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Abstract

The OLYMPUS experiment seeks to measure the ratio of the cross sections for e--
p and e+-p scattering in order to determine the magnitude of two photon inter-
actions in lepton nucleon scattering. Measuring this observable to the accuracy
required is dependent on a good understanding of the systematic uncertainties as-
sociated with the scattering experiment. To accomplish this, a simulation using the
GEANT4 library and reconstruction code was written and studies were performed.
This paper serves to document the software written and its use in understanding
the experiment and some systematic uncertainties.
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Chapter 1

Physics and Hardware

1.1 Physics

The OLYMPUS experiment has the goal of measuring the ratio of the cross sec-

tions for e--p and e+-p scattering. Traditional measurements of the ratio of the

Sach's form factors with Rosenbluth scattering techniques differ strongly from re-

cent polarization measurements. These inconsistencies are explained by including

two photon interactions in the elastic scattering cross section. The ratio of e-p to

e+p cross sections is sensitive to the two photon contribution[35].

1.1.1 One Photon e-p Elastic Scattering

If we model the proton as a point charge, the differential scattering cross section

for the electron in e-p elastic scattering can be calculated using QED as:

do-pt E,' a 2 COS 2 0
__up1 2

dQ Ee 4E2 sin 4  (1.1)
S 2

The proton is, however, very poorly approximated as a point particle. We can

parameterize the electromagnetic charge and current densities with two form fac-

tors, GEp (Q2) & Gm, (Q2). These Sach's form factors appear as observables in the

elastic scattering cross section. In the non-relativistic limit, they are the Fourier



transforms of the spatial distributions of charge and magnetization[11].

Before we get to the scattering cross section formula, here are a few definitions.

Take k, as the initial 4 momentum of the electron and k, as the final. Let

q, = k, - k,. For spacelike photons, we use this to define a further value pa-

rameterizing the momentum transfer, Q2 = -q, ' 4E,E( sin2 0/2 where E, is the

initial energy of the electron and E" is the final. If we set 7 = Q2/4M, we can de-

fine the virtual photon polarization as c = [1 + 2 (1 + T) tan2 (0e/2)]-'[24, 14]. With

all of this notational machinery in place we can write the one photon differential

scattering cross section for elastic e--p scattering (or e+-p scattering for that matter)

as:

d 1 , 2) + G M (Q2)7) (1.2)

[24, 14] The form factors are normalized such that Gpm (0) = p, and GE, (0) = 1,

where pp is the proton magnetic moment. This differential scattering cross section

is labeled the Rosenbluth scattering cross section because of Rosenbluth's 1950's

paper on the topic [37].

Measuring this differential scattering cross section at different beam energies

and scattering angles provides a means of measuring the electric and magnetic

form factors at a given value of Q2 . Historically, this has been the most popular

method for measuring the cross section. Developments of polarized beams, targets

and polarimeters has allowed for a different measurement of these form factors in

the 1990s[34].

If a polarized electron beam strikes an unpolarized hydrogen target, measuring

the polarization of the scattered proton yields the ratio of the form factors. For a

transverse polarization, Pt, and a longitudinal polarization, P, of the proton in the

scattering plane, we relate the ratio of the polarizations to the ratio of the form

factors as follows:

pGEp Pt (Ee + E) e (1 + E) Pt
- p P =' -IP, (1.3)

Gmp " P 2 M '2 2c P
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Figure 1-1: Experimentally Determined Form Factor Ratios
The Rosenbluth measurements are in black [14, 11, 26, 25, 5, 7, 8, 21, 12, 18]. The
polarization measurements are in color [24, 4,17, 16,13, 23, 9, 10, 3, 20, 19, 22,15, 6].
Two parameterizations are included [28, 31]. It was compiled in [34]. The image
on the right contains the individual measurements of the form factors. The color
separation does not exist in this image. It was compiled in [2]. The compilation
procedure incorporated calibrating for a large number of different techniques used
in the experimental measurements and is beyond the scope of this thesis.

[35]

The Q2 suppression of the electric form factor in the scattering cross section

means that measurements of electric form factor has increasing uncertainty with

Q2 when using the Rosenbluth method. The polarization technique does not share

this limitation. This was part of the motivation for measuring the form factors with

this method.

....
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Figure 1-2: Cross Section Ratio e and 0 Dependence
From [34] which was calculated from[35]. On the right panel three beam energies
are present (black=2.0 GeV, red=2.5 GeV, blue=3.0 GeV).

1.1.2 Experimental Discrepancies When Using the One Photon

Approximation

Experimental measurements of the form factors as a function of Q2 with the two

different methods have yielded dramatically different results at high Q2 values. A

plot of these values collected from a various experiments can be seen in Figure 1-1

The polarized measurements are monotonically falling with Q2[16, 13, 23, 9]. While

the Rosenbluth method's measurements remain rather constant, though with in-

creasing uncertainties.

The currently accepted explanation for this discrepancy is the exchange of mul-

tiple photons during lepton-proton scattering. Even though the multiple photon

exchange has a small effect on the cross section, the e 1/T factor affecting GE(Q 2 )

makes its effect on the cross section negligible. This Q2 suppression of GE(Q 2)

makes the dramatic effect of multiple photon exchange on this observable possible

with current experimental results.

The real part of the multiple photon exchange affects the cross section. The ob-

servable most sensitive to effects of two photon exchanges is the ratio of the elastic

scattering cross section of unpolarized electrons with unpolarized protons to that

of the cross section of elastically scattered positrons. While under one photon ex-

changes the cross section is the same for both, when one accounts for multiple



photon exchanges there is an interference term between the one and two photon

amplitudes that changes sign under charge inversion[35].

The effect is most noticeable at low e values and high Q2 values, see Figure 1-2.

