) (8.12)

When

‘d's;'l < Wu (8- 13)

the original contour must be deformed past the singularity at we ,
and the loop integral about we added to the s.p. integral. This

evaluation thus gives
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¥,2 = H (f - “’”R)) +Fl,:. + ""s‘p,nt.

) 2 wet

where we use

(J::'Wo)
N -8
*’;" F = gymrr Re ;Ll-r-:fa'g exp[wt- zr(xrk)] Fio t)
T e
(s.0)

[t
St | de t - —-(wze)]
\P),z, sp T unmR arrr e exp [0’ X Fiole)

F= ~ o

See Appendices III, D,and IV, D,for further details of the evaluation.

The forced motion, Y, , is given by

{
4mrwe R

Sin (wdt + 8 (;u-l?))
&

(-]

Y'x): =

while Y5¢ is a branch line integral evaluated approximately as

Y = ('* O (wet) )n“rw,R(fTw t) Cosfwat + 3__2‘;:)_3_‘7@

The forerunner motion %,2 s.p. is evaluated approximately as
Y ~ 4. Re F,,, (o H o {2 ‘2
AN AT e (G5, ) ° Be( x» R))
The results for ¥,, s.p. and Y;,s. p. may be written

-} y
Y, 5.0 = :;%Tz (w"t- is"(”m) aé-t J.o[.lﬂtcnx)] :

(8.

—

(8.

(8.

(8.

8.

14)

.15)

16)

17)

18)

.19)

20)
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A ( _L(x*ﬂ)) J’ (16 t(x*R)) [o,,| ¢ o,

i
Y, s.p. = Y2 (8.21)
u(s- 2. tl /a2t )\, J'(.wf:(nk))
4R BixeR)) | B(x¢tR) 5y ) 10sal > @0y

These asy nptotic approxi nations are valid for ¢ such that

) - 200,
fa(itlxﬂ?)] ( ——"‘B,x,g)) 2| (8. 22)

t

nLo(2)

Ycos [l(s’t(x +R) ~ rr,.,]

age (x+R)
T G ) ( 5 (6. 23)
2 8¢(x+R) )
In particular the analysis fails in the neighborhood of the Brillouin
front
¢ = BIxR)
2 ot (8.24)

where there is a s “100th transition from forerunner motions to forced

plus forerunner motions. (For (8.24), the saddle point and singularity

at w, coalesce). The details for w., a pole are discussed in Appendix
IV, D. One finds in this case that ¥ , in the neighborhood of ¢ given

by (8.24), is

: :6‘*"“_aﬂ' II‘* "
1 Relexpliwet Lerfc ..u.-) (i) ]
o= GweR [ . ) ( Sx4R) """“) “J Il (s. 25)
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c.f. (8.12) for & s.p.

It may be shown that ¥, given by (8. 25) reduces to the transient
motion Y s.p. as (%% —l) (we t)“l_-, oo, and to e+ Y, s.p.
as (%}f - l)@-’o t)'/t-) -~ ¢, On the Brillouin front ¥, reducesto + ‘P,;)
one half the final forced motion.

The predicted Rossby wave motion at a point distant from the
source for the ¢oSwet forcing may now be summarized as follows.
Soon after the source is switched on (but long after the acoustic front
has arrived) forerunner Rossby wave motions of high frequency will

begin to arrive. The ratio of their amplitude to the final forced motion

will be approximately proportional to

[4

2w \ -y
A =!A:)(Az) = (——-—-"————)(zﬂt—ufﬁ'))

BixtR)
where we assume A, 2¢/] , A. <<l . As t increases, the
factor A, will approach 1, and there will occur a rapid increase of

amplitude, such that for A, =1, ¥ will have attained one half the
amplitude of the steady forced motion given by (8.17), and for A, = 1+ 4

where A is some small increment, the motion may be represented by

I 172 ,'(
¥ = b Sin woéi'i%.(kfl?))

where & = O{t'”"’)
represents the error made if the transient forerunner motions are

neglected.
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!

Brillown Front

Forced Rossby Waves
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N
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Figure 8-1. Sketch of 3-D Rossby waves excited by a switch-on oscil-
lating point disturbance.

el’(ﬂof

y

Forerunners

W

Brillouin Front

<« |-D Forced

Rossby Wave

Figure 8-2. Sketch of 1-D Rossby waves excited by a switch-on oscil-
lating point disturbance.
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In contrast, for the H¢¢)J,fwse) source the forerunner mo-
tions decay as ¢ ¥ like A (et , (8.21)) while the forced motions
decay like 27 “® . The forced motion (c.f., (8.18)) are confined within
the Brillouin front (8. 24), but upon their arrival, there is only a small
increase of Rossby wave amplitude over that due to the forerunners.

The difference of the wave amplitude directly ahead and behind the front
decays like " as &-weo. Itis easy to formulate other Bessel
function-like sources, where the forced wave motion will be dominant

behind the front. This is the case for the source

fe)= 2 [Hw J”,(wot)]

where it may be shown that again the forced wave motion decays like
et , but now the transient motion decays like t'”‘f . The reason
for this is the seemingly paradoxical result that the more singular in
time is the switch on, the more rapid the forerunner motions decay as
t ®e0 ., This istrueforany wave motion defined asymptotically by
4 steepest descent integration over frequency such that the saddle point
approaches the origin as ¢ ®e¢ . This is presumably a consequence
of the fact that for more singular sources higher frequency, and hence

more rapidly radiating motions are then excited.
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C. Rossby Wave Packet Excited by an Oscillating Gaussian Modulated
Source.

Consider the Rossby wave equation (8. 4) with f(# the source

T
-z (8. 26)
fiyy = € Cos we t
where we assume we »> T~ . That is, the motion is smoothly

switched on by a Gaussian modulation factor. The solution may be

written as a Fourier integral

¢ = Re__ dn e"“* Cew)'TYy (B GeR) L (8. 27)
'-/rrR ,,L)

For evaluation of (8. 27), we expand the phase in a power series in

( w-w, ), and retain terms to second order.

. , (8. 28)
expifwe e (oL = expifuot CERL T F e,

where

Flw) = @xPjlw-ws t-_e._(x'?)] ol e {x+R) ¢( o - .2
Flw Clw-we) [ s gwe )t mwa)t, ] (8. 29)
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Substitution of (8, 28) into (8. 27) and computation of the inte-

gral gives
kA
) - flxr R
¥ = ‘J’;i-e—k sin (wot +_£_E(2+R)) e'(% 2R (8. 30)
e ()

where the error term &, defined as

€ - o(ﬁuu-ﬁ’)) (8.31)

2T w,?
is assumed much less than one.

The result shows that the Gaussian time-modulated disturbance

excites a Gaussian spatially modulated wave packet centered on the out-

B(x+ R)

D el

ward propagating Brillouin front, t = The phases

!
9mrR

move through the wave packet towards the source. Note the
geometrical attenuation, and the phase variation is the same as for the
switch on source motion, given by (8.17).

For the above evaluation to be approximately correct, itis

sufficient that the saddle points of the integrand (8. 27) near the real

axis be approximately at w=w, . But these are located at the
roots of
Wep = wo + 3__ {t - l x+R (8.32)
T Q PPN
e

We assume
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which implies

G(x+R)

< ¢ |
ar* w°3 (8. 33)

-
The first of these conditions is the same as required in (8.31), € <« |,
but the second gives the added restriction that the ¢ be sufficiently
small, As ¢ e , the motion described by (8. 27) spreads out into

a motion similar to that excited by a point impulse. The evaluation of

(8.27), as ¢~ . , gives

y " - e wetTy (8.34)
- = e
tDed agn Tﬂ'“l?- J-O[iﬂt (x*t?)]

D. Three Dimensional Rossby Waves Excited by a Traveling Point
Disturbance,

Consider the equation
[{?‘g* U,%)A; + ﬁ.%:]"f’ = -UHN}%')(‘) Jey) Jea, (8. 35)

where a coordinate system in translation with the source has been

selected. Multiple Fourier transform gives the solution

>
(8.36)
_‘_’_[/ [1-e (88 - Uk’)t] KRR,
¥ns e  ui
-0

(k*U-8)



-148-

where ¥ = (kx, Ky, Ka) is the wave number vector. Introducing

the spherical wave number coordinates,

/
K= (ks kyt wr,t) i

, (8.37)
43
oo renrfinrem)]
and using the fact that (8.36) is even in K , we write the integral as
{-— ~Uk) esine K .
[ /‘Jk[-‘ - e ) ] e KR cos(&-7) (8. 38)
Slne d 8 s o e e
8"‘ (> U-¢)
where ‘¥ is the azimuthal angle
l/"
¥ = 'l'a»«"[z”'*a") /x] (8. 39)

This representation is more convenient for steepest descents evaluation,
but the details of the procedure are still rather complicated and hence
omitted. The contribution of stationary phase points of (8. 36) may be
evaluated directly by comparison with the Fourier representation of the

Rossby wave propagator

K (x-0g) Ry + wse] (8, 40)
b/m? J—o [aﬁt((x u-f,)o-l?)] ;ns // exp:[k(xw)ox k.z-;"]

We distinguish two cases. For y<¢ , one finds that
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/Yy
¥ = e-(&) R
gmrR

(ul"ukp . 2
= c kR o
e ’"3///9 )9 BT (8. 42)

the integration being over the neighborhood of those points where the

+ Yp (8.41)

where

phase of the integrand is stationary.
The term Y s.p. may be evaluated asymptotically by using

(8. 40), The result is

_’_*_él To[a6t (vey v Ry ] (8. 43)
tip &’/m 9 R o [2ee toes I
where
A~ n
R = (x-ve) + yivav) (8. 44)
A - A =1
£ - O([aoe (-ved + R )] (-£&) ) (8. 45)

For U »o , one finds that

H(¢ - Riy) Cos )Lre T (8. 46)

¥ = IrR

with Y5, again given by (8. 42) and (8. 43).
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In summary: for either {/ 2 6 , a switch-on transient forerunner

motion Yy is excited which is advected along with the flow. For U< o

the forced disturbance propagates with infinite speed. Its spatial evanescence

is exponential. On the other hand, for { »o , the forced motion has
a finite speed of propagation and the forced waves are only found within

the sphere
~
R = U+

which intersects the x -axis at the source point and a3Vt downstream
from the source.
When (8. 38) is evaluated by contour integration, the pole of the

integrand of (8. 36)

. = (G/U)'Iz

coincides with the g saddle point when the Brillouin front (8. 47)
passes the point of observation. This can be described physically as
the arrival time for forced wave energy, which propagates with the
group velocity of wavelength of the motion forced by the traveling
source.

The motion excited after the source is switched-on may be

"
described as follows. The scalar wave length, zﬂc;ﬂ_) * | decreases
t

(8.47)

(8. 48)
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Figure 8-3. Sketch of 3-D Rossby waves excited by a switch-on travelling
point disturbance. -
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Figure 8-4. Sketch of vertically propagating planetary waves excited by
a switch-on oscillating disturbance.
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with increasing time so that at any point in the & »0 half space, it

'
finally attains the resonance value 2 T (U/(;) .Iz At this instance when
the Brillouin front passes the point of observation, the wave amplitude
rises sharply and for all latter time the steady forced wave motion is
obgerved.

