DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.

Due to the poor quality of the original document, there is some spotting or background shading in this document.

```
                                    THE OHARACTERISTIOS AID :'CTIONS OF JUPITER'S SPOTS
                                    DURING A O:EmYEAR PERIOD
```

by.
Clark R. Chapman
A. B. Sarvard University

``` (1967)

SUBAITTED IM PARTIAL FULFILLEBTT
```OF THE REQUREMETS FOR THEDEGREE OF WASTER OF
SUIEHEE
at the
Massachusetis Insatume of
TEUMTIOLOGY
September, 1968
```



```
Departinent of Yeteorology, August 19, 1968
Certisfied by.
Thesis Supervisor
Accepted by..
Chairman, Departmental Committee on Eraduate Students
Lindgren
Mysintiniswn SEPFRQin

\title{
THE CHARACTERISTIOS AND MOTIONS OF JUPITER'S SPOTS
}

DURING A ONE-YEAR PERIOD
Clark R. Chapman
Submitted to the Department of Meteorology on August 19, 1968, in partial
fulfillment of the requirment for the degree of Master of Science.

Abstract -- The statistics of the spots jn the belts of the planet Jupiter have been studied in the past only by visual observations. This report presents the results of the iirst phase oi a pilot project utilizing the photorraphic patrol plates taken at the New Nexico State University Observatory. The becinning sections describe the earlier observing methods and summarize the characteristics of Jupiter's spots and zonal currents determined from the earlier techniques.

There follows a description of the N.M.S.U. plate collection and the methods used to order the photocraphic data into useable form. Nine symoptical photographic drift charts, showing the evolution of Jupiter's spots in nine zonal regions during the 1966-7 apparition, were constructed and data were taken concerning spot motions, shapes, sizes, lifetimes, etc. A computer was used to determine numerous characteristics on the spot populations in the individual currents and relationships between spot parameters. The resulting lists of observed spots form the first reasonably objective and uniform data sample on Jupiter's spots and the derived statistics and relationships fomm a source for comparison with theoretical models for Jupiter's circulation. Numerical results are presented herein covering Jupiter's entire northern hemisphere, with the oxception of the equatorial jet, for the period November 1906 through November 1967 (but June to November 1967 is poorly covered because Jupiter was near solar conjunction).

The region of zonal shear bordering the equatorial jet is characterized by highly variable spot velocities and by shorter spot lifetimes. Unfortunately, lifetimes can be determined reliably for only a minority of spots, even in stable currents, and the apparent absence of strong correlation between size and lifetime requires further study. Small spots and dark spots may rotate more rapidly than large or light spots in some latitudes. The apparent preferred loneth for spots of \(5^{\circ}\) may simply reflect loss of completeness of sraller spots; latitudinal widths of spots, generally about three-quarters of spot lenctis are less variable then spot lengths. Kany of the other potential correlations between spot parameters were found to be weak or absent. Tabulations of all observed spots and sumaries of the findings concerning spot characteristics ere presented in extensive appendices.

\section*{TABLE OP CONTEMS}
I. Introduction 5
II. Previous Studies of Jupiter's Spots 9
A. Observing methods 10
B. Reductions of amateur data 13
C. Characteristics of Jupiter.'s circulation -- early results 16
III. The Rethods Used for Obtaining Data on Jupiter's Spots from the Photographic Patrol 21
A. Construction of photographic drift charts 21
The patrol photographs 21
The photorraphic prints 23
B. Reduction of soot statistics from the drift charts 29
Tracing syots on overlays 29
Neasured information about the spots 31
IV. Computer Anelysis of the Characteristics of Jovian Spots and Currents 36
A. Spot characteristics 36
Definite, probable, and possible spots 36
Spot lifetimes 38
Spot motions 40
Spot lengths 41
B. Characteristics of currents 42
C. Relationships between spot characteristics 43
D. Size-lifetime relationships \(\triangle 4\)
V. Summary of conclusions 45
VI. Acknowl ed aements 49
VII. References 50
VIII. Appendices 51
A. Characteristics of currents 53
B. Tabulations of all observed spots 68
C. Relationships between spot characteristics 115
D. Liヘ̂etime-size relationships 128

\section*{I. INTRODUOTION}

The planet Jupiter is less than a minute of arc in diameter as seen from the Earth. Nevertheless the gross pattern of the general circulation of the planet's atmosphere (at the height of the presumed "tropopause") has been ascertained to a degree not greatly inferior to our knowledge of the general pattern of the terrestrial circulation, at least until recent times. Indeed the oblateness of the planet, due to its rapid rotation, and the zonal cloud belts were recognized over three centuries ago, shortly after the invention of the telescope. In \(1665 \mathrm{~J} . \mathrm{D}\). Cassini discovered a large Souti Tropical spot (probably the Great Red Spot; see Chapman, 1968a) and determined its rotation period. In subsequent years, Cassini measured changes in the motion of the Red Snot and also discovered the considerably more rapid motion of spots in equatorial latitudes (the equetorial acceleration).

Beginning about a century ago, amateur astronomers from many countries, but notably England, began to observe Jupiter regularly and to issue systematic summaries about the planet's telescopic appearance and the motions of spots in several well-defined zonal currents, based on visual timings of spot transits across Jupiter's central meridian. Such records through 1948 have been summarized by B.M. Peek (1958) in his comprehensive book, The Planet Jupiter.

Despite the magnitude of the accumulated data from amateur astronomers' observations, far less has been learned from such observations
than is possible using modern techniques. First, the visual observations of Jupiter suffer from their subjectivity and human errors: Secondly, the data sample is highly heterogeneous and the data reductions to date have been quite simple and in many ways incomplete and inadequate. The advantages and limitations of the past visual work are discussed in detail later.

Since the initiation of the first regular photographic patrol of Jupiter, now in about its sixth year at the New Mexico State University Observatory in Las Cruces, there is for the first time a large, uniform, objective record of Jupiter which is of sufficient cuality to enable many kinds of investigations never before possible to be carried out with relative ease. The present renort discusses an early phase oi the first comprehensive analysis of a portion of the New Mexico photocraphic records.

The study is an outgrowth of an original investigation planned by Prof. Raymond Hide and the present author of the relationship between size, and lifetimes of Jupiter's spots. In order to investigate one part of the lifetime spectrum (a few days to a year), a series of photocraphic charts were constructed from the New Mexico plates, designed to display in an orderly fashion (to be discussed in detail later on) synoptical pictures. of Jupiter covering one apparition of the planet. (An apparition is a period of about 13 months measured from one solar conjunction to the next.) However, the charts provide a ready source of information on many other characteristics of Jupiter's spots and its currents than just the sizes and lifetimes. The present analysis is an atiempt to learn about many aspects of Jupiter's visible atrospheric surface from these charts.

The intent is to derive empirical information concerning many characteristics of spots (includine size, color, shape, motions, location,
etc.) and on the characteristics of the zonal currents. Some kinds of information which are gleaned Irom the charts simply refine cruder work already accomplished by amateur astronomers for the same period (e.g. Budine, 1968). Other characteristics which are investigated were suggested by terrestrial analogues with meteorological implications. Still other cheracteristics investigated are intended to be useful in other projects currently under way (for instance the size-liretime study of Prof. Hide; also the study of momentum transfor in the Jovian atmosphere by Prof. Victor Starr and his collaborators).

The scope of this report is a limited one. By no means is it intended to be the last word on the characteristics of Jupiter's visible surface features. Rather, it is intended to be the preliminary first step in the objective analysis of Jupiter patrol photocraphs -- a pilot study. The coverage could be extended considerably now that several more years of . patrol photographs have been taken, and better more automated techniçues for analysing the photoeraphic images are being devised (for instance by Starr's group). Some of the kinds of information and correlations developed here will justify further study in the future, while still other kinds of analysis can and will be nerformed using the present charts.

There is no attempt in this thesis to nut forward physical hypotheses to help "explain" the relationships which apyear. It would be far too premature to do so. Our knowledge of the physical nature of the belts and spots under investigation is so rudimentary thit the first task must be to lay the empirical foundations. It is the purpose of this thesis (together with the already extant and long-tern, though cruder, records of amateur astronomers) to form this empirical foundation.

Further development in several directions is planned. The preliminary data on the size-lifetime relationship presented herein will be ampliried upon and presented, together with data on more long-lived spots and with a preliminary theoretical interpretation, in a report currently in preparation (Hide and Chapman, 1968). The present studies of the syot and current motions will serve as the basis from which the more sophisticated technicues of Starr et al will be developed in a theoretical-empirical study of the dynamical processes of Jupiter's general circulation. Another paper is planned which will use the present study as a basis for suggesting improvements in the traditional methods which emateur astronomers have been using for studying Jupiter; it appears likely that amateur data will be the primary source for much of our information about Jupiter's sots for some years to come.

Many of the characteristics of Jupiter's appearance and circulation appear to vary from year to year, but the present study considers only a reláively brief segment of time. Therefore, to establish the context of of the present results, it is necessary first to discuss the previous work by amateur astronomers -- both the results and the methods -- in considerable detail. This is the purpose of Section II. Section III then describes the technicues for obtaining the data used in the present study. The results, mainly tabular in nature, are presented in Section IV. Some implications of the results are discussed in the concluding section.

\section*{II. PREVIOUS STUDIES OF JUPITER'S SPOTS}

Telescopic observations by amateur and semi-professional astronomers form the basis for most of our knowledge about the motions and characteristics of Jupiter's spots and currents. Through a telescope, Jupiter presents an elliptical disk about 40 seconds of arc in diameter. Lying parallel to the equator is a series of bright "zones" and dark "belts", the most prominent of which are in sub-tropical latitudes. Although these belts and zones vary in both darmess and width, and slightly in latitude, the major ones seem to have maintained their identity since Jupiter was first studied in the \(1600^{\prime} \mathrm{s}\). Thus a standard nomenclature has developed; for instance from equator southward: Equatorial Band, Equatorial Zone (south portion), South Equatorial Belt (north component), South Equatorial Belt Zone, South Equatorial Belt (south component), South Tropical Zone, South Temperate Belt, South Temperate Zone, South South Temperate Belt, South-South Temperate Zone, South-South-South Temperate Belt, and so on, with a similar nomenclature north of the equator.

Cassini's observations in the late l7th century provided the first evidence for the most importent characteristic of Jupitcr's circulation: the 5 -minute shorter rotation period for spots within \(10^{\circ}\) of the ecuator compared with the \(9^{h^{5}} 5 \frac{\pi^{m}}{}\) rotation period typical for higher latitude spots. More recently about 20 distinct zonal currents have been recognized which are more or less, but not exactly, correlated with the visible belts and zones. The cheracteristics of these currents are described
m
following a discussion of telescovic observing methods.

\section*{A. Observing Methods}

The typical telescope which hes been used during the past century for accumulating data on Jupiter is between 4 end 12 inches in aperture, frecuently a portable backyard reflector. (Occasionally large professional observatories have been used; sometimes small telescopes have been used for observing the largest spots.) Observers have been of all ages from early teens up and of many nationalities. In experience, reliability, and dedicaticn, observers have ranged from the very able to the very casual. In general, however, most of the published reports are based largely on the extensive work by just a few devoted and experienced American and British observers who overwhelm the far lareer number of more casual observers by the sheer quantity of their observations.

For about 3 months centered on soler conjunctions, Jupiter is quite unobservable. During the next several months, it is visible only in early morning hours when few observers can ind the enthusiasm to make regular observations. Near times of solar opnosition, the planet is above the horizon all night and many more observations are made mainly in the evening. As Jupiter again approaches conjunction, it is visible only in the evenings and usually is well-observed until it is lost in the glareof twilight. Fot all epparitions are equally favorable. For most observers, but particularly, for those in high latitudes such es in England, Jupiter's 12-year cyclical journey through the zodiac is crucial, and not just because of seasonal differences in the observing climate. When Jupiter is in Geaini, it can rise higher than \(60^{\circ}\) in the sty over England, and remain
above the horizon for over 15 hours. But 6 years later, when it is in Sagittarius, Jupiter never attains \(20^{\circ}\) and even then swiftly sinks below the horizon again. Since the small-scale turbulence in the terrestrial atmosphere ("seeing"), which is so important for resolving spots in Jupiter's image, is a strong function of zenith angle (mainly due to increased airmass), it is very difficult to obtain good observations from England during those years when Jupiter is in the southern constellations of the zodiac. It is important to recognize that these and other factors strongly affect the uniformity of Jupiter observations; for instance, the similarity between Jupiter's zodiacal period and the sunspot cycle renders uncertain apparent correlations between the solar cycle and Jovian phenomena.

About four chief kinds of visual observations of Jupiter have been made during the past century with some uniformity: drawings, descriptive notes and photometry, latitude measurements, and central meridian transits. Ne will be concerned chiefly with the last kind of observation which yields information on longitudinal (zonal) motions of spots.

Drawings. Hundreds of pencil sketches of Jupiter are made each apparition. They are drawn in 10 to 20 minites (before significant rotation has taken place) on blank disks of Jupiter's ellipticity. The human eye is a more versatile detector than the camera, chiefly because it can perceive small features during occasional brief intervals of good seeing; photographs are usually taken at random intervals, and in any case they integrate the image over the exposure duration (usually a fraction of a second to a couple seconds). But although drawings by an able, accurate artist are superior to photographs in some ways (especially in resolution of small spots), they rarely turn out that way in practise. Many drawings fail because of subjectivity or carelessness, frequently on the part of
inexperienced observers. However, prior to the recent establishment of a photographic patrol, good ohotographs were not generally taken at sufficiently frequent intervals to form nearly as complete a record of Jupiter's appearance as that formed by the multitude of sketches. Fortunately, studies show (e.E. Chapman, 1962) that when data taken from drawings made by reliable observers are corrected for ecch observer's systematic positional errors, surprisingly high precision can be obtained from drawings (\(1 \frac{10}{20}\) in latitude, \(2 \frac{72}{20}^{0}\) in longitude are typical errors at the center of the disk). However, drawincs almost never have been analysed in an orderly fashion and hence are not a source for reduced information about Jupiter.

Descrintive notes. Amateur astronomers freçeatly write descriptions of the planet each evening, including estimates of the color and relative conspicuousness of the belts and zones, es well as coments on ncteworthy spots and suspected chences from previous days. Sometimes attempts are made to estimate the relative brightnesses of surface features on a numerical scale; these estimates could be calibrated to yicld useful photometric data, but never have been in practise.

Latitude measurements. Bith rare exceptions, measurements of latitudes have been restricted to the latitudes of the edges of the belts and zones so little data is available on individual spots. Microneters. were often used for these measurements, but more recently measurements from occasional photocraphs have usually sufficed for this purpose.

Central meridian (OM) trarsits. Probably the most useful data to planetary science ascembled by amateur astronomers is information obtained on the longitudes of Jovian spots from several million timings of passages of spots across the central meridian of the planet. The observing procedure is cuite simple: the observer merely estimates to the nearest
minute the time at which each spot visible rotates across the vertical meridian bisecting the illuminated disk of Jupiter. The observer records each such timing along with a brief description of the spot (usually limited to its approximate latitude, relative to one of the visible belts, and whether it is bright or dark). The longitudes of the spots are then quickly determined from CM tables in an ephemeris such as the American Ephemeris and Nautical Almanac (ANNA). Longitudes are determined relative to one of two longitude systems rotating with arbitrary periods which approximate the periods for equatorial spots (System I, \(9^{h} 50^{m} 30.003^{s}\)) or the higher latitude periods (System II, \(9^{h} 55^{m} 40.632^{s}\)).

Longitudes determined from CM transits are subject to several systematic errors. First, different observers show differing susceptibilities to "phase exaggeration" which yields a systematic longitudinal bias that varies with the sun-Jupiter-earth phase angle. Secondly, observers have their own personal high or low biases, which may or may not be stable with time. Both kinds of systematic biases can amount to more than \(2^{0}\) of longitude. Reese (1962) has shown that the accidental error in longitude (after correction for biases) is less than \(1^{0}\) for a good observer. Unfortunately, CM transits are rarely corrected for systematic errors in published reductions.

\section*{B. Reductions of Amateur Data}

Published reductions of CM transit data by such organizations as the Association of Lunar and Planetary Observers and the British Astronomical Association are usually based on several thousand CM transits submitted by several dozen different observers during the course of an appari-
tion. The Jupiter Directors who heve performed the reductions are intelligent and competent, but es unpaid amateur astronomers they have usually lacked the time to obtain more than the bare essentials from the data. This is all the more unfortunate now since much of the original data has been lost or thrown away.

The method of reduction is as follows. From exnerience, the typical latitudinal extents of the several zonal currents are known, so a separate craph can be made for each current. All CN transit longitudes for the particular current (horizontal axis) are plotted against date, (increasing downwards), using different synbols to distinguish dark spots from white ones and timings of the preceding or following ends from those of the centers. The prominent well-observed spots are immediately identifiable on such a graph as a string of points, perhaps slenting to the right or left depending upon whether the spot is moving more slovly or more rapidly than the adonted longitude system. Lines are drawn to connect the points for the identified spots. The identification of the more inconspicuous or transient spots is more uncertain. There is the danger of connecting several points which do not refer to the same atmospheric feature. The determination of whether several points do represent a single feature rests on a number of factors: the closeness of fit to a straight drift line (indicative of a uniform rotation period), the similurity of the apparent rate of drift to other spots in the same latitude, and the lack of possible ambiçuity in connecting snots over a long observational gap. Comparisons of incependent reductions of transit data during the same apparition suggest that overly optimistic identifications have frequently been made. Bias is undoubtedly introduced by the subjectivity of this kind of decision-making.

The published remorts usually contain the following information for each identified Feature: dates and longitudes when first and last recorded, the mean longitudinal drift per 30 days, and the corresponding rotation period. There is occasionally a brief description of the spot beyond the simple designetion of dark or bright. Mean drifts, and hence mean rotation periods, are obtained for each current, usually unweighted averages of the drifts of all spots deemed to be in the current.

Without belittling these veluable reports, or their general reliability, it is nevertheless worth noting that ideally far more could have been done, and still can be done for future aparitions and even for past ones for which the oricinal data still exists. For instance, in recent years largely independent reports have been issued by groups in many different countries, including the United States, Japan, England, Switzerland, Italy, and others. It is unfortunate that attempts to yool all the data have so far failed. Secondly, few attompts have been made to eliminate observations by unreliable observers, to veight or interpret data to take into account differing telescopes or seeing conditions, to determine and correct for personel systematic errors, or to use standard statistical procedures for determining the reliability of spot identifications. Thirdly, there has been little or no atterpt to use other kinds of data (such as drawings, existing photographs, or written notes) in conjunction with the transit data. For instance, since spots occur in many different shapes and sizes which are often stable, checking photographs or dravings could improve the reliability of spot identifications; they could even be used to fill in gaps in the 0 transit coverage. Finelly, the many other important characteristics of spot motions besides the average motion are lost, except in those relatively inirequent cases when the
original drift charts have been published.

I should repeat that to perform the kind of improved analysis sucgested above would take much more time than even the most devoted amateur astronomer could volunteer; in fact, it would take more time than the analysis of the photographs reported on in this thesis. Nevertheless, it may well prove desirable to perform such reductions on a pooled collection of emateur Jupiter observations plus existing photocraphs for apparitions prior to the establishment of photographic patrols. I expect such analyses could approximate the accuracy of the present preliminary reduction of the patrol photographs.
O. Characteristics of Jupiter's Circuletion -- Early Results

The results of amateur astronomers' observations of the motions of Jupiter's spots have been published in numerous reports and journals during the past century, some of them available in observatory libraries, but most of them small, sometimes mimeographed, publications of limited distribution. Perhaps the chief sources for reduced Jupiter data covering the period 1891 to 1948 are the regular, orderly, and complete reports of the Jupiter Section of the British Astronomical Association is ued until 1943 as Memoirs of the British Astronomical Association end thereafter as reports in the Journal of the B. A. A. An excellent summary of these observations has been given wide distribution as the book, The Plenet Jupiter by B. M. Peek; however, the oricinal revorts should be consulted for serious investigation of past :ork. For apparitions since 1948, a superior source for Jupiter rotation data are the usuelly regular renorts of
the Jupiter Section of the Association of Lunar and Planetary Observers, published in the Journal of the Association ("The Strolling Astronomer"). These reports, prepared until recently by Mr. Elmer J. Reese, are of exceptional quality.

I now describe what. I feel are the pertinent cheracteristics of Jupiter's motions based on my Pamiliarity with the literature and on several unpublished analyses I have made based on the above sources. Comparisons of independent reductions of spot data suggest that the published tables generally provide a reliable picture of the characteristics of Jupiter's circulation, even though misidentifications occur. The mean rotation period for a single spot can usually be determined to better than 1 second, although spot motions frequently fluctuate about the mean by a second or more.

If one plots mean rotation period versus Jovian latitude, the most obvious feature is the equatorial acceleration: within a degree or two of both \(+10^{\circ}\) and \(-10^{\circ}\), spots switch from a rotation period similer to that of most higher latitude spots of about \(9^{h} 55^{m}\) to a period of about \(9^{h}\). \(50 \frac{\lambda^{m}}{2}\), which is cheracteristic (usually to within \(\frac{1 m}{2}\)) of syots at all latitudes between + and \(-10^{\circ}\). The non-equatorial regions of the plenet do not rotate exactly as a solid, even in the long-term average (Chapman, 1968b). The two hemispheres are not symmetric. The shortest everage periods are in south temperate latitudes (about \(9^{h} 55^{m}\)), with somewhat longer periods both poleward and equatorward. The longest averare periods are in north temperate latituces, with shorter periods both equatorward and poleward. In addition to this average pattern are two well-defined latitudes of transient, semi-periodic anomalous neriods: the longest occur in south
sub-trovical latitudes (about \(9^{h}{ }_{58}{ }^{m}\) during the South Equatorial Belt disturbance) and the shortest in north sub-tronical latitudes (sround \(9{ }^{\mathrm{h}} 49^{\mathrm{m}}\)). Superimposed on this general picture are both spatial and temporal fluctuations.

I now define the word "current" as I use it. Loosely, currents are the various latitudinal zones possessing different mean rotation rates. More precisely, a current is a particular rotation neriod or velocity which, for many years, is characteristic of a large fraction of soots in a particular latitudinal zone. Thus a current is not defined so much by the belt it is in, or even its latitude, as by its characteristic rate. It often happens that spots in elosely adjacent latitudes (or even the seme latitude) follow the motions of two distinct currents. It also happens that spots in a particular belt may follow the rate of one current during some years and enother current during others. Some currents seem more stable in latitude than some belts. Reese end Spith (1966) have shown that the rapidly-rotating spots in north temperate latitudes (about \(24^{\circ}\) N.) are menifested on periodic occasions when the 70 th Temperate Belt (ris) shifts southward into that latitude. On the other hend, there is evidence that the S. S. Tempanate Current extended its influence equatorward around 1940 when spots on the sough edge of the STB, which had been rotating about 15 seconds faster at a period corresponding to that of the S. S. Temperate Current. The mean rotation period of a current can differ by several seconds from year to yeer; these are real changes, not statistical fluctuations. Some currents, such as the S. S. Temperate Current are more stable from year to year than others. For most currents the . rates are often similar from year to year followed by rapid accelerations or decelerations which marik the start of a new regime which mey last for
several more years before a returi to normal.
Most currents have fairly sharp latitudinal boundaries, and the characteristic rotation periods usually differ by substantially greater amounts than the typical variations from year to year or the deviations from the mean of different spots within a current. That is, "currents" seem to be fairly well-defined entities and are not just arbitrary subdivisions of a smoothly varying latitudinal dependence of wind velocity.

The average ratation periods for individual spots generally differ by on'y a few seconds from the mean for the current it is in. Sometimes there are temporary groups of spots, separated from each other by loncitude around the same latitude circle, which move either somewhat faster or slower than the mean for a current.

Apart from the rotation periods for a current as a whole, or its longitudinal sections, individual spots have their own characteristic behavior. Published and un-published drift charts for the N. Ec. Ourcent suggest that most North Equatorial spots undergo relatively rapid oscillations about their mean longitudinal drift; thouch non-periodic, the oscillations result in shifts of as much as \(10^{\circ}\) in a single month. The present analysis of photographs shows that this behavior is specially peculiar to the N. Eq. Current. Published drift charts also indicate occasions then spots suddenly accelerate or decelerate and adopt a lasting new. mean rotation period which may differ by many seconds from the previous period. Such changes can occur either as part of a change in a whole current or section, or can be quite individual. Such rapid and unpredictable changes in motion make it difficult to trace and identify spots through even short gans in observations.

As discussed earlier in this section, these finer aspects of spot motions have never been systematically studied from either amateur observations or from photographs, even though suggestions of typical behavior can be seen on the crude drift cherts based on OM transits. The important point of this section is that while there is regularity and uniformity in the characteristics of Jupiter's circulation over the past century, or longer, it is also true that many of the characteristics show temporal variations. Thereiore, the results of the present analysis raust be taken as representative of Jupiter's circulation only during the period under study. Certainly some gross characteristics derived for one year will exemplify Jupiter's behavior at all times. At least some of the finer aspects of the statistics may be expected to be approximately typical for a given current, but lizely not to within the measured statistical error since other characteristics of currents are known to vary from year to year. Certainly the value of the present investigation will be enhanced if it is repeated for other apparitions so that the nature and magnitude of year-to-year changes in the statistics can be ascertained.

A final word of caution is necessary before describing the project. This is simply an empirical study, with no presumption to attempt a physical explanation at this time, and it should be emphasized that we are uncertain yet as to just what we are measuring the motions of when we observe "spots". It would be naive to assume that the "spots" are dynam- : ically neutral "wind markers". Spectroscopic observations suggest that the true rotational velocity of Jupiter's atmosphere above the cloud surface approximates the velocities obtained from spots, but the precision is poor. Notions of terrestrial cyclones and anti-cyclones, which may be the anelogues of Jupiter's spots, have been shown to duplicate in relative
directions but not in absolute magnitudes some of the true dynamical elements of the terrestrial circulation (Macdonald, 1967).
III. TEE METHODS USED FOR OBTAIMING DATA ON JUPITER'S SPOTS

FROM THE PHOTOORAPEIO PATROL

\section*{4. Construction of Photographic Drift Oharts}

The early phases of planning the construction of the charts which were eventually used as the basis for the present investigation, although carried out mainly by myself shall not be construed to be strictly part of the work on this thesis, since much of it was done prior to my enrollment in M. I. T. Nevertheless, since these charts form the basic source for the data used in the thesis, it is necessary to discuss their format and preparation in some detail for backeround purposes. This is the first such description of the preparation of the charts.

\section*{The Patrol Photographs}

The original source of the photographs is the plate collection at the New Mexico. State University Observatory on the campus in Las Oruces, New Mexico. The plate collection covers the period of the current decade, but until about 1964 the ccverage was less complete and the photocraphic quality not as high es in later years. Prior to February 1967, a 12-inch
aperture reflector, located on Tortugas Mountain, was used for the patrol photocraphy. Since then, a 24 -inch boller and Chivens Cassegrain instrument has been installed on Tortugas Yountain as the patrol telescope. Two photographers work on alternate nights to obtain patrol photorraphs of Venus, Mars, end Jupiter, and more irregular photographs of the other planets. Photographs are regularly taken with filter-plate combinetions sensitive to red, green, and blue wavelengths. Occasional photographs are also taken on ultraviolet or infrared sensitve plates and on panchromatic plates.

The New Hexico photographic patrol of Jupiter is not continuous; there are the many gaps necessary because Jupiter is too near the sun, or below the horizon, or behind a cloud, or a particular Jovien longitude is not facing the earth. Also, because of the extreme rarity of percaivable changes in Jupiter's surface features during the course of rotation across the disk, it is only necessary to photograph Jupiter once every 2 hours, or so, to insure complete coveraze as the planet rotates beneath us. But mainly in the interests of economy, the New Mexico patrol is somewhat less complete than ideal. Coverace is often omitted in order to photograph the other plenets, cr because the seeing conditions are rather poor, or because good coverage was acheived just the night before, or for a host of other reasons. There is a general attempt to cover a perticular Jovian longitude at least twice a week. On the average, the coverage is this good or better during the middle months of an apparition. Sometimes an extra effort is made to photograph particular surface features which yields superior coverage for certain longitudes compared with others.

The various scheduling procedures plus unpredictable circurn-
stances such as cloudy weather occasionally result in gaps in the coverage in one of the recular colors near a perticular longitude of up to a ronth even in the middle of an apparition. There are also cases of nearly daily coverage of a particular longitude for a week or two.

The patrol photographs are not at all of equal quality. The resclution in the images is a function of many factors of which the most important is the "seeing" condition -- small-scale turbulence in the terrestrial atmosphere which either causes "excursion" of Jupiter's image across the plate during an exposure, or simply makes the whole imaze fuzzy. The seeing varies from second to second; thus many individual exposures must be made to obtain good images even though, as at the N.M.S.U. Observatory, the photographer is monitoring the seeing visuelly at the same time. A typical N.R.S.U. plate has several dozen images taken during the course of several minutes. (The time of each image is accurately recorded.) The average seeing also varies from day to day with changing weather and over the course of an apparition (early and late in an apparition Jupiter must be observed when low in the sky where seeing is bad). All N.M.S.U. plates are examined and the better images on each are marked. Also a rating of the average quality of the better images is made on an \(A, B, C, D, E\) scale; these ratincs are found to correlate closely with the photographers' estimates of the seeing conditions recorded during the observation period. The Photographic Prints

I decided that the best way to order the Hew lexico data was to construct "drift charts" analogous to those used for the analysis of CM transits, except to substitute photographic strins -- which convey full information on not only spot loncitudes but also their sizes, shapes,
brightnesses, relative latitudes, etc. - in place of the simple symbols used to represent \(C N\) transit longitude determinations. By constructing a separate chart for each latitudinal zone, and laying photographic strips horizontally on the chart, with lert-right position determincd by the longitude of the central meridian, and nesting them beneath each other with increasing date, it is possible to follow at a glance the development and evolution of an entire zone during the period covered by the chart. This technique, while less sophisticated than the very difficult task of constructing time-lapse movies from the plates, and somewhat less precise and objective than machine measurement and interpretation of the plates, is Well-suited for a relatively rapid, inexpensive pilot project with the aim of establishing the general characteristics of Jupiter's evolution during an apparition.