Unfortunately, increasing both of these is associated with lower count rates with

larger statistical uncertainties. A beam energy of 2 GeV is a reasonable compro-

mise between statistics and sensitivity and it also reduces the cost of running the

experiment. Previous measurements of E at low values had uncertainties of a5%

which is far too large to conclusively support deviations from unity[34].

1.2 Detectors

The OLYMPUS detector coordinate system is defined with the origin at the center

of the hydrogen target. The z axis is down the beam line, the y axis is pointing

up and the x axis is in the appropriate direction to form a right handed cartesian

coordinate system. We define left and right in the detector. It follows that right is

defined as the portion where x is negative. Left is for positive x.

FwaFigured Fa1-3: Schematic Layout of the Olympus Detectoward

Figure 1-3: Schematic Layout of the Olympus Detector



Figure 1-4: Toroidal Magnet Configuration

1.2.1 Toroidal Magnet

The toroidal magnet used in the detector consists of eight copper coils placed

symmetrically around the beamline. Each coil consists of 26 turns of hollow, 1.5

inch square copper divided in two, even layers. The layers can be seen in Fig-

ure 1-4. The tubes were wrapped in fiberglass tape and potted with epoxy. Dur-

ing operation, they are cooled by water pumped through the hollow conductors.

The toroidal configuration was chosen to maximize the magnetic field in the wire

chambers to aid in momentum analysis while minimizing it around the beamline.

It also helps deflect low energy particles away from the detector[34].

The monte carlo simulation and the reconstruction were dependent on know-

ing the value of the magnetic field generated by the coil in the space traversed by

scattered particles. Inheriting the detector from the BLAST experiment improves

the accuracy of the current simulation[34]. The magnetic field for the BLAST detec-

tor was measured in the horizontal sectors throughout the volume which would be

occupied by the tracking detector via an EPICS controlled x-y-z table and two Sen-

tron three-dimensional Hall probes. The position of the probes was known to 1mm

and the precision of the measurement was accurate to 1%. Conveniently enough,
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Figure 1-5: OLYMPUS Magnetic Field from Toroidal Magnetic Along Z-X Axis

this map agreed to 1% with TOSCA and Biot-Savart calculations. The simulations

did not account for other magnetic materials in the detector which could lead to

systematic errors[2]. The Biot-Savart calculation of the magnetic field was made

more accurate by allowing the toroid to move radially, along the Z direction and

in azimuthal position to provide the best match to the measured values. This fit

position was then used to extend the values of the field past the measured por-

tions to aid in reconstruction. We are currently using those values to simulate the

magnetic field. For the proposed OLYMPUS experiment, the field in the tracking

volume will be measured, again, at a number of points before the drift chambers

are installed and the coil positions measured to aid in tracking and momentum

analysis[34].

1.2.2 Time of Flight Scintillator

The Time of Flight Scintillators (TOFs) consist of a scintillator attached to pho-

tomultiplier tubes. Besides providing triggering information, the observed time

differences for the left and right TOF scintillators is useful in particle identification

by measuring the difference in the particle speeds or f = v/c. Organic scintillators

produce photons when free valence electrons associated with 7 molecular orbitals

from benzene-benzene bonding are excited by incident particles. These photons

are collected by a photomultiplier tube (PMT) that amplifies the photons and then



Figure 1-6: Time of Flight Scintillator
From [30]. The Cerenkov Counters in the image will not be included in the

OLYMPUS detector.

transduces the signal.

Sixteen TOFs cover the scattering angles from 200 - 800 which matches the drift

chamber's angular acceptance. The forward angle TOFs at 0 < 400 are 119.38 cm

in length, 15.24 cm wide, and 2.54 cm thick, while the backward angle TOFs at

0 > 40' are 180.00 cm long, 26.2 cm wide, and 2.54 cm thick. They are constructed

from Bicron BC-408 plastic scintillator. The PMTs are placed perpendicular to the

magnetic field to aid in shielding[30].

They operate with greater than 99% efficiency. They were designed to have a

timing resolution, FWHM, of 500 ps. Resolution measurements placed the resolu-



Figure 1-7: Photo of Assembled BLAST Wire Chambers
[34]

tion well within these tolerances[30].

1.2.3 Drift Chambers

The drift chambers are used to resolve the starting vertex position, momentum,

and scattering angles (polar and azimuthal). The drift chambers have eighteen

planes of sense wires, but effectively establish three points along the trajectory of

a particle. Since the particle is traveling through a magnetic field generated by the

toroid, a measurement of the momentum can be made. Tracing these points back

to the beamline yields the other vertex measurements.

Wire chambers function by detecting the electron-ion pairs created by a charged

particle passing through a gas. The ionized electrons are attracted to a thin anode

wire with a strong electric field. The acceleration of the electrons near the wire

produces a cascade of ionizations near the anode wire amplifying the electron sig-

nal greatly, making it detectable. The electrons are then collected by the wire. The

pulse is measured with peak detection circuitry. The time it takes the electrons to

drift a distance is known. By measuring the timing of pulses on several wires offset
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Figure 1-8: Drift Chamber Cell Wire Arrangement and Electric Field Lines
[34] Electrons more or less follow the field lines to the anode.

from each other, high resolution (for large wire chambers the best resolution is on

the order of 100 - 200 gm) position measurements perpendicular to the wire and

crude measurements along two other axes are generated. To compensate for this,

two planes of wires set at different angles are used to provide accurate position

measurements along two axes[1, 29].