The asymptotic evaluation of the forerunners as given by (8. 43)
is not valid in the neighborhood of the Brillouin front when there is
actually a smooth transition region from transient motions ahead of
the front to transient plus forced motions behind the front. We omit

here the analysis for this transition zone.

E. One Dimensional Rossby Waves in a Periodic Domain
Rossby's one dimensional model equation for the transverse

velocity, v , may be written

2
%y LA YT 'S

2% 3t
where we agssume the periodic boundary condition
vie,t) = VI(U,¢)
and the elementary vorticity sources

a) fix,e) = Jix)d ()

(8. 49)

(8.50)

(8.51)
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b) f(x,¢) = HMHie) cosSwoe (8.52)

c) fexser = Hiey Jixrue) (8.53)

The solutions will be decomposed into a component of motion
excited directly by the source, vp , and the remaining motion, vy ,

which may be considered to have been excited by an infinite sum of

image sources. That is

V= VD + V: (8. 54)
One then finds for the source @), f(x,¢) = SrxyTie)
- g‘; (8. 55)
Vp = - Hx) € L W17
-grxet) -8ty 7"
vI = - e & [" e r]c"/ J./t) (8. 56)

We use the Dirichlet series expansion

1) (8.57)
[1-e ] = £ o )
30

so that using Appendix II, 4,

Vb

1

- Heoo To[28xe)™] (8. 58)
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vi = - £ To[ascxeie))”]
J=

Here Vp is Rossby's (1945) one dimensional propagator for the
primary wave. The j’ th term of (8.59) may be considered to result
from an image source located at x=-J# . Such image sources occur
on the nonphysical strips, x<¢o , to the left of the source. The
Rossby waves only propagate energy in the positive x ~direction.
For the more realistic I-D model discussed in G. the wave propagation
speed is finite and only a finite number of terms will occur in the sum
(8.59).

For the oscillatory source b), fix,6) = = Six) Hte) cos wot

the solution is again written V =Va+Vg where now

_t . G

Vp = —Hw (orrwy?) @ T Fey
-1 _g{x+2

Vr = —(O’L*wot) e g J(t)

[1~e % ]
The denominator of (8. 61) may again be expanded by (8.57). Using

Appendices III, D and IV, D, one finds

(8.59)

(8. 607

(8. 61)

(8. 62)
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where the forced wave components Ve; are given by

vs; = ~ H (‘g_-‘_;fj - ouu))—'—— sinfwee + .ﬁ.gf—’i)) (8. 63)

) Wo

and the transient wave components V,, are

o\
Vaj = {1+¢€) (O_.Q:_’_‘Q.) Sin [Q(Bﬁ (xn’j))""_ ;r/]

¢? Y (8. 64)
[w.t = g(rn’!)]
3
with asymptotic error
—lry | - X+ 0 -
e = Olase (xeit)) ( Ty (8. 65)

The )’ th forced wave, Vg,

; , is of zero amplitude at a given

point X until the arrival of the Brillouin frontat & = 8 X*54) /40

so that the wave originally excited at £=0¢ has propagated around the

systemj times and arrived at ¥ . The direct source wave arrives at
t = %'-; , the once around the system wave at t = Bfxse) and

! st
g0 on.

Since there is no attenuation in the model considered, the wave
that has circled the system any number of times has the same amplitude
as the wave arriving directly from the source. When the j’th Bril-
louin front passes a point of observation, the asymptotic error of the

)? th switch-on forerunner wave becomes infinite. The actual smooth
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transition in this region from transient to transient plus forced motion
may be described by an error function, as given in Appendix IV, D.

Now let us consider the Rossby wave equation (8. 47) for the
traveling source, fi(x,e) = Hre) 3 (x+ Ut) . In this case the
solution may be obtained by a Fourier series expansion as

o) FAMX/y - sanlt CBE/
e " [e

2 -e “
v z
he oy [U("n ]
Taking K= 215 , and using the "approximation"
o
2 = ~ ] e
2 ?t y X i | 6D
s~ - o0

the solution reduces to that for an unbounded domain. A more satisfac-
tory comparison between the periodic domain and unbounded domain
problems can be obtained by summing the Fourier series by contour

integration. That is, (8. 66), may be written

oo -1 &
Jax fev b R X V-
vy = — dx € [e - @

n
* (VK™ "6) (- e.,'x.t)

-&-,’t

where the path of integration is taken slightly below the real axis. The
integrand is not singular at x*= (8/,) , and so the Fourier series
(8. 66) may be recovered by completion of the contour by a semicircle
inthe 1w x > o plane, and by evaluating the residue at the zeros

of ( 1~ e ™ ).

(8. 66)

(8.67)

(8.68)
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The denominator may now be expanded ina similar fashion to

(8.57) with the result that v may be written

Vv = Hi(x} v, ¢ < vy

where
o0 -/ ¢
Jrlxsyp) . .
v, = pLI dK e [8""‘.. e' Gt/kl (8 69)
’ am (wr*-8) '
Sed./ g
Further evaluation proceeds by steepest descent integration. See
Appendix V. It is found that v, = Vg; + V; where taking x; = x+74
one finds
a ¥y - ,
vy, = Uré&)(H % .(-‘5-?—!) Cos[z(éx;e)'t.a_%] (8. 70)
(ex)¥p %
with
€; = O (8xt) (5 -))
while for Veo
‘14
v c ~(§) e ve)
Fy = 7
2(8u)"™
and for U >0
. < . 'y
Ve, = (m‘“"& Hie s xi,) Hie-%7y) S/“‘(%)(x,'d()é) (8.71)

When x; = Ut , the ) th Brillouin front passes the point of observa-

tion, and the &, asymptotic error estimate for vy; blows up. The
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actual smooth transition from the j 'th transient forerunner motions
ahead of ¥; = Ut , to forerunner plus forced motions behind the front,
may be described by an error function formula:

Y . ‘
i x 607" Reffexs (i BJuwiove) )] fersc (o) ¥ O]
. ‘ .

for x; X Ut

Summarizing: For y « © (an eastward traveling source) there
is excited a steady forced motion, which decays exponentially away
from the source, as well as a transient forerunner wave. Both waves
vanish to the left of the initial point of excitation but propagate to the
right with infinite speed around the system any number of times. On
the other hand, for U>e6¢ (a westward traveling source) the steady forced
motion is comprised of waves confined between the source at x= - Ut
and image sources at x; = =Yt and the Brillouin front at x,3 U ¢

To the right of the front is found only the transient forerunner waves.

The transition region is described by (8. 72).

F. Vertically Propagating Planetary Waves
When topographic or thermal sources excite atmospheric wave
energy over distance scales comparable to the radius of the earth, it

might be anticipated that only the first few terms of some normal mode
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expansion will provide satisfactory resolution for the description of the
horizontal variability of the motion. In the next chapter, we shall give
further details as to the proper normal coordinates for a rotating
spherical earth., Here we heuristically simulate a normal mode expan-
sion by assuming a source proportional to e"" where x is the
"wave number'' or the disturbance. Assuming also that the Rossby

waves are of the form

¢ ex

v = ¢ e
the Rossby wave equation may be written

» H L -
))'f.(;—yt*;'s’x‘)‘?"c‘k* = = fy #,e)

where again N/, = |
First consider the elementary point source problem,
fiyr,er = Sty Jta) Feey

Then (8. 73) may be inverted to obtain

F oot Ko [(-g2)) &reeys] 0o
o

aw

which for small ¢ may be approximated by

5o T )u,,a_-rm (, . 0(}“—;7‘) ) exp [:ae":f",,& “";]

L
1a

afr

(8.73)

(8. 74)

(8. 75)



with

f ‘
a = () ryrrer) t

It follows by Appendix III, C, that as + -» o,

‘7
" 1Gale)
i o 2 & ¢ '/lﬂ 2
¢ = (I é)(-g') (_—__—(,ae)’/'-

where the asymptotic error ¢ is

4y | =li3
e= O sretyt+2")™)

Variations of this model may be used to describe the radiation decay
of a planetary heat pulse originally concentrated along a given latitude
circle, and with a given longitudinal dependence.
Next we shall consider the forced source problem:
flv,2,6) =3 Tty) Ilw) @"w' tH(-t)
"t
which may be considered to model either a pulsating line source or a
line source traveling in the x direction. The inverse of (8.73) for
the forcing given by (8. 79) is written as % to distinguish it from

(8.74). One finds

F, = (0-rwe) ‘K°[("" g (7‘+e‘9"' Jie

(8.76)

(8.77)

(8.178)

(8.79)

(8. 80)
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which we approximate by

- a ba g - - Ny
QFJ = (o--l'w.,) { I+ O{;’,,L) )&1) g-"uexp [‘ae 4.:'”/‘,] (8. 81)
3’? a.l/x.

This expression may be evaluated with the aid of Appendix IV, C, as

*z = ‘?F + "PT

where the transient forerunner motions ¢,— , are given by

2/ -t ‘.;P/
F = - ae\ "3 T o 2
Fp o= (1~ wo(22) Jurey e
provided we take ¥ given by (8.77), and take & as

~1
e= o(=@E)"-1)

The forced motion ¥, is given approximately by

,,l.
€o am

where the group velocity €4 is

s\ 7
Cf, = 2 (-;;U—,';")

3

(8. 82)

(8.83)

(8. 84)

l Wyt f’-é’— &
w, "t ¥

(8. 85)

and the asymptotic error & 1is given by (8.78). The Brillouin front

where the error term g given by (8. 84) blows up is described by

(yt*}\)q" = Cq &

(8. 88)
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In the neighborhood of this front, % may be approximated with the use
of Appendix IV, C, as

1y I.W't ’ ._“,”‘ - ”/"/ 2 ' I3 1
7 o= (B) w et )§ er-fc[e Z’z:)?ae« 2) ”.w.)] (8.87)

Another phenomenon of some interest is the planetary wave
motion excited by a switch on source traveling in the vertical direction.

For instance, consider the switch-on model problem

(i ai% + cm() ¢ = - He) T zape) (8. 88)

The solution to this problem may be represented by the Fourier integral

oD
. cxd
H = LTS ~’ckt/a" ¢
¢ = - [[e - e dr (8. 89)
’TUI (};1‘.5_5 )
e "

The Brillouin front for this problem is given by the parallel planes
216 = 2 $ U (8. 90)

The steepest descents countour integration for evaluation of integrals
like (8. 89) is discussed in Appendix V. We reproduce here only the final

forced motion which may be written

-I.Mils(f )
@x H(e-2m) @ (fi)_ Brut (8.91)

3(@e)* V)

I/,
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G. Modified Rossby Waves
The Rossby wave equation, modified so that the maximum speed

of "energy propagation'' is finite, may be written

2 (A -av)y v 02t = - g R e) (8. 92)

x

The inverse of & is known as the Rossby radius of deformation when
it occurs in the theory of Rossby wave propagation on an ocean of finite
depth. This term also occurs in the equations for Rossby wave propa-
gation in the atmosphere either as a result of atmospheric compressi-
bility, or as a consequence of the reduction of the degree of the Rossby
wave equation by separation of variables.