I decided to construct nine cherts covering Jupiter's entire surface with nine slichtly overlapping zones. Since maximum coverage was desirable not only for the size-lifetime study but also for other general studies of Jupiter such as those describad in this thesis, all available non-redundant plates were used during the year best covered by high quality plates. Examination of several years of patrol plates suggested that the time coverage during the latest complete apparition (1966-1967) was at least as good for previous apparitions, and the quality of the plates was somewhat better, mainly due to the installation of tie larger telescope in the middle of the apparition. The period selected included the entire 1965-1967 apparition plus the tail end of the previous apparition and the early beginnings of the 1967-1968 apparition (19 months including the two long gaps near solar conjunctions). The charts on which the present study is based cover only the final three-quarters of the 1966-7 apparition and
the beginning of the next apparition（one fest，including one long gap）； charts for the earlier photographs，many of relatively poor quality，are not yet completed．

Photorraphs of Jupiter in different colors shov substantially different surface features．In order to avoid the confusion of mixing photographs of different wavelength sensitivity，separate charts were made for long－wavelength photographs（red and near inirared）and for short－wave－ length photographs（blue and near ultraviolet）．Since green plates show features intermediate in appearance between red and blue，redundancy was reduced by omitting any charts based on green photographs，but using green photographs，when appropriate，to fill in lengthygaps in coverage on both the blue and red charts．All the blue and red plates were used except those for which the quality rating was \(D\) or less and excent for those which provided cnly redundant coverage of a particular longitude already covered by adjacent photographs taken the same night．Even poor quality plates were used when required to fill a çap in the coverage．

The best images were selected from the chosen plates and used for making positive prints on flat－lying semi－matte Cronapaque paper．Us－ ing the known plate scales，the ephemeris for the true angular diameter of Jupiter from date to date（A．E．N．A．），and a new calibration oi the magni－ ifcation of the enlarger in the N．M．S．U．Observatory dartroom；it was pos－ sible to print all the photographs to the same scale－－ 5.45 cm to Jupi－ ter＇s polar diameter．A small exposure meter was used in a not－always－ successfu attempt to produce prints of uniform average brightness．

By projecting the image onto the paper through a special photo－ graphic plate overlay，it was nossible to superimpose on all prints an
accurate outline of Jupiter and other identifying marks used later in preparation of the charts. A fine white line was superimposed on all prints bisecting the Jupiter outline to serve as a marker of the central meridian for pasting photographic strips at the proper longitudes on the charts. Also superimposed on the prints were the meridians for \(\pm 35^{\circ}\) from the CN. Decause surface spots on Jupiter lose their contrast away from the center of the disk, I decided to use only the central \(70^{\circ}\) for placement on the charts; hence the \(\pm 35^{\circ}\) meridians indicated where the ends of the strips were to be cut off. Foreshortening results in a maximum displacement at the edees of the strips 2.2 in longitude -- sufficiently small to be easily taken into account in analysing the charts. Also superimposed on each print, exterior to the image of the planct itself, were series of marks indicating the edges of the nine chosen latitudinal zones to serve as guides for the print-trimer. Since the nine zones are slightly overlapping, two identical prints were made of each photograph for staggered cutting.

A print of the plate overlay was placed in the movable paperholder so that Jupiter's imace could be centered correctly before inserting the unexposed paper and lowering the plate overlay (fastened to the paper holder). Because of the non-symotrical brightness distribution across the image of Jupiter, except near opyosition, caused by the sun-Jupiter-earth phase angle, some bias is necessarily introduced in centering the image (phase exageration). Mr. Elmer Reese, who is familiar with correcting for phase exaggeration, helped to guide the darkroom assistant to make appropriate though subjective corrections for phase exageeration, but long-term systematic bias of perhaps two degrees is undoubtedly still
present. Random error in centering probably amounts to less than one degree. The orientation of the centered image of Jupiter was relatively easy to accomplish because of the planet's yrominent belts parallel to the equator; in any case the precise orientation is not crucial.

To minimize the effect of the discontinuity in longitude at the left and right ends of the charts (\(0^{\circ}\) and \(360^{\circ}\)), all images with central meridians within about \(25^{\circ}\) of either \(0^{\circ}\) or \(360^{\circ}\) were printed twice (4 prints) so that they could be pasted at both ends of the charts.

\section*{The Charts}

Approximately 700 separate images oi Jupiter were used to construct 18 charts which depict the evolution of Jupiter's surface features in two colors (red and blue) for the nine different latitudinal regions. The charts currently cover the 1966-7 apparition from November 2 through its conclusion (last photograph June 14) plus the very beginnings of the 1907-8 apparition during the period Sept. 30-November 14. Table 1 presents the relevant information about the charts. The central latitude is the zenographic latitude \({ }^{\boldsymbol{z}}\), apmroximately in the center of the latitudinal region covered by each chari, for which the longitude scale was chosen in positioning the photographs. Clearly, because of the different lengths of latitude circles, the adoyted longitude scale on each chart is slightly too expanded for spots poleward of that latitude. The choice of this central latitude in each zone was weighted toward the latitude where spots were

Actually the latitude assumes that Jupiter's axis is exactly perpendicular to our line of sight. In fact, Jupiter's north pole wes tilted towards earth during this period by a varying amount of sonewhat less than \(1^{\circ}\).
most prevalent. The next column lists the abbreviations of the important belts and zones covered by each chart. The penultimate column lists the ratio in length of \(1^{\circ}\) in longitude at the central latitude to \(1^{\circ}\) at the equator; this is useful because later analyses record syot lengths in degrees rather than absolute lengths. Note that the longitudinal scale on the charts is such that \(1^{\circ}\) at the equator \(=0.20\) inch. The vertical daily spacing of the photographic strips is given in the last column in inches. Because of this :ide spacing necessitated by the width oit the strips, between 2 and 3 pieces of cardboard 30 inches long were required to cover the 225 last days of the 1960́-7 apparition for each chart.

The photographic prints were sliced into strips with a printtrimer. The foreshortened ends of the strins were cut oif with scissors, and the resulting parts rubber-cemented onto the white cardboard cherts positioned with the aid of accurate longitude rules for each chart. In cases where two strips overlepped, some effort was made to place the better one on top. The resulting charts are a montage of strips which when viewed from a distance seem to show little uniformity in tone, few spots, and ouite random spacing. Although it was not planned that the charts would ever be striking pictorial exhibits of Jupiter to the untrained eye, the variable darkness of the strips is disconcerting and mekes any attempt to copy the charts for illustration in this thesis quite impossible. The variable brightness of the strips is due partly to uneven derkrom proce-dures, partly due to poor quality control by the photographic paper manufacturer, and partly due to the innate variability in the plate images affected by observing conditions, plate characteristics etc. To the obsorvant eye, however, these non-uniformities are relatively unimportant, and hundreds of spots can be discerned and traced from day to day. Of
more concern are the gaps in coverage, caused either by poor photographic quality usually caused by poor seeing conditions, or else by a complete lack of photocraphs of a particular longitude during a lengthy interval. The proper sorting out of the real characteristics of the Jovian spots from the bias aue to such coverage problems is a difficult tasic. The following sections describe my preliminary attempt to obtain this information.
\begin{tabular}{|c|c|c|c|c|}
\hline Ohert & \begin{tabular}{l}
Central \\
Latitude
\end{tabular} & \begin{tabular}{l}
TABLE I \\
Belts and Zones Covered
\end{tabular} & Ratio \(1^{\circ}\) Long at Central Lat to \(1^{\circ}\) et Eqat. & \[
\begin{aligned}
& \text { Daily Spa- } \\
& \text { cing (in.) }
\end{aligned}
\] \\
\hline I & \(43^{\circ}\) & NPR (south), INTTB, NNTBs & 0.758 & 0.0350 \\
\hline II & 27\% & NTTBs, NTeZ, NTB, NTr \({ }^{\text {an }}\) & 0.899 & 0.0300 \\
\hline III & 18 & NTBs, \(\operatorname{NTr} 2\), NEEn, NESZ & 0.957 & 0.0300 \\
\hline IV & \(5 \frac{1}{2}\) & NEBZ, NEBs, EZn, EZs & 0.996 & 0.0417 \\
\hline \(\nabla\) & -9 & EB, EZs, SEBn & 0.990 & 0.0300 \\
\hline VI & -172 & SEBn, SEBZ, SEBs & 0.961 & 0.0300 \\
\hline VII & -24 & SEBs, STrZ, STB & 0.929 & 0.0300 \\
\hline VIII & -34 & STB, STeZ, SSTBn & 0.851 & 0.0350 \\
\hline IX & -483 & SSTB, SSTeZ, SPR (north) & 0.688 & 0.0300 \\
\hline
\end{tabular}
B. Reduction of Spot Statistics from the Drift Charts

Tracing Spots on Overlays
Before one can compile statistics on the spots, one must iden-

\footnotetext{
\({ }^{\text {mefers }}\) to unforeshortened longitudes near the central meridian; \(1^{\circ}\) at equator \(=0.2\) inches on the charts.
}
tify the spots. In particular, one must unambiguously trace the spots from day to day if one is to obtain any information on spot motions or evolution. As suggested in Section II B, this is a difficult task. Fortum nately it is comparatively easy to discern contimity of spots from the numerous characteristics revealed in complete photographs of the spots.

Nearly every current has a variety of large, prominent, relatively long-lived spots whose drifts from day to day are clear. These spots serve as markers, and the motions and development of smaller spots can be traced in relation to the larger ones. Because of the lucid presentations of the evolution of a region on the charts, one quickly develops an impression of the qualitative characteristics of the spot appearances, motions, and changes which allows one to form subjective but realistic decisions concerning the reliability of interpreting a pair of spots observed on different days as the same spot. As discussed earlier, this approach is a substantial improvement over earlier drift charts, based on largely heterogeneous data on spot longitudes only. Nevertheless, the present techniques are inferior to what can eventually be acheived by objective analysis of the patrol data. But in order to establish meaningful criteria to serve as the basis for programming the objective decision-making routine, it is necessary to make a pilot study such as the present one which provides an approximate basis for choosing realistic criteria.

Pencil lines connecting identical spots were drawn on transparent matte-surface overlays. First a symbol was recorded on the overlays to signify each visible spot. Subsequently, after careful attention was paid to all the details visible in the photographs, solid lines were drawn connecting the obviously-identical spots. Dashed lines were used to
connect spots deemed to be probably identical, and dotted lines used for possibly identical spots. In doubtful cases, of which there were many (particularly for smaller spots), no lines were drawn. The process was then iterated to insure that all spots dom to a uniform standard of reliability were marked and that complete and uniform construction of the drift lines was achieved. The use of different symbols helped to distinguish spots of different sizes and colors. Lines of different colors Were used to plot drifts for spots in adjacent but different latitudes which frequently have different average drifts.

It was not easy to maintain uniformity and reasonable objectivity when marking spots and then drawing drift lines. It is easy to see small, rather vague spots on an othervise featureless belt when spots of equal or greater size or contrast can be missed amid the general confusion of such a belt as the NEB. Also, it is undoubtedly the case that an isolated spot moving with a greatly different velocity from its neighbors (or rapidly oscillating in velocity or latitude) would be harder to detect than a similar spot moving in a normal fashion. Also there is the "zebra problem"; whether to call an assemblage of spots dark spots on a light backeground or bright spots on a dull background. In meny cases there is no doubt as to whether the spots are mainly dark or light, but in some regions where the spots are ill-defined (such as the wavy edges of the \(S E B\), my preference for seeing primarily dark spots might not be shared by others.

Measured Information about the Spots

From the innumereble kinds of data which could be measured con-
cerning each spot, I selected the following representative characteristics for the pilot study. They cover, in approximate form, most of the characteristics which can be obtained from the present charts in a reasonably short time. The information for each spot was punched on two computer cards.

Number: Each spot was given a number, ranging upwards from 1.

Latitude: The spots were placed in one of the following 24 latitudes. There are two numbers corresponding to the south component of the North-North-Temperate Belt; number 22 refers to spots seen on the north edge of the chart for the NTB, while number 23 refers to spots seen on the south edge of the chart for the NITB.
\begin{tabular}{llrlrl}
1 & SSTeZ & 9 & SEBsn & 17 & NEBZ \\
2 & SSTB & 10 & SEBZ & 18 & NEBn \\
& & 11 & SEBns & 19 & NTrZ \\
3 & SSTBn & & & \\
4 & STeZ & 12 & SEBn & 20 & NTBs \\
5 & STB & 13 & EZs & 21 & NTB \\
& & 14 & EB & 22 & NNTBs \\
6 & STBn & & & & \\
7 & STrZ & 15 & EZn & 23 & NNTBs \\
8 & SEBs & 16 & NEBs & 24 & NNTeZ
\end{tabular}

Number of observations: This is the approximate number of dates on which the spot was recorded.

Dates observed: The first and last dates on which the syot was definitely recorded are given. These dates are the same if the spot was seen only once. The 225 days of photographic coverage were numbered consecutively from 1 to 225 (\(1=\) November 2, 1966).

Reasons why not observed before or after: There are many reasons why a spot is not seen before or after certain cates. Perhaps the spot disappeared, or perhaps the coverage was poor, or other reasons. Nine reasons, or combinations of reasons, are listed below. For each spot, two numbers were recorded -- one giving the reason why the spot was not seen earlier, one why it was not seen afterwards.
\(0=\) The spot definitely was not formed or definitely disappeared. This includes the ceses when smaller spots either emerged from or merged into larger spots.

1 = The spot probably was not formed or probably disappeared (including probable merges).

2 = The spot was vague or small and was only marginally observed in any case.

3 = There were lengthy gaps in the photographic coverage either before or after the spot was observed rendering identifications uncertain.

4 = There were many nearby similar spots, perhaps exhibiting rapid relative motions, rendering the identification of the spot ambisuous.

5 = Combination of 2 and 3 above. The spot was vague and the coverage was poor.
\(6=\) Combination of 2 and 4 above. The spot was vague and crowded by similar spots.

7 = Combination of 3 and 4 above. There was poor coverage and the spot was crowded.

8 = The spot continued to exist but had substantially changed its appearance.
\(9=\) The snot could not be followed because one end of its lifetime extended into the time either before or after the photographic coverage of the 1966-7 apparition.

Dates definitely not extant: For those spots which were recorded as either
definitely not formed or definitely disappeared, the previous or following dates are given on which there is derinite photographic evidence that the spot was not extant. These dates help establish upper limits to spot lifetimes.

Positions at thirty-day intervals: The longitudes of the spots were recorded for days numbered \(15,45,75,105,135,165\), and 195 if the spots were extant on any of those days.

Typical deviation from uniform drift: Different spots show differing tendencies to meander about a straight line drift. For each spot which lasted at least 30 days, an estimate was made of the typical short-term deviation of the spot (in degrees) from its mean drift during a 30-day period. These are listed in the tabulations in the appendix in the colum labelled "DEV".

Dates of special prominence: Some spots are visible for a long time, but have a period or two of unusual prominence. The beginning and ending dates of such periods were recorded when applicable:

Spot descriotion: In order to approximately identify spots by appearance, the following classifications were applied: (1) Light or dark. (2) Fuzzy, medium, or sharp in general cutline and distinctiveness. (3) Spot proportions: spot leneth about 3 times its width or longer, spot about 2 times its width, spot about as wide as it is long, spot about twice as high as it is long; and spot much taller than it is long (length here refers to longitudinal extent). Some Jovian surface features are borders and are not characterized by lengths or proportions -- this was noted in such cases. (4) Spot type: round or oval, festoon, wavy edge or projection
from a belt or zone (either derl or light), angular shaped spots, anorphous spots, variable shape, preceding border, or following border.

Spot lengths: The maximum and minimum lengths of spots were recorded in degrees of longitude.

Spot continuations: It has already been pointed out that for several reasons, the continuous drifts of spots are interrupted by gaps in the coverage or for other reasons, and that in such cases of doubtful drifts, dashed lines were draw on the chart overlays to indicate probable spot continuations and dotted lines to indicate possible continuations. In addition there are cases of merging or diverging spots, which themselves are either definite, probable, or possible. In all these cases, the continuations were noted by punching the reference numbers of adjoining spots on the computer data cards. In any cases of ambiguous continuations of spots, no more than one continuation is regarded as "probable".

Physically related soots: On some occasions, it is clear that several spots are physically related to each other. For instance, in the north edge of the NEB there was a small white spot surrounded by a much larger dark spot. It is possible that such combinations are in no way independ-. ent. The reference numbers of any closely related spots were punched on the data cards, though no use of such relationships was made in this preliminary study.

All of the above spot characteristics were recorded for the bluelight photocraphs of all currents except the North Equatorial Current. The spots in the North Equatorial Current, unlike the remainder of the planet, are much more prominent in red light. In a subsequent study, the red
in
light photographs of all belts, plus the relatively featureless bluelight photographs of the Equatorial regions, will be analysed to determine if there are any systematic differences in spot characteristics as a function of color. Partly in order to assure uniformity of the data analysed in this thesis, and partly because of difficulties in computer storage of the voluminous data on equatorial spots, discussion of the NEB regions is omitted from this report.
IV. COIPUTER ATALYSIS OF THE OHARACTERISTICS OF JOVIAN SPOTS STD CURRETTS

\section*{A. Spot Characteristics}

The number of spots observed and the numerous computations necessary to derive all the atatistics desired required the use of a computer. A Fortran IV IBN 360 program of more than 1000 steps was written designed to execute the following procedures.

Definite, Probable, and Possible Spots

The data cards contain information on spots with definitely observed drifts or else spots which were definitely observed only once. Probable and possible spots were generated from series of definitely observed spöts using the continuation reference numbers and the following.
conventions. Many of the probable and possible drift lines drawn on the chart overlays are of a branching nature -- i.e. they indicate either merges or else ambiguous continuations of which only one may be the correct one. One could study all possible combinations and permutations of spots formed by the probable and possible drifts, but for our purposes this would be mis-representative. For instance, in the case of the two prominent merging spots in the \(\mathbb{N E B n}\), such a procedure would give lifetimes for both of upwards of 6 months. But, since during the last 4 months of this neriod there was only one spot where there had been two, one clearly had disappeared and both did not last 6 months. Also, to follow both paths in cases of ambiguity, clearly would not represent the real situation, whereas to choose and follow just one path in an ambiguous case at least may represent what really happened.

Therefore I have traced probable and possible spot drifts using the same convention in which rivers are usually named. At each juncture of two spot drifts (whether due to ambiguity or real merges), only one is traced past the juncture and the other is regarded as either having disappeared (or appeared in cases of divergence). Probable spots are taken as those singly observed spots and definitely traced spots which are connected by one or more probable drift lines. Possible spots are those Lefinitite spots and probable spots which are connected by one or more possible drift lines.

Some of the statistics compiled below are considered separately今or each possible grouping of the obscrved spots. The statistics for definite spots mey be regarded as providing the most reliable information on spot drifts, particularly over short periods of time. However, because
of the gaps in the photographic coverage, the possible spots probably give the most realistic, though not most reliable, picture of the lifetimes and evolution of spots. The bulk of the statistics are computed for the probable spots only.

The second last column of the spot tabulations in the appendix (labelled "PART") lists the identification number for any probable or possible spot of which the tabulated definite or probable spot is a part.

In addition to the data measured directly for each spot, the following characteristics were computed for each definite, probable, and possible spot.

\section*{Spot Lifetimes}

The observed lifetime of a spot is equal to the last date on which it was observed minus the first date (arbitrarily set equal to 0.5 days for spots observed only once). Hovever, these are clearly minimum lifetimes. From thesc observed lifetimes and the recorded reasons why the spots were not observed before or after these dates (see Sect. III B), more realistic lifetimes for each spot were computed (when possible) and, in any case, the lifetimes were considered to be in one of six categories of reliability。

Estimated true lifetime: If both ends of a spot lifetime were considered to have been definitely determined (reasons not recorded both coded 0 as described earlier), then an estimate of the true lifetime was made by av-. eraging the observed lifetime and the time difference between the two dates on which the spot was definitely not extant (the latter dates are recorded when ends of spot lifetimes were observed).

Probsble lifetime: If one end of a spot lifetime was definitely observed (0), but the other was only probably observed (1), or the spot changed its appearance drastically but did not necessarily disappear (8), the observed lifetime was taken as the spot's probable lifetime.

Twice probable half-lifetime: If one end of a spot life-time was definiteIy obscrved (0), but the spot history ext eaded beyond the period covered by the charts (9), a probable but by no means conclusive estimate of the lifetime is twice the observed lifetime. Relatively few syots with life-. times of many years would disappear or form during the short period under observetion. Host spots disappearing during the observed period probably had lives comparable to the period, especially since there was not a large population of spots which survived the entire observed period.

Possible lifetime: If no definite end of a spot history was observed, but the observed ends were for reasons 1 (probable disappearance) or 8 (changed appearance), the observed lifetime was considered a poscible estimate of the lifetime.

Tvice nossible half-lifetimes If one half of the spot history extended outside the observed period and the other end was either probably observed (1) or due to changed appearance (8), twice the observed lifetime was considered a possible estimate of the lifetime.

Minimum lifetime: All other combinations of reasons why spots were not traced either before or after their observed duration yield no meaningful information concerning the true lifetime. If the spot history spanned the entire period of obs rvation (both reasons 0), we can only say thet its
observed history was a minimum lifetime for the spot -- the spot could even have been permanent, such as the Red Spot. If the spot was lost due to gaps in the photocraphic coverage, ambiguity due to crowdod adjacent spots and rapid motions, or any of the other reasons coded 2 through 7, there is no reliable information on more than the minimum lifetime of the spot. Unfortunately, most spot lifetimes computed in this study are of this type. The only solution for clerifying information on the lifetimes of many of the smaller spots is to obtain improved photographic resolution and more importantly -- coverage.

One and only one kind of lifetime was computed for each spot. These are listed in the tabulations in the appendix in the order described here. Asterisks fill the columns for the lifetimes not applicable to the spot. The following column, labeled "WHY" gives the reasons why the spot could not be followed prior to and after its observed period.

\section*{Spot Motions}

It is customary to record spot motions in terms of longitudinal drifts relative to the adopted longitude system in 30 days. If the 30 day drift of a spot is called \(D\), and the adopted loncitude system rotates with a period \(P_{o}\) (minutes), then the rotation period of the spot is given by
\[
\begin{equation*}
P=P_{0}+\frac{(D)\left(P_{0}\right)^{2}}{15552000} \tag{1}
\end{equation*}
\]

Both the mean 30 -ciay drift, computed between the observed longitudes on the first and last days on which the spot was seen, and the rotation period are listed for each spot in the tabulations in the appendix.

The longitude at opposition, given in the fourth column of the tabulations, is computed from the mean drift for each spot end is not the true longitude of the spot on date of opposition (day number 80) when many of the spots yere not even extant.

For those spots lasting long enough to have measured positions at the ends of the six thirty-day intervals, separate 30 -day drifts were computed for each interval. To provide a measure of the long-term deviation from uniform motion of the longer-lived spots, the average deviation from the mean of these thirty-day drifts (" \(30 D E V\) ") was computed for each spot observed during at least two of the periods. To provide some information on systematic changes in motion, the mean drifts during the first, second, and last third of the observed part of the apparition were computed for each long-lived spot extant during those periods (these are called "DRIFT1", "DRIFT2", and "DRIFT3" in the tabulations). In order to trace spots across the gap in coverage caused by solar conjunction, the projected positions of syots on November 1, 1967, were computed for all spots lost in June due to the end of coverage (these longitudes are not tabulated here). Comparison of these longitudes with the spots observed in November 1967, when combined with knowledge of typical variations in spot motions computed here, help to identify some larger spots with some assurance, even after a gap of four months.

\section*{Spot Lengths}

The maximum and minipum lengths measured for each spot yield not only the mean lencth for each snot, but also a crude estimate of the typical deviation in length for the soot. Tabulated in the column labelled
"DL/L" is the quantity
\[
\begin{equation*}
D L / L=\frac{\left(\lambda_{\max }-\lambda_{\min }\right) / 2}{\left(\lambda_{\max }+\lambda_{\min }\right) / 2} \tag{2}
\end{equation*}
\]

Since the accuracy in measuring the lengths of most spots, perticularly the fuzzy ones, is no better than a degree or two, the quantity DL/L is not really representative of physical changes in sizes of spots less than about half a dozen degrees in length. Future investigations of the spots will take such errors into account quantitatively.

\section*{B. Characteristics of Currents}

The mean 30 -day drifts for spots in each current were computed in two ways, neither of which is exactly identical to the procedures used in reductions of visual on transits. First tabulated is the meen drift for all spots (except those observed only once), weighted by the number of observations of the spots. The weighting reduces the scatter caused by the unreliable drifts of very short-lived snots, but gives perhaps undue weight to the prominent and long-lived spots. Hore comparable to the mean drifts calculated by amateur astronomers are unweighted averages of the mean drifts of all spots with observed lifetimes of 10 days or more. For both types of calculation of mean current drifts, the average deviation of the individual spots from the current mean is also tabulated.

Both weighted and unweichted mean drifts (and average deviations) were also computed for daris spots, light spots, long spots (length over \(7^{\circ} .5\)), and short spots (less then \(7^{\circ} .5\)) in each current separately.

All of the above computations were made separately for three groups of spots: the definite spots, the definite and probable spots, and the definite-probable-possible spots.

Just the definite-probable sample of spots was used for calculating additional mean characteristics for each current. These include the following: the mean of the long-term deviations of the six 30 -day drifts from the spots' mean drifts; the mean of the typical short-term deviations in degrees from the spots' mean drifts during 30 -day intervals; the mean drift of all of the longer-lived spots in the current during the first, second, and last thirds of the apparition; the mean lifetime of those spots for which either definite or probable lifetimes were computed (the first four of the six lifetime categories); the mean proportion of spots in the current; the mean length of spots; and the mean DL/L length-deviation ratio of spots. Also presented are tables showing the distribution of spots by type and the size-frequency relationship for spots in each current. The numbers tabulated in each interval of length are the sums of the observed lifetimes of spots of that size; this yields a good approximation to the size distribution one might expect to see at any particular instant in time.

\section*{C. Relationshios between Spot Characteristics}

In order to test for any possible relationship between the size, shape, motion, color, or lifetimes of spots, all observed spots (without regard to current) were subdivided according to each characteristic and the means of the other characteristics were computed.

The mean characteristics which were computed were: the mean of the long-term deviations from the individual 30-day cirifts; the mean of the short-term deviations from mean drifts during 30 days; the mean lifetime for those spots having either probable or definite lifetimes computed; the mean proportion; the mean length; the mean ratio of length deviation to length; the mean signed deviation of spot drifts from the means of the currents of which the spots are part; the number of dark and light spots; and the distribution of spots by type.

The populations of spots for which the above characteristics were computed were: dark spots; light spots; spots less than \(5^{\circ}\) in length; spots elongated by a ratio near or exceeding 3; spots longitudinally elongatod by a factor of about 2; approximately round spots; spots with latitudinal extents exceeding longitudinal lengths by a factor of about 2; spots with latitudinal elongations near or over a factor of 3; spots drifting at least \(3^{0}\) per 30 days faster than the mean of their currents; spots moving similar to their currents; and spots noving at least \(3^{\circ}\) per 30 days slower than their currents.

\section*{D. Size-Lifetime Relationships}

The preliminary numerical results of the size-lifetime relationship under study by R. Hide and the present author (for lifetimes measured in ronths or less), are presented in the final tables in the appendix. Since it is uncertain whether spot lengths, or their total dimensions may be the physically most-meaningful parameter, the lifetimes are tabulated both in relationship to the mean length and to the mean area, where spot
area (in square degrees) was computed approximately from the crude proportion estimates. The mean of each of the six lifetimes is entered for seven sub-divisions by length or area. Asterisks indicate no spots in a particular category. It can be seen from the tables that it is relatively difficult to obtain reliable lifetimes for the smaller spots and that their frequently shorter observed lifetimes are really just minimun liretimes interrupted by gaps in good quality photographic coverage.

\section*{V. SUMSARY OF COMCLUSIONS}

The empirical approaches described earlier have been applied, as a start, to all observed spots in the northern hemisphere of Jupiter (excluding the equatorial jet). The results, presented in the appendices, are largely self-explanatory and require little amplification here. I will, however, summarize some of the more obvious conclusions, after this word of caution: In assessing the significance of the differences in characteristics between groups of spots, it is important to take into account the sizes of the spot data samples being compared. These numbers are printed out explicitly only in Appendix C; however the complete tabulations in Appendix B provide the same information.

The comparisons of the spot populations of the three zonal
regions containing statistically tignificant ntobers of spots, the NEBZ, NTB, and HEBn, reveal certain important differences. For instance, while the drifts of the individual spots in the HEBn gencrally vary from the mean drift for the current by only a few seconds, there is a substantially larger deviation in the HEBZ. This is, perhaps, to be expected since the NESZ is the location of the strong latitudinal shear between the equatorial jet and the higher latitudes. Also, for the NEBZ and NTB, both dark spots and smaller spots seem to rotate more rapidly than light spots and larger spots. This may reflect some real variability of motion with color, but it is also possible that it simply reflects a small-scale variation in drift velocity with latitude since white spots and dark spots (for instance) in any given region do not necessarily average to the precise same latitude.

The size-frequency tables are similar for the three regions in showing a peak frequency near 5 km . This may represent a true preferred size for eddies on Jupiter, but more likely this simply reflects the setting in of incompleteness in the tabulations of the less-well-definod spots smaller than \(5^{\circ}\) due to resolution limitations of the photogrephs. The incremental population index of the spot size distribution is about -3 in the range 5 to 20 degrees; -3 is a dimensionally significant population index and should be compared with other meteorolocical scale distributions.

The mean sizes and mean proportions of the spots are similar in the three regionss however, the distributions of spots by type show significant differences.

The sorting of spots in all latitudes into difierent eroupings,
presented in Appendix C, demonstrabes surprimingly few strong correlations between spot characteristics. Among the relationships which do seem significant are the tendency Eor dark spots to be rounder in comparison to more longitudinally-extended light spots, and the tendency for shorter spots to be rounder than the more longitudinally elongated longer spots. This last correlation may be expressed as a tendency for spots to be of relatively constant latitudinal width despite the longitudinal extension -undoubtedly due to the strong'zonality of Jupiter's atmosphere imposed by the planet's rapid rotation. Note also that longer spots tend to vary in length during their lifetimes more than do the shorter ones.

The results on the lifetimes of spots are, unfortunately, relatively inconclusive in this preliminary reduction \(0 \hat{S}\) the charts. The size-lifetine tables show little relationship between those parameters. Appendix A would seen to suggest that the lifetimes of spots in the NEBZ (the region of strong shear) are less than in the other regions, as one micht expect, but observational bias renders the fact uncertain. As the column labelled "MHY" in the spot tabulations indicates, the general complexity of the MEBZ and the higrily variable rates of drift in that region, render dirficult the reliable determination of lifetimes; these uncertainties would bias against reliable determinations particularly of long lifetines. Even for the relatively predictable NEBn, about half of the spots have completely undetermined true lifetimes. Further consideration of the problems of determining spot lifetimes from the patrol photographs is in progress.

Preliminary comparison of the spot tabulations with the reduction Of amateur astronomers' data for the same period (Budine, 1968), reveals many disacreements. Consideration of the reasons for these disacreements
would be a fruitful direction for further research, especially since comprehensive reductions of the photorraphic patrol plates such as this one are not being planned on a regular basis and the amateur reductions will be the only published information on Jupiter's spots for some years to come.