The wire chambers for the OLYMPUS detector are recycled from the BLAST

detector. The drift chambers fit between the toroidal coil to maximize angular ac-

ceptance, which is roughly 0 c (200, 80') and q E (-15o, 150). The chambers are at a

planar angle of 16.5' with respect to the beam line. The constraints of the toroidal

magnet along with the desire to keep the angular acceptance of wire chambers

constant with increasing distance from the beamline defined the trapezoidal shape

of the wire chambers. There are two separate detectors along the left and right

sides[34].

Each detector consists of three drift chambers (inner, middle, outer). Each

chamber consists of two rows (super-layers) of drift cells in the 'jet' style. Each

cell consists of three sense wires staggered by +0.5mm to resolve the left right am-

biguity of position relative to drift time. This can be seen in Figure 1-8. The two

superlayers are oriented such that one superlayer is offset by +5o off vertical and

the other is offset by -5'. The offset allows higher resolution position determina-

tion along both axes. The angle of the offset is small because resolution along the

vertical axis is mainly useful in determining the q component of the event while

the other axis is useful in determining the 0, p, and z. While the two superlayers

X X



should provide extra information about the slope, the resolution is so low it is not

very useful in event reconstruction [2]. This wire chamber configuration produces

a nominal resolution of 200pm in the plane of the wire chambers[2]. Even if at one

point the wire chambers operated at this nominal performance, their effectiveness

degrades through use. The avalanche of ionizations that occur in electron detec-

tion leads to the generation of free radicals which then polymerize and attach to

the sensing wires. This reduces the conduction and increases the size of the wires

decreasing the electron gain. While some means are available for restoring the

wires, entropy always wins[29].

Each of the three drift chambers are joined together to form one gas chamber

to reduce scattering off of potential faces for each chambers. The entrance and

exits to the wire chambers are two layers of 25 pm mylar. The gas used in the

chamber is 82.3% helium and 17.7% isobutane maintained at a pressure of 1 inch

of water above atmospheric. As with the other design decisions, the low pressure

and helium gas mixture are meant to reduce multiple scattering[34].

Figure 1-9: Assembled Wire Chamber

The form of the combined drift chambers can be seen in this rendering.[34]
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Figure 1-10: GEM Detector Construction

The left image shows the sandwich of (in descending order) cathode, the gain por-
tion, and the detecting lattice of anodes. The right image is a picture of the ampli-
fication layer of a GEM detector[33].

1.2.4 Gas Electron Multiplier (GEM) Detector

GEM detectors operate on a similar principal to the wire chambers. Ions and elec-

trons are formed in a gas and then attracted to detecting anodes and cathodes. The

amplification method of the electrons, while similar in principal, is executed in a

very different way. A very thin ( 50/tm) insulator is coated on both sides with

copper. Small holes ( 50 - 70pm) are etched in the copper, and then in the insula-

tor. A potential difference is applied to the plates generating a very strong electric

field in the hole. Electrons generated by the passage of charged particles follow the

field lines through the holes. The strength of the field in the holes causes a cascade

of ionizations, amplifying the electron signal similar to the cascade of ionizations

near the anode wire in a wire chamber.

This amplification layer is sandwiched on one side by a charged cathode and

on the other side by a patterned anode. The patterned anode consists of two layers

of metal strips. The top layer consists of parallel rows of metal strips sitting on top

of insulating kapton ridges. At the bottom of the insulating ridges is another set

of metal strips set at some angle to the top row. These layers act as the readout for

the detector. Multiple amplification layers (typically three) can be used to further

70 pm 140 rm



increase the signal coming from the ionization event[33, 36, 32].

The fabrication of the GEM foils is via photolithography reducing the distance

between sensitive elements. This dramatically increases the spatial resolution rel-

ative to wire chambers which were limited by the time resolution and diffusion in

the gas over the large drift distances. For wire chambers, these drift distances were

constrained by the increased mechanical stress on the charged wires when moving

them close together[29]. Multiple scattering is minimized by how thin the detector

is. The small size also reduces the ion drift drift time leading to high count rates

from GEM detectors[36].

GEM detectors are a proposed addition to BLAST detector. One proposed addi-

tion is the inclusion of three forward GEM detectors on each side of the beamlime

to act as a luminosity monitor, which would greatly improve our understanding

of the systematic uncertainties associated with varying count rates over time. This

luminosity monitor would also be able to extract event information from high 0

scattered protons. The other proposed addition is the inclusion of a GEM detector

placed in front of the drift chambers. This detector would provide a high reso-

lution point in space for use in reconstruction of the tracks through the detector.

The inclusion of another point for use in reconstruction itself helps overconstrain

the path of the particle through the magnetic field. This would provide a dramatic

increase in the momentum and angular resolution of reconstruction[34].

1.2.5 Beam and Hydrogen Target

The detector would be relocated to the Deutsches Elektronen Synchrotron (DESY)

facilities in Hamburg Germany. Three months using the DORIS ring are requested

for the experiment. The beam would switch between 2 GeV electrons and positrons.

To reduce systematic errors the switching time between e- and e+ would be mini-

mized through possible modification to the DORIS ring[34].

The target is unpolarized hydrogen gas. The target consists of thin-walled

(50,/m) cylindrical, aluminum storage cell into which is fed hydrogen. The cross
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Figure 1-11: GEM Electron Multiplication

The left image shows the field lines for the amplification layer of a GEM detector.
Note that , 40% of the electrons in the avalanche end up on the copper plate and

not the anode layer. The right image shows the trail of electrons through a three
stage GEM detector[33].

section of the storage cell to be 9 mm vertically by 15 mm horizontally. The gas

diffusing out is pumped away by a system of vacuum pumps which are being

reused from BLAST. The target is cooled to 25K giving a thickness of 3 x 1015

atoms/cm2 [34].

Figure 1-12: Hydrogen Target
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Chapter 2

Software Methods

This section documents the software employed in the simulation and reconstruc-

tion. The first half describes the more complicated algorithms implemented, while

the second portion provides a description of how the code is organized and the

data flow.