The solutions to (8. 92) contain not only the Rossby wave mode,
but another mode as well, which for lack of a better name, we labeled
in chapter V, the Ca compression mode., Here we shall only discuss
the 1-D propagation of (8. 92) so that (R ,¢) = frx,ej . Let us then

consider the problem

2 (ot _ . ¢ - 8. 93
ﬁ(;}' at)‘f’ + 8 v - S J e ( )

with a Fourier integral solution which may be written

-4
- kx4 (8KE (8. 94)
v = an [_.‘;';‘L-: e Kisat
Kvted
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The integral may be evaluated for large time by a saddle point integra-

tion as discussed in Appendix VI. Assuming 8& 5, @+ , one obtains
F

for x>0
v = Hoo ¥y 4+ %, (8. 95)
where
X 'Il-‘ -4 1(6‘*)“‘§ ﬂ'/ (8. 96)
¥ = .-(“f—u)é;;) (mee)  cos[ Y
with
-'f
X
ee = OXI) + OGxe)
ot
and

l’z
3 2 8¢ _
ya X == -I
g, = =€) rraﬁt) cos |1+ 53 Jxr 3% “)] (8.97)

where
,Il

B¢ st
While the Rossby wave mode Y; is found to propagate only to
the east of the source, the compression mode ¥ is found on both

sides of the source.

At great distances from the source such that 8%/ = O(al) ,

and x>0, the saddlepoints giving the Rossby wave coalesce with the

saddle points giving the compression mode, and the solution is given

approximately by
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oA [ B (-] cofaafens)] @

Jar

where

|
A = T

32 a¥ \'"3
- ‘fa}( )

3 8¢
The important point to note is that the Airy function modulation factor

decays exponentially beyond the "Airy front" traveling with speed

x= 5 (8. 99)

which may be considered the propagation speed of the modified Rossby

wave.

One may analyze the existence of modified Rossby wave motions
due to oscillating or traveling sources, as in the previous sections.
Again transient forerunner motions of all frequencies will be excited,
and the steady forced motion of each mode will travel out behind a
Brillouin front characterizing that mmode. However, no disturbance
will propagate to the east at a speed greatly exceeding that given by
(8.99). Phillips (1965) has reported experimental laboratory obser-
vations of Rossby waves excited by an oscillating paddle. Not only are
the Rossby waves observed to the east of the disturbance, but the ana-

logue of the compression mode is found westward of the paddle as well.
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A(t)

&iry Front for
Moditied Rossby Waves

Figure 8-5. Sketch of the Airy front modulation for modified Rossby
waves, T = (,_3.!»_&")"3 (r~ &t ) . See (8.98).
8¢ fat
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IX. ON GRAVITY WAVES EXCITED BY
TIME DEPENDENT DISTURBANCES
A. Some Preliminary Comments
In this chapter areconsidered some elementary problems for the
dynamics of stratified nonrotating atmospheres. We shall first discuss

solutions for the hydrostatic model equation

(55 M) -0 0.1

which is suitable for the description of the 2-D vertical motion in low
frequency gravity wave motions, at some distance behind the switch-on
acoustic front.

One may ask for the motion described by (9. 1) when the lower
boundary oscillates. This gives the boundary condition at == o

fwet

w]ig;:_ Wolx) @ (9.2)
whence assuming W to be given by
wo= Wy et (9.3)
reduces (9. 1) to
—w i 3 t bR - (9. 4)
( Yy T N '5;:.)‘”“‘”) = 0

w—‘[t:o: Wo )
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Similarly, if a boundary condition

Wi, = Welx+vt)

is assumed, and if we assume W is given by

W(K}i;&) = G)’(;;U&’z) (9. 5)

then (9. 1) is reduced to

L] -
(u). a'é;:b_za. + N’- g’x‘p) w = O (9.6)

Solutions to (9. 4) and (9. 6) can not be determined without reference
to the more complete equation (9. 1). That is, the physical problem
specifies only a single boundary condition at %= ¢ , but the reduced
equations (9. 4) and (9. 6) are hyperbolic P. D, E., which require two con-
ditions at 2=o6 1in order to obtain a unique solution.

The reduced oscillating boundary problem (9.4) has character-

istics along the lines

\

£+ N + C (9.7
w

-]

w

where (C is an arbitrary constant. All solutions will be of the form

w - W(xi N}/wo) (9.8)

Likewise, the reduced traveling boundary problem (9. 68) has
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characteristic surfaces

x = C
(9.9)
2 = C
and solutions will have the general form
+ ¢'N./u

We shall refer to motions of the general form (9. 8) as ''oscillating
(hydrostatic) gravity waves', and (9. 10) as (hydrostatic) 'lee waves'. The
problem at hand, then, is to describe how switch-on of the time dependent
boundary conditions (9. 2) and (9. 6) will excite gravity wave motions that
asymptote to an oscillating gravity wave or to a lee wave motion.

The vertical propagation of transient gravity wave motions
excited by a sinusoidal horizontal boundary is quite similar to the hori-
zontal propagation of 1-D transient Rossby waves. However, the forced
motions excited in the present model by a switch-on localized oscillating
boundary disturbance, are quite dissimilar to the Rossby waves, since
there no longer exists a Brillouin front separating a region of transient
decaying motions from a region where the final forced motion has ensued.
Rather, the outward energy propagation depends on the scale of the distur-
bances. This may be attributed to the fact that the group velocity of the

gravity wave motions decreases for decreasing wavelength of the motion.
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Consequently, the onset of motion forced by a source exciting energy
in all wavelengths occurs over a very broad transition region that pro-
pagates outward with roughly the group velocity of the dominant wave-
length of the disturbance.

The ~otion excited by a switch-on traveling boundary perturba-
tion is found to be confined within a Brillouin front traveling with the
velocity of the boundary perturbation and another Brillouin front at a
distance of 2 Y+ behind the perturbation. The vertical propagation
of the forced motion again depends on the spatial scale of the boundary.
This problem is discussed in C.

In D. we analyze the horizontal propagation of forced gravity

waves in a rotating system.

B. Gravity Waves Excited by a Slowly Oscillating Source
In this section we solve (9. 1) subject to a switch-on boundary

condition, (9.2). We shall first consider the special boundary condition

,twot

: € (9.11)

-}

Xt +

w]*= o= Hie) 1

The x -dependence of the source chosen has a ''distance scale' £

and has the ele nentary Fourier integral representation
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QD
£ Cxx ~|k] L
-t - -
" xtse g = 1]‘7/9 di
—>
such that
Jim n-'_iq...-—- = Jdw)
150 xred®
Let W' be the solution to
ot 2t
(3-1_;—‘ S N""’)W(r,a-,t) = o

8. C. W] = Heey o' “*
t=o

Then w satisfying (9.11) and (9. 1) is synthesized as

But (9. 14) is solved by

- NIXI 2/,

W = (¢~ c'Wo)-' e Jeed

which is equivalent to solutions obtained for oscillating Rossby waves.

The Brillouin front is given by the planes

2y = % w
N

Evaluation of (9. 16) for large t gives

Wik e,e) @ " ux

(9.12)

(9.13)

(9.14)

(9, 15)

(9.186)

(9.17)
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g

H(+ ~ x:)l:) We + Wy + Wi (9.18)
where

; Nz
W, = o (wot ¢ WINZ/,, ) (5.19)

and
-1

My (Mrae)™
* ) ~lry Wo T e it)
'9\7-,'-t el -ieﬂ' /"(KN%t) (,!F(x(vz/t)’> e (9. 20)

We shall not use (9. 19) and (9. 20) for further reduction, since it
is somewhat simpler to proceed directly from W given by (9. 16). The

integral (9. 15) can be evaluated exactly with the result that

- ‘ -t _L ’ v ) 21) *
w = (0’—' w") pBig ,e.«NE/,,—ix 1+NE,6+:':( J- (9.21)

The pole at o= ( we, gives the final forced motion, while the other

—NEE fxrear)n
poles give transient motions with an ultimate decay like e

That is w is evaluated as

l.wot 1 l -’\L’;—b’-_”
e [ + ] + (xv+4Y
w= = y - ole
am ‘A ) g -0 (N2 -x) ( (9. 22)
Recall that
lim | = lim 2_‘—5— = T Jtx) + 4'/x (9. 23)
€-<Xx erv x*

€ >0

4a
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so that if we take N «Z/w° = Z , itis found that

L P = Lo ¥t . ‘ x-2) =& (9. 24)
i%o \t""’°w = 1€ [(Jlx ? ;Tm))+(;( z)n’(x’Z)‘)}

This establishes a Green's function solution for the motions excited by
an oscillatory source at the boundaries, for time large so that transients
have decayed to zero.

The steady solution to (9. 1) for the arbitrary boundary conditions

(9. 2) is then given by

st
wix, t,e) = e £ +MNz - Nz (9. 25)
'Be) =% { X Yivy) + 4§ (x /Wo) .
where £ is given by
o
FOx £ N#w,) = Wo (xtNuy, )r L [ wolX) el (9. 26)
M) NEpy, x-x)

The solution is seen to be of the functional form given by (9. 8).
The golution is composed of two pieces, the first of which,
¢ wot
€/, [W“‘ X+ 3,) + Wolx '2)] , by itself satisfies the inhomogeneous
boundary conditions. The second piece, given as an integral, vanishes
on the boundaries but is important for the determination of the pressure

perturbations and hence, for the wave energy radiated from the boundary.

The vertical motion defined by the first piece has a domain of dependence
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at a given point which is restricted to the two boundary points intersected
by the characteristic lines #/z = & N/weo emanating from the point.

The domain of dependence for the second piece is the entire boundary.

C. The Lee Wave Mode
We consider here the gravity wave equation (9. 1) for the elemen-

tary boundary condition

in-o = H¢) ;(x+ Ut) (9.27)

The solution may be obtained as the double Fourier integral

. oy u:Ub (NKE/, o i ¢
drdy e"” éﬁe - € )=[e L'.fe”‘W"’)](Q.zs)

(v - nNIV) (¥ + N/Y) ’

This integral may be evaluated asymptotically by deforming the ¥ con-
tour into a steepest descents path with K fixed at one of its points of
stationary phase. We omit the details of this computation. The result
obtained depends on the stationary phase wavenumbers

Ksp = = N eé/x,_

¥ = F NE (9. 29)

We find that

tw
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T (9. 30)

with

We = {205(!\_’_@)] J (x+Ut) ‘ Hlt-—lJ_[) S/'»'Ll)/_g (9. 31)
v (x+tUt)

and Wws¢ is a transient term that will decay exponentially for a bound-
ary perturbation of nonzero horizontal distance scale. This result agrees
with the steady state resultof Queney(1945), except that the second wave-
like term is cut off at the source and 2U¢  downstream of the source.
Roughly speaking, these cutoffs are a result of the fact that the group
velocity of the motion excited is # U, so that no wave disturbance can
propagate out of the region x| £ Ut . The upstream cutoff should
alter the outward energy flow from the source relative to that computed

from the steady state theories.

