
PULSE BROADENING DUE TO

MULTIPATH SCATTERING OF RADIO WAVES BY

THE INTERSTELLAR MEDIUM

BY

LAWRENCE BELL

SUBMITTED IN

PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF BACHELOR OF SCIENCE

AND THE

DEGREE OF MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF

TECHNOLOGY

June, 1971

Signature of Author

Certified by

Accepted by

Department of Physics, Department of Earth and

_Planetary Sciences, May 14, 1971

Thesis Supervisor

Chairman, Departmental Committee on Graduate Students

Chairman, Departmental Committee on Theses

Lind 41
ind XE 4

A



PULSE BROADENING DUE TO MULTIPATH SCATTERING

OF RADIO WAVES BY THE INTERSTELLAR MEDIUM

by

Lawrence Bell

Submitted jointly on May 14, 1971 to the Department of Physics in

partial fulfillment of the requirements for the degree of Bachelor of

Science and to the Department of Earth and Planetary Sciences in

partial fulfillment of the requirements for the degree of Master

of Science.

ABSTRACT

The formal solution to the problem of finding the pulse shape in
the time domain received when an impulse is transmitted by a pulsating
radio source and deflected at an arbitrary number of screens between
the source and the observer is found. A Gaussian distribution of
scattering angles is assumed at each scattering screen. The general
solution is found for N-1 screens in the form of an integral over
2N-3 variables. This expression is integrated analytically for
N=2 (single screen case). A Monte-Carlo technique is used to find
an approximate solution for the pulse shape in the case of N=2,3,4,5,
6, and 10.
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CHAPTER 1

INTRODUCTION

The random effects of the interstellar medium on the propagation

of radio waves have been discussed at some length by Hollweg, Lovelace,

and others. (Hollweg,1967; Lovelace, 1970), who have developed models

of scintillation phenomena and angular broadening. The discovery of

pulsars in recent years has made it possible to investigate the

properties of the interstellar medium in a new way, by studying its

effect in the time domain on a brief pulse of radiation.

The best known effect is the delay in reception time of a radio

pulse as a function of radio frequency due to dispersion. This delay

is proportional to the inverse second power of the frequency and to

the dispersion constant, which is related to the free electron con-

centration integrated along the path from the pulsar to the earth.

The subject of this paper is another frequency dependent effect,

the broadening of pulses at lower frequencies by an amount approx-

imately proportional to the inverse fourth power of the frequency and

believed to be the result of multipath scattering in the interstellar

medium.

Because of scattering in the interstellar medium, radio waves

from a pulsar, a star, or any radiating object can reach the earth

by many different paths, and, in fact, the total radiation from such

an object observed at the earth is the sum over all possible paths

of that part of the total radiation associated with each path.
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For the purpose of constructing a manageable model for this

behavior, scattering is assumed to occur at distinct thin screens

with rays travelling in straight line paths between them. If some

random distribution of position, size, or other scattering properties

of the scattering elements in the screen is assumed, then scattering

at a screen is a random process and some probability can be associated

with each value of the angle of deflection. It is assumed in the

following treatment of the problem that the angle of deflection at a

screen has a Gaussian probability distribution with a mean of zero

and a standard deviation e-, which is a function of wavelength and pro-

perties of the scattering elements.

A useful method of reducing the complexity of the problem can

be demonstrated in the simpler problem of finding the overall inten-

sity at the earth of an isotropically radiating object after scat-

tering by the interstellar medium. The radiation leaving the pulsar

in a single direction AB (fig. la) produces on a plane through the

earth C, perpendicular to the line of centers, some intensity dis-

tribution. So at C the intensity has some value represented by

CD. The radiation leaving at another direction A'B' (fig. Ib)

produces a similar intensity distribution with its center shifted.

The intensity at C' has the value represented by C'D'. Likewise

the radiation leaving in a third direction A"B" produces a pattern

shifted further and so forth. The total intensity at the earth then

is the sum of all the intensities produced by radiation leaving the

isotropic source in all possible directions, which is the same as the

intensity pattern of a single ray direction integrated over the
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plane on which it is projected (fig. Id). A similar method is used

in the following treatment, but taking into consideration not only

the intensity, but also the different times of travel along different

paths.