\section*{VI. ACGHOLLEDGETETTS}

I first wish to thank Prof. Raymond Hide for his guidance and encouragement in early phases of my wort on the Jupiter photographs. His enthusiasm for the study rekindled my earlier interest as a teenager in observational studies of Jupiter. Prof. Victor Starr has been very kind and concerned in overseeing the thesis to its completion. I have had useful discussions eith Dr. Norman Gaut and Dr. Norman Macdonald. Ny wife Jennalyn dia the typing and was quite patient during the hectic last two weeks.

The preparation of the photographic prints used for constructing the charts which served as the basịs for this thesis was carried out under sub-contract to M.I.T. by New Mexico State University. Xr: Bradford Smith, Zr. Elmer Reese, Mr. Thomas Kirby, and the rest of the staff of the IN.M.S.U. Observatory were very cooperative throughout the project and hospitable during several lengthy visits I made to New Mexico. Mr. R. B. Minton was particularly helpful in solving some practical problems in producing the prints, most of which were made by Nrs. Judy Solberg.

The construction of the charts, as well as the first part of my research assistantship, was supported by N.S.F. Grant GP 5053. The last terms of my assistantship, and minor additional costs in the analysis were supported by Contract AF99628-67-00229 to the Air Force Cambridge Research Laboratories.

\section*{VII. REFEREMCES}

Budine, P. W., 1968, Jupiter in 1966-67: Rotation Periods, Journal of the Association of Lunar and Planetary Observers, 21, 13-23.

Chapman, C. R., 1962, The 1961 A.L.P.O. Simultaneous Observation Program, Journal of the Association of Lunar and Planetary Observers, 10, 56 69 .

Chapman, C. R., 1968a, The Discovery of Jupiter's Red Spot, Sky and Telescope, 35, 276 - 278.

Chapman, C. R., 1968b, Momentum Transfer in Jupiter's Atmosphere, unpublished manuscript.

Hide, R. and Chapman, C. R., 1968, in preparation.
Macdonald, N. J., 1967, The Dependence of the Kotion of Cyclonic and Anticyclonic Vortices on their Size, Journal Atmos. Sci., 24, 449452.

Peek, B. M., 1958, The Planet Jupiter (London: Faber and Faber).
Reese, E. J., 1962, Rotation Periods on Jupiter During the Apparition of 1961-52, Journal of the Association of Lunar and Planetary Observers, 16, 193 - 205.

Reese, E. J. and Smith, B. A., 1966, A Rapidly Moving Spot on Jupiter's North Temperato Belt, Icarus, 5, 248 - 257.

\section*{VIII. APPENDIOES}

These appendices contain tables printed out by the computer and comprise the quantitative results of the present study. The tables are not numbered but come in 4 parts.
(A.) The first appendix lists the characteristics of the spot populations in each of the currents studied. The tabulations are selfexplanatory and are described in Section IV-B.
(B.) The second appendix comprises the tabulations, by current, of all the individual spots measured or generated as probable or possible conglomerates. The columns are as follows. First page: (1) Spot reference number; (2) Limiting day numbers on which snot was observed (Jov.2, \(1966=\) day 1); (3) Projected longitude on date of opposition (day 80); (4) Number of observations of the snot; (5) Mean 30-day drift (degrees); (6) Rotation period; (7) Dark \(=1\), licht \(=2\); (8) Fuzzy \(=1\), medium \(=2\), sharp = 3; (9) Spot proportions, \(1=\) long, \(3=\) round, \(5=\) tall, \(0=\) border; (10) Spot type: \(0=\) round or oval, \(1=\) fostoon, 2 = wave or projection, \(3=\) angular, \(4=\) amorphous, 5 = variable shape, 6 preceding border, \(7=\) following border; (11) Length in degrees; (12) Ratio of deviation in length to length; (13) Short-term deviation in drift (ciegrees). Second page: (1) Spot reference number; (2-4) 30-day drifts during list; 2nd, and last thirds of period; (5) Nean deviation of succesive 30-day drifts; (6) Lifetimes; (7) Reasons why snot not followed before or after observed pcriod (see Sect. III-B); (8) Days when particularly prominent.
(c.) The third appendix lists the mean characteristics of 12 sub-divisions of all the spots. These tabulations are also selfoexplanatory.
(D.) The last appendix is short and is a tabulation of the life-time-length and lifetime-area relationship, as described in Sect. IV-D.

Note: In these appendices, asterisks are used in place of blanks. These usually indicate that there were no computed numbers in the particular category, usually because of no data. Several cases probably exist where numbers are omitted because of computational errors; the computer was programmed to store numbers larger than permissible by the output format for a variety of situations in which input data inconsistent with the locical flow of the program would otherwise have yielded incorrect results.

\section*{APPENDIX A}

\section*{Characteristics of Currents}

Note: As can be seen from the spot tabulations in Appendix B, only three currents (NEBZ, NESn, NTB) have a sufficiently large population of spots to permit meaningful intercomparisons of the mean characteristics given in Appendix \(A\).

FOR DEFINITE AND PROBABLE SPOTS

MFAN 30-DAY DRIFT, ALL SPOTS, WEIGHTED BY NO. OF DBSERVATIONS = -32.1 AV. DEV= 22. 37 MEAN ORIFT, ALL SPOTS (ORSVD LIVES 10.DAYS DR MORE), UNWEIGHTED = -26.7 AV. DEV \(=16.38\) MEAN DRIFT, DARK SPOTS (OVER 10 DAYSI, UNWEIGHTED -44.6 AV. DEV= 30.22
MEAN DRIFT, LIGHT SPOTS (OVER 10 DAYSI, UNWEIGHTED \(=16.7\) AV. DEV \(=3.30\)
MEAN DRIFT, SMALL SPOTS IUNNEIGHTEDI \(=-21.4\) AV. DEV \(=10.25\)
MEAN DRIFT, LARGE SPDTS (UNWFIGHTED) \(=-14.7\) AV. DEV \(=2.88\)
MEAN DRIFT, DARK SPOTS (WEIGHTED)= -42.3 AV. DEV= 23.70
MEAN DRIFT, LIGHT SPOTS (WEIGHTED) \(=-29.0\) AV. DEV \(=20.87\)
MEAN DRIFT, SMALL SPOTS (WEIGHTED) \(=-33.6\) AV. DEV \(=23.92\)
MEAN DRIFT, LARGE SPOTS (WEIGHTED) \(=-21.5\) AV. DEV \(=9.02\)
FOK DEFINITE, PROBABLE, AND POSSIBLE SPOTS
```

MEAN 30-DAY DRIFT, ALL SPOTS, WEIGHTED BY NO. OF OBSERVATIONS = -32.9 AV. DEV= 23.19
MEAN DRIFT, AL1. SPOTS (ORSVO LIVES 10 DAYS OR MORE), UNWEIGHTED = -30.4 AV. DEV= 19.79
MEAN DRIFT, DARK SPOTS (OVER 10 DAYSI, UNWFIGHTED -47.4 AV. DEV= 28.02
MEAN DRIFT, LIGHT SPOTS IOVER 10 DAYS), UNWEIGHTED= -21.2 AV. DEV= 9.34
MFAN IRIFT, SMALL SPOTS (UNNEISHTED) = - ?4.8 AV. DEV= 13.83
MFAN DRTFT, LARGE SPOTS (UNWFIGHTEN) = -31.1 AV. DFV= 21.79
MEAN DRIFT, DARK SPOTS (WFIGHTFD)= -44.7 AV. DEV= 24.62
MEAN DRIFT, LIGHT SPOTS PWFIGHTFDI=-29.? AV. DEV= 20.85
MEAN DRIFT, SMALL SPOTS (WEIGHTFD) = -34.2 AV. DEV= 24.73
MEAN CRIFT, LARGE SPOTS (WEIGHTED) =-23.5 AV. DEV=12.07

```
```

THE NEBZ CURRENT
FCR DEFINITE AND PROBABLE SPOTS

```
```

MEAN CF LONG-TERM DEVIATIONS FROM SPOTS' MEAN DRIFTS= 1.50

```

```

MEAN DRIFT, ALL SPOTS, FIRST 3RD OF APPARITION= -14.4
MEAN ORIFT, ALL SPOTS, SECONC 3RD OF APPARITION= ******
MEAN DRIFT, ALL SPOTS, LAST 3RD CF APPARITION= *******
MEAN LIFFTIMF (DAYSI, ALL SPOTS WITH DEFINITE CR PRORABLE LIFETIMES COMPUTED= 34.5
MEAN PROPORTION, ALL SPOTS= 2..3
MEAN LENGTH OF ALL SPOTS= 5.6
MFAN RATIO OF TYPICAL DEVIATIONS IN LENGTH TO LENGTH, ALL SPOTS, (WEIGHTED)= O. 26

```
DISTRIRUTION OF SPOTS RY LENGTH (DEGREES)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline LFNGTH= & 0-1 & 1-2 & 2-3 & 3-4 & 4-5 & 5-6 & 6-7 & 7-8 & 8-9 & 9-10 & \\
\hline \(N \times 2 / \mathrm{FE}=\) & 0.0 & 0.5 & 17. 5 & 30.5 & 49.0 & 199.0 & 94.5 & 1.0 & 0.5 & 45.0 & \\
\hline LFNGTr= & 10-11 & 11-12 & 12-13 & 13-14 & 14-15 & 15-16 & 16-17 & 17-18 & 18-19 & 19-20 & \% \\
\hline N X LIFE= & 0.0 & 0.5 & 104.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline LENGTH= & 20-21 & 21-22 & 22-23 & 23-24 & 74-25 & 25-26 & 26-27 & 27-28 & 28-29 & 29-** & \\
\hline \(N \times 1\) IFE= & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline
\end{tabular}

\section*{DISTRIBUTION QF SPOTS RY TYPE}
\begin{tabular}{lcccccccccc}
TYPE & OVAL & SLANT FESTOON & WAVE & ANGULAR & AMORPHOUS & VARIABLE & PREC. END & FOL. END \\
NUMBER & 28 & 0 & 0 & 1 & 14 & 7 & 7 & 7
\end{tabular}

FOR DEFINITE SPOTS
MEAN 30-DAY DRIFT, ALL SPOTS, NEIGHTED RY NO. OF OBSFRVATIONS = -13.1 AV. DEV= 2.69 MEAN DRIFT, ALL SPOTS (OBSVD LIVES 10 DAYS DR MORE). UNWEIGHTED \(=-12.3 \quad A V . D E V=3.49\) MFAN DRIFT, DARK SPOTS (OVER 10 DAYS), UNWEIGHTED -11.6 AV. DEV= 3.79
MEAN DRIFT, LIGHT SPOTS (DVER 1O DAYS), UNVEITHTED = -12.9 AV: DEV= 3.38
MEAN DRIFT, SMALL SPOTS (UNWEIGHTED) \(=-12.7 \quad A V . D E V=3.36\)
MFAN DRIFT, LARGE SPOTS (UNWEIGHTED) \(=-1.7 .4 \quad A V\). DEV \(=3.08\)
MEAN DRIFT, DARK SPOTS (WEIGHTED) \(=-12.6\) AV. DEV \(=2.69\)
MEAN CRIFT, LIGHT SPOTS (WEIGHTED) \(=-13.3\) AV. DEV \(=2.72\)
MEAN DRIFT, SMALL SPOTS (WEIGHTED) \(=1.3 .1 \cdot A V\). DEV \(=2.95\)
MFAN DRIFT, LARGE SPOTS (WFIGHTED) \(=-13.3\) AV. DEV \(=1.83\)

\section*{FOR DEFINITE AND PROBABLE SPOTS}

MEAN 30-DAY DRIFT, ALL SPOTS, WEIGHTED BY NO. DF OBSERVATIONS = -13.1 AV. DEV= 2.47
MEAN DRIFT, ALL SPOTS (OBSVD LIVES 10 DAYS OR MDRE), UNWEIGHTED = -12.5 AV. DEV= 3.27

MEAN DRIFT, DARK SPOTS (OVER 10 DAYS), UNWEIGHTED -11.6 AV. DEV= 3.79
MEAN DRIFT, LIGHT SPOTS (OVER 10 DAYS), UNWEIGHTED \(=13.1\) AV. DEV= 3.01.
MEAN DRIFT, SMALL SPOTS (UNWEIGHTED) \(=-12.8\) AV. DEV= 2.97
MEAN DRIFT, LARGE SPOTS (UNWEIGHTED) \(=-1.2 .6 \quad\) AV. DEV \(=3.27\)
MEAN DRIFT, DARK SPOTS (WEIGHTED) \(=-12.6\) AV. DEV= 2.69
MEAN DRIFT, LIGHT SPOTS (WEIGHTED) \(=-13.3\) AV. DEV= 2.35
MEAN DRIFT, SMALL SPDTS (WEIGHTED) \(=-13.0\) AV. DEV= 2.53
MEAN DRIFT, LARGE SPOTS (WEIGHTED) \(=-13.8 \quad A V\). DEV \(=1.98\)
FOR DEFINITE, PROBABLE, AND POSSIBLE SPOTS
MEAN 30-DAY DRIFT, ALL SPOTS, WEIGHTED RY NO. OF OBSERVATIONS = -13.1 AV. DEV= 2.47 MEAN DRIFT, ALL SPOTS (DRSVD LIVES 10 DAYS IIR MORE), UNWEIGHTED = -12.5 AV. DEV= 3.27
MEAN DRIFT, DARK SPOTS IOVFR 10 DAYSI, UNWEIGHTED -11.6 AV: DEV \(=3.79\)
MEAN DRIFT, LIGHT SPOTS (OVER 10 DAYS), UNWEIGHTED = -13.1 AV. DEV= 3.01
MEAN DRIFT, SMALL SPOTS (UNWEIGITTED) \(=-12.8 \quad A V \cdot D E V=2.97\)
MEAN DRIFT, LARGE SPOTS (UNWEIGHTED) \(=-17.6\) AV. DEV \(=3.27\)
MEAN CRIFT, DARK SPOTS \((W E I G H T E D)=-12.6\) AV. DEV= 2.69
MEAN DRIFT, LIGHT SPOTS (WEIGHTED) \(=-13.3\) AV. DEV \(=2.35\)
MEAN DRIFT, SMALL SPOTS (WEIGHTFD) \(=-13.0\) AV. DEV= 2.53
MEAN DRIFT, LARGE SPOTS \((W E\{G H T F D)=-13.8\). AV. DEV \(=1.98\)

DISTR IBUTION OF SPOTS BY LENGTH (DEGREES)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & LFNGTH= & \(0-1\) & 1-2 & 2-3 & 3-4 & 4-5 & 5-6 & 6-7 & 7-8 & 8-9 & 9-10 \\
\hline \% & \(N \times 1 / \mathrm{FE}=\) & 0.0 & 0.5 & 137.0 & 644.5 & 435.0 & 207.0 & 432.0 & 268.0 & 36.0 & 41.0 \\
\hline & LENG TH= & 10-11 & 11-12 & 12-13 & 13-14 & 14-15 & 15-16 & 16-17 & 17-18 & 18-19 & 19-20 \\
\hline & N \(\times\) LIFE= & 99.0 & 133.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline & LENGTH= & 20-21 & 21-22 & 22-23 & 23-74 & 24-25 & 25-26 & 26-27 & 27-28 & 28-29 & 29-** \\
\hline & \(N \times\) LIFE= & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

DISTRIBUTION OF SPOTS BY TYPE
\begin{tabular}{lcccccccccc}
TYPF & OVAL & SLANT FESTOON & WAVE & ANGULAR & AMORPHOUS & VARIABLE & PREC. END & FOL. END \\
NUMPFR & 21 & 0 & \(?\) & 1 & 11 & 7 & 7 & 7 & 7
\end{tabular}

\section*{THE NTRZ CURRENT}

\section*{FOR DEFINITE SPOTS}
```

MEAN 30-DAY DRIFT, ALL SPOTS, WEIGHTED BY NT. OF ORSERVATIONS = -14.3 AV. DEV= 3.87
MEAN DRIFT, ALL SPOTS IORSVD LIVES 1O DAYS OR MOREI, UNWEIGHTED= -11.7 AV. DEV= 0.0
MEAN DRIFT, DARK SPOTS (OVER 1O DAYS), UNWEIGHTED ****** AV. DEV = *****
MEAN DRIFT, LIGHT SPOTS (OVER 10 DAYS), UNWEIGHTEO = -11.7 AV. DEV= 0.0
MEAN DRIFT, SMALL SPOTS (UNWEIGHTED) = ****** AV DEV= ******
MEAN DRIFT, LARGE SPOTS (UNWFIGHTED) = -1.1.7 AV. DEV = 0.0
MEAN DRIFT, DARK SPOTS (WFIGHTED)= ****** AV. DEV= ******
MEAV CRIFT, LIGHT SPDTS (WEIGHTED)=-14.3 AV. DEV= 3.87
MFAN DRIFT, SMALL SPOTS (WFIGHTED) = -21.4 AV. DEV= 0.0
MEAN DRIFT, LARGE SPOTS (WEIGHTED) = -11.7 AV. DEV = 0.0
FOR DEFINITF AND PROBARLE SPOTS
MEAN 30-DAY DRIFT, ALL SPOTS, WEIGHTED RY NH. OF OBSERVATIONS $=12.8 \quad$ AV. DEV $=1.48$ MEAN DRIFT, ALL. SPOTS (OBSVD LIVES 10 DAYS OR MORE), UNWEIGHTED $=-13.3$ AV. DFV= 1.67 MEAN DRIFT, DARK SPOTS (OVER 10 DAYS), UNWEIGHTED ****** AV. DEV= *****
MEAN DRIFT, LIGHT SPOTS (OVFR 10 DAYS), UNWEIGHTED $=-13.3$ AV. DEV= 1.67
MFAN DRIFT, SMALL SPOTS (UNWEIGHTED) = -15.0 AV. DEV= 0.0
MEAN DRIFT, LARGE SPOTS {UNWEIGHTEO) = -11.7 AV. DEV= 0.0
MEAN DRIFT, DARK SPOTS (WEIGHTED)= ****** AV. DEV= *****
MEAN DRIFT, LIGHT SPOTS (WEIGHTED) = -12.8 AV. DFV= 1.48
MEAN DRIFT, SMALL SPOTS (WEIGHTED) = -15.0 AV. DEV= 0.0
MEAN DRIFT, LARGE SPOTS (WEIGHTFD) = -11.7 AV. DEV = 0.0

```

FOR DEFINITE, PRORABLE, AND POSSIBLE SPOTS
MEAN 30-DAY DRIFT, ALL SPOTS, WEIGHTEL BY NO. OF ORSERVATIONS \(=-12.8 \quad\) AV. DEV= 1.48 MEAN DRIFT, ALL SPOTS KOBSVD LIVES 10 OAYS OR MOREI, UNWEIGHTED \(=-13.3 \quad A V \cdot D E V=1.67\)
MEAN DRIFT, DARK SPOTS IOVER 10 DAYS), UNWFIGHTED \(* * * * * *\) AV. DEV \(=* * * * *\)
MEAN DRIFT, LIGHT SPOTS (IVER 10 OAYS), UNWEIGHTED \(=-13.3\) AV. DEV \(=1.67\)
MFAN DRIFT, SMALL SPOTS (UNWEIGHTED) \(=-15.0 \quad\) AV. DEV \(=0.0\)
MFAN DRIFT, LARGE SPOTS (IJNWEIGHTED) \(=-11.7 \quad A V . D E V=0.0\)
MEAN DRIFT, DARK SPOTS (WEIGHTEO) \(=\) ****** AV. DEV \(=\) *****
MEAN LRIFT, LIGHT SPOTS (WFIGHTED) \(=-12.8 \quad\) AV. DEV \(=1.48\)
MEAN DRIFT, SMALL SPOTS (WEIGHTFD) \(=-15.0 \quad\) AV. DEV \(=0.0\)
MEAN DRIFT, LARGE SPOTS (WEIGHTED) \(=-11.7\) AV. DEV \(=0.0\)
```

THE NTRZ CURRENT
FOR DEFINITE AND PROBABLE SPOTS
MEAN LIFETIME (DAYS). ALL SPOTS WITH DEFINTTE OR PROBABLE LIFETIMES COMPUTED=. *****
MEAN RATIO OF TYPICAL DEVIATIONS IN LENGTH TO LENGTH, ALL SPOTS, (WEIGHTFD)= O.O8

```

MEAN OF LONG-TERM DEVIATIONS FROM SPOTS' MFAN DRIFTS= *****
MEAN CF TYPICAL SHORT-TFRM DEVIATIONS (DEG.) FROM SPOTS M MEAN POSITIONS= ***** MEAN DRIFT, ALL SPOTS. FIRST 3RD OF APPARITIDN= ******
MFAN DRIFT, ALL SPITTS, SECOND \(3 R D\) OF APPARITION \(=\). \(k * * * * *\)
MEAN DRIFT, ALL SPחTS, LAST 3RD OF \(\triangle P P A R I T I O N=* * * * * *\)

MEAN PROPORTION, ALL SPOTS \(=3.4\)
MEAN LENGTH OF ALL SPOTS \(=5.1\)

DISTRIRUTION OF SOOTS BY LENGTH (DEGREES)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline TYPE & OVAL & SLANT & FESTOON & WAVE & ANGULAR & AMORPHOUS & VARIABLE & PREC. END & FOL. \\
\hline NUMBER & 5 & & 2 & 4 & 0 & 1 & 0 & 7 & 7 \\
\hline
\end{tabular}

\section*{the NTBS CURRENT}

FOR DEFINITE SPOTS

FOR DEFINITE, pROBABLE, AND posSible spots
MEAN 3O-DAY DRIFT, ALL SPOTS, WEIGHTED RY NO. OF DBSERVATIONS = 32.7 AV. DEV=. O.O MEAN DRIFT. ALL SPOTS (OBSVD LIVES 10 DAYS OR MORE), UNWEIGHTED \(=32.7 \quad A V . D E V=0.0\) MEAN DRIFT, DARK SPOTS IOVER 10 DAYSI, UNWEIGHTED ****** AV. DEV= ***** MEAN DRIFT, LIGHT SPOTS (OVER 10 DAYS), UNWEIGHTED \(=32.7\) AV. DEV= 0.0
MEAN DRIFT, SMALL SPOTS (UNWEIGHTEO) \(=32.7\) AV. DEV \(=0.0\)
MEAN DRIFT, LARGE SPOTS (UNWEIGHTED) \(=* * * * * * \quad A V \cdot D E V=* * * * *\)

MEAN DRIFT, LIGHT SPOTS (WEIGHTEN) \(=32.7\) AV. DEV \(=0.0\)
MEAN CRIFT, SMALL SPOTS (WFIGHTFD) \(=32.7\) AV. DEV \(=0.0\)
MEAN DRIFT, LARGE SPOTS (WEIGHTED) \(=* * * * * * ~ A V . ~ D E V=* * * * *\)
```

    THE NTBS CURRENT
    FOR DEFINITE ANO PROBARLE SPOTS

```
MEAN OF LONG-TERM DEVIATIONS FROM SPOTS' MEAN DRIFTS= *****
MEAN CF TYPICAL SHORT-TERM DEVIATIONS (DFG.) FROM SPOTS: MEAN POSITIONS= *****
MEAN DRIFT. ALL SPOTS, FIRST 3RC OF APPARITION= ******

MEAN LIFETIME (DAYS), ALL SPOTS WITH DFFINITE OR PROBABLE LIFETIMES COMPUTED= *****
MEAN PROPORTION, ALL SPOTS= 1.0
MEAN LENGTH OF ALL SPOTS = 6.0
MEAN RATIO OF TYPICAL DEVIATIONS IN LENGTH TO LENGTH, ALL SPOTS, \(\langle W E I G H T E D\}=0.17\)

DISTRIBUTION OF SPOTS BY LENGTH (DEGREES)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline LFNGTH= & 0-1 & 1-2 & 2-3 & 3-4 & 4-5 & 5-6 & 6-7 & 7-8 & 8-9 & 9-10 & \\
\hline N \(\times 1\) IFE= & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 22.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline LENGTH= & 10-11 & 11-12 & 12-13 & 13-14 & 14-15 & 15-16 & 16-17 & 17-18 & 18-19 & 19-20 & \(\omega\) \\
\hline N×LIFE= & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline LFNGTH= & 20-71 & 21-22 & 22-23 & 23-24 & 74-25 & 25-26 & 26-27 & 27-28 & 28-29 & 29-** & \\
\hline \(N \times L I F E=\) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\
\hline
\end{tabular}

DISTRIBUTION OF SPOTS BY TYPE
\begin{tabular}{lccccccccc}
TYPE & OVAL & SLANT FESTOON & WAVE & ANGULAR & AMORPHOUS & VARIABLE & PREC. END & FOL. END \\
NUMBER & 2 & & 0 & 2 & 0 & 1 & 1 & 7 & 7
\end{tabular}

\section*{FOR DEFINITE SPOTS}
```

MEAN 30-DAY DRIFT, ALL SPQTS, WEIGHTED RY NO. OF OBSERVATIONS = 18.0 AV. DEV= 10.10
MEAN DRIFT, ALL SPOTS (OBSVD LIVES 10 DAYS OR MORE), UNWEIGHTED = . P1.2 AV. DEV= 6.74
MEAN DRIFT, DARK SPOTS (OVER 10 DAYSI, UNWEIGHTED 20.6 AV. DEV=. 8.22
MEAN DRIFT, LIGHT SPOTS (OVER 1O DAYS), UNWEIGHTED = 23.1 AV. DEV = 2.62
MEAN [RIFT, SMALL SPOTS (UNWEIGHTED) = 20.8 AV. DEV = 6.93
MEAN DRIFT. LARGE SPOTS (UNWEIGHTED) = 22.3 AV. DEV = 5.82
MEAN DRIFT, DARK SPOTS (WEIGHTED) = 16.6 AV. DEV= 11.24
MEAN DRIFT, LIGHT SPOTS (WFIGHTED) = - 23.4 AV. DEV = 3.74
MEAN DRIFT, SMALL SPOTS.(WEIGHTED) = 17.G AV. DEV= 11.21
MEAN DRIFT, LARGE SPOTS (WFIGHTFD) = 19.9 AV. DEV= 7.26
FOR DEFINITE ANO PROBABLE SPOTS
MEAN 30-DAY DRIFT, ALL SPOTS, WEIGHTED BY NO. OF OBSERYATIONS = 18.1 AV. DEV=10.04
MEAN DRIFT, ALI SPOTS IORSVD LIVES 10 DAYS OR MORE), UNWEIGHTED = 21.1 AV. DEV= 6.84
MEAN DRIFT, DARK SPOTS IOVER 1O DAYSI, UNWEIGHTED 20.3 AV. DEV= 8.33
MEAN DRIFT, LTGHT SPOTS IDVER 1O DAYS), UNWEIGHTED = 23.4 AV. DEV= 2.48
MEAN DRIFT, SMALL SPOTS (UNWEIGHTFD) = 20.5 AV. DEV = 7.23
MEAN DRIFT, LARGE SPOTS {IJNNEIGHTEDY = 22.1 AV. DEV= 5.85
MEAN DRIFT, DARK SPOTS (WEIGHTED)= 16.7 AV. DEV= 11.30
MEAN DRIFT, LIGHT SPOTS (WEIGHTED) = 23.4 AV. DEV= 3.5?
MEAN DRIFT, SMALL SPOTS (WEIGHTED) = 17.0 AV. DEV= 11.79
MEAN DRIFT, LARGE SPITS (WEIGHTED) = 19.7 AV. DEV= 7.38
FCR definite, probable, and possible spots

```
```

MEAN 30-DAY DRIFT, ALL SPOTS, WEIGHTED BY NO. OF OBSERVATIONS = 18.1 AV. DEV = 10.05

```
MEAN 30-DAY DRIFT, ALL SPOTS, WEIGHTED BY NO. OF OBSERVATIONS = 18.1 AV. DEV = 10.05
MEAN DRIFT, ALL SPOTS (OBSVD LIVES 10 DAYS חR MOREI, UNWFIGHTED = 21.2 AV. DEV= 6.73
MEAN DRIFT, ALL SPOTS (OBSVD LIVES 10 DAYS חR MOREI, UNWFIGHTED = 21.2 AV. DEV= 6.73
MEAN DRIFT, DARK SPOTS (DVER 1O DAYS), UNWEIGHTED 20.4 AV. DEV= 8.19
MEAN DRIFT, DARK SPOTS (DVER 1O DAYS), UNWEIGHTED 20.4 AV. DEV= 8.19
MEAN DRIFT, LIGHT SPOTS INVER 10 DAYSI, UNWEIGHTFD = 23.4 AV DEV= 2.48
MEAN DRIFT, LIGHT SPOTS INVER 10 DAYSI, UNWEIGHTFD = 23.4 AV DEV= 2.48
MFAN DRIFT, SMALL SPOTS (UNWEIGHTED) = 20.5 AV. DEV= 7.23
MFAN DRIFT, SMALL SPOTS (UNWEIGHTED) = 20.5 AV. DEV= 7.23
MEAN DRIFT, LARGE SPחTS (UNWEIGHTED) = 22.3 AV. DEV= 5.62
MEAN DRIFT, LARGE SPחTS (UNWEIGHTED) = 22.3 AV. DEV= 5.62
MFAN ORIFT, DARK SPOTS (WFIGHTED)= 16.7 NV. DEV= 11.29
MFAN ORIFT, DARK SPOTS (WFIGHTED)= 16.7 NV. DEV= 11.29
MEAN DRIFT, LIGHT SPOTS (WEIGHTED) = 23.4 AV. DEV = 3.52
MEAN DRIFT, LIGHT SPOTS (WEIGHTED) = 23.4 AV. DEV = 3.52
MEAN DRIFT, SMALL SPOTS (WEIGHTED) = 17.0 AV. DEV= 11.79
MEAN DRIFT, SMALL SPOTS (WEIGHTED) = 17.0 AV. DEV= 11.79
MEAN DRIFT, LARGE SPOTS (WEIGHTED) = 19.6 AV. DEV= 7.50
```

MEAN DRIFT, LARGE SPOTS (WEIGHTED) = 19.6 AV. DEV= 7.50

```
```

THE NTR CURRENT
FOR DEFINITF AND PROBABLE SPOTS

```
```

MEAN OF LONG-TERM DEVIATIONS FROM SPOTS' MEAN DRIFTS= 2.23
MEAN OF TYPICAL SHORT-TERM DEVIATIONS IDEG.) FROM SPOTS' MEAN POSITIONS= *****
MEAN DRIFT, ALL SPOTS, FIRST 3RD OF APPARITION= 16.3
MFAN ORIFT, ALL SPOTS, SFCOND 3RD OF APPARITION= 22.6
MEAN DRIFT, ALL SPOTS, LAST 3RD OF APPARITIDN= *******
MFAN LIFETIME (DAYSI, ALL SPOTS WITH DEFINITE OR PROBABLE LIFETIMES COMPUTED= 88.2
MEAN PROPCRTION, ALL SPCTS= 2.2
MFAN LENGTH OF ALL SPOTS= ****
MEAN RATIO OF TYPICAL DEVIATIONS IN LENGTH TO LFNGTH, ALL SPOTS, (WEIGHTED)= 0.23