D. On the Horizontal Propagation of Atmospheric Gravity Waves
When the vertical dependence of the hydrostatic gravity wave
equation is removed by separation of variables, the resulting inhomo-

geneous equation may be written

N L R I (9. 32)
tA (S'E‘+{°)/C]W" Fix,v,¢)
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where Cz is a separation of variables parameter which may be equated
to 9 D ,D being the ocean depth for the equivalent shallow water

ocean wave equation. The solution for the elementary source
flone) = —0ixdiy) die) (9. 33)

is a simple exact result which is classic. That is

! N X frg
W = ;'L{TKO[(UL*'{:)(%Z.L)J/z é_(t) - ELWH(t-P/C) Cos[i:(t )*lf/cz) ] (9. 34)
{tt - 1/(_“ ‘

See Appendix II, 5, and Obukov (1949).

Also classical is the result for the one-dimensional source

fix,medr = Suy) dce) (9.35) 4

which is (c.f., Appendix II , 3 and Cahn (1945)).

SYeE i)

C Sty = :QC'J_Q[-FD(.&L _;yl/‘c)} (9.386)

2 (orrir)’r
The solutions(9. 34) and (9. 36) may be used as comparison functions

for the description of motions excited by other sources. Also we note

that the present theory applies to the acoustic wave motions excited in a

weakly stratified atmosphere for which one may use for an approximate

description
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T = - fi0ov,t) (9.37)

[ A3z — "/c." (WAL"Q:“L)]W —

where we assume that (v, , the acoustic oscillation frequency , is

constant.

If we take FUXY,8,¢) to be the elementary source SR) Jre)

then (9. 371) has the exact solution

{ G+ “’AL)/"L [?/c, R [ LY
W = —— - ==L __é_ H("- (3 W, t"&]j(9.38)
94mR € Slt) ~ R IR ) 3o A( a

We now give here, as an example, the approximate solution of

(9. 32) for one dimensional switch-on periodic forcing. That is, assume

fix,e) = Hie) e‘w°t, so that we consider

ok
(j ?_}, - -CL;(;;;)-&L+‘F°1)]W = —y(x) Hit) & (9. 39)
X+

with inverse

NETYRS M TT)
w = < _e_—_—”——ﬁ (6-¢w,) ’5"“) (9. 40)
(s rf)"

This result has the contour integral representation

o>+ ¢ '
_ . :F \= Ly
W = C 1 a‘rec& p G+ ") '/C (9. 41)
— 2 Pous
by AT -,”“{o"'*fu") * (0 ~do)

The approximate evaluation of (9. 41) is by the method of steepest

descents. Saddle points of the integrand are located at
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A (o6 ~(o%52) " fol ,C)

do (8. 42)
with roots
¢ f
o = U, = i-_..__‘.’...----—--L e (9. 43)
('~ (%))
We deform the path of integration in (9. 41) into the steepest descents
contour, as sketched in Fig. (9-2). When Y/c¢ << | each branch

reduces to that considered in Appendix III, B. In the following discussion,
we shall assume this is the case, so that each branch of the contour may

be considered a parabola which intesects the Im -axis at the four points

o= = (£ (I:kii.(c_‘-’z)l) (9. 44)

Of these, the outer two points at

0‘,,,+ x (f, { +-21_-(C.:2£)")

(9. 45)
Ssp- == o (1-4(% ")
are saddle points. It follows from the discussion of Appendices III, B,
and IV, B, that we may evaluate (9. 41) as
3 -l
w = H e-’&_l: (9. 486)
( (Fs) - ;%1 We + Wy

where Weg is the residue contribution
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(- wer) 4l

ce ., wo o f, (9. 47)
3 (fa2-wet)
: I/ .
F c ¢ (wer-$") g~ e
< (‘WQL"‘;uL)J/l W0>§u

and wy is the saddle point contribution. By comparison with (9. 36)

Woq may be written approximately as
(o rnwY Y ao\a
HY'[f. (e ""'/C‘)JJ, 1y Ho 5ot "]
wr X Ty (9. 48)
(c’ﬁb "{.w") (OSD' -"WQ)

for [49 (e*- M‘/C‘)ULJ >%
and (os@_ -lwe ) = ol)
where Oyp, is given by (9.43).

In the neighborhood of the Brillouin front:

¢ = | (‘%-,)"l_ vl (9. 49)
° ~C

the result (9. 48) may not be used, but an approximate expression for w
in terms of an error function may be obtained as discussed in Appendix
IV.

For W, ¢ £, , the steady forced motion as given by (9. 47)

decays exponentially from the source, while for we 2%, , the



-180-

motion is a traveling wave. In both cases this motion is confined with-

in the Brillouin front given by (9. 49).

Gravity Wave Radiation

8 = fon"(;zz %o)

SIS T/ S TTTTT 7777777777

Figure 9-1. Sketch of gravity wave radiation from an oscillating
boundary perturbation.

Re @

Figure 9-2. Steepest descent contour for horizontally propagating
gravity-inertial wave.
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X. ON THE LINEAR THEORY OF ATMOSPHERIC TIDES
A. Energetics of the Tidal Equation

The energy conservation properties of the system (3. 34)-(3. 37)
result in several simple but useful theorems concerning the various
reduced systems of equations useful in tidal theory. Assume for sim-
plicity a domain, [V} , bounded by two constant pressure surfaces, 2'?3
and 3., , and by a vertical wall, 8(A,8) . Furthermore, assume the
boundary condition at st is that w = (%% - W/p.g) = 0, but that
2, and B(4®) are open. Then one finds from (3. 34) -(3.37), the

energy conservation equation
4 €+ H = £ (10. 1)

where € is the sum of the kinetic, available potential, and boundary

potential energy in M ,

< - 6t
£ = %[éc'c) *g)gl—)—:é-)dm + f gh* as (10.2)
M ai AB
The boundary flux ¢ 1is given by
o PR -—(w lh 48 4{3/7 g n eLaFJB (10.3)
Sr RtAr8)

and % , the total rate of energy generation, is given by
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s= [(2#e 222 um

Cr® 2 (10. 4)
m ki
which is assumed to include all nonlinear terms not explicitly given in
the formulation.
In the above integrals we use 4dM  for an element of mass in
M , d% for a horizontal surface element, and 48 for a horizontal
line element on B
JM = dﬂ/’ re* ces & JAd®
ds = Tre'cese dides (10. 5)

- 28 A + 28 ge
Jd8 >x

v

If f., and 2y are taken to be spherical shells, the only boundary flux
is the wah flux out the top.

Let us now specialize our discussion to consideration of strictly
exponential type solutions to the homogeneous tidal equations. That is,
assume all dependent variables have time dependence proportional to

et . The homogeneous tidal system may then be written

el + fFx + Toh = O

(10. 6)
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Solutions to this homogeneous system, called eigen-solutions, will exist
only for certain values of ¢ which are called the "'spectrum'’ of the
system. The spectrum of the tidal system and the resulting eigen-solu-
tions must satisfy certain constraints which are a consequence of the
energy conservation law (10.1). Let (&, #, h, ) be an eigen-solution
with eigen-value ¢, , and ( 3;, €31, h, ) an eigen-solution with eigen-
value ¢, . Let * denote complex conjugate.

We define ,, and ':7',1 by

.C 9. et. "
f(c. 2+ %@)JM 4.‘.f3h,h oAS (10. 7
:

a
~
2

Fpa =k {(w,h,' vhw')dS + 4 (3 (h.a“.; e hy ﬁ) :TWB 1o 8
iy 814, 8)
Then from (10. 8) one finds that the energy in the product of the two eigen-
solutions 1s related to the flux determined by the two eigen-solutions by
the Lagrange identity
(6+n*) €, = ~ Vi (10. 9)
When 1 = 2, the two eigen-functions are the same; this reduces to
2Re oo = - /e (10.10)

It follows from (10. 9) that when boundary conditions are assumed which

result in vanishing boundary flux, Jl,, = 0 , then either the eigen-
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solutions are orthogonal in that En = 0O , orelse (o, + 6‘:.‘)= 0.
Similarly, when ¥, = © , it follows from the fact that 6’,, is posi-
tive definite that Ke ¢ = © ; the spectrum lies on the imaginary

axis, The same results concerning exponential solutions can be obtained
directly from the vorticity-divergence system, and other useful theorems
of a similar nature may be obtained without great labor. We shall, how-
ever, now proceed to the consideration of reduced tidal systems given

by separation of variables.

B. Integral Theorems on the Separated Homogeneous Tidal Equations
After eliminating w,® from the homogeneous system (10. 6),
and after separation of variables ( 4 = separation parameter), one

finds the homogeneous system may be written as

-
se v fixZ + vVgh

n
v

-

Tmu9h 4 Ve EN

and

(10.11)

(10.12)
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The latter Sturm-Liouville system for the vertical variation of tidal

‘e
motions may be written using Q = (IJ:' h , as

(3_';» ‘(2‘7“3‘?’) + S(S)JK = o
PY (10.13)
N
de o
where S = N"'H,
3
-L:—'[J—-_S__+-‘—a’:5] o
2 H + 53 i1-12s

This system satisfies the Lagrange identity for two solutions,
”~ A ~ P2}
h. (%Jﬂ') ) h;(!)M’-) .

é\
A N Ny ;
W (R(i),h:(i)) = (4 ) ﬁ‘(z‘)h,(?')hllw dz (10.14)

where the Wronskian W 1is defined by

-~ A X n¥ A
N o
=|h 4 - A
w { SV a3
In particular if we take .= 4,* , it follows that
t
. X , ~ , T
W (k) , L*}g,) = 2T ["1’5‘?){“*/"4)} (10.15)

o

which relates the energy flow past 2 to the imaginary part of 44 multi-

plied by the integral of the positive definite quantity S(z) ‘ a (7"//") ’L-
Another useful result is the Sturm-Liouville eigen-function ex-

pansion, constructed from the Greens function. Thatis, let G 3,2\ u)



-186-

be the solution to

31_21 (1 +508)) 4 S(S))G(z",z',,«) =
(%_c.;i « 6)/,. = 0

=0

and which satisfies the condition of finite energy for o ¢ argm < 2T,

oo 2
I'Gu‘,z',»«)l de’ ¢ oo

Then G (¥, *’M‘) constructed by standard procedures, is an
analytic function of s for © ¢ ary(#-Clealr where C

real constant, and hence Gfu) may be represented by Cauchy's

theorem as the contour integral

. dA_ G2, 2,4)

» ]
Gle, 2, ~) = 7 | 27
f"

The contour J' is taken to be a large circle plus a cut along the

for (»-C)l>r0. Integration around the circle gives a vanishingly small

-3(&-2")

(10.16

(10. 17

(10.18

A -axis

contribution as the circle is taken to infinity, so that P may be restricted

to a loop around the cut on to both sides of (10. 18).

cation of (10. 16) to both sides of (10. 18) that

~S1E-¢) _ L | aA GiF, 2 A
- ame

s (¢) .

[
where 1 is a loop around the cut on the 4 axis.

The singularities of & on the real _s-axis will consist of one

It follows from appli-

(10. 19
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or more poles and a branch point, so that (10.19) may be evaluated as

JTe

55-2) = £ KEe Fnla) + f‘*a ) D AN (10, 20)
3

where the ‘4‘,‘(?,,«;) are normalized eigen-functions of the discrete
spectrum and ‘fuls) are the normalized eigen-functions of the continuous
spectrum. For the present expansion, the ;=o¢ mode is the Lamb

wave mode, and =2, 4 | are other possible discrete internal modes.
It is sometimes useful to evaluate the branch line integral over the
continuous spectrum as a sum of "leaky' normal modes. That is, one
may shift the location of the branch line to uncover poles on the Riemann
sheets =27 < ary (p-CYeo , or 2 & ary (- €) <97  whose residues
will give normal modes which 'leak' energy. The normal mode expan-
sion, (10.20), gives separation of the £ -dependence for the inhomo-
geneous tidal equation.