2.1 Monte Carlo Methods

Event generation relies upon generating events with 0 and z values that follows

a certain probability density function, PDF. The inverse transform method was

employed to do this[27]. Specifically, for a PDF, p(x), and its cumulative density

function, CDF, P(x) = ff% p(x')dx', if we take a random variable ( uniformly dis-

tributed on (0, 1) then P-1 (() has the same distribution as p(x), where P-l(x) is

the inverse of P(x). When P-l(x) does not have an analytic form, numerical meth-

ods can be employed. This entails numerically integrating the PDF to generate the

CDF. Finding P-1(() is equivalent to finding x such that P(x) = (. Since the CDF

is monotonically increasing, this can be efficiently implemented as a binary search.



2.2 Function Minimization

One cannot escape minimizing functions in experimental physics. There are a myr-

iad of problems associated with minimization from local minima to edge cases.

Fortunately, the problem of minimization has been tackled before. There are soft-

ware libraries designed for this specific purpose. For problems like fitting circles to

points in 3-space and fitting tracks, the Minuit minimization library' was used ex-

tensively. The Minuit library has a function that takes a function with n parameters

that returns a real number and minimizes it. While it is computationally expensive

relative to a possible custom algorithm for track fitting[39], the possible tracks for

the low energy experiment are rather simple and the increased computational time

is greatly offset by the decreased time in development. The use of Minuit reduces

the problem of function minimization to the much simpler two fold problem of cre-

ating the function to be minimized and providing an accurate estimate for starting

parameters. While the former is well defined, the second problem is, by its nature,

filled with sloppy heuristics.

2.3 Fitting a Circle to a Collection of Points in 3-Space

Fitting a circle to the hits on the wire chamber provides a computationally inex-

pensive (relatively) way to estimate the starting parameters for fitting tracks to

this collection of points.

2.3.1 Function to Be Minimized

We need some value that parameterizes how well a circle fits to a collection of

points. For both fitting a circle and fitting a path to a collection of points we defined

this as follows. For m points in our set S, let di be the Euclidean distance of the ith

point from the curve then we define this value as E', f1 (d2 ). The set of functions

lhttp: //lcgapp. cern.ch/project/cls/work-packages/mathlibs/minuit/home.
html



f(x) are positive, monotonically increasing functions. Each point is allowed to

have a different fi(d) because when fitting paths to hits on a detector there are

variations in the detector resolution. In implementation, f,(d) = R * d2 where the

constant R depends on the detector.

We need a way of finding the distance between a point and a circle in 3 space.

This problem can be made easy with the correct representation of the point and the

circle. Points are defined with the traditional Euclidean coordinates. We represent

the circle with six parameters. Its radius, r, its center point pc, and then two euler

angles, 0 and 7P. To generate our circle we apply a transformation, T, to every point

on a circle of radius, r centered at the origin in the x-y plane. For a point, p, on the

circle T is defined as:

T(p) = Pc + Rz(V)Rx()p (2.1)

Where Ri is a rotation about the ith axis. Note that the distance between our trans-

formed circle and a point is the same as the distance between an untransformed

circle and the inverse transformation applied to the point. After the inverse trans-

formation is applied we just need to find the distance from T-'(p) and a circle of

radius r centered at the origin on the x-y axis. The symmetries of this reduced

problem make it fairly trivial.

2.3.2 Starting Parameters

For our particular task we are only interested in fitting circles to points located in

the wire chambers. The small ¢ angular acceptance of the wire chambers coupled

with the fact that the magnitude of the magnetic field is largest in the y direction

means that a good estimate for the starting euler angles are 0 = 7r/2 and q = 0.

Now we just need to find the center point and the radius. To do this we exploit a

few facts about the circles we are trying to fit. First the center of the point is very

far away from the points we are fitting the circle to. The points are also spaced

fairly regularly. Using these approximations finding the center of the circle is a

relatively straight forward task which is detailed in Figure 2-1.
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With our approximation PM is roughly in the center, so for a = d(P 3, PM) and
c = d(P2, Pm), we have b = a/ tan(2 tan-'(a/c)). From this we can find the center
of the circle and the radius.

Figure 2-1: Estimation of Circle Starting Parameters

2.4 Fitting a Particle Track to a Collection of Points in

3-Space

For a particle of known mass and charge traveling from the beamline we are try-

ing to find the starting conditions that best fit the path of the particle through a

varying magnetic field to a collection of points. This means we are trying to find

the starting z position, scattering angle off the beamline, 0 = tan-' ( p + p/pz),

its momentum p, and, to a lesser extent, 4 = tan - ' (py/px).

2.4.1 Function to Be Minimized

To give a numerical value estimating how well a path defined by a set of starting

parameters fits the collection of points, we simulate the path of a particle through

the magnetic field, find the distance of the path to the points and then assign a

value as prescribed in section 2.3.1. Because this is reliant on numerical techniques,

there are inherent inaccuracies in the fit. With proper choice of step size and inte-

gration technique, these errors can be minimized.



We generate a set of differential equations for the position and velocity using

the standard E&M force relation with no electric field, d = q(f x ) and the

relativistic relation between momentum and velocity. We have two main choices

of integration technique, Runge-Kutta and Burlisch-Stoer[38].

Burlisch-Stoer was avoided because of how the magnetic field at a point is eval-

uated. To save computational time, the magnetic field was evaluated using numer-

ical methods at a regular intervals on the detector and then stored in a table. The

values of the surrounding points are then interpolated to find the magnetic field

throughout all space. Burlish-Stoer does poorly on non-smooth problems such as

when the right hand side of the differential equation is evaluated by table look-up

and interpolation[38].