```
distribution of spots by length (degrees)

\section*{THE NNTRS CURRENT}

\section*{FOR DEFINITE SPOTS}

FOR DEFINITF AND PROBABLE SPOTS
MEAN 30-DAY DRIFT, ALL SPOTS, WEIGHTED BY NO. OF OBSERVATIONS = -3.3 AV. DEV= 4.82 MEAN DRIFT, ALL SPOTS (OBSVD LIVES 10 DAYS OR MORE), UNWEIGHTED \(=-1.2\) AV. DEV= 5.76 MEAN DRIFT, DARK SPOTS (OVER 10 JAYS), UNWFIGHTED 0.8 AV. DEV \(=6.82\)
MEAN DRIFT, LIGHT SPOTS IOVER 10 DAYSI, UNWEIGHTED \(=\mathbf{- 3 . 6}\) AV . DEV \(=\mathbf{4 . 3 1}\)

MFAN DRIFT, SMALL SPOTS (UNWFIGHTED) \(=1.2\) AV. DEV= 5.91
MEAN DRIFT, LARGE SPOTS (UNWEIGHTED) \(=4.4 .3 \quad A V \cdot D E V=3.39\)
MEAN DRIFT, DARK SPDTS (WEIGHTED) \(=-3.0 \quad A V\). DEV \(=4.89\)
MEAN DRIFT, LIGHT SPOTS (WFIGHTED) \(=-3.8 \quad\) AV. DEV \(=4.36\)
MEAN DRIFT, SMALL SPOTS (WEIGHTED) \(=-4.2 \quad \mathrm{AV} . \mathrm{DEV}=6.22\)
MEAN DRIFT, LARGE SPOTS (WEIGHTED) \(=-3.3 \quad \mathrm{AV}\). DEV \(=2.85\)
FCR DEFINITE, PROBABLE, AND POSSIBLE SPOTS
MEAN 30-DAY DRIFT, ALL SPOTS, WEIGHTED BY NO. OF OBSERVATIONS = -3.3 AV. DEV= 4.82
MEAN DRIFT, ALL SPOTS IOBSVD LIVES 10 DAYS MR MOREI, UNWEIGHTED \(=-1.2\) AV. DEV= 5.76
MEAN DRIFT, DARK SPOTS IOVER 10 DAYSI, UNWEIGHTED 0.8 AV. DEV \(=6.82\)
MFAN DRIFT, LIGHT SPOTS IOVER 10 DAYS), UNWEIGHTED \(=\mathbf{- 3 . 6} A V \cdot D E V=4.31\)
MEAN DRIFT, SMALL SPOTS (UNWEIGHTED) \(=-1.2 \quad A V\). DFV \(=5.91\)
MEAN DRIFT, LARGE SPOTS (UNWEIGHTED) \(=-4.4\) AV. DEV \(=3.39\)
MEAN CRIFT, DARK SPCTS (WEIGHTEC) \(=-3.0\) AV. DEV \(=4.89\)
MFAN DRIFT, LIGHT SPOTS (WEIGHTED) \(=-3.8 \quad A V\). DEV \(=4.36\)
MEAN DRIFT, SMALL SPOTS (WEIGHTFD) \(=-4 . ? \quad\) AV. DFV \(=6.22\)
MEAN DRIFT, LARGE SPOTS \((\) WEIGHTED) \(=-3.3 \quad\) AV. DEV \(=2.85\)
the nntrs current
FOR DEFINITF AND PROBABLE SPOTS
```

MEAN OF LONG-TERM DEVIATIONS FROM SPOTS' MEAN ORIFTS= 2.06
MEAN OF TYPICAL SHORT-TERM DEVIATIONS (DEG.) FROM SPOTS' MEAN POSITIONS= 3.43
MEAN DRIFT, ALL SPOTS, FIRST 3RD OF APPARITION= -6.6
MEAN DRIFT, ALL SPOTS, SFCOND 3RD OF APPARITION= -5.0
MEAN DRIFT, ALL SPOTS, LAST 3RD OF APPARITION= *******
MEAN LIFETIME (DAYSI, ALL. SPOTS WITH DEFINITE OR PROBABLE LIFETIMES COMPUTED= ******
MEAN PROPORTION, ALL SPOTS = 2.5
MEAN LENGTH OF ALL SPOTS= 6.1
MEAN RATIO OF TYPICAL DFVIATIONS IN LENGTH TO'LENGTH, ALL SPOTS, (WEIGHTED)= 0.18

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & LENGTH= N. X LIFE= & \[
0-1
\] & \[
\begin{array}{r}
1-? \\
0.0
\end{array}
\] & \[
\begin{array}{r}
2-3 \\
3.0
\end{array}
\] & \[
\begin{aligned}
& 3-4 \\
& 46.0
\end{aligned}
\] & \[
\begin{array}{r}
4-5 \\
149.0
\end{array}
\] & \[
\begin{array}{ll}
5-6 \\
92 . & 0
\end{array}
\] & \[
\begin{aligned}
& 6-7 \\
& 57.0
\end{aligned}
\] & \[
\begin{array}{r}
7-8 \\
142.0
\end{array}
\] & \[
\begin{aligned}
& 8-9 \\
& 86.0
\end{aligned}
\] & \[
\begin{array}{r}
9-10 \\
0.0
\end{array}
\] \\
\hline & \[
\begin{aligned}
& \text { L.ENGTH= } \\
& \times \text { LIFE }
\end{aligned}
\] & \[
\begin{aligned}
& 10-11 \\
& 205.0
\end{aligned}
\] & \[
\begin{array}{r}
11-12 \\
0.0
\end{array}
\] & \[
\begin{array}{r}
12-13 \\
0.0
\end{array}
\] & \[
\begin{array}{r}
13-14 \\
0.0
\end{array}
\] & \[
\begin{array}{r}
14-15 \\
0.0
\end{array}
\] & \[
\begin{array}{r}
15-16 \\
0.0
\end{array}
\] & \[
\begin{array}{r}
16-17 \\
0.0
\end{array}
\] & \[
\begin{array}{r}
17-18 \\
0.0
\end{array}
\] & \[
\begin{array}{r}
18-19 \\
0.0
\end{array}
\] & \[
\begin{array}{r}
19-20 \\
0.0
\end{array}
\] \\
\hline & \[
\begin{aligned}
& \text { LENGTH }= \\
& N \times \text { LIFE= }
\end{aligned}
\] & \[
\begin{array}{r}
20-2.1 \\
0.0
\end{array}
\] & \[
\begin{array}{r}
21-27 \\
0.0
\end{array}
\] & \[
\begin{array}{r}
22-23 \\
0.0
\end{array}
\] & \[
\begin{array}{r}
23-2.4 \\
0.0
\end{array}
\] & \[
\begin{array}{r}
24-25 \\
0.0
\end{array}
\] & \[
\begin{array}{r}
25-26 \\
0.0
\end{array}
\] & \[
\begin{array}{r}
26-27 \\
0.0
\end{array}
\] & \[
\begin{array}{r}
27-28 \\
0.0
\end{array}
\] & \[
\begin{array}{r}
28-29 \\
0.0
\end{array}
\] & \[
\begin{array}{r}
29-\geqslant \% \\
0.0
\end{array}
\] \\
\hline
\end{tabular}

\section*{DISTRIBUTION OF SPITS BY TYPE}
\begin{tabular}{lcccccccc}
TYPE & OVAL & SLANT FESTOJV & WAVE & ANGULAR & AMORPHOUS & VARIABLE & PREC•END FOL. END \\
NUMBER & 12 & 2 & 2 & 0 & 3 & 0 & 7 & 7
\end{tabular}

\section*{THE NNTET CIJRRENT}

\section*{FOR DEFINITE SPOTS}
```