We shall not discuss further the vertical tidal equation, since
there is available an extensive body of mathematical literature concern-
ing such problems. Let us now go on to the system (10.11) and (10.12)
giving the horizontal dependence of tidal motions. Assume a domain D
bounded by B¢),®) . First, assume ¢ to be eigen-parameter, such
that there exist eigen-solutions 2. , h, , with eigen-value ¢, , and

eigen-solutions z; , he  with eigen-value e, . Then one finds the



-188-

Lagrange identity

3
(o-l + 6’1— ) /elz
with
- o a »
6’1 - _{_{(C,'Ct—* {-,u&hn"\;) alS
(o)
Fin = 350 (e e e)as
B(AIQ)
Then o En,h, ; E‘;,h;, 3 &’1,,_: (@] :
either the eigen-solutions are orthogonal in that £ 12 = O , or else

are degenerate in that Lnr;: Imeg, . Also © <, s by, 3 F, = 0, w30
the o spectrum is pure imaginary.

Assume now that e¢=:w , where w is a real constant, and let

(10. 21)

(10.22)

(10.23)

b

4+ be a complex eigen-parameter. One then obtains a Lagrange identity

for two eigen-solutions as

,
(/47." ../u,) = Fia Tﬂﬂ"’:h:) dS

e
2%l

(10, 24)

where o, is again given by (10.23). Thus, & &, h, 5 E’Hp,,_) 3 q‘h”_-,o

either fh:h, dS =4 , or else a,h, 5 E:. , e have the same
M

eigen values, =z u, . Also v} 3,,h,) 3> FHi. =o , the
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spectrum is pure real.

For free harmonic tidal oscillations, T w = ¢ , the hori-

zontal and vertical energy fluxes as given in (10.3) must balance.

Thus

(10. 24) and the vertical equation identities (10. 14) and (10. 15) may be

considered constraints imposedby this balance.

Equivalent to the reduced tidal equation (10. 11) is the homo-

geneous reduced equation for (¥, 4’, h) written

P]
TO P 2V LV A9k =0 (10.25)
DP + cugh = 0
where we take @ Qg =|,ve=] . If we assume for a domain of
integration the entire sphere, then boundary flux terms are absent.
Againlet o= (w , w pure real. Then one may derive directly
from (10. 25) the identity, equivalent to (10. 24),,
i oy
(10. 26)

k
o = (M-mt) f [“‘”““ hotam,00) hitin, o)
e Jo

Hence when m is taken to be an eigen-parameter, the above

orthogonality of the h’s , for integrations on a sphere, makes it desir-

able to use h as the primary dependent variable. The h eigen-solutions
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for integration of the reduced tidal system (10. 25), on a sphere are
called Hough's functions. In the next section is given the theory of

the integration of the inhomogeneous tidal system.

C. Integration of the Separated Tidal Equation on a Sphere

We discuss integration of the system

(c?A + %\)‘f” PV EVE = =V, S(A-N) F(e-08')dty)

<o B

(10.27)

A2 .
( - 2A ) ¢ - v-+v “}/ +r9 A kKL = Do 5(1%))’(6»9') Jlt) ( )
cos g 10. 28

o p gh + A <P = ~—Ado d(A-A) 5(@—9'} d(e)
ceso (10. 29)

which may be considered to represent the motion excited by a point
impulse of vorticity of strength V/, , a point impulse of velocity
divergence of strength [, , and a point mass impulse of strength Je
The natural boundary conditions for a sphere are that ( ¥, <&,k )

be regular at ¢ = + m/, , and periodic in longitude, with period

2m . From the latter condition we have the longitudinal wave number

expansions
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- men-At)
Sta=4) = L g e'™
i = (10. 30)
4 ¥ " (o) .
Lz S A4
) = 3 _é Ple) | © (10.31)
h H™w) |
To simplify the notation, let
o = e = ¢ w (10.32)
sSime = § = n (10. 33)
and define the differential operators U, , D, , D3 , by
D, = 202 - mt
L] 24 1=ht
D, = D, + “w (10. 34)
D. = d nli-nt) 2 — 1 el
L 4 2 pom v
Using the above notation, and (10. 30) and (10. 31), the tidal equation may
be written
TX™ = Y Jiw)
(10. 35)

where T  is the Hermitian operator
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w Dy "C.DS o]
T = « D3 w D, (D

i "c‘ D' /"W

m}
)( is the m'th wave number tidal motion vector

‘Pmln)
X(*\) - é“‘(‘\)
3 H™(9)

and Y is the vector forcing function

AY
{

2| Do

Ao

e
i

Because the operators [),, D, have Legendre polynomials
for eigen-functions, and D3 has a simple matrix representation when
Legendre polynomials are used for basis functions, the integration of
(10. 35) by expansion of X in the Liegendre polynomials of m'th
order is quite straightforward. Before this integration is carried out,
it is helpful to obtain some general theoretical results concerning the
homogeneous system.

If one expands the homogeneous equation of motion system

(10.11) in wave numbers, and eliminates the yu velocity, one finds

(10.

(10.

(10. 386)

37

38)
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the homogeneous tidal system may alternately be written as

u—nt)"‘ VM('»)

'_"Z ~
d -2 Vi e AL _ o (10,39
a1 £3H7ﬂ) w(1-1%) ¢ 9 H ("

where \/"'M) is the m 'th wave number, north-south velocity,

and An) is the variable coefficient matrix

M" ('_7'.)“)74 - Ml
Aln) = (10. 40)

')"*la\.}'L - mn

The alternate homogeneous system given by (10. 39) is somewhat simpler

”1 o, since (10.39) is in

to discuss theoretically than the equation T X'
standard form for a first order differential equation. The following
general facts are known: (See for instance Coddington and Levinson,
Chapters III and IV).

1. There exist two independent solutions V, M(n)) HT(», )} \/:) H:'}

of the homogeneous system. These may be written as a solution matrix

V, (n) V,mén)
(10. 41)

\

M (%)

2. If Atr) is analytic at a point 7:#, , then M)

will be analytic in some neighborhood of % =4,
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3. If A hasa singularity at %, which is at most a pole,

then v, is a regular singular point and Mi(1) may be expressed as

-k E
Miy = Re1) (1-1.)" " (10. 42)

where Ris) is analyticat %, , P in a constant 2 x 2 matrix, x
is an integer, and E = (; ‘:)
4. 1If the singularity at %, is worse than a pole, the point is
an irregular singular point, and Mm/7) will not have the expansion (10. 42).

Referring to the definition of Ain) given by (10.40), we see that

the singularities are:

W

regular singular points W= %I
(10. 43)
irregular singylar point = =

Moreover, it may be shown, (see Eckart, p. 264), that the power series

expansions of Mu) about 71=2! pegin with
[oad
1 s V (") & My
b ~ (1mmr)ETA (10. 44)
H ™)

which is the same as for Legendre functions.

One may also determine directly from the other formulation
given by (10. 35) that H "'\aﬂﬂ(l’ G ‘)tmh » $(n) regular at
x| . It follows from the equivalence of the two formulations that

f(n) determined from (10. 35) will be regular for the domain [-/,/]
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Expanding H"in) in a power series about 71=o (using either (10. 35)
or (10. 39)) one finds a recursion formula which separates into a recur-
sion formula for odd powers of 49 and another for even powers of %7
It follows that the Hmlq) will either be symmetric or antisymmetric
about the equator.

Eigen-solutions to either (10.35) or (10.39) may be determined
numerically by a trial and error process. That is; one solves the initial

value problems

~ d H - - l
a) H te) il = for odd solutions
) {49 PED
b) H:(o) =1, (czl‘:")”:oz o) for even solutions

When the integration is carried out from the equator 4= o , to the pole,

7 =1, the solution as - 1, will, in general, be of the form
1 g
-/, -
Hm{ﬂ) ¢ C (()—‘17") L4- A(ﬂ;w)()"?\) ) (10. 45)

and will hence go to infinity like U"’))-”Vl except at the zeros of
A (a,w) | which are eigenwalues of the tidal equation. One may
vary either # or w until the integration is regular at % =1, and
hence determine the eigen-values. For more information concerning
this procedure, see for instance the book of Hartree.
The alternate, more classical procedure , is to expand the solu-

tion in m'th degree Liegendre polynomials Since these are already
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regular at the points 7= %) , the singular eigen-solutions to the tidal

equation are automatically discarded. Hence we use

2ma) (uasm)! ha o,
S(’)"F'} = 2 E= (n Fam ! Pnlh) P” (’1)
n = ‘
X - 2 P:lv) X:
N

The X: are the coefficients of the tidal motion vector expanded in

Legendre polynomisals.

When the expansions (10. 46) and (10. 47) are inserted in (10. 35),

the tidal system reduces to the matrix equation

)
hiner) L“:'.) Xm = Y: ALY

J

where L“:; is the matrix operator

' L%
[’w-n":”)] :ﬂ" ot F") ©
{m) - . ~
L " ¢ F”’. [w ) i::n#)] Sn; o S").
© ‘ Xn, ./:_‘f_{\l'.
nimtt)

Y,:" is the forcing function matrix

4
- l an+i) (h-m),
yr = L (22 D,

2 (y)-»m)_’

(10.47)

(10. 48)

(10. 49)

(10. 50)
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”
and F»,- is the '"Coriolis' matrix

F”' _ (nE=1)n-m) J"-:,j + ErinP) L rimail) Tuw ; (10.51)
. — w ’ :
o (2n=1)nn+1) tan+3 ) nnsr)

and may be obtained from combining the well known recursion formulae

a-nt) 2 P:(") = (n+) P: — () PT

21 ney
p- - no-msl p” + nrd pr
n Py (1) = v n4 Y m=!

to give

~ - 2 - tatl) - 'Y [u-l)(nM«) "
- D3 Py = mzrdimmed Pl plnn) 2E o.s2)

an e LR ahtl

The solution to (10. 48) may be written

-
tm) ! . Y
X, = nims) na : (10. 53)
where the inverse matrix L" is constructed as follows. We

define the 3N x 3N matrix L( o by taking the first N x N terms in
each of the component matrices of the matrix L defined by

(10. 49). Since this matrix is finite, it has the inverse

- N
L2 [0 ““w)] (10. 54)
D Nfw,u)
where D 7; {w, m} is the transpose of the matrix of cofactors of

LY ana DNiww) = det [LY]
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-1
Then the inverse matrix L is defined as

. -
L-' = Lisan LtN) (10. 55)
N=> e

-l
where we augment L“’) . with zeros so that it has the same number

-
of elements as L , and define convergence as convergence of

-t
each element. The elements L n, {a,4) are meromorphic functions
of the parameters w and am

’~
We define the ""approximate'' matrix L by replacing the

variable Coriolis parameter § in (10.27) -(10. 28) by a constant average

value £, . This matrix is given by
(v - Zmm) 9 ik 0
N
L"J - “"_ - J‘ . .
¢ Te (w :T;Tp)) et - by (10.586)
(o] ¢ Jn,' Py S").

ninr)

and has the inverse

(W‘& 1s -1) ‘4, ﬁw - -F
) °

ninmer) n[“bl) )

fl\--\ - J"’.