This leaves an nth order Runge-Kutta method. We chose the classic workhorse

of lazy and naive physicists, the fourth order Runge-Kutta method with a fixed

step size. As the integrator is stepping through the path each point in the path is

stored. This breaks the curve up into a series of line segments. The line segment

closest to the point is found and the distance between the segment and the point

is returned. This introduces another numerical inaccuracy since the path deviates

slightly from the segment. Since the curves we care about all have a relatively low

curvature, this method is accurate enough. The accuracy of the distance measure-

ment could be improved by taking the starting conditions of the first point in the

segment and integrating over the path with a smaller step size over that segment.

In practice this was found to do very little to improve the accuracy of curves fit to

the path because the majority of error in fitting procedure comes from inaccuracies

in the integration and not the distance measurement.

An nth order Runge-Kutta method while using an adaptive step size technique

can provide excellent accuracy while keeping computational efficiency high, so it

seems a bit odd that a fixed stepsize routine was used[38]. In order to improve

accuracy, a variable step size routine (the step doubling technique[38]) was at-

tempted along with an implementation that varied the step size based off of the

starting velocity of the particle. Both attempts performed very poorly during re-



Figure 2-2: Run Time Analysis of Reconstruction with Varying Step Sizes
A quick run time analysis was done to determine an optimum time step size when
integrating the paths of the particles. During integration testing, the electron time

step size was set to 6.66 x 10-11s and the proton step size was set to 3.11 x 10- 11. The
left plot shows the momentum uncertainty as a function of step size. The step size
the x-axis represents is the values listed above for testing multiplied by the scale

factor. The right plot is a graph of the momentum uncertainty as a function of
the normalized run time of the reconstruction program. For both plots, the green
line is the proton uncertainty. The blue is the electron. Significant reductions in
runtime can be gained by sacrificing a fraction of a percent of accuracy in the fit.

construction. The suspected reason is related to the minimization routine having

trouble coping with irregularities. The distance from a hit to the path with a set of

starting parameters is dependent on the location of the points used during integra-

tion. Part of this is because of the line approximation for measuring the distance,

the other part is from inherent inaccuracies in numerical integration. While these

variations are small, with irregular point locations, the errors vary irregularly from

one path to another with very slight differences in starting parameters. These ir-

regularities cause hell for the minimization procedure. Having a fixed step size

means that these errors vary regularly with changing starting parameters. The

minimization routine has no problem overcoming this.

Since we are tackling the same problem many, many times the ideal step size

can be found beforehand. This helps offset the possible computational gains from

using a variable step size routine. The fourth order Runge-Kutta method provides

accuracies well within tolerances without a terrible runtime.



2.4.2 Starting Parameters

Initially a circle is fit to the points in our collection. A weighted average of the

magnetic field over the points in the collection is taken with slightly more weight

placed on the largest magnetic field value. Combining the radius of the circle and

the magnetic field average generates a starting momentum value that's accurate

to first order in the magnetic field. To find the initial z position, we exploit the

fact that the curvature of our path is relatively small. We find the point on the

fit circle closest to the z axis and then take its z value module a correction for the

curvature as the initial z position. We then find the point in our set closest to the

z axis and use the line between it and the initial z position to estimate the initial 0

and q values modulo a slight correction for curvature.

2.5 Module Organization

2.5.1 Monte Carlo Simulation

The Monte Carlo simulation was centered around the GEANT4 library. The use

of the GEANT4 library basically determined the structure of the program. Un-

derstanding the program is highly dependent on understanding GEANT4. The

program is dependent on the GEANT4 library, both of which are available from

Cern. GEANT4 version 4.922, root version 5.223, and gcc version 4.2.44 was used.

The monte carlo simulation setup entails giving GEANT4 the detector informa-

tion, physical processes to be used and the magnetic field in space. Events are then

generated. This entails creating a list of particles with their species, momentum

and position. These events follow the e-p scattering kinematics and cross section

along with noise consisting of pion generation and Meller scattering. GEANT4

then handles simulating the path of these particles, and any other particles that

might be generated during their flight through the detector. The physical processes

2http://geant4. web. cern. ch/geant4/
3http://root.cern.ch/

4http: //gcc.gnu.org/gcc-4.2/



used by GEANT4 are selected by the user. GEANT4 reports hits on the detector

which are then stored for use during reconstruction. How the events are stored

depends on the detector.

Module Description

OLYMPUSGenerator handles the generation of a primary events. It inherits the

G4VUserPrimaryGeneratorAction class.

OLYMPUS_Detector handles the construction of all the detectors in the GEANT4

simulation.

OLYMPUSPhysics contains the list of physical processes used during the simu-

lation. It inherits G4VUserPhysicsList.

OLYMPUSMagField stores the magnetic field used during the simulation. It

inherits G4MagneticField.

*_Hit & *_SD handles hits and making a detector sensitive. Hits on the detector

are stored in EventInfo.

OLYMPUSUserEventAction Signals to the EventInfo class that the event has started

and the event has ended. It inherits G4UserEventAction.

EventInfo stores hits on the detectors for use with reconstruction. EventInfo stores

all of the hits in root's data class TTree.

Testing

Testing the overall functionality of the system is difficult, because if we knew how

the system will behave in all cases, there would be no need for the simulation.

This means that the simulations is very reliant on unit testing to insure proper

functionality.