MEAN 30-DAY DRIFT, ALL SPOTS, WEIGHTED RY NO. OF OBSERVATIONS = -9.8 AV. DEV= 3.94
MEAN DRIFT, ALL SPOTS (OBSVD LIVES 10 DAYS DR MORE), UNWEIGHTED= - MO.3. AV. DEV= 3.62
MEAN DRIFT, DARK SPOTS (OVER 10 DAYSI, UNWEIGHTED -7.9 AV. DEV= 1.40
MFAN DRIFT, LIGHT SPOTS (DVER 10 DAYSI, UNWEIGHTED = -17.5 AV. DEV= 0.0
MFAN DRIFT, SMALL SPOTS (UNWEIGHTEO) = -17.5 AV. DEV= 0.0
MEAN DRIFT. LARGE SPOTS (INNWEIGHTES) = -10.0 AV. DEV= 0.0
MEAN DRIFT, DARK SPOTS (WEIGHTED)= -7.2 AV. DEV= l.46
MFAN DRIFT, LIGHT SPOTS {WEIGHTEN) = -17.5 AV. DEV= 0.0
MEAN DRIFT, SMALL SPOTS (WEIGHTED) = -17.5 AV. DFV= 0.0
MEAN DRIFT, LARGE SPOTS (WFIGHTED) = -10.0 AV: DEV= 0.0
FOR DEFINITE AND PROBABLE SPOTS
MEAN 30-DAY DRIFT, ALL SPOTS, WEIGHTED BY NO. OF OBSERVATIONS = -9.8 AV. DEV= 3.94
MFAN DRIFT, ALL SPOTS IOBSVD LIVES 10 DAYS OR MOREI, UNWEIGHTED = -10.3 AV. DEV= 3.62
MEAN DRIFT, DARK SPOTS (OVER 10 DAYS), UNWEIGHTED -7.9 AV. DEV= 1.40
MEAN DRIFT, LIGHT SPOTS IOVER 10 DAYSI, UNWEIGHTED $=-17.5$ AV. DEV = 0.0
MEAN DRIFT, SMALL SPOTS (UNWEIGHTED) $=-1.7 .5$ AV. DEV $=0.0$
MEAN ORIFT, LARGE SPOTS (UNWEIGHTED) $=-10.0$ AV. DEV= 0.0
MEAN DRIFT, DARK SPOTS (WEIGHTED) $=-7.2$ AV. DEV $=1.46$
MEAN DRIFT, LIGHT SPOTS (WEIGHTED) $=-17.5$ AV. DEV $=0.0$
MEAN DRIFT, SMALL SPOTS (WEIGHTFD) $=-17.5$ AV. DEV $=0.0$
MEAN DRIFT, LARGE SPOTS (WEIGHTEO) $=-10.0$ AV. DEV $=0.0$
FOR DEFINITE, PROBABLE, AND POSSIBLE SPOTS
MEAN 30-DAY DRIFT, ALL SPOTS, WEIGHTED BY NO. OF OBSERVATIONS = -9.8 AV. DEV= 3.94 MFAN DRIFT, ALL SPOTS (ORSVD LIVES 10 DAYS OR MORE), UNWEIGHTED = -10.3 AV. DEV= 3.62 MEAN DRIFT, DARK SPOTS (OVER 10 DAYS), UNWEICHTED -7.9 AV. DEV= 1.40 MEAN DRIFT, LIGHT SPOTS (OVER 10 DAYS), UNWFIGHTFD = -17.5 AV. DEV= 0.0
MEAN DRIFT, SMALL SPOTS (UNWEIGHTED) $=-17.5$ AV. DEV $=0.0$ MEAN DRIFT, LARGE SPOTS (UNWETGHTFD) $=-10.0$ AV. DEV $=0.0$
MEAN DRIFT, DARK SPOTS (WEIGHTED)= -7.2 AV. DEV= 1.46 MEAN DRIFT, LIGHT SPOTS (WEIGHTED) $=-17.5$ AV. DEV $=0.0$
MEAV DRIFT, SMALL SPOTS (WEIGHTED) $=-17.5$ AV. DEV $=0.0$
MEAN CRIFT, LARGF SPOTS (WEIGHTEO) $=-10.0$ AV. DEV= 0.0

```

THE NNTEZ CURRENT
FCR DEFINITE AND PROBABLE SPOTS

\begin{tabular}{lrrrrrrrrrrrr}
LENGTH \(=\) & \(0-1\). & \(1-2\) & \(2-3\) & \(3-4\) & \(4-5\) & \(5-6\) & \(6-7\) & \(7-8\) & \(8-9\) & \(9-10\) \\
\(N \times L I F E=\) & 0.0 & 0.0 & 0.0 & 0.0 & 53.0 & 0.0 & 0.0 & 12.0 & 0.0 & 0.0 \\
LENGTH \(=\) & \(10-11\) & \(11-12\) & \(12-13\) & \(13-14\) & \(14-15\) & \(15-16\) & \(16-17\) & \(17-18\) & \(18-19\) & \(19-20\) \\
N \(X I F E=\) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
LENGTH \(=\) & \(20-21\) & \(21-22\) & \(22-23\) & \(23-24\) & \(24-25\) & \(25-26\) & \(26-27\) & \(27-28\) & \(28-29\) & \(29-4 \pi\) \\
\(N \times L I F E=\) & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0
\end{tabular}

\section*{DISTRIRUTION OF SPOTS BY TYPE}
\begin{tabular}{lccccccccc}
TYPE & OVAL SLANT FESTOON WAVE ANGULAR & AMORPHOUS & VARIABLE PREC. END FOL. END \\
NUMBER & 3 & & 0 & \(?\) & 0 & 2 & 0 & 7 & 7
\end{tabular}

\section*{APPEIDIX B}

\section*{Tabulations of All Observed Spots}

Note: Tabulations for definite-and-probable and for definite-probablepossible spots are omitted in this appendix in those cases when they are identical to the tabulations which would have irmediately preceded them (i.e. when there are no additional probable or possible spots).

THE NEBZ CURRENT. NOV 1966-JUNE 1967.
DEFINITE SPOTS

NEBZ（CONTINUED）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SPOT & DRIFT1 & DR IFT2 & ORIFT3 & 30 CFV & LIFFTIME（SEE TEXT） & & WHY & PART & DATES PR & ROMINENT & \\
\hline & 77 & ＊れかれ＊＊ & & & & & 2. & 1，1 & あ＊＊＊ & ＊＊＊－＊＊＊ & ＊＊ & \(\therefore\) \\
\hline & 78 & ＊＊＊＊＊＊ & ＊＊＊＊＊＊ & & ＊＊＊＊＊ & & 2. & 2，3 & 221 & ＊＊＊ーシャ＊ & & \\
\hline & 79 & ＊＊れせれ & ＊＊＊＊＊＊ & & & & 7. & 3，0 & 221 & ＊＊＊ーか＊＊ & & \\
\hline & 80 & & ＊＊＊＊＊＊ & ＊＊＊＊＊＊ & 0.0 & & 29. & 3，4 & 222 & & & \\
\hline & 81 & ＊＊＊＊＊＊ & & & 大办果办れ & & 7. & 4，3 & \[
222
\] & ＊ネネーれネネ & れれね一れれれ & \\
\hline & 8 ？ & ＊＊＊＊＊＊ & 大为为为为 & & & ＊ & 7 & 7，4 & 233 & & & \\
\hline & 83 & ＊＊れれれ＊ & ＊＊＊＊＊＊\({ }_{\text {\％}}\) & ＊＊＊＊＊＊ & ＊＊＊＊ & & 2. & 4，3 & 233 & & ＊＊＊ー＊＊＊ & \\
\hline & 84 & & & & ＊＊＊＊＊ & & 2. & 1，7 & & ＊＊＊ & & \\
\hline & 85 & ＊＊＊＊＊＊ & & れあれまれた & 必必必れ & & \[
29 .
\] & \[
3,7
\] & あれれか & あねれ一れぬ办 & & \\
\hline & \[
86
\] & & & 大れ办办办れ & ＊＊＊＊＊ & & \[
12
\] & \[
7,4
\] & 必必承。 & & れかれーあれか & ： \\
\hline & 87 & & & & 来穼林办办 & & 2. & 3，1 & ＊ヶれ＊ & & & \\
\hline & 88 & ＊＊＊＊＊ & & ＊＊＊＊＊＊＊ & ＊＊＊\(x^{*}\)＊ & & 1. & 3，3 & ＊＊＊＊ & & ＊＊＊ー＊＊＊ & \\
\hline & \[
+89
\] & & & & ＊＊＊＊＊＊ & & 1 & 3，7 & ＊＊＊＊ & ＊＊＊ー＊＊＊＊ & 必事水一必水亲 & \\
\hline & \[
90
\] & & ＊办次冰火疗 & & 为为为为 & & 1. & 3.4 & ＊＊＊＊ & & & \\
\hline \[
\therefore
\] & \[
91
\] & & ＊＊＊＊＊＊ & & & & ． & \[
3,4
\] & あかれ & & & \\
\hline ＊－ & 92 & & & & & & & 4，7 & & ＊＊＊＊ーあ＊＊ & ＊ヶ＊＊ーシ＊＊ & N \\
\hline & 93 & ＊＊＊＊＊＊ & & ＊ & & & 1. & 4，7 & ＊＊＊ & ＊＊＊ & ＊＊＊ & \\
\hline & 8.94 & 为为好为本次 & & ＊＊＊＊＊＊＊ & & & 1. & 7，3 & ＊＊＊＊ & ＊ & ＊＊＊ー＊＊＊ & \\
\hline & 05 & & & 为为本本为 & & & 1. & \[
7,3
\] & 为木办 & れれれーれれれ & れれれ一あれ＊ & \\
\hline & \[
\cdot 96
\] & あれれれ中れ & & ＊＊＊＊れ & & & 1. & \[
4,4
\] & ＊＊＊후 & & 办氺れ一＊かれ & \\
\hline & \[
97
\] & & 办水家办次米 & & & & 1. & \[
4,4
\] & 办束发办 & & ＊＊れーあれ & \\
\hline & \[
98
\] & ＊＊＊＊＊ & & & & & ． & \[
4.3
\] & ＊れれれ & あれ安一末れ次 & ＊れ 中 & \\
\hline & \[
99
\] & \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
 \\

\end{tabular} & 为为办火 & \begin{tabular}{l}
 \\

\end{tabular} & 1 & \[
\begin{aligned}
& 3,7 \\
& 3,1
\end{aligned}
\] & 水为氺事必本水戠 & \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
 \\
好女如一如如如
\end{tabular} & \\
\hline
\end{tabular}
the nebz Current．nnv l96g－June 1967.
DEFINITE AND PROBABLE SPOTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SPOT & DATES & OBSVD & LONG & NO． & DRIFT & ROT PERIOD & D．L & S & P & T & LENGTH & DL／L & DEV \\
\hline 44 & 81 & 185 & 42. & 27 & －17．6 & 91455M16．5S & 2 & 2 & 1 & 0 & 12.5 & 0.36 & 3 \\
\hline 45 & 89 & 91 & 121. & 3 & \(-165.0\) & 91451M54．7S & 2 & 2 & 3 & 0 & 5.0 & 0.0 & ＊＊ \\
\hline 46 & 89 & 90 & 179 ． & \(?\) & －150．0 & 9H5 7 M 1 5． 3 S & 2 & 2 & 2 & 0 & 4.0 & 0.0 & ＊＊ \\
\hline 47 & 103 & 104 & 141. & 2 & －60．0 & \(9454 \mathrm{M1.8.5S}\) & 1 & 1 & 3 & 4 & 7.0 & 0.0 & ＊＊ \\
\hline 48 & 103 & 104 & 135. & 2 & .-30.0 & 9H54M59．5S & 1 & 2 & 4 & 4 & 4.0 & 0.0 & ＊＊ \\
\hline 53 & 126 & 130 & 104. & 3 & 7.5 & 9H55M50．9S & 2 & 2 & 3 & 0 & 3.0 & 0.33 & ＊＊ \\
\hline 54 & 121 & 128 & 180. & 3 & \(-34.3\) & 91454 M 53.7 S & 1 & 3 & 3 & 3 & 3.5 & 0.14 & ＊＊ \\
\hline 59 & 12.1 & 128 & 195. & 3 & \(-30.0\) & \(9 \mathrm{H54M59.5S}\) & 1 & 1 & 2 & 4 & ．5．5 & 0.27 & ＊＊ \\
\hline 60 & 12.1 & 128 & 212. & 2 & \(-38.6\) & 9H54M4．7．8S & 2 & 2 & 3 & 0 & 4.0 & 0.25 & ＊＊ \\
\hline 61 & 121 & 178 & 233. & \(?\) & －47．1 & 9H54M36．1S & 2 & 2 & 3 & 0 & 3.5 & 0.14 & ＊＊ \\
\hline 62 & 143 & 186 & 181. & 8 & \(-18.8\) & 91455 M 14.8 S & 1 & 3 & 0 & 6 & ＊＊＊＊＊ & ＊＊＊＊＊ & ＊＊ \\
\hline 63 & 114 & 143 & 275. & G & \(-30.0\) & 9H54．459．5S & 2 & 1 & 3 & 0 & 5.5 & 0.27 & ＊＊ \\
\hline 64 & 165 & 184 & 247. & 4 & \(-12.6\) & 9H55M23．3S & 1 & 1 ＊ & 2 & 0 & 7.0 & 0.0 & ＊＊ \\
\hline 70 & 58 & 65 & 167. & 2 & －21．4 & \(9 \mathrm{H55M11.3S}\) & 2 & 3 & 3 & 0 & 4.0 & 0.25 & ＊＊ \\
\hline 71 & 80 & 90 & 167. & 4 & \(-12.0\) & 9H55M＞4．2S & 2 & 3 & 3 & 5 & 3.0 & \(0.3 \%\) & ＊＊ \\
\hline \(\bigcirc 74\) & 11 & 73 & 273. & 13 & \(-16.5\) & \(9 \mathrm{H} 55 \mathrm{M18.1S}\) & 2 & 1 & 2 & 0 & 5.5 & 0.27 & 2 \\
\hline 75 & 76 & 83 & 318. & 5 & －90．0 & 9H53M37．4S & 2 & 2 & 2 & 4 & 7.0 & \(0: 14\) & ＊＊ \\
\hline 76 & 91 & 91 & 永为＊＊ & 1 & ＊＊ & & 2 & 2 & 1 & 4 & 12.0 & 0.0 & ＊＊ \\
\hline 77 & 71 & 73 & 294. & 7 & －75．0 & 9H53M57．9S & 2 & 3 & 3 & 0 & 3.0 & 0.0 & ＊＊ \\
\hline \(8 ?\) & 177 & 134 & 14. & 4 & －64．3 & \(9 \mathrm{H} 54 \mathrm{Ml2} 2.6 \mathrm{~S}\) & 2 & 2 & 2 & 5 & 10.0 & 0.40 & ＊＊ \\
\hline 83 & 141 & 143 & 5. & 2 & －60．0 & \(9 \mathrm{H54M18.5S}\) & \(?\) & 2 & 2 & 0 & 6．0 & 0.0 & ＊\({ }^{\text {¢ }}\) \\
\hline 84 & 113 & 115 & 20. & 2 & \(-75.0\) & 9H53．457．9S & 2 & 2 & 2 & 0 & 6.5 & 0.08 & ＊＊ \\
\hline 85 & 115 & 144 & 20. & 8 & －59．0 & 9H54M19．9S & 1 & 3 & 2 & 0 & 6.0 & 0.17 & ＊＊ \\
\hline 86 & 127 & 139 & 326. & 5 & \(-12.5\) & 9H55M23．5S & 2 & 2 & 2 & 4 & 5.5 & 0.27 & ＊＊ \\
\hline 87 & 103 & 105 & 321. & 2 & \(-30.0\) & 9H54459．5S & \(?\) & 1 & 2 & 4 & 4.5 & 0.11 & ＊＊ \\
\hline 88 & 104 & 104 & ＊＊＊＊ & 1 & & \(x+H * \geqslant M 2 * * *\) 为 \(S\) & 2 & 2 & \(?\) & 0 & 5.0 & 0.0 & ＊ \\
\hline 89 & 121 & 121 & ＊＊＊＊ & 1 & 为为为为为 & & 2 & 3 & 2 & 0 & 8.0 & 0.0 & ＊＊ \\
\hline 90 & 144 & 144 & あれが兄 & 1 & & & \(?\) & 2 & 3 & 0 & 3.0 & 0.0 & ＊＊ \\
\hline 91 & 144 & 144 & ＊ 2 米为 & 1 & & WH＊ & 2 & 2 & 3 & 0 & 4.0 & 0.0 & ＊＊ \\
\hline 97. & 146 & 146 & & 1 & ＊＊＊れれ & & 2 & 2 & 3 & 0 & 2.0 & 0.0 & ＊＊ \\
\hline 93 & 1.46 & 146 & ＊＊办 & 1 & ＊＊＊＊亦为 & & \(?\) & 3 & 3 & 0 & 5.0 & 0.0 & ＊＊ \\
\hline 94 & 151 & 151 & ＊＊＊ & 1 & ＊＊＊＊＊＊＊ & ＊H＊＊以 \(* * * * S\) & 7 & 2 & 2 & 0 & 7． 0 & 0.0 & ＊＊ \\
\hline 95 & 158 & 158 & ＊＊＊ & 1 & & ＊H＊＊M＊＊＊＊S & 2 & 3 & \(?\) & 0 & 5.0 & 0.0 & ＊＊ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SPOT & DRIFT 1 & OR IFT？ & ORIFT3 & \(300 E V\) & LIFETIME（SEE TEXT） & WHY & PART & DATES & \\
\hline & 44 & ＊＊＊＊＊＊ & ＊＊安束れ & ＊＊＊＊为为 & 1． 50 & & 1，9 & 亲》＊＊ & ＊＊＊ー＊＊＊ & ＊＊＊－＊＊＊ \\
\hline & 45 & ＊＊＊＊＊＊ & & 为为大米れ & ＊＊＊＊＊ & & 4.4 & ＊\({ }_{\text {＊}}\) & & ＊ \\
\hline & 46 & ＊＊＊＊中类 & ＊＊＊＊＊＊ & \＃＊＊＊＊＊ & ＊为本穴中 & & 4，7 & ＊ & ＊れ本一あれ & ＊ \\
\hline & 47 & ＊＊＊＊れ & ＊示为》＊＊ & & ＊＊＊＊＊ & & 3，3 & ＊\({ }_{\text {＊}}\) & ＊カキー＊れ & ＊＊ー＊＊＊ \\
\hline & 43 & 来办れれ＊ & れねれれね & & & & \[
3,3
\] & & & \\
\hline & 53 & & & & & & 4，3 & ＊\({ }_{\text {＊}}^{\text {¢ }}\)＊ & ＊＊ー＊＊＊ & \\
\hline & 54 & ＊＊＊＊＊ & & & & & 0，7 & 231 & ＊＊れ一＊＊ & ＊＊＊ー＊＊＊ \\
\hline & 59 & ＊＊＊＊＊ & & 为＊＊＊＊＊ & ＊为为为为 & & 3，3 & ＊＊＊＊ & ＊＊－＊＊ & あれー＊＊中 \\
\hline & 60 & ＊れれ＊＊＊ & ※れあれあれ & ＊＊＊＊＊＊ & ＊＊＊＊＊ & & 3，3 & ＊＊＊ & & ＊＊ー＊＊＊ \\
\hline & 61 & ＊＊れ办あれ & 亦れれあれか & ＊＊＊＊＊＊ & & & 3，3 & あれまれ & & \\
\hline & \[
67
\] & & & & ※为办れ & & \[
3,3
\] & 办氺办 & & \\
\hline & \[
63
\] & 末れれたれか & 本れれれ办办 & ＊れれれかれ & ＊れれれ & & \[
3,1
\] & 办办办办 & & 本市杂一宗れ办 \\
\hline & 64 & ＊＊＊＊＊＊ & ＊＊＊＊＊＊ & ＊＊＊＊＊＊ & & & 2， 3 & ＊\(れ\)＊ & 为为一れかれ & ＊＊ーかれれ \\
\hline & 70 & ＊＊＊＊＊＊ & ＊＊＊＊＊＊ & & 为为为为 & & 3，3 & 232 & & れ\＃ーネれ＊ \\
\hline \(\cdots\) & 71 & ＊＊＊＊＊＊ & & & ＊＊＊＊＊＊ & & 3，1 & 232 & ＊＊一＊＊＊ & \\
\hline & 74 & ＊れかれ \({ }_{\text {＊}}\) & ＊＊＊＊\({ }_{\text {＊}}^{\text {＊}}\) & & \[
0.0
\] & & \[
1,0
\] & ＊＊ネ & & \\
\hline & 75 & & & & 中承れ必 & & \[
0,1
\] & あれかれ & & \\
\hline & 96 & ＊＊＊ & 为为示 & ＊＊＊＊＊ & \＃＊＊＊ & & 1，4 & & & \\
\hline & ． 77 & ＊れれが析 & & ＊＊＊＊＊＊ & ＊＊＊＊＊ & \＃大＊＊ & 1, & ＊＊＊＊ & & ＊＊ーれれ＊ \\
\hline & －82 & ＊＊＊＊＊＊ & & ＊＊次れ & 为束为为 & & 7，4 & 33 & 办为一ネ\＄ & ＊＊＊－＊＊＊ \\
\hline & 83 & ＊＊＊＊＊ & 2＊＊＊＊＊＊ & 办六れあか突 & ＊办办办 & & 4.3 & \[
233
\] & \% - & \\
\hline & 84 & & & & 来办办皮 & & \[
1.7
\] & ＊＊米 & & \\
\hline & 85 & & 办办れれか & ＊末れなかれ & ＊＊水必事 & & \[
3,7
\] & 办必办 & れれ一\＃れ & \\
\hline & 86 & あれれねれれ & ＊＊＊＊＊ & ＊＊＊＊か＊ & ＊＊＊＊ & & 7，4 & ＊水れ＊ & & \\
\hline & 87 & ＊れか大为为 & & ＊＊＊＊＊＊ & 京为为 & & 3. & ＊＊＊＊ & 为为一＊＊ & \\
\hline & 88 & ＊＊＊れ \({ }_{\text {＊}}^{\text {＊}}\) & & & 末木办必 & & 3，3 & ＊＊＊＊ & ＊＊－＊＊＊ & * \\
\hline & 89 & ＊があれ & & 水水办水办氷 & ＊中水京安 & & 3，7 & 必水水办 & & \\
\hline & 90 & & & & 大必氷必水 & & 3，4 & ヶ＊＊＊ & 杂为一＊＊＊ & \\
\hline & 91 & ＊＊＊＊＊＊ & ＊＊＊＊＊＊ & ＊＊＊＊＊＊ & ＊＊＊＊ & & 3，4 & ＊＊＊＊ & ＊＊ー＊苑 & \\
\hline & 92 & ＊＊＊れ＊＊ & & & & & 4，7 & れ＊＊ & 为れ一れ＊ & ＊ \\
\hline & 93 & ＊＊＊＊＊＊ & ＊ & ＊大为水れ & ＊束为交れ & & 4，7 & ＊＊＊＊ & 衣一＊＊＊ & ＊＊－＊＊＊ \\
\hline & 94 & ＊＊＊＊＊＊ & & & ＊＊为办市 & & 7，3 & & & \\
\hline & 95 & ＊水为为》 & ＊＊＊＊れ & ＊米米を为 & 必れ＊＊ & & 7，3 & ＊＊＊＊ & ＊＊＊ー＊＊＊ & ＊＊＊ーネ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & NERZ & （CONT INUED） & & & & & & & \\
\hline SPOT & DATES & OBSVD & LONG & NC． & DRIFT & ROT PERIOD & 0，L & S & P & T & LENGTH & DL／L & DEV \\
\hline 96 & 155 & 155 & ＊＊＊＊ & 1 & ＊＊＊＊＊＊＊ & ＊ \(\mathrm{H} * *\) M＊ & 2 & 2 & 3 & 4 & 3.0 & 0.0 & ＊＊ \\
\hline 97 & 155 & 155 & 为れが安 & 1 & & ＊ H ＊＊ M ＊＊＊＊ S & 2 & 3 & 2 & 0 & 5.0 & 0.0 ． & ＊＊ \\
\hline 98 & 160 & 160 & ＊\(x_{*}^{*} *\) & 1 & ＊＊れが衣 & & 2 & 2 & 3 & 0 & 3.0 & 0.0 & ＊＊ \\
\hline 99 & ． 174 & 174 & ＊\(x^{*}\) 为 & 1 & & & 2 & 2 & 2 & 0 & 8.0 & 0.0 & ＊＊ \\
\hline 100 & 175 & 175 & ＊＊＊＊ & 1 & & & 2 & 2 & 2 & 4 & 9.0 & 0.0 & ＊＊ \\
\hline 216 & 103 & 130 & 142． & 6 & －26．7 & 9H55M 4.15 & 1 & 2 & 0 & 4 & ＊＊＊＊ & ＊＊＊＊ & ＊＊ \\
\hline 217 & 140 & 161 & 305. & 5 & －105．7 & \(9 \mathrm{H53M15.9S}\) & 1 & 2 & 0 & 0 & ＊＊＊＊ & ＊＊＊＊ & ＊＊ \\
\hline 218 & 5 & 43 & 183. & 7 & －11．8 & 9 H 55 M 24.4 S & 2 & \(?\) & 1 & 4 & 9.5 & 0.58 & ＊＊ \\
\hline 219 & 58 & 90 & 181. & 8 & －16．9 & \(9 \mathrm{H55M17.5S}\) & 2 & 2 & 1 & 4 & 5.5 & 0.45 & ＊＊ \\
\hline 220 & 11 & 76 & 261. & 14 & \(-14.8\) & 9 H 55 M 20.4 S & 2 & 1 & 1 & 0 & 7.0 & 0.29 & 2 \\
\hline 221 & 11. & 37 & 327. & 5 & \(-17.3\) & 9H55M16．9S & 2 & 1 & 1 & 4 & 6.0 & 0.17 & ＊＊ \\
\hline 222 & 105 & 148 & 277 。 & 12 & \(-13.3\) & 9 H 55 M 22.5 S & 2 & 1 & 1 & 4 & 4.5 & 0.56 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline SPOT & DRIFT 1 & DR IFT ？ & DRIFT3 & \(300 E V\) & \multicolumn{2}{|l|}{LIFETIME（SEE TFXT）} & WHY & PART & DATES & INENT \\
\hline 96 & ＊＊＊＊＊＊ & & & & ＊＊＊＊＊＊＊＊ & & 4 & ＊＊＊ & ＊＊＊ー＊＊ & ＊＊ \\
\hline 97 & ＊＊＊＊＊＊ & & & & & 1. & 4，4 & ＊＊＊＊ & ＊れが为れ & ＊＊－\({ }_{\text {＊}}^{*}\)＊ \\
\hline 98 & ＊＊れが为 & ＊＊＊＊＊＊ & & ＊＊＊＊＊ & & 1. & 4，3 & ＊ & ＊＊＊一＊＊＊ & \\
\hline 99 & ＊＊＊＊＊＊ & & & & & 1. & 3，7 & ＊＊＊＊ & & \\
\hline 100 & & & ＊＊＊＊＊＊ & ＊＊＊＊ & & 1. & 3，1 & ＊＊＊ & ＊＊れ一あれ & ＊＊ \\
\hline 216 & & & 米为为为 & 年れれれ＊ & & 27. & 3，1 & ＊＊＊ & ＊ & ＊かー＊＊＊ \\
\hline 717 & & & ＊ & & & 21. & 7，3 & 米为为为 & ＊＊ & \\
\hline 218 & ＊＊＊＊＊ & ＊＊＊＊＊＊ & & 0.0 & & 38. & 9，3 & ＊杂＊ & & ＊＊ー＊＊＊ \\
\hline 717 & ＊＊＊＊＊＊ & ＊＊＊＊＊＊ & & ＊＊＊＊＊ & & 32. & 3，1 & ＊＊＊ & 中禹一れ＊＊ & ＊为为一大米 \\
\hline \(2 ? 0\) & －15．5 & & & 1.50 & & 65. & 3，1 & & & \\
\hline 221 & & & ＊＊＊＊＊＊ & ＊＊＊＊＊ & & 26. & 2，0 & ＊＊＊＊ & & \\
\hline 222 & ＊＊＊＊＊＊ & 为为为为米为 & ＊＊＊＊＊＊ & 0.0 & & 43. & 3,3 & ＊＊＊＊ & & \\
\hline
\end{tabular}

THE NEBZ CURRENT．NOV 1966－JUNE 1967.
deFinite，probable，and possible spnts
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SPOT & DATES & DBSVD & LONG． & NO． & ORIFT & ROT PERIOD & D，L & S & P & T & LENGTH & DL／L & DEV \\
\hline & 44 & 81 & 185 & 42. & 27 & －17：6 & 9H55M16．5S & 2 & 2 & 1 & 0 & 12.5 & 0.36 & 3 \\
\hline & 45 & － 89 & 91 & 121． & 3 & －165．0 & 9H51M54．7S & 2 & 2 & 3 & 0 & 5.0 & 0.0 & ＊＊ \\
\hline & 46 & 89 & 90 & 129． & 2 & －150．0 & 9H52M15．3S & 2 & 2 & 2 & 0 & 4.0 & 0.0 & ＊＊ \\
\hline & 47 & 103 & 104 & 141. & \(?\) & －60．0 & \(9 \mathrm{H54M18.5S}\) & 1 & 1 & 3 & 4 & 7.0 & 0.0 & ＊ \\
\hline & 48 & 103 & 104 & 135. & 2 & \(-30.0\) & 9H54M59．5S & 1 & 2 & 4 & 4 & 4.0 & 0.0 & ＊＊ \\
\hline & 53 & 126 & 130 & 104. & 3 & 7.5 & 9H55M50．9S & 2 & 2 & 3 & 0 & 3.0 & 0.33 & ＊＊ \\
\hline & 59 & 171 & 129 & 195. & 3 & \(-30.0\) & 9 H 54 M 59.5 S & 1 & 1. & 2 & 4 & 5.5 & 0.27 & ＊＊ \\
\hline & 60 & 121 & 128 & 212. & \(?\) & －38．6 & \(9 \mathrm{H54M47.8S}\) & 2 & 2 & 3 & 0 & 4.0 & 0.25 & ＊＊ \\
\hline & 61 & 171 & 128 & 7.33 ． & 2 & －47．1 & 9H54M36．1S & 2 & 2 & 3 & ． 0 & 3.5 & 0.14 & ＊＊ \\
\hline & 62 & 143 & 186 & 181. & 8 & －18．8 & 9H55M14．8S & 1 & 3 & 0 & 6 & ＊＊＊＊ & ＊＊＊＊＊ & ＊ \\
\hline & 43 & 114 & 143 & 775. & 9 & －30．0 & 9H54M59．5S & 2 & 1 & 3 & 0 & 5.5 & 0.27 & ＊＊ \\
\hline & 64 & 165 & 1.84 & ＇747． & 4 & －12．6 & 9H55M23．3S & 1 & 1 & 2 & 0 & 7.0 & 0.0 & ＊＊ \\
\hline & 74 & 11 & 73 & 773. & 13 & －16．5 & 9H55M18．1S & 2 & 1. & 2 & 0 & 5.5 & 0.27 & 2 \\
\hline 哲 & 75 & 76 & 83 & 318. & 5 & －90．0 & 9 H 53 M 37.4 S & 2 & 2 & 2 & 4 & 7.0 & 0.14 & ＊\({ }^{\text {x }}\) \\
\hline & 76 & 91 & 91 & ＊＊＊＊ & 1 & & & 2 & \(?\) & 1 & 4 & 12.0 & 0.0 & ＊＊ \\
\hline & 77 & 71 & 73 & 294． & 2 & －75．0 & 9H53M57．9S & 2 & 3 & 3 & 0 & 3.0 & 0.0 & ．＊＊ \\
\hline & 84 & 113 & 115 & 20. & 2. & －75．0 & 9H53M57．9S & 2 & 2 & \(?\) & 0 & 6.5 & 0.08 & ＊＊ \\
\hline & 85 & 115 & 144 & 20. & 8 & －59．0 & 9H54M19．9S & 1 & 3 & 2 & 0 & 6.0 & 0.17 & ＊＊ \\
\hline & 86 & 127 & 139 & 326. & 5 & \(-12.5\) & 9 H 55 M 23.5 S & 2 & 2 & 2 & 4 & 5.5 & 0.27 & ＊＊ \\
\hline & 87 & 103 & 105 & 321. & 2 & \(-30.0\) & 9H54M59．5S & 2 & 1 & 2 & 4 & 4.5 & 0.11 & ＊＊ \\
\hline & \(\bigcirc 88\) & 104 & 104 & ＊＊＊＊ & 1 & ＊ & & 2 & 2 & 2 & 0 & 5.0 & 0.0 & ＊＊ \\
\hline & 89 & 121 & 121 & ＊＊＊＊ & 1 & & & 2 & 3 & 2 & 0 & 8.0 & 0.0 & ＊＊ \\
\hline & 90 & 144 & 144 & ＊穴农为 & 1 & ＊＊＊＊＊＊ & & 2 & 2 & 3 & 0 & 3.0 & 0.0 & ＊＊＊ \\
\hline & 91 & 144 & 144 & ＊＊＊＊ & 1 & & ＊H＊＊M＊＊＊＊S & 2 & 2 & 3 & 0 & 4.0 & 0.0 & ＊＊ \\
\hline & 92 & 146 & 146 & & 1 & ＊本为次中草 & ＊H＊＊M＊＊＊＊S & 2 & 2 & 3 & 0 & 2.0 & 0.0 & ＊＊ \\
\hline & 93 & 146 & 1.46 & ＊＊＊＊ & 1 & 人＊＊＊＊＊ & ＊ \(\mathrm{H} * *\) M \(*\) 米 & 7 & 3 & 3 & 0 & 5.0 & 0.0 & ＊＊ \\
\hline & 74 & 151 & 151 & ＊＊＊＊ & 1 & ＊＊＊ & ＊H＊＊以＊＊＊＊S & 2. & 2 & 2 & 0 & 7． 0 & 0.0 & ＊＊ \\
\hline & 95 & 158 & 158 & ＊＊＊＊ & 1 & ＊＊＊＊＊＊ & ＊ H ＊ & 2 & 3 & 2 & 0 & 5.0 & 0.0 & ＊＊ \\
\hline & 96 & 155 & 155 & 必为为\％ & 1 & ＊＊＊＊＊＊ & & 2 & 2 & 3 & 4 & 3.0 & 0.0 & ＊＊ \\
\hline & 97 & 155 & 155 & ＊れれ＊ & 1. & & ＊H＊＊M \(* * * * S\) & 2 & 3 & 2 & 0 & 5.0 & 0.0 & ＊＊ \\
\hline & 98 & 160 & 160 & ＊小＊＊ & 1 & ＊＊＊＊＊＊ & & 2 & 2 & 3 & 0 & 3.0 & 0.0 & ＊ \\
\hline & 99 & 174 & 174 & ＊＊＊＊ & 1 & ＊＊＊为＊＊ & ＊H穴M＊＊＊＊S & 2 & 2 & 2 & 0 & 8.0 & 0.0 & ＊＊ \\
\hline & ． 100 & 175 & 175 & 为办本穼 & 1 & & & 2 & 2 & 2 & 4 & 9.0 & 0.0 & ＊＊ \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & NEBZ & (COnt inued) & & & & & & & \\
\hline SPDT & Dates & OBSTV & LDNG & ND. & DRIFT & ROT PERIOD & D,L & S & P & T & LENGTH & DL/L & DEV \\
\hline 216 & 103 & 130 & 142. & 6 & -26.7 & 9H55M 4.1S & 1 & 2 & 0 & 4 & **** & **** & ** \\
\hline 217 & 140 & 161 & 305. & 5 & -105.7 & 9H53M15.9S & 1 & 2 & 0 & 0 & **** & ***** & * \\
\hline 218 & 5 & 43 & 183. & 7 & -11.8 & \(9 \mathrm{H5} 5 \mathrm{M} 24.4 \mathrm{~S}\) & 2 & 2 & 1 & 4 & 9.5 & 0.58 & ** \\
\hline 219 & 58 & 90 & 181. & 8 & -16.9 & 9455 M17.5S & 2 & 2 & 1 & 4 & 5.5 & 0.45 & ** \\
\hline 220 & 11 & 76 & 261. & 14 & -14.8 & \(9 \mathrm{H55m20.4S}\) & 2 & , & 1 & 0 & 7.0 & 0.29 & 2 \\
\hline 221 & 11 & 37 & 327. & 5 & \(-17.3\) & 9H55M16.9S & 2 & 1 & 1 & 4 & 6.0 & 0.17 & * \\
\hline 222 & 105 & 148 & 277. & 12 & \(-13.3\) & 9H55M22.5S & ? & 1 & 1 & 4 & 4.5 & 0.56 & 1 \\
\hline 231 & 121 & 140 & 217. & 4 & -61.6 & \(9 \mathrm{H} 54 \mathrm{Ml6.3S}\) & 1 & 3 & 1 & 3 & 4.0 & 0.25 & ** \\
\hline 232 & 58 & 90 & 169. & 6 & -18.8 & 9H55M14.9S & 2 & 3 & 1 & 0 & 3.5 & 0.43 & ** \\
\hline 233 & 127 & 143 & 13. & 6 & -63.7 & \(9 \mathrm{H} 54 \mathrm{Ml3.35}\) & 2 & 2 & 1 & 5 & 10.0 & 0.40 & ** \\
\hline
\end{tabular}
nebz（CONTINUED）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline SPOT & DRIFTI & DRIFT 2 & OR．IFT 3 & \(300 E V\) & \multicolumn{2}{|l|}{LIFETIME（SEE TEXT）} & \(W-Y\) & PART & \multicolumn{2}{|l|}{DATES PROMINENT} \\
\hline 16 & ＊＊＊＊＊＊ & ＊＊＊＊＊＊＊ & ＊＊＊＊＊＊＊ & ＊＊＊＊＊ & & 27. & 3，1 & ＊＊＊＊ & ＊＊＊ーか＊＊ & ＊＊＊ー＊＊＊ \\
\hline 217 & ＊＊＊＊＊＊ & & & ＊＊＊＊＊ & & 21 & 7，3 & ＊＊＊＊ & ＊＊＊ー＊＊＊ & ＊＊ \\
\hline 218 & & ＊＊＊＊＊ & ＊＊＊＊ & 0.0 & & 38. & 9，3 & ＊＊＊＊ & ＊＊＊ーれれれ & ＊＊ \\
\hline 719 & ＊＊＊＊＊＊ & ＊ヶヶれ＊＊＊ & & ＊＊＊＊＊＊ & & 32. & 3，1 & ＊本为 & & \\
\hline 220 & \(-15.5\) & & ＊）为为为乐＊ & 1． 50 & & 65. & 3，1 & ＊＊＊＊ & ＊＊＊ーれ＊＊ & ＊＊＊ー＊＊＊ \\
\hline 271 & ＊＊＊＊＊＊ & ※为れが为 & ＊＊＊＊＊＊ & ＊＊＊＊＊ & & 26. & 2，0 & ＊＊＊＊ & ＊＊＊一れ＊＊ & \\
\hline 222 & & & ＊＊＊＊＊＊ & 0.0 & & 43. & 3，3 & ＊＊＊＊ & & ＊＊ \\
\hline 231 & & ＊＊为米米 & & 为为为为 & & 19. & 0，4 & ＊＊＊ & & －－\＃ \\
\hline 232 & & & & ＊为为为为 & & 32. & 3，1 & ＊＊＊＊ & ＊＊＊ーれ＊＊ & \\
\hline 233 & & & & & & 16. & 7，3 & ＊＊＊＊ & ＊＊ & \\
\hline
\end{tabular}

THE NFRN CURRENT．NDV 1966－JUNE 1967．
DEFINITE SPOTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SPOT & DATES & OBSVD & LONG & NO． & DRIFT & ROT PERIOD & D，L & S & P & T & LENGTH & DL／L & DEV \\
\hline & 1 & 1 & 220 & 6. & 59 & \(-11.9\) & 91155M24．3S & 2 & 3 & 2 & 0 & 3.5 & 0.43 & 2 \\
\hline & 2 & 6 & 105 & 28. & 54 & －12．1 & \(9 \mathrm{H55M24.0S}\) & 1 & 1 & 2 & 4 & 10.5 & 0.24 & 2 \\
\hline & 3 & 9 & 2.21 & 40. & 51 & －14．2 & 9H55M＞1．2S & 2 & 3 & 3 & 0 & 3.5 & 0.43 & 1 \\
\hline & 4 & 69 & ． 202 & 48. & 47 & \(-16.0\) & 9H55M18．7S & 1 & 1 & 2 & 4 & 11.5 & 0.22 & 1 \\
\hline & 5 & 2 & 219 & 88. & 52 & －11．2 & 9 H 55 M 25.3 S & 2 & 2 & 3 & 0 & 6.5 & 0.23 & 2 \\
\hline & 6 & 2 & 77 & 85. & 19 & －17．1 & 9H55M17．1S & 2 & 2 & 2 & 0 & 6.5 & 0.23 & 3 \\
\hline & 7 & 11 & 46 & 82. & 10 & \(-16.3\) & 9H55M18．3S & 1 & 2 & 3 & 0 & 5.5 & 0.27 & 2 \\
\hline & 8 & 123 & 145 & 61. & 7 & －5． 5 & 9 H 55 M 33.15 & 1 & 1 & 0 & 7 & ＊＊＊＊ & \％＊＊＊ & ＊＊ \\
\hline & 9 & 171 & 190 & 73. & 7 & －1．4．7 & 9H55M21．2S & 1 & 1 & 3 & 4 & 4． 5 & 0.11 & ＊＊ \\
\hline & 10 & 94 & 130 & 92. & 7 & －3．3 & 9 H 55 M 36.0 S & 1 & 1 & 2 & 4 & 8.5 & 0.18 & ＊ \\
\hline & 11 & 2 & 181 & 124. & 37 & －13．1 & \(9 \mathrm{H55M22.75}\) & 2 & 1 & 2 & 0 & 8.0 & 0.25 & 1 \\
\hline & 12 & 200 & 203 & 264. & 3 & \(-50.0\) & \(9 \mathrm{H54M32.2S}\) & 2 & 2 & 2 & 0 & 5.0 & 0.0 & ＊＊ \\
\hline 为 & 13 & 34 & 75 & 127. & 7 & \(-13.9\) & 9H55M21．6S & 1 & 2 & 3 & 4 & 10.0 & 0.10 & 3 \\
\hline 铝 & 14 & 5 & 72 & 133. & 13 & \(-15.7\) & 9H55M19．2S & 2 & 1 & 3 & 4 & 7.5 & 0.20 & 3 \\
\hline & 15 & 36 & 181 & 143. & 25 & \(-13.4\) & 9H55M22．2S & 1 & 2 & 2 & 0 & 6.5 & 0.23 & 3 \\
\hline & 16 & 140 & 150 & 215. & 4 & －24．0 & \(9 \mathrm{H55M7.8S}\) & 2 & 2 & 3 & 0 & 3.0 & 0.0 & ＊＊ \\
\hline & 17 & 1.40 & 208 & 192. & 11 & －6．？ & 91455M37． 2 S & 2 & 3 & 3 & 0 & 3.0 & 0.0 & 2 \\
\hline & 18 & 76 & 225 & 220. & 30 & －8．3 & 9H55M29．3S & 2 & 3 & 3 & 0 & 3.5 & 0.14 & 1 \\
\hline & 19 & 73 & 76 & 25？． & 2 & \(-20.0\) & 9H55M13．2S & 1 & 3 & 3 & 3 & 3.0 & 0.0 & ＊\({ }^{*}\) \\
\hline & 20 & 1 & 182 & 267. & 40 & －14．9 & 9 H 55 M 20.2 S & 2 & 3 & 2 & 0 & 5.0 & 0.40 & 1 \\
\hline & 21 & 208 & 225 & 275. & 4 & \(-15.9\) & \(9 \mathrm{H55M18.95}\) & \(?\) & 2 & 2 & 0 & 4.5 & 0.11 & ＊＊ \\
\hline & 72 & 1 & 78 & 273． & 1.4 & －21．0 & \(9 \mathrm{H55M11.8S}\) & 2 & 3 & 2 & 0 & 5.5 & 0.45 & 2 \\
\hline & 23 & 1 & 182 & 305. & 35 & －14．6 & 9 H 55 M 20.6 S & 2 & 2 & 3 & 0 & 4.5 & 0.33 & 3 \\
\hline & 24 & 11 & 13 & 319. & 2 & \(-15.0\) & 9H55M20．1S & 2 & 2 & 2 & 4 & 3.5 & 0.14 & ＊＊ \\
\hline & 2.5 & 30 & 37 & 316. & 2 & －17．1 & 9H55M17．1S & 2 & 2 & 2 & 4 & 3.0 & 0.0 & ＊＊ \\
\hline & 26 & 177 & 158 & 325. & 9 & －7．7 & 9H55M30．0S & 2 & 2 & 3 & 0 & 3.0 & 0.0 & 2 \\
\hline & 27 & 173 & 175 & 294. & \(?\) & 0.0 & 9H55M40．6S & 2 & 2 & 3 & 0 & 3.0 & 0.0 & ＊＊ \\
\hline & 28 & 193 & 204 & 322. & 3 & －8．2 & 9H55M29．4S & 2 & 3 & 2 & 0 & 5.0 & 0.20 & ＊＊ \\
\hline & 29 & 127 & 220 & 329. & 16 & \(-7.1\) & 9H55M30．9S & 1 & 2. & 3 & 4 & 6.0 & 0.33 & 2 \\
\hline & 30 & 120 & 158 & 352. & 9 & －14．2 & 9H55M21．2S & 1 & 2 & 2 & 4 & 4.0 & 0.25 & ＊ \\
\hline & 31 & 172 & 174 & 202. & \(?\) & \(-15.0\) & 9H55M20．1S & 2 & 1 & 3 & 4 & 3.0 & 0.0 & ＊＊ \\
\hline & 32. & 1.73 & 175 & 787 ． & \(?\) & 0.0 & 9H55M40．6S & 1 & 2 & 3 & 0 & 6.0 & 0.0 & ＊＊ \\
\hline & 33 & 104 & 104 & ＊＊＊交次 & 1. & 米中＊＊ & ＊ H ＊\(*\) M＊＊ & 2 & 2 & 2 & 0 & 4.0 & 0.0 & ＊＊ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & SPOT \\
\hline & 1 \\
\hline & 2 \\
\hline & 3 \\
\hline & 4 \\
\hline & 5 \\
\hline ． & 7 \\
\hline & 8 \\
\hline & 9 \\
\hline & 10 \\
\hline & 11 \\
\hline & 17. \\
\hline & \(\cdots 13\) \\
\hline － & 14 \\
\hline \(\cdots\) & 15 \\
\hline \％ & 16 \\
\hline & 17 \\
\hline & － 18 \\
\hline & 219 \\
\hline & － 20 \\
\hline & 21 \\
\hline & 22 \\
\hline & 23 \\
\hline & 24 \\
\hline & 25 \\
\hline － & 26 \\
\hline & 27 \\
\hline & 28 \\
\hline & 29 \\
\hline & 30 \\
\hline & 31 \\
\hline & 32 \\
\hline & 33 \\
\hline
\end{tabular}
lifetime（see text）

WHY
PART
\begin{tabular}{|c|c|c|c|}
\hline \(-15.5\) & \(-11.5\) & \(-10.0\) & 2．11 \\
\hline －9．5 & & 卒奴本为次方 & 4．？7 \\
\hline \(-11.0\) & －13．5 & \(-16.5\) & 2．00 \\
\hline & \(-15.0\) & \(-17.5\) & 1.67 \\
\hline －11．5 & \(-10.5\) & \(-10.5\) & 1．50 \\
\hline & & & 0.0 \\
\hline 中事本水》水 & & & 0.0 \\
\hline 夷束为水冰》 & 大 水水交本 & 水》为乐次为 & \\
\hline & & & ＊束束安中 \\
\hline & 必为水水れ & & れ冓なれ次 \\
\hline －14．0 & －13．0 & ＊束为水必必 & 1．04 \\
\hline & ＊＊＊＊嵒水 & 为事水水晾为 & \\
\hline 为大束水事必 & & & 0.0 \\
\hline & 束冰水次为水 & & 0 \\
\hline & －15．5 & 本大为次示京 & 1．75 \\
\hline & & & \\
\hline & 本为办水水办 & & 0.0 \\
\hline 穼次为水为水 & 东奴米本如妾 & －9．0 & 1．33 \\
\hline & & & \\
\hline －13．0 & －18．0 & －13．0 & 2.67 \\
\hline & & & ＊※＊＊＊ \\
\hline －21．0 & & & 1．00 \\
\hline －15．0 & －13．5 & & 1.36 \\
\hline & & & \\
\hline ＊水本市为次 & & & \\
\hline & & & 0.0 \\
\hline & & & 为本安为为 \\
\hline & & & \\
\hline & 为为冰本如\＄ & \(-8.0\) & 3.00 \\
\hline 氷为农农市女 & & & 为来安米乐 \\
\hline ＊＊＊木米农 & 米米安米水次 & & 來米为束米 \\
\hline & 本象为水次次 & 为为冰水为为 & \\
\hline & & 为米为次交准 & 米大米事次 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 9.9 & & 91－220 & \\
\hline 9．0 & & 15－103 & \\
\hline 9，9 & & 87－209 & \\
\hline 0,9 & & 87－171 & \\
\hline 9，9 & & 87－192 & \\
\hline 9，0 & 为为戠为 & & \\
\hline 9，0 & ＊ & & \\
\hline 0，0 & ＊＊＊ & & \\
\hline 5,5 & & & \\
\hline 0,1 & 米束戈水， & & \\
\hline 9，3 & 211 & 34－134 & 水水次一交安如 \\
\hline 3，9 & 211 & 本本本一束本象 & \\
\hline 1，0 & ＊离为市 & & \\
\hline 9．0 & ＊ & & \\
\hline 0,3 & ＊水水冰 & 46－105 & \\
\hline 3，7 & 中本束婦 & ＊ & \\
\hline 7，9 & 罙禹办 & 155－196 & 水本为一安来为 \\
\hline 0.9 & 为为办 & 95－202 & \\
\hline 0,0 & 大本必为 & & \\
\hline 9，3 & 212 & 1－80 & 103－182 \\
\hline 3，9 & 212 & ＊ & \\
\hline 9，0 & ＊＊＊ & & \\
\hline 9，3 & 女れ㐫安 & & \\
\hline 9,3 & 213 & & ＊＊＊一＊＊＊ \\
\hline 3，1 & 213 & 戠女为一束本为 & \\
\hline 0，3 & 214 & & \\
\hline 3，3 & 214 & & \\
\hline 3，9 & ＊ & & \\
\hline 0，9 & & & \\
\hline 1，0 & & & 为为束一本本乐 \\
\hline 2，5 & れ束れ & 本为为一办为交 & \\
\hline 3，3 & 为水为为 & & \\
\hline 3，3 & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{NEBN（CONTINUED）} \\
\hline SPOT & ORIFT1 & DRIFT2 & DRIFT3 & 3ODEV & LIFETIME & ISEE & TEXT） & WHY & PART & DATES PR & OM INENT \\
\hline 34 & & & ＊れ＊＊ & & & & ＊＊＊＊ & 1；1 & ＊＊＊か & ＊れれー＊＊＊ & ＊＊＊ーれれ＊ \\
\hline 35 & ＊＊＊＊＊＊ & & & ＊＊＊＊＊＊ & & & & 5，5 & ＊＊＊＊ & ＊＊＊ーが號 & ＊＊＊ー女禹女 \\
\hline
\end{tabular}

THE NEBN GURRENT. NOV 1966-JUNE 1967.
DFFINITF AND PROBABLE SPOTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SPOT & DATES & OB SVD & LONG & NO. & DRIFT & QOT PERIOD & D.L & S & & T & LENGTH & DL \(/ \mathrm{L}\) & DEV & \\
\hline & 1 & 1 & 220 & 6. & 59 & -11.9 & 9H55M24.3S & 2 & 3 & 2 & 0 & 3.5 & 0.43 & 2 & \\
\hline & 2 & 6 & 105 & 28. & 54 & -12.1 & 9H55M24.0S & 1 & 1 & 2 & 4 & 10.5 & 0.24 & 2 & \\
\hline & 3 & 9 & 221 & 40. & 51 & \(-14.2\) & 9H55M21. 2 S & 2 & 3 & 3 & 0 & 3.5 & 0.43 & 1 & \\
\hline & 4 & 69 & 202 & 48. & 42 & -16.0 & 9455M18.7S & 1 & 1 & 2 & 4 & 11.5 & 0.22 & 1 & \\
\hline & 5 & 2 & 219 & 89. & 52 & -11.? & 9H55M25.3S & 2 & 2 & 3 & 0 & 6.5 & 0.23 & 2 & \\
\hline & 6 & 7 & 72 & 85. & 19 & -17.1 & \(9 \mathrm{H55M17.1S}\) & 2 & 2 & 2 & 0 & 6.5 & 0.23 & 3 & \\
\hline & 7 & 11 & 46 & 87. & 10 & -16.3 & \(9 \mathrm{H55M18.3S}\) & 1 & 2 & 3 & 0 & 5.5 & 0.27 & 2 & \\
\hline & 8 & 123 & 145 & 61. & 7 & -5.5 & \(9 \mathrm{H55M33.1S}\) & 1 & 1 & 0 & 7 & **** & \# *** \(^{\text {\% }}\) & ** & \\
\hline & 9 & 171 & 190 & 73. & 7 & -14.7 & 9H55M21.2S & 1 & 1 & 3 & 4 & 4.5 & 0.11 & ** & \\
\hline & 10 & 94 & 130 & 97. & 7 & . -3.3 & \(9 \mathrm{H55M36.0S}\) & 1 & 1 & \(?\) & 4 & 8.5 & 0.18 & ** & \\
\hline & -13 & 34 & 75 & 127. & 7 & \(-13.9\) & 9 H 55 M 21.6 S & 1 & 2 & 3 & 4 & 10.0 & 0.10 & 3 & \\
\hline & 14 & 5 & 72 & 133. & 13 & -15.7 & \(9 \mathrm{H55M19.2S}\) & 2 & 1 & 3 & 4 & 7.5 & 0.20 & 3 & \\
\hline m & 15 & 36 & 181 & 143. & 25 & \(-13.4\) & 9H55M22.2S & 1 & 2 & 2 & 0 & 6.5 & 0.23 & 3. & \\
\hline - & 16 & 140 & 150 & 215. & 4 & \(-24.0\) & 9 H 55 M 7.8 S & 2 & 2 & 3 & 0 & 3.0 & 0.0 & ** & \(\stackrel{1}{\infty}\) \\
\hline & - 17 & 140 & 208 & 192. & 11 & -6. 2 & 9H55M32.2S & 2 & 3 & 3 & 0 & 3.0 & 0.0 & 2 & \\
\hline & \(\because 18\) & 76 & 275 & 220. & 30 & -8.3 & 9 H 55 M 29.3 S & 2 & 3 & 3 & 0 & 3.5 & 0.14 & 1 & \\
\hline & 19 & 73 & 76 & 752. & 2 & -20.0 & 9455 ML 3.2 S & 1 & 3 & 3 & 3 & 3.0 & 0.0 & ** & \\
\hline & 2.2 & 1 & 78 & 273. & 14 & -21.0 & \(9 \mathrm{H55M11.8S}\) & 2 & 3 & 2 & 0 & 5.5 & 0.45 & 2 & \\
\hline & 23 & 1 & 182 & 305. & 35 & \(-14.6\) & 9H55M20.6S & 2 & 2 & 3 & 0 & 4.5 & 0.33 & 3 & \\
\hline & 28 & 193 & 204 & 327. & 3 & -8.2 & 9 H 55 M 29.4 S & 2 & 3 & 2 & 0 & 5.0 & 0.20 & ** & \\
\hline & 79 & 127 & 220 & 329. & 16 & -7.1 & 9455 M 30.9 S & 1 & 2 & 3 & 4 & 6.0 & 0.33 & 2 & \\
\hline & 30 & 120 & 158 & 352. & 9 & -14.? & 9H55M21.2S & 1 & 2 & 2 & 4 & 4.0 & 0.25 & ** & \\
\hline & 31 & 172 & 174 & 202. & 2 & -15.0 & 9 H 55 M 20.1 S & 2 & 1 & 3 & 4 & 3.0 & 0.0 & ** & \\
\hline & 32. & 173 & 175 & 297. & 2 & 0.0 & 9H55M40.6S & 1 & 2 & 3 & 0 & 6.0 & 0.0 & ** & \\
\hline & 33 & 104 & 104 & **** & 1. & ****** & & 2 & 2 & 2 & 0 & 4.0 & 0.0 & ** & \\
\hline & - 34 & 82 & 88 & 282. & 2 & \(-10.0\) & 9H55M26.9S & \(?\) & 2 & 3 & 0 & 2.5 & 0.20 & ** & \\
\hline & 35 & 15 & 15 & **** & 1 & * & * \(\mathrm{H} * * M * * * * S\) & 2 & 3 & \(?\) & 0 & 2.0 & 0.0 & ** & \\
\hline & 211 & 2 & 203 & 120. & 40 & \(-14.8\) & 9H55M?0.4S & 2 & 1 & 1 & 0 & 7.5 & 0.33 & 1 & \\
\hline & 212 & 1 & 225 & 269. & 44 & \(-14.7\) & 9 H 55 M 20.4 S & 2 & 2 & 1 & 0 & 5.0 & 0.40 & 1 & \\
\hline & 213 & 11 & 37 & 321. & 4 & \(-13.8\) & \(9 \mathrm{H55M21.7S}\) & \(?\) & \(?\) & 1 & 4 & 3.5 & 0.14 & ** & \\
\hline & 2.14 & 127 & 175 & 332. & 1.1 & \(-11.9\) & 9H55M24.4S & 2 & \(?\) & 1 & 0 & 3.0 & 0.0 & 2. & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SPITT & DRIFTI & DRIFT2 & DRIFT3 & 30DEV & LIfetIme（SEE TEXT） & WHY & PART & DATES P & MI NENT \\
\hline & 1 & －15．5 & －11．5 & \(-10.0\) & 2.11 & & 9，9 & ＊ 本＊\(_{\text {\％}}\) & 91－220 & ＊＊＊\({ }_{\text {＊}}\)＊＊＊ \\
\hline & 2 & －9．5 & ＊＊＊＊＊＊ & 为为为为为为 & 4.72 & & 9，0 & ＊＊＊＊ & 15－103 & ＊＊＊ー＊＊＊ \\
\hline & 3 & \(-11.0\) & \(-13.5\) & －16．5 & 2.00 & & 9，9 & ＊＊＊＊ & 87－209． & ＊か大一が㐫 \\
\hline & 4 & ＊ & \(-15.0\) & －17．5 & 1．6． & & 0，9 & & 87－171 & \\
\hline & 5 & \(-11.5\) & \(-10.5\) & \(-10.5\) & 1.50 & & 9，9 & ＊＊＊＊ & 87－192 & ＊ \\
\hline & 6 & ＊＊＊＊＊＊ & ＊＊＊＊＊＊ & ＊＊＊＊＊＊ & 0.0 & & 9，0 & ＊＊＊＊ & ＊＊＊ー＊＊＊ & \\
\hline & 7 & & ＊＊が为为 & ＊＊＊＊橾 & 0.0 & & 9.0 & ＊＊＊ & ＊＊ & ＊＊＊ー＊＊ \\
\hline & 8 & ※れれ＊＊＊ & ＊＊＊＊＊ & & & & 0，0 & & & ＊＊＊ー＊＊＊ \\
\hline & 9 & ＊れれ＊＊＊ & れれためれ & ＊＊＊＊＊＊＊ & 为为》＊ & & 5,5 & & & \\
\hline & 10 & & ＊＊＊＊＊＊ & & ＊＊为为为 & & 0，1 & ＊＊＊＊ & & \\
\hline & 13 & & & & \[
0.0
\] & ＊＊ & \[
1,0
\] & ＊＊＊＊ & ＊れ安一＊＊＊ & \\
\hline & 14 & & \％＊＊＊＊＊ & & 0.0 & & 9．0 & ＊＊＊＊ & & ＊＊＊ー＊＊＊ \\
\hline & ＋． 15 & & \(-15.5\) & & 1.75 & & 0，3 & & 46－105 & \\
\hline & 16 & ＊＊＊＊＊＊＊ & ＊＊＊＊＊＊ & ＊＊＊＊＊＊ & ＊＊＊＊＊＊ & & 3，7 & あ为＊ & ＊＊＊ー＊为 & ＊＊＊ー＊＊＊ \\
\hline 教产． & 17 & & ＊＊大为为＊ & & 0.0 & ＊＊＊ & 7，9 & ＊＊＊＊ & 155－196 & \\
\hline 4 & 18 & & あ＊＊＊＊＊ & －9．0 & 1.33 & & 0,9 & 中戠れ & \[
95-202
\] & ＊＊ターかれか \\
\hline & 19 & ＊＊＊＊＊＊ & & ＊＊＊＊＊＊ & ＊＊＊＊＊＊ & & 0,0 & & & ＊かれ一＊れが \\
\hline & － 22 & －21．0 & ＊＊＊为皮事 & ＊＊＊＊＊＊ & 1.00 & & 9，0 & ＊＊＊＊ & ＊为为一＊＊＊ & ＊＊＊－＊＊＊＊ \\
\hline & － 23 & －15．0 & －13．5 & ＊＊＊＊＊ & 1.36 & & 9，3 & ＊＊＊＊ & ＊＊ & ＊＊＊－＊＊＊ \\
\hline & － 29 & & & & & & 3，9 & ＊＊＊＊ & ＊＊れー＊为为 & \\
\hline & 29 & ＊＊＊＊＊＊＊ & ＊＊＊＊＊＊ & \(-8.0\) & \[
3.00
\] & & \[
0,9
\] & 必必象 & ＊＊＊ & 水水来一必办次 \\
\hline & 30 & & ＊＊＊＊＊＊ & & ＊＊＊＊ & & \[
1,0
\] & ＊＊＊＊ & ＊为为一＊れ＊ & \\
\hline & 31 & ＊＊＊＊＊＊ & & ＊＊＊あれ & ＊＊＊＊＊ & & 2，5 & ＊れね离 & \％ & ＊＊办一办摂次 \\
\hline & 32. & ＊＊＊＊＊＊ & & ＊＊ & ＊＊＊＊\({ }_{\text {＊}}\) & & 3，3 & あれたあ & ＊＊ホー＊＊＊ & \\
\hline & 33 & & あれ＊＊＊＊ & ＊＊＊＊＊＊ & ＊＊＊＊＊ & & 3，3 & ＊＊＊ & ＊＊＊ー＊＊＊ & \\
\hline & 34 & ＊＊＊＊＊＊ & \＃＊＊＊＊＊ & ＊＊＊＊＊＊＊ & ＊\(x_{0}^{*}\) 为 & ＊＊ & 1，1 & ＊＊＊＊ & ＊＊＊－＊＊＊ & 办办 \\
\hline & 35 & ＊＊＊＊＊＊ & ＊＊＊＊＊＊＊ & ＊＊＊＊）\％\％ & ＊ね＊＊ & & 5，5 & ＊＊＊＊ & ＊＊本一＊＊＊ & \\
\hline & 211 & \(-14.0\) & \(-13.0\) & & 1.04 & & 9，9 & \(\geqslant \not *\) 为 & & ＊＊ \\
\hline & 21.2 & \(-13.0\) & －18．0 & \(-13.0\) & 2.67 & & 9，9 & ＊＊＊＊ & & \\
\hline & 213 & ＊＊＊＊＊＊ & ＊＊＊＊＊＊＊ & ＊＊＊＊＊＊ & & & 9.1 & 乐为为茹 & ＊＊＊一＊＊＊次 & あ亦一あれ \\
\hline & 214 & & ＊＊＊かれ & ＊＊＊＊＊＊ & 0.0 & & 0,3 & ＊＊＊＊ & ＊＊＊ー＊＊＊ & ＊＊＊ー＊市れ \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{10}{|c|}{NTRZ（CONTINUFD）} \\
\hline SPOT & DRIFTI & DRIFT2 & DRIFT3 & 300 EV & LIFETIME（SEE TEXT） & & WHY & PART & DATES PR & OMINENT \\
\hline 36 & & ＊＊＊为为れ & ＊＊＊＊＊＊ & ＊＊＊＊＊ & & 7. & 9．2 & 215 & ＊れ为一＊＊＊ & \\
\hline 37 & & ＊＊＊れ & ＊＊＊＊＊＊ & ＊次为为＊ & & 1. & 2，1 & 215 & \＃れ＊－必れ & ＊太＊ーネ\＃＊ \\
\hline 38 & ＊＊＊＊＊\({ }_{\text {＊}}\) & ＊＊＊＊＊＊ & & 为れ＊＊\({ }^{\text {d }}\) & & 1. & 5，2 & ＊＊＊＊ & & ＊＊＊ー＊＊＊ \\
\hline 39 & ＊＊ & & ＊＊＊＊＊＊＊ & ＊＊＊＊＊ & & 1. & 5，5 & ＊＊＊＊ & ＊かれ一＊れか & \\
\hline 40 & & あれ次れ安示 & & & & 18. & 1，1 & ＊＊＊＊ & あれた一＊れ & \\
\hline 41 & ＊＊＊＊＊＊ & & ＊＊＊＊＊＊ & ＊＊＊＊＊ & & 1. & 2，1 & ＊\({ }_{\text {＊}}^{\text {＊}}\) & \＃れ & ＊れれーあれ \\
\hline 42 & ＊＊れれ＊＊ & & & ＊＊＊＊＊ & & 1. & 1，1 & & & ＊＊＊ーネれ＊ \\
\hline 43 & ＊＊れれれが & ＊れかれ＊＊ & ＊＊＊＊＊＊ & ＊＊＊＊ & & 1. & 1，5 & ＊＊＊＊ & ＊＊＊ー＊＊＊ & \\
\hline
\end{tabular}

THE NTRZ CURRENT．NOV 1966－JUNE 1967.
DEFINITE AND PROBABLE SPOTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SPOT & DATES & OBSVD & LONG & NO． & DRIFT & ROT PERIOD & D，L & S & P & T & LENGTH & DL／L & DEV \\
\hline 38 & 70 & 70 & & 1 & & & 2 & 2 & 3 & 0 & 2.0 & 0.0 & ＊＊ \\
\hline 39 & 104 & 104 & ＊＊＊＊＊ & 1 & ＊长必れ＊＊ & & 2 & 2 & \(?\) & 2 & 5.0 & 0.0 & ＊＊ \\
\hline 40 & 121 & 139 & 76. & 8 & －11．7 & 9H55M24．6S & 2 & 1 & 1 & 0 & 11.0 & 0.09 & ＊＊ \\
\hline 41 & 158 & ． 158 & ＊＊＊＊ & 1 & & & \(?\) & 1 & 2 & 0 & 6.0 & 0.0 & ＊＊ \\