CHAPTER 2

THE FORMAL SOLUTION

The problem is to determine the intensity as a function of time

at point D' (fig. 2) due to an isotropic impulse source at A'. The

radiation from the source is randomly scattered at N-1 screens (in fig. 2

N-1=2) spaced evenly between the source and the observer. The

scattering angles ( 02, 03 , *.. Qn ) are independent and each has a

gaussian probability distribution given by

So with each ray path is associated a joint probability density

function in ( 02, 9 3 ... 9 ) of the form

e, -he ( 2)pa a,,e ,.. ,) ! )... 0r,,

and if we let -c2 ,3= ... = n= (r then

Associated with each ray is also a time of travel which for small

angles is approximately equal to

t= (t.. t.(-o ) +(t.G(-++ea ) (t ( ,* (-G+e,+ e,) +

..- +(to * t-e,+e e .... el )

St ( e,+(_ + . ..+ (- , + . +e. * e,.
(4)

in which to0 is the shortest transit time between screens and with



the constraint n91= (n-l)g2 + (n-2) +.. .+n

Now expanding t

t= *gcT 0ti+ n9,-89,- (es*4)-

t ( , e+e, +.. . + (e,e,+...+., } e,

So

_f + 1' ]ze( ,) ... '- (G,+Ge... t.) E jz } )t.- + [ + (. . ._

Compare this result with that of the geometry in Figure 3. The

scattering ahgles in Figure 3 are the same as those in Figure 2.

For small angles,except for a rotation about A or A' by an angle 91l

the only difference between the two geometries is that the straight

line distance A'D' is equal to ADcosq1 or approximately AD(I1-912).

The time of travel for the geometry in Figure 2 is given by

to =  e8', (e,e,)a+. . (4 +e, +...e,,'z 1'

where t0 is again the shortest transit time between screens. To the

second power in G's this is too big by just the factor (1- 12) -1

i.e., the geometry in Figure 3 gives the same answer as that in

Figure 2 if the time for Figure 2 is multiplied by (1- 12).
2



The effect of this is to scale the straight line path AD down

to the length of AE. So the original problem with the constraint

that rays leave A'and arrive at D' is equivalent to the problem of

integrating over the plane ED the distribution of a single initial

ray. So in terms of the scattering angles

_, . 9; + [ (ez+ 0,) ... + Ce, e, +... + ,O-W
Z" L

The cross product terms in the expansion of this expression result

in complications in taking the gradient in the following calculations,

so a change in variables was performed. Instead of using the

deflection angle, the angle with respect to the local normal was

used (see fig. 4). These angles are related to the scattering angles

by the following formulae.

Ct 8? e?- = J)

"Y +e193  OG-3-

So, in terms of these angles

• z 3



and

Now to find the probability density function in terms of these angles

such that ( a + dd (

wi th * , + _ +

in terms of thes and probability density fu..nction i a volume eement in

N-i space in terms of 9's, and the relationship between them is

given by the Jacobian of the transformation, the following substitution

must be made:

p cd ,, .., da, = Jed (2) e.de..de.,

where the element in the it h row and jth column of the matrix J is

From the relationship between them's and 's (eqn. 9) J is found to be

given by:
given by:
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a

0

0

I #

(15)

and det(J)=l

A- ' - ( - +e Z, . br-jr---0C -
V % _1i - t
(I (*)

So far this ray path has been restricted to lie in a plane.

If the third dimension is included, the probability density

function is given by

pdf (aa,,,, , rs , ...4 , n)

( i - I- L 2
Q4?7-' xPF [ aI P A-a" 3J 1jL3a'"J

3tn-) (Li )" .-. -

J

= T='Ti -pl-f-( a n.. ,)



and

Now the problem is to find the probability density function with

the time t/t O as the variable.

If we let t/t 0 be a parameter which is held constant, then

equation 18 describes a family of surfaces, for different values of

the parameter t/t0 , in 2(N-1) dimensions. The parameter t/t0 has

the same value everywhere on the surface. If t/t0 is given a

slight increment d(t/t0), the surface is expanded by an increment

everywhere perpendicular to the old surface, given by the inverse

of the magnitude of the gradient of the function t/t0 (X,5) as given

in eqn. 18. (This is true since the gradient is perpendicular to

the surface and equal to the increment in t/t0 associated with a unit

increment in the direction perpendicular to the surface t/t0=constant.)

So to get the probability associated with an increment d(t/t0),

we must integrate the probability density function pdf(C,(1) times

the inverse of the gradient over the surface t/t0=constant.