Operating under the philosophy that code that has not been tested does not

work, all the parts written during development have been tested. GEANT4 han-

dles all of the transport of particles and the physical processes. Fortunately, GEANT4's

testing of E&M processes is well documented and repeatedly performed. s This

means that ensuring the correctness of the Monte Carlo simulation is dependent

on making sure the event generation, the hits on the detector, the physics list used

and the detector layout have all been implemented properly. GEANT4 includes

a standard physics list, QGSP,6 which covers the energies we care about. For any

simulation that was heavily dependent on the physics, this was used. The de-

tector layout and basic hits on the detector can be verified via visual inspection

with GEANT4's visualization library. Determining the materials the detectors are

constructed from is reliant upon being careful while coding, a slight weakness in

the testing. Grievous errors in the selection of the material could be detected via

rapid attenuation of the particles during transport. For testing that the gaussian

smearing of the hits on the detector was being done properly, a large number of

numerical values of the smearing was compared to expected. The magnetic field

value was ensured to not return unreasonable values by plotting the magnetic field

as a function of space.

This leaves the event generation. The event generation code was unit tested by

someone who did not write the code. Testing unit generation entails: making sure

the kinematics are done properly, making sure 0, 0, z, and p generation are done

properly, and checking for the proper selection of particles. At this point, only the

elastic event generation has been tested thoroughly. Testing proper type selection

of the particles was done via text output in GEANT4. The elastic kinematics were

tested by comparing expected values with those generated by the program and

previously computed values.

The angle of the scattered proton as a function of the scattering angle of the

5http://geant4.web.cern.ch/geant4/results/results.shtml
6http://geant4. cern.ch/support/proc mod_catalog/physics_lists/

hadronic/QGSP .html
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Figure 2-3: Elastic e - p Event Generation z and 0 Dependence
The line through the histogram represents the fit of the expected differential scat-

tering cross section.

electron is:

sin3 O (+t 2() ( 1) (2.2)1 +tan2 E+ 1)

[30]

The momentum of the scattered electron as a function of the scattering angle of

the electron is:

k' = (2.3)
+ 2Esin2(O/2)

[30]

Testing proper generation of the other kinematic variables involves generating

a large number of events and then comparing the distribution of events to the ex-

pected distribution. For q and z generation this was done via visual inspection.

Visual inspection is fairly accurate for triangular and flat distributions. For the 0

distribution, the expected PDF scaled by a constant was fit to the generated distri-

bution. Since p is related to 0 via the kinematic constraints that were already tested,

fitting to the p distribution is not necessary.



2.5.2 Reconstruction

The reconstruction software converts hits on detectors into the most likely start-

ing configuration for a scattering event. The software used in reconstruction are

dependent on the root library specifically for storing information and perform-

ing minimizations. Visualizations of the reconstruction rely on the GEANT4 li-

brary. Visualizations are used primarily during debugging of the reconstruction

software. CircDist and PathSwimmer coupled with the Minuit2 library are used to

implement the minimization problems described above.

The reconstruction process works by first loading hits. Circles are fit to the hits

generated by a possible track to estimate starting parameters for the tracks. Tracks

are the fit to the hits on the detector. From these tracks the starting parameters

of each events are extracted. During each step filtering is performed to remove

any tracks that are not useful for reconstruction. Cuts are based off of kinematic

constraints. A visualization of the process for an elastic e-p scattering event can be

seen in figure 2-5.

Module Descriptions

ReconEvent is the main class during reconstruction. The class handles accessing

the event information stored in EventInfo and storing the reconstructed event

info. The fitting procedures calling the Minuit library and the estimations of

the starting parameters are handled by this class. The filtering of events and

tracks are also handled by this class. Basically every step in the reconstruc-

tion of events from hits on detectors are handled by this class.

EventInfo stores event information generated by the Monte Carlo simulation or

the experimental results. The event information consists of the hits on the

detectors for each event. In the case of events generated with the Monte Carlo

simulation the generated event parameters are also stored. It also stores the

reconstructed event info. The reconstructed info consists of the estimated

starting parameters for each event.



In the module dependency diagram a solid arrow indicates dependence while an arrow
with a red dot in the center indicates the class at the base of the arrow inherits the class at
the point of the arrow.

Figure 2-4: Module Dependency Diagram for Reconstruction

ProgOptions provides post-compile time control for the program. It stores the

command line options and options specified in a text file. It is implemented

as a singleton.

ReconDraw is an abstract class meant to be inherited by any object during recon-

struction that might be drawn. It exists to take advantage of polymorphism

in C++.

ReconVisAction inherits G4VUserVisAction. It handles drawing objects during

reconstruction using the GEANT4 visualization classes. It stores a list of ob-

jects that have inherited ReconDraw to be drawn.

Integrator stores a number of routines for doing numerical integration of ordi-

nary differential equations. These methods include Runge-Kutta and Euler

integration techniques.

OLYMPUSMag_Field loads the precalculated magnetic field values a set points



in space. It interpolates these values when returning the magnetic field at

points in space.

PointOI represents a point of interest. It stores a position and a distance function.

The distance function represents f(d) from section 2.3.1. It determines the

weight this point has during the fitting procedure.

PathSwimmer handles swimming a particle through the magnetic field with some

set of starting conditions. It finds the distance from a point to this path for use

with the fitting procedure called from ReconEvent. It also handles drawing

the path.

CircleDist is our representation of a circle. Its main purpose is to find the distance

from a circle to a point. It also handles the drawing procedures for a circle.

ReconMessenger implements the GEANT4 messenger class for use in controlling

reconstruction while visualizing the reconstruction. Its mainly used in de-

bugging.

General Notes

The Minuit2 library imbedded in root made the wonderful decision of declaring

some of the arguments of the minimization library as const. Unfortunately with

C++, the const keyword is rather viral. Any method needed to be called by a

method declared const must be also be const. This has the unfortunate conse-

quence that, for example, while trying to fit a path to a collection of points, the

need to store path information during the swim means that the mutable keyword

was abused heavily. Basically, when reading this code the const keyword is more a

semantic formality that should not be taken to mean anything.