\hline 47 & 103 & 103 & ＊＊＊＊ & 1 & ＊＊＊＊＊＊ & & 1 & 2 & 4 & 1 & 2.0 & 0.0 & ＊ \\
\hline 43 & 145 & 145 & ＊＊＊＊ & 1 & ＊＊＊示为为 & ＊ \(4 * *\) M＊＊＊＊S & 1 & 2 & 4 & 1 & 4.0 & 0.0 & ＊＊ \\
\hline 215 & 2 & 16 & 29. & 4 & －15．0 & 9H55M20．1S & 2 & 1 & 1 & 2 & 6.0 & 0.17 & ＊＊ \\
\hline
\end{tabular}

THE NTB CURRENT. NOV \(1966-J U N E 1967\).
DEFINITE SPDTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SPOT & DATES & OB SVD & LONG & NO. & DRIFT & QOT PFRIOD & D,L & S & P & T & LENG TH & DL/L & DEV & \\
\hline & 101 & 37 & 52 & 60. & 6 & 34.0 & 9H56M>7.2S & 1 & 2 & 2 & 2 & 5.5 & 0.27 & ** & \\
\hline & 102 & 47. & 52 & 43. & 3 & 5.0 & 9H55M48.8S & 1 & 1 & 2 & 7 & 9.0 & 0.11 & ** & \\
\hline & 103 & 60 & 69 & 72. & 4 & 40.0 & 9H56M35.4S & 1 & 1 & 2 & 2 & 7.0 & 0.43 & ** & \\
\hline & 104 & 78 & . 79 & - 59. & 2 & 30.0 & 9H56M71.7S & 1 & 1 & 3 & 2 & 4.0 & 0.0 & ** & \\
\hline & 105 & 80 & 82 & 63. & 2 & 15.0 & \(9 \mathrm{H56M} \mathrm{1.1S}\) & 1 & 2 & 3 & 3 & 3.0 & 0.0 & ** & \\
\hline & 106 & 72 & 87 & 34. & 9 & 2.2.0 & 9H56M10.7S & 2 & 2 & 3 & 0 & 6.0 & 0.17 & ** & \\
\hline & 107 & 88 & 94 & 23. & 0 & 20.0 & \(9456 \mathrm{M} \mathrm{8.05}\) & 1 & 2 & 0 & 7 & **** & ***** & ** & \\
\hline & 108 & 87 & 160 & 41. & 15 & 31.6 & 9H56M23:9S & 2 & 2 & 3 & 0 & 7.0 & 0.43 & 2 & \\
\hline & 109 & 172 & 174 & 137. & 2 & 0.0 & 9H55M40.6S & 2 & 2 & 2 & 0 & 6.0 & 0.0 & ** & \\
\hline & 110 & 186 & 196 & 32. & 3 & 33.0 & 9H56M25.8S & 2 & 3 & 2 & 0 & 6.5 & 0.23 & ** & \\
\hline & 111 & 46 & 49 & 57. & 3 & 10.0 & 9H55M54.3S & \(?\) & 1 & 2 & 0 & 6.5 & 0.23 & ** & \\
\hline & 112 & 28 & 30 & 32. & 7 & 0.0 & 9H55M40.6S & 2 & 1 & 2 & 4 & 6.5 & 0.23 & * & \\
\hline , & 113 & 6 & 16 & 66. & 6 & 18.0 & 9H56M 5:3S & 1 & 2 & 3 & 2 & 4.0 & 0.25 & ** & \\
\hline 30 & 114 & 28 & 49 & 71. & 11 & 18.6 & 9H56M 6.0.5 & 1 & 2 & 1 & 2 & 10.0 & 0.20 & ** & \(\stackrel{\sim}{\infty}\) \\
\hline & 115 & 58 & 58 & ***** & 1 & ****** & & 1 & 1 & 2 & 2 & 5.0 & 0.0 & ** & \\
\hline & 116 & 65 & 80 & 86. & 6 & 28.0 & 9H56M18.9S & 1 & 2 & 2 & 2 & 7.5 & 0.33 & ** & \\
\hline & 117 & 82 & 82 & * \(x^{*}\) 安 & 1 & ****** & *H**M*2** S & 1 & \(?\) & 2 & 0 & 5.0 & 0.0 & ** & \\
\hline & 118 & 87 & 104 & 86. & 6 & 21.2 & 9.456M 9.6S & 1. & 1 & 2 & 2 & 5.5 & 0.27 & * \({ }^{\text {2 }}\) & \\
\hline & 119 & 113 & 186 & 89. & 14 & 20.5 & 9H56M 8.7S & 1 & 3 & 2 & 3 & 7.0 & 0.43 & 2 & \\
\hline & 120 & 6 & 13 & 82. & 4 & 17.1 & 9H56M 4.1S & 2 & 2 & 0 & 7 & ***** & **** & ** & \\
\hline & 121 & 11 & 16 & 99. & 4 & 30.0 & 9H56M21.7S & 2 & 1 & 3 & 0 & 5.0 & 0.20 & ** & \\
\hline & 127 & 1 & 21 & 108. & 9 & 19.5 & 9H56M 7.3S & 1 & 1 & 3 & 4 & 7.5 & 0.33 & ** & \(\therefore\) \\
\hline & 123 & 35 & 65 & 112. & 7 & 24.0 & 9H56M13.5S & 1 & 1 & 2 & 4 & 8.0 & 0.0 & ** & \\
\hline & 124 & 50 & 77 & 140. & 5 & 22.2 & 9H56M11.0S & 2 & 1 & 1 & 5 & 9.5 & 0.26 & ** & \\
\hline & 125 & 72 & 82 & 144. & 4 & 33.0 & 9H56M>5.8S & 1 & 2 & 2 & 0 & 3.5 & 0.14 & ** & \\
\hline & 126 & 65 & 96 & 90. & 10 & 75.2 & \(9 \mathrm{H56M15.1S}\) & 2 & 2 & 3 & 0 & 5.5 & 0.27 & ** & \\
\hline & 127 & 72 & 104 & 96. & 11 & 26.? & 9H5SM L6.6S & 1 & 1 & 3 & 4 & 6.5 & 0.23 & ** & \\
\hline & 128 & 79 & 130 & 67. & 13 & 25.9 & 9H56M16.0S & 1 & 3 & 3 & 3 & 4.5 & 0.11 & ** & \\
\hline & 129 & 143 & 160 & 53. & 4 & 33.5 & 9456 M 26.5 S & 1 & 1 & 3 & 4 & \(4 \cdot 5\) & 0.11 & ** & : . \\
\hline & 130. & 7 & 96 & 158. & 33 & 25.6 & 9H56M15.7S & 1 & 2 & 3 & 2 & 4.5 & 0.33 & 2 & \\
\hline & 131 & 28 & 110 & 165. & 20 & 24.1 & 9H5KM13.7S & 1 & 2 & 3 & 4 & 6.0 & 0.33 & 2 & \\
\hline & 132 & 77 & 90 & 177. & 6 & 73.1 & 9H56M12.? S & 1 & 2 & 3 & 0 & 2.5 & 0.20 & ** & \\
\hline & 133 & 2 & 28 & 178. & 7 & 23.1 & \(9 \mathrm{H56M12.2S}\) & 1 & 2 & 2 & 2 & 9.0 . & 0.22 & ** & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SPOT & DRIFT1． & DRIFT2 & DRIFT3 & 300EV & LIFETIME（SEE TEXT） & WHY & PART & DATES & MI NENT & \\
\hline & 101 & ＊＊れが呙 & ＊れれれれ & & & & 1，3 & ＊＊＊＊ & ＊＊＊ & ＊＊＊ー＊＊＊ & \\
\hline & 102 & れれれ＊＊＊ & & & & & 0，3 & ＊＊＊＊ & & 为为れ一＊＊＊ & \\
\hline & 103 & & & 为为め必为 & ＊ 2 为为 & & 3，4 & ＊＊＊＊ & ＊＊カー\＃\＃＊ & & \\
\hline & 104 & ． ＊＊＊＊＊＊ & & & & & 2，2 & ＊＊＊＊ & & ＊＊＊一＊＊＊ & \\
\hline & 105 & ＊必为必为 & ＊次家为米斥 & & \＃乐が必 & & 4，7 & ＊＊＊＊ & ＊＊れー＊＊＊ & ＊＊＊一＊＊＊ & \\
\hline & 106 & & & & ＊＊＊が安 & & 0,0 & ＊＊＊＊ & & 必れれー＊＊＊ & \\
\hline & 107 & れかれあれ & 办れ水水农炋 & & & & \[
0,1
\] & なれは & あれか一未れ & & \\
\hline & \[
108
\] & ＊＊＊＊＊＊ & & & \[
3.00
\] & & \[
0,3
\] & \[
223
\] & & & ； \\
\hline & 109 & ＊束め＊＊＊ & & ＊＊＊＊＊＊ & ＊＊＊＊＊ & ＊ & 3，3 & 223 & ＊＊＊ー＊＊＊ & & \\
\hline & 110 & & ＊中＊＊＊＊， & ＊＊＊＊＊＊ & ＊\(\chi_{0}^{* * *}\) & & 3，9 & 223 & ＊＊＊ー＊＊＊ & ＊＊＊－＊＊＊ & \\
\hline & ： 111 & ＊＊＊＊＊＊ & & & ＊＊＊＊＊ & & 1.3 & ＊＊＊＊ & ＊＊＊ー＊＊＊ & ＊＊＊ー交办为 & \\
\hline & 112 & ＊＊＊＊＊\({ }_{\text {＊}}\) & ＊＊れあれれ & & ＊＊＊＊＊＊ & & 3，2 & ＊＊＊＊＊ & れかれ一末れか & & \\
\hline & \[
113
\] & & & & ＊＊＊＊＊＊ & & \[
9,3
\] & \[
224
\] & あれが业れれ & & \\
\hline & 114 & & & & & & 3，3 & 224 & & & \\
\hline \％ & 115 & ＊＊＊れが & ＊＊＊＊＊＊ & ＊＊＊＊＊＊＊ & & & 3，3 & 225 & ＊ & & \\
\hline － & 116 & ＊＊＊れが安 & & ＊＊＊＊＊＊ & ＊＊＊＊＊ & & 3，4 & 225 & & & \％ \\
\hline & 117 & & & & 为为为为乐 & & 4，4 & 22.5 & ＊＊＊ー＊＊＊ & ＊＊＊－＊＊＊ & \\
\hline & \[
118
\] & & & & & & \[
7,3
\] & 225 & ＊＊＊ーか＊＊ & 中水れ一れかれ & \\
\hline & ＋119 & & & ＊＊＊＊＊＊ & \[
0.0
\] & & 3，3 & 225 & 121－175 & ＊＊＊ー＊＊＊ & \\
\hline & 920 & & & ＊＊＊＊＊＊ & & & 9，0 & ＊＊＊＊． & & ＊＊＊ー＊＊＊ & \\
\hline & 121 & & & ＊＊次为为＊ & ＊＊＊＊ & & 2，5 & ＊＊＊ & & ＊＊が为れか & \\
\hline & 122 & ＊＊＊＊＊＊＊ & & 京市办水宋安 & & & 9，7 & ＊＊＊＊ & ＊＊＊ー＊＊＊ & & \\
\hline & 123 & & & & 必必戠本 & & \[
5,5
\] & ＊れ＊ & & & \\
\hline & \[
124
\] & & & 束皮农本れ & 农必来串次 & & \[
2.1
\] & ＊＊＊＊ & ＊＊＊ & & \\
\hline & 125 & ＊＊＊＊＊＊ & ＊＊＊＊＊＊＊ & & ＊＊＊＊＊ & & 1，3 & ＊＊＊＊ & & ＊＊＊一＊＊＊ & \\
\hline & 1.76 & ＊ & & & & & 0，1 & ＊＊＊＊ & & れ办办一れ市水 & \\
\hline & 12.7 & ＊＊＊＊＊＊＊ & & & & & \[
8,3
\] & ＊＊＊＊ & & & \\
\hline & 128 & & & & & & \[
4,3
\] & \[
226
\] & & & \\
\hline & 129 & & & & & & 3，3 & \[
226
\] & & れれが如れれ & \\
\hline & 130 & 25.0 & 本本れ办れな & & \[
2.00
\] & & 9.0 & ＊＊＊ & & & \\
\hline & 131 & ＊水束束水＊ & & & 1.50 & & 1，1 & \＃れあれ & ＊＊＊－＊＊＊ & ＊＊＊ーが苂 & \\
\hline & \[
132
\] & & & & 必必必办办 & & \[
2,1
\] & れれね & & & \\
\hline & 133 & ＊＊＊＊＊＊ & れ中れれれれ & \＃＊＊＊＊＊＊ & & & 9.5 & & れれが必れ & れネネーネれれ & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SPOT & DRIFT 1 & DRIFT2 & DRIFT3 & 30 DEV & LIFFTIME（SEE TEXT） & WHY & PART & DATES PR & ROMINENT \\
\hline & 134 & ＊＊＊＊＊＊＊ & ＊＊＊＊＊＊ & & 0.0 & & 3，3 & 227 & & ＊＊＊ー末戠安 \\
\hline & 135 & & ＊＊＊＊＊＊ & & 0.0 & & 3，3 & 2.27 & ＊＊ & \\
\hline & 136 & ＊＊＊＊＊＊＊ & & ※＊れれ＊＊ & 4.50 & & 8，3 & ＊＊＊＊ & 126－141 & 市れ爯一＊＊＊ \\
\hline & 137 & ＊＊＊か大 & & & 0.0 & ＊＊ & 1，3 & ＊れ＊＊ & 64－91 & ＊＊＊－＊＊＊ \\
\hline & 138 & ＊＊＊＊＊＊ & ＊＊＊れ为 & & ＊＊＊＊ & & 0,3 & ＊ホれれ & & ＊＊＊ー\＃れか \\
\hline & 139 & ＊＊＊＊＊＊ & ＊＊＊＊＊ & ＊＊＊＊＊ & ＊＊＊＊＊ & & 1，3 & 234 & ＊＊＊ーれれ & ＊＊＊一れれ＊ \\
\hline & 140 & & & & ＊＊＊＊＊ & & 3，0 & 234 & ＊＊＊ー＊＊＊ & \\
\hline & 141 & ＊＊れれ＊＊ & & & ＊\(x^{*} \times 2 \times\) & & 9，3 & 228 & & \\
\hline & 142 & ＊＊＊＊＊＊ & ＊交大为＊卒 & & ＊＊＊＊＊＊ & & 3，5 & 228 & ＊＊＊一れ布市 & \\
\hline & 143 & & & & 示办冰办为 & & \[
1,8
\] & & & \\
\hline & \[
144
\] & & & \[
22.0
\] & \[
0.44
\] & ＊＊ & \[
0,9
\] & & \[
105-173
\] & \\
\hline & 145 & ＊＊＊＊＊＊ & 办办必必衣中 & & & & 2，2 & ＊＊＊＊ & & \\
\hline & 146 & & & & 0.0 & ＊＊ & 1，0 & ＊＊＊＊ & & \\
\hline & 147 & & ＊＊＊＊＊＊ & ＊＊＊＊＊＊ & & & 1，3 & 229 & ＊＊ & ＊和劝一突本＊ \\
\hline \(\because\) & 148 & & ＊＊＊＊＊＊ & & ＊＊＊が为 & & 3，7 & 229 & \＃\＃れ一が市 & \\
\hline 管 & 149 & & & & & & \[
7,1
\] & 229 & & 办亦れ一＊＊＊ \\
\hline & 150 & \[
22.5
\] & \[
24.0
\] & \[
20.5
\] & \[
2.78
\] & & 9，9 & ＊＊＊＊ & ＊＊＊ーが为 & \\
\hline & 451 & & & & & & 9.1 & ＊＊れ & ＊＊＊ & \\
\hline & \(15 ?\) & & & & & & 1，1 & \＃＊＊＊＊ & & ＊＊ \\
\hline & 153 & & & & \[
0.0
\] & & \[
1,1
\] & & ＊ねれ一末水 & \\
\hline & \[
154
\] & 中办水办木办 & & & & & \[
2,2
\] & ＊＊＊＊ & れまれ一れれそ & 中ねね一中办办 \\
\hline & \[
155
\] & & \[
23.0
\] & \[
18.0
\] & \[
2.75
\] & & \[
0,9
\] & ＊＊氺 & \[
91-152
\] & \\
\hline & 156 & ＊＊＊＊＊＊ & & & 0.0 & & 0,4 & ＊＊＊＊ & あれか一中㸚 & \\
\hline & 157 & ＊＊＊＊＊＊ & & ＊中本办れ市 & かれまれか & & 9，3 & 235 & ＊＊ & \\
\hline & 158 & ＊＊＊＊＊＊＊ & & & ＊＊＊＊次 & & 3，2 & \[
236
\] & & \\
\hline & 159 & ＊＊＊＊＊＊ & 》＊＊＊＊ & & \[
0.0
\] & & \[
2,7
\] & 236 & ＊れ＊ー＊れ & ＊＊＊ー＊＊＊ \\
\hline & 160 & 15.0 & ＊＊＊＊＊＊ & & 4.00 & & 9，0 & ＊＊＊＊ & ＊＊ & ＊ \\
\hline & 161 & ＊大戠＊＊＊ & ＊＊＊＊＊＊ & & & & 1，3 & ＊＊＊＊ & ＊＊＊ーかれ & ＊＊＊ー＊＊＊ \\
\hline & 162 & ＊＊れあれか & & & ＊＊＊ & & 0,1 & ＊＊＊＊ & & ＊ \\
\hline & 163 & ＊ & & & ＊＊＊中 京 & & 8，3 & \[
230
\] & & \\
\hline & 164 & & & ＊中れまれ & ＂中れ中 & & \[
3,9
\] & \[
230
\] & ＊林れ一末れ & \\
\hline & 165 & & & 18.0 & 0.0 & & 1.9 & ＊＊＊＊ & & ＊＊＊ー米为穴 \\
\hline & 166. & & & & 0.0 & & 3，0 & 为为》为 & ＊＊＊ー＊＊＊ & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SPOT & DRIFTI & DRIFT2 & DRIFT3 & 30DEV & LIFETIME（SEE TEXT） & WHY & PART & DATES & \\
\hline & 167 & & ＊＊＊＊＊＊ & & 0.0 & & 0，3 & 237 & ＊ ＊ & \\
\hline & 168 & ＊れかれあれ & & ＊＊＊＊ね＊ & & & 3，9 & 237 & ＊＊ーあれ & ＊＊＊ー＊＊＊ \\
\hline & 169 & ＊＊＊＊＊＊ & ＊＊安大れ＊ & & & & 5，5 & ＊＊＊＊ & ＊＊＊ー＊＊ & \\
\hline & 170 & ＊＊れれ＊＊ & ＊＊＊＊＊＊ & & ＊れれ＊＊ & & 4，3 & 央市市为 & & \\
\hline & 171 & ＊＊＊＊＊＊＊ & ＊＊かれ＊＊ & 为为为为为为 & 小米为为安 & & 1，0 & & ＊＊れ一＊＊＊ & ＊＊＊ー＊\({ }_{\text {＊}}^{\text {＊}}\) \\
\hline & 172 & ＊＊＊＊＊＊ & & ＊れ＊れ＊＊ & & & 8，0 & 卒が市れ & & ＊＊＊ー＊＊＊ \\
\hline & 173 & & ＊＊＊＊＊ & ＊＊＊れメ＊ & 为为为》 & & 3，4 & ＊束朿为 & & \\
\hline & 174 & ＊＊＊＊＊＊＊ & & & れ＊＊＊れ & & \[
0,9
\] & ＊＊＊＊ & & ＊＊＊ーあれ＊ \\
\hline & 175 & ＊＊＊＊＊＊ & & ＊＊＊＊＊＊ & ＊＊＊＊ & & 0,3 & ＊＊＊＊ & & ＊れ \\
\hline & 176 & ＊＊＊＊＊＊ & ＊＊＊＊＊ & 为䊾为れ & 0.0 & & 3，3 & ＊ ＊\(^{*}\)＊ & & ※为为一＊＊＊ \\
\hline & 177 & & & ＊ & & & 1，3 & あれれ＊ & ＊＊＊ーが为 & \\
\hline & 178 & ＊ & & ＊＊＊＊＊＊＊ & & & 3，2 & & & \\
\hline & 179 & & & & & & \[
3,3
\] & 为农承 & & ね㾁れ一れね水 \\
\hline & 180 & & & ＊＊＊＊＊＊ & \[
0.0
\] & & \[
3,3
\] & あれれか & ＊＊＊ー＊ & \\
\hline － & 181 & ＊ & ＊＊＊＊＊＊ & & ＊＊＊＊＊＊ & & 3，3 & れれれ＊ & & \\
\hline 戠为 & \(18 ?\) & & ＊＊＊＊＊＊ & & 0.0 & & 3，3 & ＊本》＊ & & \\
\hline & 183 & ＊＊＊＊＊＊ & & ＊＊＊＊ & ノ＊＊＊＊＊ & & 3，3 & ＊＊＊＊ & 办れ市一あれ辛 & 宋办办一衣冰市 \\
\hline & 184 & ＊＊＊＊＊＊＊ & & & 市中次办办 & & \[
3,0
\] & れかれ & ＊＊＊－＊れ＊ & 必水来一京如办 \\
\hline & 185 & ＊＊＊＊＊＊＊ & & & 为为次为 \({ }^{\text {a }}\) & & 7.3 & ＊＊＊＊ & & ＊＊ \\
\hline & 186 & ＊＊＊＊＊＊＊ & & & ＊＊施为为 & & 0,1 & ＊＊＊＊＊ & ＊＊＊ー＊＊＊ & ＊＊＊ーれ＊＊ \\
\hline & 187 & ＊＊＊＊＊＊ & & ＊＊＊＊＊＊ & & & 2，1 & ＊＊＊＊ & ＊＊＊－＊＊＊ & ＊＊＊ー＊＊＊ \\
\hline & 188 & & & & 1． 50 & & 1.0 & ＊＊＊＊ & 必次必一水水必 & \\
\hline & 189 & \＃＊＊\({ }_{\text {\％＊＊}}\) & & 为为为为为 \({ }^{\text {\％}}\) & & & 3，9 & ＊＊＊＊ & & ＊＊＊－＊＊＊ \\
\hline
\end{tabular}

THE NTR CURRENT．NOV 1966－JUNE 1967.
DEFINITE AND PROBABLE SPDTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SPOT & DATES & OBSVD & LONG & NO． & DR IFT & ROT PERIDD & D，L & S & \(p\) & T & LENG TH & DL／L & DEV & \\
\hline & 101 & 37 & 52 & 60. & 6 & 34.0 & 9＋56427． 25 & 1 & 2 & 2 & 2 & 5.5 & 0.27 & ＊＊ & \\
\hline & 1.02 & 47 & 52 & 43. & 3 & 6.0 & 9H55M48．8S & 1 & 1 & 2 & 2 & 9.0 & 0.11 & ＊＊ & \\
\hline & 103 & 60 & 69 & 77. & 4 & 40.0 & 9456M35．4S & 1 & 1 & 2 & 2 & 7.0 & 0.43 & ＊＊ & \\
\hline & 104 & 78 & 79 & 59. & 2 & 30.0 & \(9 \mathrm{H56M} 21.7 \mathrm{~S}\) & 1 & 1 & 3 & 2 & 4.0 & 0.0 & ＊＊ & \\
\hline & 105 & 80 & 82 & 63. & 2 & 15.0 & \(9 \mathrm{H} 56 \mathrm{M} \mathrm{1.1S}\) & 1 & 2 & 3 & 3 & 3.0 & 0.0 & ＊＊ & \\
\hline & 106 & 72 & 87 & 34. & 9 & 27．0 & 9H156M10．75 & 2 & － 2 & 3 & 0 & 6.0 & 0.17 & ＊＊ & \\
\hline & 107 & 88 & 94 & 23. & 0 & 20.0 & 9H56M 8．0S & 1 & 2 & 0 & 7 & ＊＊＊＊ & ＊＊＊＊ & ＊＊ & \\
\hline & 111 & 46 & 49 & 57. & 3 & 10.0 & 9H55M54．3S & 2 & 1 & 2 & 0 & 6.5 & 0.23 & ＊＊ & \\
\hline & 112 & 28 & 30 & 32. & \(?\) & 0.0 & 9H55M40．6S & 2 & 1 & 2 & 4 & 6.5 & 0.23 & ＊＊ & \\
\hline & 120 & 6 & 13 & 8 ？ & 4 & 17.1 & \(9 \mathrm{H56M} \mathrm{4.1S}\) & 2 & 2 & 0 & 7 & ＊＊＊＊ & ＊＊＊＊ & ＊＊ & \\
\hline & 121 & 11 & 16 & 99. & 4 & 30.0 & 9H56M21．7S & 2 & 1 & 3 & 0 & 5.0 & 0.20 & ＊＊ & \\
\hline & 122 & 1 & 21 & 108. & 9 & 19.5 & 9H56M 7．3S & 1 & 1 & 3 & 4 & 7.5 & 0.33 & ＊＊ & \\
\hline \(\cdots\) & 123 & 35 & 65 & 117. & 7. & 24.0 & 9H56M13．5S & 1 & 1 & 2 & 4 & 8.0 & 0.0 & ＊＊ & \\
\hline \％ & 124 & 50 & 77 & 140. & 5 & 2？．2 & 9H56M11．0S & 2 & 1 & 1 & 5 & 9.5 & 0.26 & ＊＊ & 8 \\
\hline & 125 & 72 & 82 & 144. & 4 & 33.0 & 9H56M25．8S & 1 & 2 & 2 & 0 & 3.5 & 0.14 & ＊＊ & \\
\hline & 12.6 & 65 & 96 & ． 90. & 10 & 25.2 & 9H56M15．1S & 2 & 2 & 3 & 0 & 5.5 & 0.27 & \＄＊ & \\
\hline & 127 & 72 & 104 & 96. & 11 & 26.2 & GH56ML 6．6S & 1 & 1 & 3 & 4 & 6.5 & 0.23 & ＊＊ & \\
\hline & 4.30 & 7 & 96 & 158. & 23 & 25.6 & 9H56M15．7S & 1 & 2 & 3 & 2 & 4.5 & \[
0.33
\] & 2 & \\
\hline & 131 & 28 & 110 & 165. & 20 & 34.1 & 9H56M13．7S & 1 & 2 & 3 & 4 & 6.0 & 0.33 & 2 & \\
\hline & 137 & 77 & 90 & 177. & 6 & 23.1 & 9H56M17．2S & 1 & 2 & 3 & 0 & 2.5 & 0.20 & ＊＊ & \\
\hline & 133 & 2 & 28 & 178. & 7 & 27.1 & 9H56M12．2S & 1 & 2 & 2 & 2 & 9.0 & 0.22 & ＊ & \\
\hline & 136 & 104 & 175 & 200. & 11 & 22.0 & 9H56：M1 0．75 & 2 & 3. & 1 & 0 & 18.0 & 0.28 & 0 & \\
\hline & 137 & 36 & 95 & 276 。 & 11 & 22.9 & 9H56M11．9S & 1 & 2 & 2 & 2 & 12.5 & 0.36 & 4 & \\
\hline & 138 & 87 & 95 & 242. & 3 & 11.2 & 9H55M56．0S & 1 & 2 & 2 & 0 & 4.5 & 0.11 & ＊＊ & \\
\hline & 139 & 15 & － 19 & 214. & 2 & 7.5 & 9H55M50．9S & 1 & 1 & 3 & 4 & 8.0 & 0.25 & ＊＊ & \\
\hline & 140 & 32 & 37. & ＊＊准为 & 1 & ＊＊＊＊＊＊ & ＊H＊＊M＊＊＊＊S & 1 & 1 & 2 & 4 & 10.0 & 0.0 & ＊＊ & \\
\hline & 143 & 37 & 58 & 265. & 6 & 34.3 & 9H56M27．6S & 1 & \(?\) & 0 & 7 & ＊＊＊＊＊ & ＊＊＊＊ & ＊＊ & \\
\hline & 144 & 76 & 202 & 245. & 26 & 74.0 & 9H56M13．5S & 1 & 2 & 3 & 2 & 7.5 & 0.33 & 3 & \\
\hline & 145 & 76 & 80 & 255. & 2 & 45.0 & 9 H 56 M 42.2 S & 1 & 2 & 2 & 0 & 3.0 & 0.0 & ＊＊ & \\
\hline & 146 & 71 & 134 & 257. & 1.9 & 27.4 & 9H56M11．2S & 1 & 2 & 2 & 0 & 5.5 & 0.27 & 2 & \\
\hline & 150 & 5 & 2.25 & 219. & 43 & 0.0 & 9H55M40．6S & 1 & 1 & 2 & 2 & 6.0 & 0.33 & 4 & \\
\hline & 151 & 5 & 39 & 283. & 6 & 27.1 & 9H56M10．3S & 2 & 2. & 2 & 0 & 7.5 & 0.20 & ＊＊ & \\
\hline & 152 & 69 & 105 & 290. & 8 & 16.7 & 9H56M 3．4S & 1 & 2 & 2 & 0 & 5.0 & 0.20 & 3 & \\
\hline
\end{tabular}

NTB（CONTINUED）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SPOT & DATES & OBSVD & LONG & NO． & DRIFT & ROT PERIOD & D，L & S & P & & LENGTH & DL／L & DEV \\
\hline & 153 & 37 & 88 & 313. & 14 & 25.3 & 9 H 56 M 15.25 & 1 & 1 & 2 & 2 & 8.5 & 0.29 & 3 \\
\hline & 154 & 69 & 73 & 336. & 3 & 30.0 & 9H56M21．7S & 1 & 7 & 3 & 2. & 2.5 & 0.20 & ＊＊ \\
\hline & 155 & 64 & 202 & 327. & 36 & 0.0 & 9H55M40．6S & 1 & 3 & 2 & 2 & 6.5 & 0.23 & 4. \\
\hline & 156 & 64 & 134 & 341. & 24 & 0.0 & 9H55M40．6S & 1 & 1 & 2 & \(?\) & 6.5 & 0.23. & 4. \\
\hline & 157 & 1 & 16 & 354. & 3 & 12.0 & 9455 M 57.0 S & 1 & 1 & 2 & 4 & 11.0 & 0.09 & ＊＊ \\
\hline & 158 & 30 & ． 43 & 357 。 & 3 & 13.8 & 9H55M59．6S & 1 & 1 & 3 & 4 & 10.0 & 0.30 & ＊＊ \\
\hline & 159 & 64 & 105 & 355. & 19 & 0.0 & 9 H 55 M 40.6 S & 1 & \(?\) & 2 & 4 & 8.0 & 0.13 & 5 \\
\hline & 160 & 1 & 79 & 348. & 24 & 0.0 & 9H55M40．6S & 1 & 2. & 0 & 7 & ＊＊＊＊ & ＊＊＊＊ & 5 \\
\hline & 161 & 15 & 20 & 285. & 2 & 30.0 & 9H56M21．7S & 2 & 3 & 1 & 0 & 11.5 & 0.04 & ＊＊ \\
\hline & 162 & 115 & 152 & 4. & 14 & 30.8 & 9H56M7？．8S & 1 & 2 & 2 & 0 & 6.0 & 0.17 & ＊＊ \\
\hline & 165 & 113 & 212 & 351． & 25 & 0.0 & 9H55M40．6S & 1 & 3 & 3 & 2 & 6.0 & 0.17 & 2 \\
\hline & 166 & 11.3 & 183 & 339. & 17 & 0.0 & \(9 \mathrm{H} 55 \mathrm{M4} 0.6 \mathrm{~S}\) & 1 & 2 & 2 & 4 & 9.0 & 0.11 & 0 \\
\hline & 167 & 122 & 181 & 340. & 15 & ， 30.5 & 9H56M 22.4 S & 1 & 2 & 2 & 2 & 6.5 & 0.23 & 4 \\
\hline & 168 & 209 & 209 & 大为为宾 & 1 & ＊＊＊＊＊＊ & ＊ H ＊＊M＊＊＊＊S & 1 & 2 & 3. & 0 & 5.0 & 0.0 & ＊＊ \\
\hline \％ & 169 & 166 & 181 & 330 。 & 4 & 40.0 & 9 H 56 M 35.4 S & 1 & 1 & 2 & 4 & 9.0 & 0.0 & ＊＊ \\
\hline 客： & 170 & 130 & 152 & 23. & 5 & 30.0 & 9H56M21．7S & 1 & 1 & 3 & 4 & 7.5 & 0.20 & ＊＊ \\
\hline & 171 & 171 & 155 & 55. & 6 & 27.4 & \(9 \mathrm{H56M18.1S}\) & 1 & 1 & 2 & 2 & 8.0 & 0.0 & ＊＊ \\
\hline & 172 & 121 & 160 & 79. & 8 & 23.8 & 9H56M13．3S & 2 & 3 & 1 & 0 & 8.5 & 0.53 & ＊＊ \\
\hline & 173 & 121 & 155 & 110 & 7 & 20.3 & 9456.48 .45 & 1 & 3 & 2 & 0 & 5.0 & 0.20 & ＊＊ \\
\hline & 174 & 160 & 184 & 97. & 5 & 71．2 & 9 H 56 M 9.7 S & 2 & 2 & 3 & 0 & 5.0 & 0.20 & ＊＊ \\
\hline & 175 & 160 & 184 & 100. & 6 & 2.2 .5 & 9H56M11．4S & 1 & 2 & 3 & 0 & 6.0 & 0.33 & ＊＊ \\
\hline & 176 & 121 & 174 & 115. & 11 & 21.5 & 9H56M10．1S & 2 & 2 & 2 & 0 & 7.0 & 0.43 & 0 \\
\hline & 177 & 165 & 174 & 126. & 4 & 16.7 & 9H56M 3．4S & 1 & 1 & 3 & 0 & 5.0 & 0.0 & ＊＊ \\
\hline & 178 & 121 & 140 & 119. & 5 & 34.7 & 9H56M28．2S & 1 & 1 & 2 & 4 & 8.0 & 0.13 & ＊＊ \\
\hline & 179 & 121 & 131 & 88. & 4 & 63.0 & 9 H 57 M 6.9 S & 1 & 1 & 2 & 4 & 5.0 & 0.0 & ＊＊ \\
\hline & 1.80 & 171 & 1.84 & 170 & 9 & 11.4 & 9H55M56．3S & 1 & 2 & 0 & 6 & ＊＊＊＊ & ＊水为草 & 2 \\
\hline & 181 & 140 & 158 & 15？． & 6 & 30.0 & 9H5KM21．7S & 2 & 2 & 1 & 0 & 10.0 & 0.10 & ＊＊ \\
\hline & 182 & 114 & 175 & 210. & 12 & 22.1 & 9H56M10．9S & 1 & 1 & 3 & 4 & 9.0 & 0.44 & 4 \\
\hline & 183 & 104 & 134 & 222. & 7 & 28.0 & 9H56M18．9S & 1 & 1 & 2 & 4 & 9.0 & 0.0 & ＊＊ \\
\hline & 184 & 120 & 146 & 226. & 4 & 31.2 & 9H56M7？．3S & 1 & 2 & 3 & 0 & 4.0 & 0.25 & ＊＊ \\
\hline & 185 & 144 & 173 & 730. & 5 & 75.9 & 9H56M16．0S & 1 & 2 & 2 & 2 & 7.0 & 0.14 & ＊＊ \\
\hline & 186 & 139 & 185 & 263. & 8 & 23.5 & 9H56M12．8S & 2 & 2 & 1 & 0 & 17.0 & 0.12 & ＊＊ \\
\hline & 187 & 132 & 144 & 309. & 4 & 1？．5 & \(9 \mathrm{H} 55 \mathrm{MS7.7S}\) & 1 & 1 & 2 & 2 & 4.0 & 0.0 ． & ＊＊ \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & NTB & （CONT INUED） & & & & & & & \\
\hline SPOT & DATES & OBSVD & LONG & NO． & DRIFT & ROT PERIOD & D，L & S & P & T & LENGTH & DL／L & DEV \\
\hline 188 & 103 & 166 & 302． & 13 & 19.5 & 9H56M 7．3S & 1 & 2 & 0 & 7 & \＃\({ }_{\text {¢ }}^{\text {a }}\)＊ & ＊＊＊＊ & 5 \\
\hline 189 & 193 & 209 & 215. & 4 & 20.6 & 9H5AM 8．8S & 1 & 2 & 3 & 4 & 6.0 & 0.33 & ＊＊ \\
\hline 273 & 87 & 196 & 41. & 20 & 30.8 & 9H56M22．8S & 2 & 2 & 0 & 0 & ＊＊＊＊ & & 2 \\
\hline 2.24 & 6 & 49 & 74. & 17 & 20.9 & \(9 \mathrm{H56M} 9.3 \mathrm{~S}\) & 1 & 2 & 0 & 2 & ＊＊＊＊ & & ＊＊ \\
\hline 225 & 58 & 186 & 87. & 28 & 22．7 & \(9 \mathrm{H} 56 \mathrm{M11.7S}\) & 1 & 2 & 0 & 2 & 为为为为 & ＊＊＊＊ & 2 \\
\hline 226 & 79 & 160 & 67. & 17 & 28．1 & 9H56M19．1S & 1 & 2 & 1 & 3 & 4.5 & 0.11 & ＊＊ \\
\hline 227 & 65 & 175 & 188. & 13 & 21.8 & 9H56M10．5S & 2 & 3 & 1 & 6 & ＊＊＊＊ & 0.0 & 2 \\
\hline 22.8 & 5 & 19 & 261. & 3 & 23.6 & 9H56M12．9S & 1 & 2 & 1 & 2 & 3.5 & 0.14 & ＊＊ \\
\hline 229 & 49 & 110 & 265. & 14 & 24.6 & \(9456 \mathrm{Ml4.35}\) & 2 & \(?\) & 1 & 0 & 6.0 & 0.33 & ＊＊ \\
\hline 230 & 127 & 188 & 348 。 & 9 & 17.2 & 9H56M 4．2S & 2 & 1 & 1 & 0 & 7.5 & 0.33 & ＊＊ \\
\hline
\end{tabular}

NTB（CONTINUED）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SPOT & DRIFTI & DRIFT 2 & DRIFT3 & 3 ODEV & LIFETIME（SEE TEXT） & WHY & PART & S & \\
\hline 188 & ＊＊れれあれ & & & 1.50 & & 1，0 & ＊＊＊＊ & & が为れーあれ \\
\hline 189 & ＊＊＊交め＊ & & ＊＊＊れ＊＊ & ＊＊＊＊＊ & ＊＊＊ & 3，9 & れれね＊ & ＊＊＊ー＊＊＊ & ＊ \\
\hline 273 & ＊＊＊＊＊＊ & 㒳为大为れ & 32.0 & 3.11 & & 0，9 & ＊＊＊＊ & 荲一あれ & ＊ \\
\hline 2.24 & & ＊＊＊＊＊＊ & ＊＊＊＊＊ & 0.0 & & 9，3 & ＊ & －あ & ＊ \\
\hline 225 & ＊＊＊＊＊＊＊ & 25.5 & ＊＊＊穴为 & 1.12 & & 3，3 & \[
\text { * } x * *
\] & & \\
\hline \(2 ? 6\) & ＊＊＊＊＊＊ & あ＊＊＊＊＊ & ＊＊＊＊＊＊ & 0.0 & & 4，3 & ＊＊＊＊＊ & & あれ一あれ\＃ \\
\hline 227 & ＊＊＊＊＊ & 18.0 & & 3.11 & & 3，3 & ＊＊＊＊＊ & 为为一＊＊＊ & ＊＊ー＊＊＊ \\
\hline 228 & ＊＊＊＊＊＊ & ＊＊＊＊＊＊ & ＊＊＊＊＊＊＊ & ＊＊＊＊＊＊ & & 9，5 & ＊＊＊＊ & ＊－ \(\begin{aligned} & * *\end{aligned}\) & 一＊＊＊ \\
\hline 229 & & ＊＊＊＊＊㾁 & ＊＊＊＊＊＊ & 0.0 & & 1，1 & & ＊＊－＊＊＊ & －＊＊＊ \\
\hline 230 & ＊＊＊＊＊＊ & ＊＊＊＊＊＊＊ & ＊＊＊＊＊＊＊ & 0.0 & & 8，9 & ＊れあれ & & \\
\hline
\end{tabular}

THF NTB CURRFNT．NDV 1966－JUNE 1967.
DEFINITE，PROBABLE，AND POSSIBLE SPOTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SPOT & DATES & OBSVD & LONG & NO． & DRIFT & ROT PERIOD & D，L & S & P & T & LENGTH & DL／L & DEV \\
\hline & 101 & 37 & 52 & 60. & 6 & 34.0 & 9H56M27．2S & 1 & 2 & 2 & 2 & 5.5 & 0.27 & ＊＊ \\
\hline & 107 & 47 & 52 & 43. & 3 & 6.0 & \(9 \mathrm{H55M48.8S}\) & 1 & 1 & 2 & 2 & 9.0 & 0.11 & ＊＊ \\
\hline & 103 & 60 & 69 & 72. & 4 & 40.0 & 9H56M35．4S & 1 & 1 & 2 & 2 & 7.0 & 0.43 & ＊＊ \\
\hline & 104. & 78 & 79 & 59. & 2 & 30.0 & 9H56M21．7S & 1 & 1 & 3 & 2 & 4.0 & 0.0 & ＊＊ \\
\hline & 105 & 80 & 87. & 63. & \(?\) & 15.0 & 9H56M 1．1S & 1 & 2 & 3 & 3 & 3.0 & 0.0 & ＊＊ \\
\hline & 106 & 72 & 87 & 34. & 9 & 22．0 & 9H56M10．7S & 2 & 2 & 3 & 0 & 6.0 & 0.17 & ＊＊ \\
\hline & \(107^{\circ}\) & 88 & 94 & 23. & 0 & 20.0 & 9H56M 8．0S & 1 & 2. & 0 & 7 & ＊＊＊＊ & ＊＊＊＊ & ＊ \\
\hline & 111 & 46 & 49 & 5.7 ． & 3 & 10.0 & 9H55M54．3S & 2 & 1 & 2 & 0 & 6.5 & 0.23 & ＊＊ \\
\hline & 112 & 28 & 30 & 32. & 2 & 0.0 & 9 H 55 M 40.6 S & 2 & 1 & 2 & 4 & 6.5 & 0.23 & ＊＊ \\
\hline & 120 & 6 & 13 & 82. & 4 & 17.1 & 9 H 56 M 4.1 S & 2 & 2 & 0 & 7 & ＊＊＊＊＊ & ＊＊交亦 & 交茧 \\
\hline & 121 & 11 & 16 & 99. & 4 & 30.0 & \(9 \mathrm{H56M21.7S}\) & 2 & 1 & 3 & 0 & 5．0 & 0.20 & ＊＊ \\
\hline & 12 ？ & 1 & 21 & 108. & 9 & 19.5 & 9 H 56 M 7.3 S & 1 & 1 & 3 & 4 & 7.5 & 0.33 & ＊＊ \\
\hline \％ & 123 & 35 & 65 & 117. & 7. & 2.4 .0 & 9H56M13．5S & 1 & 1 & 2 & 4 & 8.0 & 0.0 & ＊＊ \\
\hline ＊ & 124 & 50 & 77 & 140. & 5 & 27.2 & 9H56M11．0S & 2 & 1 & 1 & 5 & 9.5 & 0.26 & ＊＊ \\
\hline & 125 & 72 & 87 & 144. & 4 & 33.0 & 9H56M25．8S & 1 & 2 & 2 & 0 & 3.5 & 0.14 & ＊＊ \\
\hline ： & 126 & 65 & 96 & 90. & 10 & 25．2 & 9H5GM15．1S & 2 & 2 & 3 & 0 & 5.5 & 0.27 ． & ＊＊ \\
\hline & 127 & － 72 & 104 & 96. & 11 & 26.2 & 9H56M16．6S & 1 & 1 & 3 & 4 & 6.5 & \(0.23{ }^{\circ}\) & ＊ \\
\hline & 130 & 7 & 96 & 159. & 23 & 25.6 & 9H56M15．7S & 1 & 2 & 3 & 2 & 4.5 & 0.33 & 2 \\
\hline & 131 & 28 & 110 & 165. & 20 & 24.1 & 9H56M13．7S & 1 & 2 & 3 & 4 & 6.0 & 0.33 & 2 \\
\hline & 132 & 77 & 90 & 177. & 6 & 23.1 & 9H56M12．2S & 1 & 2 & 3 & 0 & 2.5 & 0：20 & ＊＊ \\
\hline & 133 & \(?\) & 28 & 178. & 7 & 23.1 & 9H56M12．2S & 1 & 2 & 2 & 2 & 9.0 & 0.27. & ＊＊ \\
\hline & 136 & 104 & 175 & 200． & 11 & 22.0 & \(9 \mathrm{H56M10.7S}\) & 2 & 3 & 1 & 0 & 18.0 & 0.28 & 0 \\
\hline － & 137 & 36 & 95 & 226. & 11 & 22.9 & 9H56M11．9S & 1 & 2 & 2 & 2 & 12.5 & 0.36 & 4 \\
\hline & 138 & 87 & 95 & 242． & 3 & 11．？ & 9H55M56．0S & 1 & 2 & 2 & 0 & 4.5 & 0.11 & ＊＊ \\
\hline & 143 & 37 & 58 & 265. & 6 & 34.3 & 9H56M＞7．6S & 1 & 2 & 0 & 7 & ＊＊＊＊ & ＊＊＊＊ & ＊＊ \\
\hline & 144 & 76 & 207 & 245. & 26 & 24.0 & 9H5SM13．5S & 1 & 2 & 3 & 2 & 7.5 & 0.33 & 3 \\
\hline & 145 & 76 & 80 & 255. & \(?\) & ． 45.0 & 9H56M42．7S & 1 & 2 & 2 & 0 & 3.0 & 0.0 & ＊＊ \\
\hline & 145 & 71 & 13.4 & 257. & 19 & 22.4 & 9H56M11．2S & 1 & 2 & 2 & 0 & 5.5 & 0.27 & 2 \\
\hline & 150 & 5 & 225 & 219. & 43 & 0.0 & 9H55M／0．6S & 1 & \(1 /\) & 2 & 2 & 6.0 & 0.33 & 4 \\
\hline & 151 & 5 & 39 & 783. & 6 & 2．2．1 & \(9 \mathrm{H} 56 \mathrm{M1} \mathrm{0.8S}\) & 2 & 2 & 2 & 0 & 7.5 & 0.20 & ＊＊ \\
\hline & 152 & 69 & 105 & 290. & 8 & 16.7 & 9 H 56 M 3.4 S & 1 & 2 & 2 & 0 & 5.0 & 0.20 & 3 \\
\hline & 153 & 37 & 88 & 313. & 14 & 25.3 & 9H5KM15．2S & 1 & 1 & \(?\) & 2 & 8.5 & 0.29 & 3 \\
\hline & 154 & 69 & 73 & 336. & 3 & 30.0 & 9H5GM21．7S & 1 & 2 & 3 & 2 & 2.5 & 0.20 & ＊ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline SPOT & DRIFT 1 & DRIFT 2 & DRIFT 3 & \(30 D E V\) & LIFETIME（SEE TEXT） & WHY & PART & DATES & ENT \\
\hline 101 & & ＊＊＊＊＊＊ & & ＊＊＊＊＊ & & 1，3 & ＊\(\chi_{*}^{* *}\) & & 中＊＊ー＊＊＊ \\
\hline \(10 ?\) & ＊＊れれが & & ＊＊れが號 & 中れれが安 & & 0，3 & ＊ & ああ\％ & ＊＊一＊种 \\
\hline 103 & & & & あれ才完束 & & 3，4 & あれれあ & 大＊＊ & \\
\hline 104 & & & & ＊ & & 2，2 & ＊ & & ＊ \\
\hline 1.05 & ＊＊れれが & ＊＊＊れれ安 & & 本＊＊ & & 4，7 & れねれれ & あれれ一れれ＊ & ＊＊－＊＊＊ \\
\hline 106 & れ＊＊ & あれれあれ & ＊＊＊＊＊ & & & 0，0 & ＊＊＊＊ & 为为一＊＊ & \\
\hline 107 & ＊＊＊＊＊＊ & & & & & \[
0,1
\] & 京为 & ＊ & —あれあ \\
\hline 111 & ＊＊＊＊＊＊ & ＊＊大水为》 & あれれ市か & & & 1，3 & ＊＊＊ & ＊＊水れ来 & 安市一＊ \\
\hline 112 & ＊＊次れ力＊ & ＊＊＊＊＊＊ & ＊＊＊ & －＊＊＊ & & 3，2 & 本办为 & れれれーネれか & \\
\hline 120 & ＊＊＊＊＊＊ & れ＊＊＊＊ & 戌为为头束 & & & 9，0 & ＊ & & ＊＊－＊＊＊ \\
\hline 121 & ＊ & れれかれ＊＊ & & ＊＊＊＊＊ & & 2.5 & 为 & ＊＊＊＊\({ }_{\text {＊}}\) & 为－ \\
\hline 127 & ＊＊＊＊＊＊ & 为办至办办办 & & 办办办皮家 & & \[
9,7
\] & ＊ね＊ & ＊れかーれれ＊ & \\
\hline 129 & & & & ＊次为中为 & & 5，5 & & & 办れ一あ \\
\hline 124 & ＊＊＊＊＊ & ＊＊＊＊＊＊ & ＊＊＊＊＊＊ & \％\％\％\％ & & 2，1 & ＊＊＊ & ＊＊ー＊＊＊ & \\
\hline － 125 & ＊＊＊＊＊＊ & ＊＊＊＊＊＊ & 为为京 & ＊＊＊中＊ & & 1，3 & ＊ & ＊ & ＊＊ ＊\(_{\text {＊＊＊}}\) \\
\hline － 126 & ＊＊＊＊＊＊ & & & ＊＊＊＊ & & 0，1 & ＊＊＊＊ & －＊交 & \\
\hline 127 & ＊本＊＊ & & 本束六 & 办米必办办 & & 8,3 & ＊＊㸚办 & & ＊＊ーれ＊＊ \\
\hline 137 & 25.0 & & & \[
2.00
\] & & \[
9,0
\] & ＊＊＊＊ & 为为冓一\＃\＃＊＊ & \\
\hline 130 & ＊＊＊＊＊ & & & 1.50 & & 1，1 & & 戍れー＊れ & ＊ \\
\hline 132 & ＊＊＊＊＊＊ & & 为隶 & & & 2，1 & ＊ & ＊＊ー＊＊＊ & \\
\hline 133 & ＊＊＊＊＊＊ & ＊＊ & & ＊＊＊＊＊ & & 9.5 & ＊ & & ＊ \\
\hline 136 & ＊ 4 ＊＊＊＊ & ＊＊れ＊＊＊ & ＊＊＊＊＊＊ & 4.50 & & 8，3 & ＊＊＊＊ & 126－141 & \\
\hline 137 & & あれが気 & ＊农为为＊ & \[
0.0
\] & & 1，3 & ＊水れ & \[
64-91
\] & －－＊＊＊ \\
\hline 138 & ＊＊＊＊＊＊ & ＊＊＊＊れ & ＊れ＊れ＊＊ & & & 0，3 & ＊＊＊＊ & あれ一大\＃＊ & \\
\hline 143 & ＊＊＊＊＊＊ & ＊＊＊＊为为 & ＊＊＊＊＊＊ & ＊＊＊＊＊ & & 1，8 & ＊＊＊＊ & ＊＊ー＊＊ & －戠水 \\
\hline 144 & ＊＊＊＊＊＊ & ＊＊＊＊＊安 & 22.0 & 0.44 & & 0，9 & ＊＊＊＊ & 105－173 & 析 \\
\hline 145 & & ＊\＃\＃れ\＃ & ＊＊＊＊＊＊＊ & ＊＊＊＊＊ & & 2，2 & ＊ & ＊＊＊一\＃＊＊＊ & －＊＊＊ \\
\hline 146 & ＊＊＊＊＊ & & & \[
0.0
\] & & 1，0 & 承办水女 & 奥れーあれれ & \\
\hline 150 & 22． 5 & 24.0 & \[
20.5
\] & \[
2.78
\] & & 9,9 & ＊＊＊＊ & & ＊れーれれか \\
\hline 151 & ＊＊＊＊＊＊ & & & ＊＊＊＊＊ & & 9，1 & ＊＊＊＊ & あれ＊ーかれ＊ & ＊＊－＊＊＊ \\
\hline 15？ & & & ＊＊＊＊＊＊ & 0.0 & & 1，1 & ＊＊＊ & ＊れー＊＊ & 为为一》＊＊ \\
\hline 153 & ＊＊＊＊＊＊ & ＊＊ & & 0.0 & & 1，1 & ＊ & ＊－＊ & \\
\hline 154 & & & \＄ \(2 \times * * * *\) & & & 2，2 & ＊＊＊＊ & \＃れれーあれ & 穴为一衣》＊ \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SPOT & DRIFT1． & DRIFT2 & DRIFT3 & 30 DEV & LIFETIME（SEE TEXT） & WHY & PART & DATES P & MINENT \\
\hline & 155 & & 23.0 & 18.0 & 2.75 & & 0，9 & ＊\({ }_{\text {＊}}\)＊ & 91－152． & ＊＊ \\
\hline & 156 & ＊＊れ为れ & & ＊＊＊＊＊ & 0.0 & & 0，4 & & ＊＊＊－＊＊＊ & \\
\hline & 160 & 15.0 & あれれれれか & & 4.00 & & 9，0 & ＊＊＊＊ & ＊＊があれ & ＊＊＊ー＊＊ \\
\hline & 161 & ＊＊＊＊＊＊＊ & ＊＊＊＊＊＊ & ＊＊＊＊＊＊ & & & 1，3 & ＊＊＊＊ & ＊极れ一＊＊＊ & ＊＊＊ー＊＊＊ \\
\hline & 162 & & & & & & 0.1 & ＊＊＊＊ & ＊れ & ＊＊ーネ＊ \\
\hline & 165 & & ＊＊＊＊＊＊ & 18.0 & 0.0 & & 1，9 & ＊亦＊ & あれれ一あれ & あれれーあれ＊ \\
\hline & 166 & & ＊＊＊れ＊＊ & & 0.0 & & 3.0 & ＊＊＊＊ & & ＊＊ \\
\hline & 1.69 & 大れれが安 & & ＊れれたあれ & & & \[
5,5
\] & ＊れれ & & 中れ \\
\hline & 170 & それれため＊ & & & & & 4.3 & ＊＊＊＊ & ＊＊布一＊＊＊ & \\
\hline & 171 & ＊＊＊＊＊＊ & & \％ & ＊＊＊＊＊ & & 1，0 & ＊れが & & ＊＊＊一＊＊＊ \\
\hline & 177 & & ＊＊＊＊＊＊＊ & & & & 8，0 & あれが安 & ＊＊＊ーれが & ＊九れ一＊＊＊ \\
\hline & \[
173
\] & & & & & & 3，4 & れれれ & れねねーネれれ & れ木ネーネネヶ \\
\hline & \[
174
\] & あれかれれれ & & & 字办水办京 & & \[
0,9
\] & ＊水水 & & \\
\hline & 175 & ＊＊＊＊＊＊ & 农皮皮水水水 & & ＊＊＊＊＊ & & 0，3 & & あれねーあれれ & \\
\hline \％ & 176 & ＊＊＊＊＊＊ & \＃\＃\＃＊＊＊ & & 0.0 & & 3，3 & ＊＊＊＊ & ＊＊＊ー齐れ＊ & \\
\hline － & 177 & & ＊＊＊＊＊＊ & ＊＊＊＊あ & ＊＊＊＊＊＊ & ＊＊＊＊ & 1，3 & ＊＊＊＊ & & ＊ \\
\hline & 178 & ＊＊＊＊＊ & 小为大为为束 & ＊ & ＊＊＊＊＊ & & 3，2 & ＊＊＊＊ & & \\
\hline & \[
179
\] & 米办水氺析 & & & & & \[
3,3
\] & ＊れれれ & ＊＊＊一＊＊＊ & \\
\hline & 180 & ＊＊＊＊水为 & & れかれまれか & \[
0.0
\] & & 3.3 & ＊＊＊＊ & ＊ & ＊＊＊ \\
\hline & 181 & & 为为为为为 & & & & 3，3 & ＊＊＊＊ & ＊＊れ一＊＊＊ & \\
\hline & 182 & ＊＊＊＊＊＊ & ＊＊＊本为为 & ＊＊ヶ＊＊＊＊ & 0.0 & & 3，3 & ＊＊＊＊ & ＊＊＊ーあれか & ＊＊＊－れ \({ }_{\text {＊}}\)＊ \\
\hline & 183 & \＃＊＊＊＊＊＊ & & & ＊六々米中 & & 3，3 & 》れあれ & ＊＊＊一＊＊＊ & ＊＊＊ー＊＊＊ \\
\hline & \[
184
\] & & れれかれ中卒 & & ＊＊＊＊＊ & & \[
3,0
\] & & ＊＊＊－\＃＊＊ & ＊＊＊ーかれ \\
\hline & 185 & & & ＊＊れれれれ & ＊水为次市 & & \[
7,3
\] & & ＊＊＊一＊＊＊ & ＊れた一＊れな \\
\hline & 186 & & & & ＊＊＊＊）\({ }^{*}\) & & 0,1 & ＊＊＊＊ & & \\
\hline & 187 & ＊＊＊＊＊＊ & ＊＊＊＊＊＊ & ＊＊＊＊＊＊＊ & ＊＊＊＊＊ & & 2，1 & ＊＊＊＊ & ＊＊＊ーが离 & 衣为为一＊＊＊ \\
\hline & 188 & & & 为为必为为\％ & 1.50 & & 1，0 & ＊＊＊＊ & & ＊＊ \\
\hline & 189 & & ＊＊＊＊＊れ & & ＊＊＊＊＊ & & 3，9 & & & \\
\hline & \[
223
\] & & & \[
32.0
\] & \[
3.11
\] & & 0，9 & & ＊ & ＊＊＊ー＊婦安 \\
\hline & 724 & 为为为办为 & & ＊＊＊＊＊ & 0.0 & & 9，3 & ＊れあれ & & \＃\＃ \\
\hline & 225 & ＊＊＊＊＊＊ & 25.5 & & 1.11 & & 3，3 & ＊＊＊ & & ＊＊＊ \\
\hline & 226 & ＊＊＊＊＊＊＊ & ＊＊ & ＊＊＊＊＊＊ & 0.0 & & 4，3 & & & \\
\hline & 227 & ＊＊＊＊＊＊ & 18.0 & ＊＊＊＊＊＊ & 3．1．1． & & 3，3 & 本示\＄\({ }^{\text {a }}\) & \＃れれーれれか & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & NTB & (CONTINUED) & & & & & & & \\
\hline SPOT & DATES & OBSVD & LONG & NC. & ORIFT & ROT PFRIOD & D,L & S & \(p\) & T & LENGTH & DL/L & DEV \\
\hline 278 & 5 & 19 & 261 . & 3 & 23.6 & 9H56M12.9S & 1 & 2 & 1 & 2 & 3.5 & 0.14 & ** \\
\hline 229 & 49 & 110 & 265. & 14 & 24.6 & \(9 \mathrm{H56M14.3S}\) & 2 & 2 & 1 & 0 & 6.0 & 0.33 & ** \\
\hline 230 & 127 & 198 & 348. & 9 & 17.2 & 9H56M 4.2S & 2 & 1. & 1 & 0 & 7.5 & 0.33 & ** \\
\hline 2.34 & 15 & 32 & 236. & 3 & 17.6 & 9H56M 4.8 S & 1 & 1 & 1 & 4 & 8.0 & 0.25 & ** \\
\hline 235 & 1 & 43 & 356. & 6 & 12.9 & 9H55M58. 2 S & 1 & 1 & 1 & 4 & 10.0 & 0.30 & ** \\
\hline 236 & 30 & 105 & 334. & 73 & 0.0 & 9H55M40.6S & 1 & 1 & 1 & 4 & 10.0 & 0.30 & 5 \\
\hline 237 & 122 & 209 & 340. & 16 & 30.7 & 9H56M22.6S & 1 & 2 & 1 & 2 & 6.5 & 0.23 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{NTB (CONTINUED)} \\
\hline SPJT & D2I FT 1 & DR IFT 2 & JRIFT3 & 3 ODEV & LIFET IMf (SEE TEXt) & WHy & PART & DATES PR & OMINENT \\
\hline 228 & ****** & ***** & ****** & ***** & ********************* 14. & 9, 5 & **** & ***-*** & ***-*** \\
\hline 229 & ******* & ****** & ****** & 0.0 & & 1,1 & **** & ***-*** & *\#*-*** \\
\hline 230 & **** & ****** & ****** & 0.0 & ******122.**** & 8,9 & ***** & ***-*** & ***-*** \\
\hline 234 & ******* & ***** & ****** & ***** & & 1,0 & **** & ***-*** & *** \\
\hline 235 & ******* & ****** & ******* & 0.0 & ********************* 42. & 9,2 & **** & ***-*** & ***-*** \\
\hline 236 & \#***** & ****** & ******* & ?. 50 & ******************* 75. & 3,7 & **** & ***ー*** & ***ー*** \\
\hline 237 & ****** & ****** & 79.0 & 1.00 & *174.******** & 0,9 & **** & ***-*** & ******* \\
\hline
\end{tabular}

THE NNTBS CURRFNT. NOV 1966-JUNE 1967.
DEFINITE SPOTS

NNTRS (CONTINUED)

THE NNTEZ CURRENT．NDV 1966－JUNE 1967.
DEFINITE SPOTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SPOT & DATES & OBSVD & LONG & NO． & DRIFT & ROT PERIOC & D，L & S & P & T & LENGTH & DL／L & DEV \\
\hline 206 & 58 & 77 & 131. & 3 & －7．9 & 9H55M29．8S & 1 & 1 & 0 & 6 & ＊あが安 & ＊＊＊＊ & ＊＊ \\
\hline 207 & 19 & 28 & 76. & 3 & －6．7 & 94.55 M 31.5 S & 1 & 1 & 0 & 7 & ＊＊＊ & ＊ & ＊＊ \\
\hline 208 & 83 & 140 & 99. & 8 & －5．8 & 91155：132．7S & 1 & 2 & 0 & 6 & 为大为为 & ＊＊＊＊＊ & 0 \\
\hline 209 & 121. & 174 & 173. & 6 & \(-17.5\) & 9H55M16．6S & 2 & 1 & 2 & 0 & 5.0 & 0.0 & 5 \\
\hline 21.0 & 1.32 & 144 & 271. & 4 & \(-10.0\) & 9H55M26．9S & 1 & 2 & 2 & 4 & 8.0 & 0.13 & ＊＊ \\
\hline
\end{tabular}

\section*{NNTEZ（CONTINUED）}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline SPOT & DRIFT 1 & DR IFT2 & DRIFT3 & 3ODEV & \multicolumn{2}{|l|}{LIFETIMF} & WHY & ART & \multicolumn{2}{|l|}{DATES PROMINENT} \\
\hline 206 & & ＊＊＊＊＊＊ & ＊＊かれ＊＊ & & & 19. & 2，2 & 卒＊が & ＊＊＊ーかれ & ＊＊＊ー＊＊＊ \\
\hline 207 & ＊＊＊＊＊＊ & & & ＊＊が串 & & 9. & 2，2 & 市ヵ＊＊＊ & ＊れれー＊寿れ & \\
\hline 208 & & & れ为大为れ & 0.0 & & 57. & 2，2 & ＊＊＊＊ & ＊＊＊一》＊＊ & ＊＊＊ー＊＊＊ \\
\hline 209 & ＊＊＊＊＊＊ & & & 0.0 & & 53. & 2，2 & ＊ ＊\(_{\text {－}}\)＊ & & 市为一あれ \\
\hline 210 & & & ＊＊が为为 & ＊＊＊ & & 12. & 2，2 & ＊＊＊＊ & －＊＊＊ー＊＊＊ & ＊＊＊ー＊ \\
\hline
\end{tabular}

\section*{APPMNDIX•C}

Relationships Between Spot Characteristics

\section*{DARK SPOTS}

MEAN LONG-TERM DEVIATIONS FRCM MFAN DRIFTS= 2.12 N= 16 .
MEAN SHORT-TERM DEVIATIONS (DEG.) FROM MEAN POSITIONS= ***** \(N=32\).
MEAN CF DEFINITE OR PRORABLE LIFETIMFS= 103.4 DAYS \(N=19\).
MEAN PROPORTION \(=2.5 \quad N=78\).
MEAN LENGTH=6.4 \(N=78\).
MEAN RATIO OF LENGTH-DEVIATION TN LENGTH= \(0.16 \quad N=78\).
MEAN SIGNED DEVIATION DF DRIFT FROM GURRENT MEAN (NEG=SLOW) \(1.41 \quad N=67\).
NUMBER CF DARK SPOTS= 9.3
NUMBER OF LIGHT SPOTS= 0

DISTRIBUTION OF SPOTS BY TYPE

\section*{LIGHT SPOTS}

MEAN LONG-TFRM DFVIATIONS FRCM MEAN DRIFTS \(=1.98 \quad N=140^{\circ}\)
MEAN SHORT-TERM DEVIATIONS (DEG.) FROM MEAN PDSITIONS= ***** \(N=27\). MEAN CF DEFINITE OR PROBABLE LIFFTIMES= 93.0 DAYS \(N=13\). MEAN PROPORTION = 2.1 \(N=85\).
MFAN LENGTH \(=* * * * \quad N=85\).
MEAN RATIO CF LENGTH-DFVIATION TO LENGTH= \(0.17 \quad N=85\).
MEAN SIGNED DEVIATION OF DRIFT FROM CIJRRENT MEAN (NEG=SLOW) -2.05 N=46. NIJMBER OF DARK SPOTS= 0 NUMBER OF LIGHT SPOTS= 87

DISTRIBUTION DF SPOTS BY TYPE

MEAN LDNG-TERM DEVIATIONS FROM MEAN DRIFTS \(=3.36 \quad N=6\).
MEAN SHORT-TERM DFVIATIONS IDEG.) FRDM MEAN POSITIONS = \(2.57 \quad N=7\).
MEAN OF DEFINITE OR PROBABLE LIFETIMES \(=170.0\) DAYS \(N=3\).
MFAN PROPORTION \(=1.3 \quad N=12\).
MEAN LENGTH \(=* * * * \quad N=12\).
MEAN RATIO OF LENGTH-DEVIATION TO LEVGTH= \(0.18 \quad N=12\).
MEAN SIGNED DEVIATION OF DRIFT FROM CURRENT MEAN (NEG=SLOW) -0.36 N \(=10\).
NUMBER OF DARK SPOTS = 5
NUMBFR CF LIGHT SPOTS= 7

DISTRIBIJTION OF SPOTS BY TYPE

\section*{SPOTS 5 TN 10 DEG LONG}

MEAN LONG-TERM DEVIATIONS FRCM MEAN DRIFTS \(=1.53 \quad N=15\).
MEAN SHORT-TERM DEVIATIDNS IDFG.) FROM MEAN POSITIONS= ***** \(N=36\).
MEAN GF DEFINITE OR PRABABLE LIFFTIMES \(=90.4\) DAYS \(N=18\).
MEAN PROPORTION \(=2.2 \quad N=101\).
MEAN LENGTH \(=6.8 \quad N=101\).
mean ratio of Lengit-deviation to length \(0.18 \quad \mathrm{~N}=101\).
MEAN SIGNED DEVIATIDN TF DRIFT FROM CURRENT MEAN (NEG=SLOW) -0.12 N= 71 . NUMBER OF DARK SPOTS = 5?
NUMRER OF LIGHT SPOTS= 49

DISTRIRUTION OF SPOTS BY TYPE
\begin{tabular}{lccccccccc}
* & TYPE & OVAL & SLANT FESTOON & WAVE & ANGULAR & AMORPHOUS & VARIABLE & PREC. END & FOL. END
\end{tabular}
```