. - -(.4 w

" . ‘ T E fwru g _ )
w([“’lo) ’f.z]../‘:—— -—la) ninei) »( nivel) ’), ‘Wl

(10.57)

\ -4, - cw 13) ((WIQ)‘_Q-)
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where

1 - | - M/ w
8 TS (10. 58)

ninst)

~

-1
The inverse matrix L as a function of s+ is finite except for a

discrete infinity of poleson the real A4 axis, where

A= D lw,m) = "‘"’:’.131, (10. 59)
(w*1s - £
-1
The poles of L are similarly obtained as the limit of the sequence
of M roots given by
N
D (w, m) = O (10. 60)

which defines again a di screte infinity of points in the real s axis,
AP, Mmer, - Moo, which for j sufficiently large, are
qualitatively similar to the . given by (10.59).

There are two limiting cases where the roots of (10. 59) and (10. 60)
agree exactly. These are

a) The large «w (nonrotating earth) limit. That is

h;“ Ady (W) = l“'ﬂ\ A:‘\(-‘U) - nlnnl (10‘ 61)
W Do W= wt

b) The Haurwitz-Rossby limit for small 4. . Thatisfor x= ¢

(10, 59) and (10. 60) have the w- roots given by 1la= 0 or
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. - n
fimn Wwiu) T e

0 nime) (10. 62)

The ""approximate' dispersion relation (10. 59) is sketched in
Fig (10-1). The branches include an eastward propagating and west-
ward propagating internal gravity wave for Wilg > 'Fo , external

gravity wave and Rossby wave branches for - -F“ Lweo , and

~2_Lw e f, , and an internal Rossby wave branch for 0 Lw & M
ninetl) '2(*141)

Little accurate information is yet available concerning the roots of
(10. 60) except for the westward propagating internal gravity wave mode,
which is of primary interest for the discussion of the observed atmos-
pheric thermal tides. See the monographs of Wilkes and Siebert for
further information concerning this branch.

Note that for small negative A there will be two complex
w roots of (10. 60), as seen by comparison with (10. 59). These

complex roots of (10. 59) exist for A in the range

n{n+1}

- e &M co (10. 63)
[
as may be seen by explicit computation (assuming ":':’i. cew et £y

In order to use the inverse matrix L~' , itis helpful to ex-

-l
pand the elements L,‘,‘ in partial fractions. That is

o0
Lor = -3 @_:’.'.:__ (10. 64)
"y K= e /“'/M,“‘w)
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where the  a,(w) are the roots defined by (10. 60), and

—

N
., = " Daj () wxr) (10. 65)
H N Do
é..; DN(W)/‘K)

Substituting (10. 53) in (10. 47) and summing over the Legendre poly-

nomials gives

oo e - "
X = $ S @i Y] Je (10. 66)
KTm gz m - M lw)

where @,:.(q) is given by
” —
@,:.(1) = né\ P. (") ®,;, (10. 67)

The expansion (10. 66) expresses the solution as a sum over
normal modes of the rotating atmosphere. It is not difficult to obtain
from the @,; {n) the normalized eigen functions of the tidal equa-
tion, but we omit this computation. If the @,,— {») are known, there
is no need for the eigen-functions. We shall call @,,,-('1) the Hough
transfer function since it transforms the forcing function Y:-' into

the solution function Xw .

In order to complete the discussion of the initial value problem,

we expand each @: () in partial fractions in w ==-¢o
M- A
3 - (10. 88)
) . 9
@jx(") - 2 @Jk( U"“Wﬂ)
- L=t
MM o st
(.ﬁt} (w-w)
D.w w

=‘*’lu
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Then (10. 66) may be evaluated as

"’)/v“ z.t)) .
. , Wyt
Xmlé) =¢ g..\ q%m %, (J/“‘ (w- w.,c) J e (10. 889
Wr.!

In general for eachfk, m), Wy, will be real and consist of two
gravity wave modes and one Rossby wave mode, except for possible M
small and negative as givenby (10. 63), where there may be one exponen-
tially growing and one decaying mode. The physical significance of such

instabilities is not well understood.

Added Note: Lindzen (1966), Mon. Wea. Rev., 94, 295, has given a detailed
analysis of the roots of (10.60) for m>p |, w=| , corresponding to

the forced diurnal tidal motions. This motion fits in Fig. 10-1 approximately
in the neighborhood of the dashed line through the w > o axis, Lindzen
finds that for this frequency there is both the internal gravity wave branch
with largest amplitudes near the equator as well as an external branch with
largest amplitudes in middle latitudes. This may be interpreted in terms of
Fig. 10-1 as requiring that the effective Coriolis parameter €, decreases
with increasing s+ . Since for large {#| , both branches asymtote to -+, ,
it follows that at least over a certain range of W  there will be two

sequences of /u roots rather than a single sequence.

.
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Figure 10-1. Sketch of the gravity wave and Rossby wave branches of
the dispersion equation for tidal motions on a rotating sphere.
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XI. CONCLUDING REMARKS

A. Survey of the Analysis of Atmospheric Wave Propagation

The present theory will not be compared in detail with observed
atmospheric wave motions. It is apparent that the results presently
available on atmospheric wave propagation are but a beginning in a comp-
licated subject. The present work is primarily intended to describe,
within the framework of the constant coefficient approximation, the
initiation of various forced atmospheric wave motions. This has been
done by the analysis of elementary examples, selected for reasons of
physical interest and mathematical simplicity. Dispersive wave motions
have been studied by many earlier authors by similar means, but the sub-
ject has not reached the attention of many able mathematicians capable
of establishing a general mathematical theory of the subject. Such work,
concentrating primarily on the mathematical details involved, would not
be unwelcome. One might mention, as contributions to such a theory, the
work of Lighthill (1960) and Whitham (1961), (1965), as well as the re-
lated work of Keller and his colleagues at NYU. See for instance Lewis
(1965).

There remains much to be done in the development of a theor-
etical physical description of atmospheric wave motions by means of

classical analytical methods as employed in this thesis.
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Little is yet known concerning the details of energy flow through
the atmosphere by atmospheric wave motions. Perhaps the best obser-
vational evidence of this phenomenon is given by studies of wave motions
propagating upward out of the troposphere. On the theoretical side, there
is needed an increased understanding of the importance of variable strati-
fication in the ''trapping'' and ''guiding'' of atmospheric wave energy. The
most obvious direct extension of the models considered in this thesis to
variably stratified atmospheres would be to use "locally constant coeffi-
cient'" solutions in the neighborhood of a source to match to asymptotic
variable coefficient solutions obtained by solution of the relevant ''Hamilton-
Jacobi' equations.

The dynamics of the upper atmosphere, above the range of validity
of the inviscid wave propagation models, requires the inclusion of molec~
ular transport processes. It is, however, not possible to decouple the
dynamics of this region from the dynamics of the lower atmosphere be-
cause of the extensive upward leakage of wave energy from below. While
it is an open question as to whether this energy flux is sufficient to be of
first order importance in determining the vertical temperature structiure
of the upper atmosphere, the available wave energy is seemingly adequate
to maintain many of the observed motions of the upper atmosphere. The

theoretical models of this thesis can be expected to overemphasize some-
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what the propagation of wave energy away from an original point of excita-
tion and hence into the upper atmosphere. Variable coefficients will re-
sult in wave-guide like localization of the wave energy. In many instances,

"'wave guides'' will "leak" energy by energy tunneling through the

these
"wave guide'' walls and by dissipation at the lower boundary, so that nor-
mal mode descriptions of the motion will in general require complex
normal modes.

For the purpose of analyzing models for the quantitative description
of observed atmospheric wave motions, it is necessary to have detailed
observational information concerning the energy sources requisite for the
excitation of the motion. It is to be recalled in this respect that these
energy sources will consist of all terms entering the governing dynamics
which are not explicitly incorporated into internal dynamics of the model
discussed. Modern statistical techniques may be used for the organization
of this data.

In conclusion, we consider a simple example to illustrate the appli-

cation of the methods of this thesis to the analysis of atmospheric insta-

bilities.

B. Remarks Concerning Atmospheric Instabilities
Several physical processes by which the atmosphere may release

stored up energy are known, but the mathematical description of these
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phenomona is quite rudimentary. As a simple example illustrating some
common mathematical types of atmospheric instabilities, consider the

equation for 2-Dmotions of an unstably stratified atmosphere, written as,

[(ZE 2% -w) i ]w =0 -y
't %) e 22' yxt
where

v = - 2L 3@
® 22

is an assumed constant unstable stratification parameter. Assume the

domain [e,e) and the elementary switch-on bottom boundary condition:

fxx riWe &

w]t;‘> = Hw e X

The operational solution to this problem is then

L X 2 &
ct-v
Cer —x(—:;;-z)'?’
-t a ¢
w = e (oc-rw,) € Stie) (11.2)
Assume that v»»! , w,>] andthat:a) §, =1 ;b) fo=z0

For large time, the motion decomposes into the following modes:

Y £
W = Wg + W + wg (11.3)

where Wg is the motion forced by the sinusoidal forcing, w, is the
"convective mode'' and wg is an unstable gravity wave mode. The
forced motion, determined by the e=,w, pole of the solution operator,

is given by
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I’l

wo®4 'u")a_

Weg = ez'wot e—‘( wt - £

The convective mode and gravity wave mode are given by saddle points

in the neighborhood of the ez v

?

AVCE
- [faVvk?
Let A "(;,u u")

(N
and _w# =(

(11. 4)

and ¢ =324, branch points respectively.

vief,
42

'
)

found to be given approximately by

we

w‘-l = ._._L_,T.me-

t
~ ...-——-—:"""
- L~ W

o ("‘_v)m.

e

J L) (11.
-+ ”“/9
<4 "
N 2
(0‘-:40) ;lt} (11.
3 (¢
) (11.
, WGI , is approximately
o= o

l/;
303/ (2a? t)

fo=1 {'o" W
W, > - Ime
=0 Wo
The time dependence of We , W, {4 i
evaluated as
! A
w ot 2
¢ V- w‘ %”tl) (X%
3/3
/ﬂ-
Wa} SO B ::)
6z ($o=ws) (3mwe)

Y
3
y COS[%(J.Mat) -ﬂ/s.}

Then these motions are

(11.

(11.

5)

6)

7)

8)

9)
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I/ ]
(zUKa) tt,L ’l;
WG’ 2 L 2=, C—OSE?-"”ﬂ ":’r} (11.10)
fuzo Wo 2t Nu.,@x;e)

The asymptotic time dependence of atmospheric instabilities will
in general depend on the assumed form of forcing and initial conditions.