Testing

Unit testing for many of the classes was done with the CxxTest 7 unit library. Unit

testing was done on all of the smaller modules downstream of ReconEvent. All of

the functionality of PointOI, CircDist, Integrator, ProgOptions, ReconMessenger,

ReconVisAction were tested via unit testing. Parts of the functionality of the Path-

Swimmer was tested via unit testing. Testing that the path matches the path of a

particle was done while testing the overall functionality of the system.

The Monte Carlo simulation provided the means of testing the reconstruction.

By comparing the simulated event information to the reconstructed event informa-

tion we know if the reconstruction is happening properly. Particularly, if we turn

off physics and smearing of hits, we can test that the reconstruction of the events

is happening perfectly, where perfectly is defined as within tolerances. The use of

floating point numbers, numerical integration techniques, and fitting procedures

with finite accuracy means that even for the ideal case the event will not be recon-

structed perfectly. Visualizations of the reconstruction proved invaluable during

the debugging process.

2.6 Things To Be Done

The software is a work in progress. Another undergraduate will be working to im-

prove the reconstruction and monte carlo simulation. This is why there is such an

emphasis on documenting the software and the testing in this paper. The software

work needed for OLYMPUS is not near over. Here is a list of needed improve-

ments.

Filtering of tracks does not currently incorporate information from the TOFs.

The TOFs are very useful for filtering based on estimated particle velocity. The re-

construction does not incorporate hits on the forward luminosity monitors for use

in beam intensity estimates and reconstruction of events for high angle scattered

protons.
7http: //cxxtest .tigris.org/



Figure 2-5: Reconstruction Elastic e - p Scattering Event

The path of the proton is blue. The path of the electron is red. The hits on the

drift chambers are purple, on the GEMS they are pink. The circles fit to the hits on

the wire chambers to estimate the starting parameters for the path fit are yellow.

The paths fit to the hits on the left and right detectors are teal/light blue. They are

difficult to see in this image.

The model of the wire chambers is in need of improvement to provide a better

simulation of the experiment and reconstruction. Using the actual wire chamber

layout coupled with experimentally determined tests of the resolution of the wire

chambers will provide a much better understanding of the resolution and hit rates.

Modeling the structure of GEM detectors might also provide this insight. The small

scale of the GEM detector means that modeling the structure would be about as

useful as understanding the form of the position errors (possible deviations from

a gaussian form) and the width of these errors.



Figure 2-6: Close Up of Reconstruction Elastic e - p Scattering Event
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Chapter 3

Simulation Results

A high precision measurement of the electric and magnetic form factors depends

on high resolution measurements of the momentum and scattered angle, specifi-

cally 0. It also depends on understanding the systematic errors associated with the

count rates as a function of 0 or p. Radiative corrections modify the Rosenbluth

cross section. The count rates per bin (either p or 0) are scaled by the luminosity of

the beam, the efficiency of the detector and the angular acceptance of the detector

as a function of 0[14]. Future studies with the simulation software, will measure

the performance of the proposed luminosity monitor. The momentum resolution

and angular acceptances were estimated with the current simulation.

I.
l - . °

e- - . .

z

Figure 3-1: Hydrogen Target
Borrowed from[34].



Recon. Variable Design Value Measured Value
k' 2% 3%
AOe .300 .450
Ae .500 .560
Aze 1.0cm 1.0cm

Table 3.1: BLAST Drift Chamber Reconstruction Resolution
[30]

3.1 Target and Detector Simulation

3.1.1 Hydrogen Target Simulation

The density of hydrogen in the beam path is roughly triangular around the feed

system. Since the number of events is proportional to the density of the target,

the scattering events have a triangular distribution along the z axis. See figure 3-1.

Because of the narrow beam width, the x and y coordinates of the events are fixed

at 0.

The electron 0 for scattering events is generated by numerically integrating the

Rosenbluth cross section and then performing a binary search to generate the in-

verse of the function. The q distribution for the electrons generated is flat. The

rest of the starting parameters are generated through kinematic constraints. Pion

generation and e - e scattering are included as noise.

3.1.2 Wire Chambers and GEM Detectors

Many different levels of complexity can be used in modeling the wire chambers.

This can run from modeling the wires in the chamber and using their spatial res-

olution based on the ion drift time and then combining the hits on various wires

to recreate the hit, to just storing where the particle hit the detector. We chose a

middle path. Hits of charged particles registered on a detector were then smeared

with a gaussian of a set a. For the wire chambers, the the gaussian smearing along

the vertical axis, y, and that normal to it in the plane of the detector, x, had differ-

ent values, ry and a,. Unfortunately, the momentum and angular resolution of the



a (tim) aY (ttm) ae_ (deg) ap,_ (ap/100p)
100 500 .21 +.01 2.3 ±.1
200 400 .27 ± .01 2.5 ± .1
300 700 .23 ± .01 3.1 ± .1
400 600 .26 ± .01 3.2 ± .1
500 1000 .30 ± .01 3.8 + .1
200 1000 .27 ± .01 3.1 ± .1
300 1500 .31 .01 4.0 ± .1

Table 3.2: Monte Carlo Wire Chambers Re'solutions for 850 MeV Beam

wire chambers is highly dependent on the spatial resolution of the hits.

Hits on the GEM detectors in the plane of the wire chambers also underwent a

gaussian smearing. The spatial resolution for purposes of simulation was assumed

to be 100 pm. The resolution of a GEM detector can reach about 30 - 40 Am. Since

the purpose of the study was to determine the usefulness of a GEM detector, set-

ting the resolution higher than expected makes the justification of their use more

valid.