MEAN LONG-TERM DEVIATIONS FRCM MEAN DRIFTS= 1.76 N= 5.
MEAN SHORT-TERM DEVIATIGNS (DEG.) FROM MEAN POSITIONS= ***** N= 9.
MEAN OF DEFINITE OR PROBABLE LIFFTIMES= 130.9 DAVS N= 4.
MFAN PROPORTION= 2.7 N=50.
MEAN LENGTH= 3.4 N= 50. NTIN TO LENGTH= 0.12 N= 50.
MEAN RATIO CF LENGTH-DEVIATRINT FROMENGURENT MEAN INEG=SLOW) -2.22 N= 18.
NJMBER OF DARK SPOTS= ?1
NUMRER OF LIGHT SPOTS= 20

```

DISTRIBUTION OF SPOTS BY TYPE

TALL SPOTS
```

MEAN LONG-TERM DEVIATIONS FROM MEAN DRIFTS= ***** N= 0.
MEAN SHORT-TERM DEVIATICNS (DEG.) FRDM MEAN POSITIONS= ****** N= 0.
MFAN GF DEFINITE OR PROBABLF LIFFTIMFS= %%*** DAYS N= 0.
MEAN PROPORTION = 4.0 N=5.
MFAN LENGTH= 3.7 N= 5.
MFAN RATIO OF LENGTH-DEVIATION TO LENGTH= 0.03 N= 5.
MEAN SIGNED DEVIATION OF DRIFT FROM CURRENT MEAN (NEG=SLOW) ****** N= 0.
NUMRER OF OARK SPOTS= 5
NUMBER OF LIGHT SPOTS=0

```

DISTRIBUTION OF SPOTS BY TYPE
\begin{tabular}{cccccccccc}
& TYPE & OVAL & SLANT FESTOON & WAVE & ANGULAR & AMORPHOUS & VARIABLE & PREC. END & FOL. \\
NUMBER & 0 & 4 & 0 & 0 & 1 & 0 & 0 & 0
\end{tabular}

\section*{RCUND SPOTS}
```