The integral to be performed is

PDF(a,, A,--- ,, PN dS
(gradient) Ic )

surfac6 S

where pdf( 11# ...4t4 ) is given by eqns. 17 and 18 and

the magnitude of the gradient is

IL 

a 
)

.)7-4 z.) .+. .A.,
... ( , ,J °
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and the surface element is given by

So the integration must be performed over 2N-3 variables, G(a, 3p , Os,

... 3 . The dependent variable P( must be taken from eqn. 18

with both the positive square root and the negative square root, and

the limits of integration must be taken as follows:

a(2 -fo - a- 2

to la t- " - 3

3 '4Pafrom -(? ?-[- o

q 7. a

_-! 0(1

--- ]
• -W -

+
:0 2"l t o 3 4

__ 3d 34A
from - Z -toq '4to L Lt

to +() [ o z 3 3

from -I -- 3

to + - -3 .

from [-)

3f.
'4

11.

-~ ""K1 4II

- ri it?

to ( )t-.

3 a -L Ifz (21)

n-1
*'-- ri

(3

(Za)

t
,z d~, _

3

r i',n-l C(k~117

,n-ld ~~rr *1 3

ZI (b 2. ( a-cis.c~



Now from equation 18

+ I' '/

where

AtS =dr~ + (or-- L,+ (PI,_ ,.)

L*-( -Y n

..- b-)
OL- o(~ld

2.t

3.a

b) -Itli 1 t

THE GRADIENT

ac f~= ~ _ ( A/f)_
OIL74 A IL

t4),
4) ot 1 (X a C t

' c)O, 0-(, Jaq, (Zp)

So the magnitude of the gradient as given by eqn. 20 is

L ' (a 4_C
4 9

+ I)4 3z
,WA

+91
I"co ) i (Z7 )

Combining eqn. 23 and eqn. 27, the gradient is given by

40116 M4  +-w Y -I 0 }
"" "- I -]

n-~- .

z. z. :o" L &, "'0 3". VI-- 0(~f (2,S)

ex~1i-7 c- (Z 4)

5.+, 13 .. zp
4t q, a cl 3 +

I.
+ Ck VN

7 zC--.z) (3- (3 t3 _(
(Z5 )

3)

(cI dt
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Lt

l -t ' -

/3 IL I a A ll - . .
(Y -it

+ (a"..,,+

-- + +_.\

_ a-_ a,- _ ar -t -. .
of.. , , 4, (

t O[( h - Zr? - _ 2 " f ,....
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THE SURFACE ELEMENT

0-t

Z 

VI-

3. ~ IL

2.
2.

c 3M I\ f -in

-. ~ t

2.. I3
'2..
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A -4u~'aa
rr 3

131ww - .lv

So the surface element is

14 2. 'I

q4r t ~~P
+ 4 0 z -rrOr

But the numerator in this expression is just n/(n-l) times the

aagiitude of the gradient, so the integral becomes

(. (1 
A

J "IL- " a'crL

S

tiL- 13L- N .d ,...J=
V-% - - V%'

~t 20 to V1l

If we use the following notation for simplification

3" _3;

'i/

1 - - Ck

'T 02. Z.on W-

1Y,

t-I
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+ +,,
Lt &t 9 4S9 Ito bn

Sa '04+ f + C14(

Then the integral becomes

h-t

(-3)
where

P-?.+ R- ( -2.S '

0(,, -ZVI P-qA-i. 4 3Z.

The problem now is to integrate this function with the limits

of integration given by eqns. 22. Taking the negative sign before

the last term in eqn. 34 is the result of taking P as the pos-

itive square root in equation 23 and is equivalent to integrating

over only one half of the surface to be integrated over. The

integral must be repeated with the positive sign or simply let

exp e, _ + essMI- YL2~L I 3~



The result would be the probability density function in t

integrated over the observation plane, which is what is desired.

The integral is in general too complicated for a simple analytical

solution. The special case of one screen (N=2) is easily calculated.

SINGLE SCREEN CASE

Z(
R-  - A~ c- -

S--o

en tx itcr dEquation 36 can therefore be re-written as

-C..L -  -t p (_to (")Since t0 is the shortest time between screens, nt 0=d/c where d is
the distance from the pulsar to the earth and c is the speed of light.

Equation 36 can therefore be re-written as

p kL.P
Q~'? -dc z



But for two screens (N=3)

- ccL r 0L

which is already too complex for a simple analytical solution.

In the next section an approximate solution is found with the

use of a Monte-Carlo technique.
use of a Monte-Carlo technique.