Since the wire chambers have been used before, we have a means of calibrating

our resolutions against the experimental resolutions found. Our goal was to match

the resolutions found experimentally in BLAST with the wire chambers by varying

the ax and ay. The experimental values are listed in table 3.1. The simulated wire

chamber resolutions are listed in table 3.2.

While the momentum resolution matched the experimental values with reason-

able assumptions about the position uncertainty of the wire chambers, the 0 and

z resolution was significantly higher than the experimentally determined values.

This is either a problem with the simulation, our wire chamber simulation is a bit

naive, or a difference in how the resolutions were determined. Either way, it means

we have two variables and one degree of freedom. The asymmetric, ax = 200pm

& aY = 1000pm, uncertainties had the highest angular uncertainty which matches

the experimental results the best without exceeding the ideal resolution[2]. In-

creasing the beam energy to 2.0GeV caused the momentum resolution to decrease

to 5.4 ± .1% and the 0 resolution to to .240 ± .010. The straighter path of the higher



energy electrons are responsible for this shift, along with some of the physical pro-

cess occurring at higher energies. If GEM detectors are included the momentum

resolution improves to 1.56 ± .02% and the 0 resolution improves to 0.0810 ± .02'.

3.2 Angular Acceptance

Figure 3-2: Angular Acceptances of e- and p Where Reconstruction is Possible
The top row features the electron's angular acceptance. These angular acceptance
plots were generated with the physics turned off. That is to say, other than the par-
ticle traveling through the magnetic field, no other physical processes were simu-
lated.

The angular acceptance of the detectors needs to be understood to account for

systematic errors during data analysis. Normalizing the count rates as a function

of theta is vital for getting the proper cross section out of the count rates. Also,

during planning of the experiment, understanding the angular acceptance gives
an understanding for the 0, and thus E and Q2 values we can probe.
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Figure 3-3: Angular Acceptances of e- on Left and Right Detectors
These plots were generated using all the standard E&M processes accounting for
the stray counts at 0 values beyond the angular acceptance with no physics.

The plots of the angular acceptances were generated by using events with a flat

0e distribution and the elastics scattering kinematics for 2.0GeV electrons. Only

events that could be reconstructed with the wire chambers, that is to say where a

scattered electron and proton each hit the wire chambers of the left and right sides.

3.3 Usefulness of Proposed GEM Detector

The forward GEM detectors are proposed as luminosity monitors to help reduce

systematic uncertainties. This section, however, is focused on how beneficial a

GEM detector in the plane of the wire chambers would be. For it to be worth

the monitory investment it would need to have an angular acceptance comparable

to the wire chambers while increasing the momentum and theta resolution of the

OLYMPUS spectrometer.

For scattering events occurring at z values near the origin, the angular accep-

tance of the GEM detector is superior to that of the wire chambers. See figure 3-4.

Because the GEM detector is so thin, the angular acceptance is highly affected by

the z position of the event. Fortunately the angular acceptance only becomes infe-

rior to the wire chambers angular acceptance in regions where almost few counts

are expected.

Since GEM detectors are thin, it should not adversely affect the path of the
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Figure 3-4: Angular Acceptance of e- for WC and GEM Detectors

particle via scattering. This coupled with the extra high resolution information

about the track means the GEM detectors will provide a dramatic increase in the

momentum and theta resolution. For purposes of testing this, a large variety of

wire chambers resolutions were chosen. In all cases the GEM detector provided at

least a factor of two improvement in the momentum resolution. See table 3.3.

Momentum and theta resolution measurements were made by first subtract-

ing the generated p and 0 values from the ones garnered from reconstruction. A

gaussian was then fit to the peak and the uncertainty was taken to be the a of the

fit.

Sr_pgen-rpwo 1 pwc -o && r gnr. wc > .2)
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Figure 3-5: Momentum Resolution Fit
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Particle With GEM Det. WC ax (tm) WC a,(pm) Mom. a(MeV)
e- y 500 2000 44 ± 1

p y 500 2000 37 ± 1
e- n 500 2000 163 ± 5

p n 500 2000 126 ± 3
e- y 200 1000 23.5 ± .6

p y 200 1000 23.4 ±.4
e- n 200 1000 77 ± 2

p n 200 1000 62 ± 1
e- y 100 500 19.6 ± .5

p y 100 500 20.5 ± .4
e- n 100 500 47 1

p n 100 500 41 ± 1

Table 3.3: Momentum Resolution Measurements
Momentum resolution for elastic e- - p scattered at 450. Note the significant
improvement of momentum resolution with the inclusion of hits on the GEM

detector.
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Chapter 4

Conclusion

The intricacies of modem nuclear physics experiments necessitate simulating the

experiment in order to compensate for systematic errors and to fully understand

the operation of the detector. The need for these simulations drove the develop-

ment of the GEANT library, which handles all the physical processes needed for a

comprehensive model of many experiments. Using the GEANT4 library, we cre-

ated a simulation to aid our understanding of the proposed OLYMPUS experi-

ment. While the simulation of some of the detectors is rather simple at this point

in time, we have laid the groundwork for iterative improvements to the simula-

tion software. The strong emphasis placed on testing and documentation will aid

in future development.

Extracting the e-p scattering cross section requires software that takes hits on

detectors, filters for relevant scattering events, and then determines the most likely

kinematic parameters for the scattered particles. We wrote code relying the root li-

braries to accomplish these goals. The simulation provides a means of testing this

reconstruction code because with software, unlike real life, we know the scattering

angles and momenta for the particles. While some of the functionality of the re-

construction software needs to be modified. It needs to include all the detectors in

the experiment and provide better filtering of events. These are all relatively easy

tweaks to the software already written. While there is a lot of work to be done with

the simulation and reconstruction software, it is mostly down hill from here.
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