MEAN LONG-TERM DEVIATIONS FRDM MEAN DRIFTS= 1.46 N= 9.
MEAN SHORT-TERM DEVIATIONS (DEG.) FROM MEAN DOSITIONS= 2.44 N= 16.
MFAN DF DEFINITE OR PROBABLE LIFETIMFS= 115.0 DAYS N= 11.
MEAN PROPORTION= 3.0 N=59.
MEAN LENGTH= 4.9 N= 59.
MEAN RATIO OF LENGTH-DEVIATION TO LENGTH= 0.16 N= 59.
MEAN SIGNED DEVIATION OF DRIFT FROM CURRENT MEAN (NEG=SLOW) -0.39 N= 30.
NUMBER DF DARK SPOTS= 29
NUMRER OF LIGHT SPOTS= 30

```
distribution nf spots by type
```

* TYPE OVAL SLANT FESTDON WAVE ANGULAR AMORPHOUS VARIABLE PREC. END FOL. END

```

MEAN LONG-TERM DEVIATIONS FRTM MEAN DRIFTS \(=1.92 \quad N=10\). MEAN SHORT-TERM DEVIATIONS (DEG.) FROM MEAN POSITIONS = \(2.78 \quad N=23\). MEAN OF DEFINITE OR PRORARLELIFFTIMES= 109.2 DAYS \(N=12\). MEAN PROPORTION \(=2.0 \quad N=73\). MEAN LENGTH=6.6 \(N=73\).
MEAN RATIO OF LENGTH-DEVIATION TO LENGTH= \(0.15 \quad N=73\). MEAN SIGNED. DEVIATION DP DRIFT FROM CURRENT MEAN (NEG=SLOW) \(1.07 . \quad N=45\). NUMBER DF DARK SPOTS = 41 NUMBER OF LIGHT SPOTS \(=37\)
4. DISTRIBUTION OF SPOTS BY TYPE
\begin{tabular}{cccccccccc}
TYPE & OVAL SLANT FESTOON & WAVE & ANGULAR & AMORPHOUS & VARIABLE PREC. END & FOL. END \\
NUMBER & 38 & 0 & 14 & 0 & 20 & 0 & 1. & 0 & 0
\end{tabular}

\section*{VERY LONG SPOTS}
```

MEAN LONG-TERM DEVIATIDNS FRCM MEAN DRIFTS= 2.79 N= 7.
MEAN SHORT-TERM DEVIATIONS (DEG.) FROM MEAN POSITIONS= ****** N= 13.
MEAN DF DEFINITE OR PRDRABLE LIFETIMFS= 4?.5 DAYS N= 2.
MEAN PROPORTION = 1.D N=26.
MEAN LENGTH= **** N= 26.
mean ratio of lengTh-deviation to length= n. 24 N=26.
MEAN SIGNEO DEVIATION OF DRIFT FROM CURRFNT MEAN (NEG=SLOW) -3.68 N= 24.
NUMBER CF DARK SPOTS= 3
NUMRER OF LIGHT SPOTS= 23

```
DISTRIBUTION OF SPOTS BY TYPE

```

MEAN LONG-TERM DEVIATIONS FROM MEAN DRIFTS= 1.99 N= 7.
MEAN SHORT-TERM DEVIATIONS (DEG.) FROM MEAN POSITIONS= ***** N= 17.
MEAN OF DEFINITE OR PROBABLE LIFETIMES= 103.2 DAYS N=11.
MEAN PROPORTION=2.0 N= 34.
MEAN LENGTH=6.5 N=34.
MEAN RATIO OF LENGTH-DEVIATION TO LENGTH= 0.?2 N= 34.
MEAN SIGNED DEVIATION OF DRIFT FROM CURRFNT MEAN (NEG=SLOW) -8.72 N=40.
NUMRER OF DARK SPOTS = 24
NUMBER OF LIGHT SPOTS= 16

```

DISTRIRUTION OF SPOTS BY TYPE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline - & TYPE & OVAL & SLANT & FESTOON & WAVE & ANGULAR & AMORPHOUS & VARIABLE & PREC. & END & FOL. END \\
\hline - & NUMBER & 14 & & 0 & 6 & 1 & 14 & 0 & 3 & & 2 \\
\hline
\end{tabular}

MEAN LONG-TERM DEVIATIONS FROM MEAN DRIFTS= \(3.24 \quad N=15\).
MEAN SHORT-TERM DEVIATIONS IDEG.J FROM MFAN POSITIONS = ***** \(N=22\). MEAN CF DFFINITE DR PROEARLE LIFETIMFS= 80.5 DAYS \(N=10\).
MEAN PROPORTION \(=2.0 \quad N=41\).
MEAN LENGTH= **** \(N=41\).
MEAN RATIO OF LENGTH-DEVIATIDN TO LENGTH= \(0.23 \quad \mathrm{~N}=41\).
MFAN SIGNED DEVIATION DF DRIFT FROM CURRFNT MFAN (NEG=SLOW) -0.39 N= 46. NUMRER CF DARK SPOTS = 25 NUMBER OF LIGHT SPOTS= 2.1
```

* TYPE OVAL SLANT FESTOON WAVE ANGULAR AMORPHOUS VARIABLE PREC. END FOL. END

```

\section*{SPOTS ROTATING FASTFR THAN CURRENT}

MEAN LONG-TERM DEVIATIONS FR \(M M\) MEAN DRIFTS \(=1.77 \quad \mathrm{~N}=8\). MFAN SHORT-TERM DEVIATIONS (DEG.) FROM MEAN POSITIONS= ***** N=20. MEAN OF DEFINITE OR PRDBABLE LIFFTIMES \(=170.9 \mathrm{DAYS} N=7\). MEAN PRCPORTION \(=2.2 \quad N=24\).
MEAN LENGTH= 6.9 \(\mathrm{N}=74\).
MEAN RATIO DF LENGTH-DEVIATION TO LENGTH= \(0.21 \quad N=24\).
MEAN SIGNED DEVIATION OF DRIFT FROM CURRENT MEAN (NEG=SLOW) 13.59 N= 27.
NUMRER OF DARK SPOTS \(=18\)
NUNBER CF LIGHT SPOTS= 9

DISTRIBUTION חF SPOTS RY TYPE
```

*- TYPE OVAL SLANT FESTOON WAVE ANGULAR AMORPHOUS VARIABLE PREC. END FOL. ENO

```

\section*{APPETDIX D}

Lifetime-size Relationships
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & \multicolumn{5}{|l|}{LIFETIME－LENGTH RELATIONSHIP} & \multicolumn{2}{|l|}{} \\
\hline LENGTH WITHIN & 2 & DEGREES & OF & 2 & 6 & 10 & 14 & 18 & 22 & 26 \\
\hline LIFETIME \(1=\) & & & & 9. & 17. & ＊ \(2 \times ⿻ 丷 木\) & かかもあ & ＊＊＊＊ & ＊＊＊＊ & ＊\({ }_{\text {年れ }}\) \\
\hline LIFETIME \(2=\) & & & & ＊＊＊＊ & 40. & 38. & ＊＊＊＊＊ & 46. & ＊ ＊\(_{\text {＊}}\) & ＊＊＊＊ \\
\hline LIFETIME 3．\({ }^{\text {a }}\) & & & & ？ 98. & 160. & 232. & ＊＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊ \\
\hline LIFETIME \(4=\) & & & & ＊＊＊＊ & ＊大＊＊ & & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ \\
\hline LIFETIME \(5=\) & & & & 52. & 104. & 180. & 208. & ＊＊＊＊ & ＊为＊＊ & ＊＊＊＊ \\
\hline LIFETIME \(6=\) & & & & 24. & 36. & 79. & 30. & 71. & ＊＊＊＊ & ＊＊＊＊ \\
\hline
\end{tabular}

LIFETIME－AREA RELATIONSHIP
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline AREA WITHIN 5 & SQ．DEG．OF & 5 & 15 & 25 & 35 & 45 & 55 & 65 \\
\hline LIFETIME \(1=\) & & 13. & & ※あれ & ＊れれ＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊＊ \\
\hline LIFETIME 2＝ & & 34. & 40. & 39. & & ＊＊＊＊ & 46. & ＊＊＊＊ \\
\hline LIFETIME 3．\(=\) & & 167. & 190 & 232. & ＊＊＊＊ & ＊\({ }_{\text {＊}}^{\text {＊}}\) & ＊＊＊＊ & \＃\＃＊＊ \\
\hline LIFETIME \(4=\) & & ＊＊＊为为 & & ＊＊＊ & ＊＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ \\
\hline LIFETIME \(5=\) & & 198. & 107． & 122. & 208． & ＊＊＊＊ & ＊＊＊＊ & ＊＊＊＊ \\
\hline LIFET IME \(6=\) & & 26. & 35. & 52. & 49. & ＊＊＊＊ & 71. & ＊＊\({ }_{\text {妾＊}}\) \\
\hline
\end{tabular}```