CHAPTER 3

COMPUTER APPROXIMATION

An approximation to the solution of the problem can be found

by using a computer and a source of random numbers to produce

values for the scattering angles 92 3,.. * n, that have a Gaussian

probability distribution, to calculate the time associated with a

set of values and after repeating the process many times to sort

the times calculated into several bins and thus produce a histogram,

approximating the probability versus time curve.

The specific program and subroutines used are included in the

appendix. Histograms were produced for 1,2,3,4,5, and 10 screens.

The abscissa is the dimensionless quantity (t-d/c)/(dlc) and the

bin size is .55 x 10- 4 . The ordinate is the fraction of the total

sample that falls into each bin. The total sample consists of

one thousand different paths, with a standard deviation for each

deflection angle of 0.02. The results of these calculations are shown

in Figures 5-11.

The results for N=2 (one screen) fit a truncated exponential

reasonably well and so agree with the analytically integrated result.

The result for N=3 (two screens) appears to fit reasonably well with

the curve Y=Axe- B x . The results for higher N are a little more

difficult to fit. As the number of screens increases, the pulse

broadens, the maximum comes later, and a larger tail develops.



CHAPTER 4

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

The general solution for N-I screens above may not be analytically

integrable for other than the single screen case, but numerical

integration or a Monte-Carlo technique such as that used in this

treatment of the problem can produce the desired result.

Several pulsars have been observed to exhibit exponential pulse

broadening (Lang,1971) consistent with the single screen effect.

The pulsar in the Crab Nebula, NP0532, has been observed to exhibit

-X
broadening which is better described by an xe broadening function

(Rahkin et al.,1970;Counselman et al.,1970) consistent with the

two screen effect.

Further work is suggested in both the experimental and theoretical

aspects of this problem. A larger sample of pulsars and observations

may indicate multiple screen scattering effects and changes over

periods of time produced by the distribution and movement of clouds

in the interstellar medium. Detailed analysis of the results from

a Monte-Carlo technique may result in analytic expressions for the

broadening effect of many screens.

The treatment discussed here is for an isotropic pulse source.

If the pulsing phenomena are due to rotation, then the additional

term 2TrX must be added to the equation for the time of travel,
P to

where P is the period of the pulsar and X is a function of the

orientation of the axis of rotation of the pulsar. This calculation

and the others discussed above could provide useful results for

interpreting the behavior of pulsars and the effects of the inter-

stellar medium on radio waves.
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PULSE SHAPE HISTOGRAM

ONE SCREEN
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PULSE SHAPE HISTOGRAM

TWO SCREENS
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PULSE SHAPE HISTOGRAM

THREE SCREENS
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PULSE SHAPE HISTOGRAM

FOUR SCREENS
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PULSE SHAPE HISTOGRAM

FIVE SCREENS
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PULSE SHAPE HISTOGRAM

TEN SCREENS
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FIGURE 10 a
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RELATIVE PULSE SHAPES
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APPENDIX

The program used for the Monte-Carlo calculation is included

here for completeness and is not intended to represent the best

or most efficient method of performing the calculation. The program

was written to perform the special calculations desired without input

at execution time. Minor modifications would make it suitable for a

wider range of calculations by allowing parameters to be read at

execution time.

The program is written in Fortran IV and the subroutines used

are included in I.B.M.'s Scientific Subroutine Packet.



1 REAL UBON(3),COORD(20),TYME(1000) ,FREK(20) ,PCNT(20),Stat(5) ,MYNUS

UBON(1)=0.0

3 UBON(2)=20.0

4 UBON(3)=0.001

5 IXY=12345

6 EN=1.0

7 DO 75 N=1,5

8 EN=EN+1.0

9 DO 35 J=1,1000

10 TYME(J)=O.O

11 DO 35 L=1,2

12 MYNUS=0.0

13 THETA=0.0

14 DO 25 I=1,N

15 CALL GAUSS(IXY,0.02,0.0,VM)

16 THETA=THETA+VM

17 -(.-) TYME(J)=TYME(J)+((THETA**2) /(2.0*EN))

18 25 MYNUS=MYNUS+THETA

19 35 TYME(J)=TYME(J)-( ((MYNUS/EN)**2)/2.0)

20 CALL TAB1(TYME,TYME,1,UBON, FREK,PCNT,STAT,1000,1)

21 75 WRITE(6,22) FREK

22 22 FORMAT (10F10.6/10F10.6///)

23 RETURN

24 END

To get the result for Ten screens cards 6,7,8 were replaced by

N=10

EN=11.0
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