One may distinguish between weak instabilities, where the growth rate of

the instability is algebraic or less, and strong instabilities, where the

growth rate is greater than algebraic. Weak instabilities usually occur as
a consequence of some unrealistic assumption concerning the excitation of
the motion, while strong instabilities appear to be related to physical
processes of energy release. It seems reasonable to classify the strong
instabilities according to their order of growth as entire functions of the
parameter ¢ . Thus the above convective mode instability is of expo-
nential order (order one), while the unstable gravity wave is of order 1/3
or order 1/2, depending on whether rotation is present or absent. The
decrease of the growth rate in the presence of rotation may be considered

an illustration of the general principle that ''rotation inhibits convection''.
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APPENDIX I

Partial Glossary of Special Notation Used

A x) Airy function
"L
c speed of sound, (¥ ﬂ'/{;. )
c horizontal velocity vector
C speed of internal gravity waves, or some other constant
defined in the text.

Cp specific heat at constant pressure

Cv specific heat at constant density
erfct ) complementary error function

§ Coriolis parameter aQ sm ©
fo constant Coriolis parameter 26 s/ 8,

Fla, b, ¢ 3 ) hypergeometric function

£ T, Fourier transform
F Fe? 4 Fy3 ¢ Fek , external force per unit mass vector
= ~

Fh FI 2‘ * Fy)

Fi. Coriolis operator

)

Flo) F(%e)
-9 % force of gravity

h geopotential height for pressure coordinates

1
n (P™/an)h

1, x>0
Hix), Hie) Heaviside function ., Htx) = g
%, xec o

H atmospheric scale height



m i}
Ho to), Hotg)

”~
¢
~
J

J}li)

x>

(“I'k,’k‘)

Ka tg)

P,P
Pa(m)

P. D E

e

s.p., S.P

- & A wn
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zeroth order Hankel functions

unit vector in direction of increasing longitude

unit vector in direction of increasing latitude
zeroth order Bessel function

unit vector upwards relative to gravity

wave number vector

Bessel function of imaginary argument
buoyancy frequency  ( L) i———a@)”t.
perturbation pressure

m 'th degree, and

Liegendre polynomial of

partial differential equation

n 'th order

rate of addition of heat per unit mass times O/fT

mean radius of earth
real part of a complex quantity

~ A

radial vector, ¢ x + ) y + %2 2.

IR

steepest descents

saddle point (or stationary phase)
planetary stability N"HY g R ror
rate of mass addition per unit volume
time

temperature %k



-
U = (wyyw)

Wixy, ¢,¢)
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velocity vector for geometrical coordinate system

vertical motion propagator

X = receso (A4}, displacement from a reference longitude Ao.

y< Tele-p,)
3

-~

2 = ~-InfY

6

¥

Me)
Miny
Jwxi, & 1e)
S(R)
v

EL2), ¢*y)
| + ¢

« )

~iP e

, displacement from a reference latitude

vertical coordinate for geometric coordinate system

, vertical coordinate for pressure coordinate system

28ecos g gradient of planetary vorticity at a fixed point

re

either gas constant ©P/c

Eckarts parameter, Jﬁ (.l; -

, or vertical wave number

L -
Gamma (factorial) function, L e” ’\,\" JA.

Dirac distributions

S dyy§iy)

~

. . $
horizontal gradient operator ( g ¢os8 %\ +

spherical coordinates)

X

three dimensional gradient operator in wave number space

horizontal divergence operator (=
for spherical coordinates)

v -y . horizontal Laplacian operator

3

AN %i" , three dimensional Laplacian

asymptotic error term

See (3.25), (6.1)

—)—n
o cos @ 30

(3
'ac

+ i J € O

—

oS & g

contour to the right of all singularities of the integrand

~
3

3
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1 sin @&
e latitude or (perturbation) potential temperature
@ mean reference potential temperature
K gas constant ?—;i
A longitude
] separation parameter for the hydrostatic wave equation
© kinematic coefficient of viscosity
Mie) mean reference pressure
p (perturbation) density, or horizontal radial distance, (¥ "*V"')'II.
. mean reference density
- complex variable equivalent to the operator ‘)/w
w :}t(fr +p'), vertical motion parameter
w frequency of motion
Wy frequency of forced oscillation
SNte average angular velocity of the earth
Y "for all"
3 "such that''

Notation such as fm) , )’, D L ¢ ) , is defined in the

text to indicate modifications of the above definitions. We frequently
use ( ), toindicate a constant parameter. For the mathematical

definitions of special functions employed, the reader may refer to the
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mathematical tables of Abramson et al.
In defining contour integrals, notation is used whose meaning

should be clear from the mathematical context. For example, we use
tox?

¢ )ds {0 indicate a counterclockwise loop integral from & = ~ 9
ss-ob (s.D.)

about a singularity at ¢=¢ , and j( ) de; / to indicate

$D ¢z -o0

counterclockwise integration from ¢ = -eo» along a steepest descents path.

Imo

> Res O

Figure A-1. Steepest descents contour for III, B.
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APPENDIX II

Some Elementary Propagators, $£te) and their Operational Representation

Fle) 3 te)
£1e) Fie) 3(¢)
1. H (e o 2T (¢)
-t
2. Hit) Jotlwt) (g"fw‘-) "Jlé)
: ) - ﬁ(d"*ﬁv")"‘s
3 Hit-4a) J',(wte‘—a‘)") (s s+ ™) e & /¢)
- G
4, Hee)y To[a(8 f)’/‘] e T oo Fe)
-~ 1% L)’,l] ’I-;
5. Hlg-a) cos{wlt®e Kol (ov+ w?) ] Je)
u:‘-m‘)"‘
-t
6. a) Hie et (c+ A} Jte)
-1
b) Hie) Ceswt (st+wt) ¢ e
-}
c) HIUe) smwt (e +wt) w 5 1t)
' p -‘An/'/ -l
s f ‘]")/L, - e o
e & (a-‘t)”'e (] o—""'- Se)
T He) &S TG )
N7 . e
. _ al i - "(a--.w)
8.  Hie) re) T vt “e) (c-w) " @ JLe)
N alt sy iy fre e‘.“/‘/)'( :/
9. Hte) € erfic € d-'?] o' (o' & ©
- A"/ - o'
o, W a® re =T T

¢
are?)t
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APPENDIX III
On the Asymptotic Evaluation of F(e) §(¢)
To evaluate F(c) J(e) » Wweuse the contour integral representation
[0t €
2| e Ere) de 1. 1
Fee) d1e)y = ame " (I 1)
~io e

This integral may be evaluated by the steepest descents technique. A
path of steepest descent is defined as a contour along which

Iwm (ot + loy F(O))
remains constant. Assume ¢ to be sufficiently large that ¢ > Re §/°.‘J Fte)
so that the s.d. path terminates in the Im & ¢ 0 plane. Assume
that Ft6) has =n polesat ¢y , 3= | ----n , thatlie between the
steepest descent contour and the path in (III. 1). Denote the residue at

the ) 'th pole, o, , by R,

R; = liw (e-e) Flo) (II1. 2)
v oy
Then by Cauchy's theorem, F{s) 3 t¢) may be written as
¢+
Fie) Sie) = € Ri_ Fiey + 4= | Fye’ a, (II1. 3)
jie C-6y &IT
$.0,
where f ( )de denotes integration along the steepest descent

%.0.
contour.

Assume further that in the vicinity of the & 'th saddle point,

o= 0y, that frs) has an expression
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Fle) = are) Geto)

where G.lc) is one of the elementary propagators given in Appendix
II that has the same saddle point as F(e) at o =d5p, , and &¢r)
is regular at &= Fsp,k; * F I+ Ll T-0gp ) #7000,

It follows that F(¢) §1it) is given by

Fre) 5 1e) =

"
J:

_'_?_9_,. Jit) + & (I+O(#~<";p,~))6.w)é"1t)

» C-0,

More detailed examples of the evaluation of «/e) Gx () d ) are
given below.

Example A.

oo .
) -
J“) = ,"’ E ‘,‘lc’—l) , G~(‘.) =(0_~‘.) '/1_
X
L

The $.D. contour for (&=¢) “3re) is a loop integral about the
b.p. g= ¢ '
P ()

S o & .
(0"‘4,) 'l‘)-lt) = __‘,_.._ —-e—__,-—" - et

Tt (ﬂ' - )(\_ (rr‘_'t“'} l&

0 oo

where the notation indicates the branch line contour,

-———*‘Dra'___‘.
TN

”

The higher order terms in (o-¢) may be similarly evaluated. One finds

FE N ) . - o
siey Getn) Stey = Use) @ T (43l
("t)’l; ',:o 2

(I11. 4)

(I1I. 5)

(II1. 6)
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N

~(w+) )
where € = O(f )
Example B
‘Qevﬂ/q(¢~‘-)liz
oie) Gw(u’) = K¢v) e (II1. 7)
(=i )1y

Wy

T I/ N .
The steepest descent contour for exp (ct ~a.C (¢-i)*is approximately the

* with a saddle point occuring at

at a
parabola (c'“ -{i+ 'J?")) = "';__b
o = v, = ) at
SO =Y
See Fig. A-1
The value of Guie) ¢ (s} is given by (II 8), so it follows from
steepest descent integration that
|+ O(t"f‘) le-2ye)
wig) Gels) gee) = —“—‘T“(F"”) e (I11. 8)
ire)
Example C
-0
-at /V/cv ‘e
“(e) Grle) = *(€) C/ o u, (I11. 9)
- -l‘"/«.,
The saddle points, %} [.crt - atC loin ] = O are
located at X
/3 (.n/a
o
C, = (;;-) e
T _9,')% e e
. = (z.t

We use
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Ny
4t [ot -8 /a-""J = 3¢
e q-i "{‘r!

ot
We integrate dre) Gnlir) 31;‘ e along the §. p. contour sketched

in Fig. A-2 to obtain

¢
a )" ( v It
o(8) Gutv) dtt) =(’*OQ’?) ) Tete) ’ (III. 10)
where N Y. 1)
1t -n'/‘, 3
3
_ XW, o [Teare) ®(e )]
Is0¢) = Gre)™ (I11. 11)
-~
For =7m,, ¢ arg & « ™y , I-/1, = OF
for N arbitrarily large. Hence for real a , I- ~ O .

The exact power series evaluation of G« (6) Jee) , is given by

(I1. 7)
Example D

af s

L) Ge(e) = &(7) e;a_ (1I1. 12)

ot T,
The steepest descent contour for e is sketched

in Fig. A-3. Saddle points occur for
/
. ’
o = £ @'/e) ¢

It follows by comparison with (II. 4) that
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a)

1oy Gelo) die) = 0+ €) Re (i (&)") HBEo™

where HYha t)"") is a Hankel function

. Iy
Jatae ) -1y,
Ry Rea™] =_U + ) e l ]

Iplirlac)d

and the asymptotic error & is

‘2

"

¢ o (at)

Figure A-2. Sketch of the steepest descent contour for III, C.

(III.13)
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APPENDIX IV
On the Asymptotic Evaluation of Fte)Jte) for a Saddle Point
of F(e) Near a Pole of F(6)
This appendix describes the application of the "Pauli-Greenspan'
modification of the steepest descents integration, which is applied when

the steepest descents contour of (III. 3) ''coalesces'' with one of the poles,

o= 0, . Assume for simplicity that
(O +6
Fte) §te) = Grl¥) 504y = ;‘;"t @’ G, i) (Iv.1)
- Wo ‘ (d‘—'.‘“u)
- el b &

where G« () fi) is one of the elementary propagators considered in
Examples B, C, or D or IIl.

Three possibilities are then distinguished.

a) The pole at &=, w, lies within the steepest descents contour
such that | Tgp - Wo | 2 ¢!

b) The s.p. has coalesced with the pole. Thatis [osp -<we | <« ¢!

c) The §.p. contour has crossed the pole and so the pole is outside the

~

S.p. contour, and furthermore | Tp - Fwe] 2t
For a) the pole gives no residue contribution to the integral,

which is hence given only by the 8. p. integration. For c) the integral

is evaluated as the residue Ggtfw) eliwt plus the 8. p. integral. For

b) the asymptotic error resulting from the usual method of §. p. integra-
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2
tion is unacceptable, and so the steepest descents integration is carried
. -1
out with (-« ws) taken to vary along the §. p. path.
st
When Gguo)€ is expanded about the saddle point, one then
obtains integrals of the form
_ b ‘. I\L
Tipx) = —=. 12€  Ji (Iv. 2)
ame | ——"
A FEA
sD
where A measures the distance from the saddle point and
« = (l6g,) - ws) (1V. 3)
is the distance of the saddle point from the pole.
Setting A = 1p €' ™3 the integral reduces to
(o
| 4P bp ' M7y ! (IV. 4)
Ilbha) = ;— | 42 e N S AR B N1y -
-J'WrF VT: + s i

which may be evaluated by (II. 9).
L 3
The term % will be b= 3’_- :“-‘;—‘- Pl(ds.) where Plo) = o€ i Golo
The lettering of the examples given below corresponds to that

used for Appendix III.
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Example B
1y a Q‘.”/V(r ahn
Fte)y = o * e~ - (IV. 6)
a--a‘wo
. . 2 " 3
Using oyp = cL1e®laer) | b o= IE PUCw)| = /a2
Hence for [’(l + “‘/.,g..) - wo] ¢ce t-! , one finds

S [wot —atwe=))®-m, ] o ™ iy 8l _w,] (IvV. 7)
F(s) dIe) = ’;fe"“[' ;_a“ vt )

am——

w.‘""
Example C
e~,‘ﬂ/.,
Py -8 ot
0,—’/\_ e o
Ftey = (-;_——-"‘:)’:) (IV. 8)
- _ ¢ [a\ _ 3 _ ()13
Using ooz o = (F2) b't}’}?’(‘k 9
Hence for a \7s -1 , we have
((ch - We ) cet
. { ) 1
;(w‘ﬁ-l-_‘}-”-—ﬁlq) Wy 2&-’3 ,'(SL A
Fly§ ) = & o 'ie"f‘[e (&8) () 227w | av.o)
WO'“‘
Example D.
e-a/.'
Fle) = 02 — (1v.10)
we use Osp = 'y (%)’h' b = €t = e lar
? ’ asp
Hence for ((%)"t"wo ) ce | , we have
wot +8/,, N “o,
Fle) ey = € s )_Ler,(c[e Yt__’)((i)",w,,)] (IV. 11)
- 2 Py &
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*
To interpret the above evaluations, one may use
- I‘ xt- ‘ ’r/y
. v m'vx
c""f) - 2. e't‘ge ~ (Iv.12)
er';'C- (X c n»'lz. i ;x‘-;'/ , ¥y D0
‘ - Y
X@‘”/Y Py "ﬂ"‘—(xl ;X —p ok

Applying the x ~» e  limit of C:"‘f'c(xct’"wj to the approximate
solutions (IV. 7), (IV.9) and (IV. 11), and using (IV. 5), it may be shown
that above expressions provide a smooth transition from the result ob-
tained by s.d. integration with the pole inside the contour, to the s.d.
plus residue evaluation which is obtained when the pole lies outside the

s.d, contour.

o} Pele nside S O Contour '

b} Pole on S D Contour T

¢l Pole Outside S.D GContour

Figure A-3. Sketches of steepest descent contours for Il and IV, D.
("forced Rossby waves''), illustrating the shrinkage of the S. D,
countour with inceasing time,
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APPENDIX V
On the Evaluation of Fourier Integrals Occuring in Forced Atmospheric
Wave Propagation Problems.
It is sometimes convenient to employ Fourier integrals to solve
atmospheric wave propagation problems. Restricting ourselves to 1-D

problems, we consider integrals of the form

“ -
ek ¢ iR E

Iix,er = gun)e (V.1)

- o0

Such integrals may be decomposed into elementary integrals in a fashion
similar to that described in Appendix III. Since the procedure to be
followed in the evaluation of all such elementary integrals is similar,

we may for definiteness restrict our discussion to the evaluation of the
forced Rossby wave problem

L

c'hx[' (KUt - ¢ 5*/#]
Vire) = fix) € e e dx (v.2)
—o0 UK*-§

(For another example related to water waves, see Greenspan (1956)).

The integral is evaluated by deforming the path of integration

(ke + /)
into a steepest descent path of the term & . This path

has saddle points for x2»Q

/
ct)"‘

K = :k(; (V.3)
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while for Xe¢co , at
.
= foe V.4
k T ¢ (QT) ( )

Thus for x»0, we deform the contour into a double lobed steepest de-

scents contour from JXIw K =946 through the k= - (%—t’)’“ s. p. into

the origin and then both around through the k= (‘5;9')"& $.p. 10 Iw k=

This contour is then connected to the Re k axis by arcs at infinity in

the JTmkx > 0 plane. For xec o , we deform the contour into the
Imrx co axis path of integration.

Having deformed the original contour into a steepest descents
contour, the second term in (V. 2) may be integrated by a saddle point
integration, and the first term evaluated by Cauchy's theorem.

First assume x>0; then for (x+ Ut) 70 , poles lying inside the
steepest descents countour give residue contributions, and when (x + V&)<« O
poles lying outside the contour give residue contributions. Likewise when

X ¢ 0 , poles off the Iw x axis give residue contributions
for (x+ Ut) > O , and poles on the JTw <o axis, when (% +Ut) <o,

The following table summarizes the information needed on the

residues of the integrand.
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Pole Domain Location rel. to contour Residue
" {x+yt) 20, X 20 inside yes
g=‘~k)z *xeve) <o, %50 inside no
Y outside no
(xoUé)tc) X ¢ O
Vco .
y &+ vt) 20, x>0 outs%de no
ke -.‘(_Q_)‘ (x+UL ) €0, x>0 outside yes
v x inside no
[«
(¢ry)™
For U »¢o the poles are located at kK = % /U)
Domain Location Residue
X 2 Ut outside no
0 Lx < Ut inside yes
co outside yes
—Ue & X outside no
x & ~ Lt
Carrying out the computation described above we find:
for V ¢ ©
- (%) 1x+ut) fxx 0BEN
v = Hix) & I -
e an
a6y) Uri-8 (V. 6)
$o
for V>0
" Cxx +i Bt/x
- ! Hix+ue) H(e—--’l) s}»%)uu S
v = . v v am ——T:,—. (V 7)
(Bu™ Uk* -6
S D.
The evaluation of the steepest descents integral gives
Ckx w0t ly 0 “
Ll e = L (ve) 3_';_) cosla@xt) ‘—i}] (V. 8)
2 U t
e < Y)
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for X >0

e
o

The error term ¢ is

-t -
O (Bre) 2 .5?—1)

]

&

Imk

Figure A-4. Sketch of steepest descent contour for Rossby waves
forced by a traveling switch-on disturbance.
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APPENDIX VI

On Multiple Saddle Point Integration

This appendix discusses the application of steepest descents inte-
gration to integrals, when the integrand has multiple saddle points which
may coalesce for some values of x and + . The example of propaga-
tion of 1-D modified Rossby waves illustrates the procedure. (See for
instance the section of Jefferies and Jefferies on dispersive wave mo-
tions for further details).

In the theory of the propagation of 1-D modified Rossby waves,

there occur integrals of the form

T v gEt]
__!_ 4 s VI.1
Jivwe) = 3por s« € ( )
- e
. C PLr)
Let Pik) = kx +anxe /{Kl‘“t) . Saddle points of &
are located where % =0 . Thatis
X o xl-a® (VL. 2)
8¢t (az‘h»a'-)‘
First assume (Gt/,,) >7 a® . Then (VI. 2) has the roots
I,
- 8¢ 3 atx ..
kl - i (x) " ey .——é .' )
- a (| * qyaty .-
K> * oe )
kK = Ksp = Kae = toa(j+ Yatx, .
( 8t ) ¢ Xee



-230-

It follows that for (8% / ) >>at, =>2) , the integral
Tix,¢) may be asymptotically evaluated as
Tix,e) = Hio I, ey + Iaine) (V1. 3)
where
) crx - e
I, one) = Tnldc e xvat
(V1. 4)
k5o
fxx - gkt
) Jk e N4 Lt
Towey = 17
' add (VL. 5)
k S p
We use
_L(J__f‘) = xn 1—;_02_":‘——'-)
T\ Akt ), @e) ne
A"é - —-_t’—- § - at X PPN
‘:':’(Zf:) = ?aﬁe( et et )
x:-kz
Asymptotic evaluation of Y, and I, then gives
= .__..__--(Gc) 3abtx ) Qesxe)’t
IT.(xt) = n",‘x”"(l‘r vy + cosluc ) '”7‘!]
(V1. 8)

'/
I, (x2) < q“(-%—)"( t x
’+6“ N o *qa‘x _rr ]
roe) (14eEE o) cos [(irtax -y

When ee," ceat , the integrand (VI. 1) has no s.p. on the



-231-

real axis so that for large < , the solution is in this case asymptotically
zero. When 8¢,, ~ ot the two pairs of s.p. coalesce and the decom-
position (VI. 3) is not possible. The procedure then, is to expand the ex-
ponent of the integrand about the point on the k- plane where the two

pairs of saddle points coincide. That is, at the "turning point" krp , where

dit o 2BKE(xi-3at) (VL. 7)
drt (Ka““)s — -
ﬁ K = Krp = 13 a

The third derivative of the phase at this point is
dd ¢ - 3 &
—— = v
T34 e
kz Krpp,

so that

oo
, [ (“%-E‘)[e"“"'%%») “etN/5 o
ILixe) = 3 Re € / dr (V1.8

Recalling the definition of the Airy function, A{(x) , is

i 3
¢ LA+ A1)
At = 12 | € dA
- ol

we find

Cieey = (:;_{q)llz A"{ (%—g—%q) ’3()('%%;)} CoSE’{ﬁ(x&»‘;’i‘)‘] (VI. 9)
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But
3
L% S
L
Adry = Q——'-—)-?; s x>0
an'* X1y
(VI. 10)
o3
Ay = 2L cos (MR -T) | xco
' j
with € = oOf %~
) adfie- g8
2

Hence Itnt) decays as Q—% ) ve for x > 8%/ ga*
while for ﬂt‘/g.“- >rx, T, ¢) is proportional to the product of two
wave trains
Iixs) ~f322 ) (—OS[ea)"'(x*°t )] cos [" 3‘“4)’( sey ty

36" 'h- var) "o

The single wave (VI. 9) gradually merges into the I, , I, waves,
(VI. 6), as ec/a,'r - o*

The transition point

Xte. = Flgat (VI 11)

between exponentially decaying motions, and oscillating motions, is

called the "Airy front'.
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