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Abstract

In this thesis, I discuss the development of systems biology and issues in the pro-
gression of this science discipline. Traditional molecular biology has been driven by
reductionism with the belief that breaking down a biological system into the funda-
mental biomolecular components will elucidate such phenomena. We have reached
limitations with this approach due to the complex and dynamical nature of life and
our inability to intuit biological behavior from a modular perspective [37].

Mathematical modeling has been integral to current system biology endeavors since
detailed analysis would be invasive if performed on humans experimentally or in clin-
ical trials [17]. The interspecies commonalities in systemic properties and molecular
mechanisms suggests that certain behaviors transcend specie differentiation and there-
fore easily lend to generalizing from simpler organisms to more complex organisms
such as humans [7, 17].

Current methodologies in mathematical modeling and analysis have been diverse and
numerous, with no standardization to progress the discipline in a collaborative man-
ner. Without collaboration during this formative period, successful development and
application of systems biology for societal welfare may be at risk. Furthermore, such
collaboration has to be standardized in a fundamental approach to discover generic
principles, in the manner of preceding long-standing science disciplines.

This study effectively implements and analyzes a mathematical model of a three-
protein biochemical network, the Synechococcus elongatus circadian clock. I use mass
action theory expressed in kronecker products to exploit the ability to apply numer-
ical methods-including sensitivity analysis via boundary value formulation (BVP)
and trapiezoidal integration rule-and experimental techniques-including partial re-
action fitting and enzyme-driven activations-when mathematically modeling large-
scale biochemical networks. Amidst other applicable methodologies, my approach
is grounded in the law of mass action because it is based in experimental data and



biomolecular mechanistic properties, yet provides predictive power in the complete
delineation of the biological system dynamics for all future time points.

The results of my research demonstrate the holistic approach that mass action method-
ologies have in determining emergent properties of biological systems. I further stress
the necessity to enforce collaboration and standardization in future policymaking,
with reconsiderations on current stakeholder incentive to redirect academia and in-
dustry focus from new molecular entities to interests in holistic understanding of the
complexities and dynamics of life entities. Such redirection away from reductionism
could further progress basic and applied scientific research to embetter our circum-
stances through new treatments and preventive measures for health, and development
of new strains and disease control in agriculture and ecology [13].
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Chapter 1

Introduction

1.1 Systems Biology Overview

Modern biology explains living beings to be highly organized and complex material

entities composed fundamentally of molecules due to a long process of evolution and

replication [10]. Life is one of the most complex phenomena known in the universe

[26]. Systems biology is an integrative study of life by (1) investigating cellular com-

ponents and molecular interactions, (2) applying experimental and computational

techniques, and (3) analyzing complex interactions to discover new emergent proper-

ties that may arise from a systematic and holistic paradigm. Systems biology draws

upon all areas of biology and natural science [8] to quantitatively assess the dynamic

interactions between several entities of a biological system [9]. In traditional molecu-

lar biology, there has been a certain tradition in the reductionist method of dissecting

biological systems into their constituent entities as an effective way to explain biolog-

ical processes. Limitations in this approach are that biological systems are extremely

complex and dynamical, having emergent behaviors that are nonintuitive and unex-

plainable by studying their constituent entities alone [37]. Therefore, systems biology

aims to understand emergent behaviors of the system holistically as opposed to the

constituent entities singularly [9].

Yet expectations of systems biology are still unclear. Experts in the field visualize the



origin and methodological foundations for systems biology (1) in the accumulation of

detailed knowledge with the prospect to advance current practices in biotechnology

and health care, (2) in the emergence of new experimental techniques and framework

design, (3) in mathematical modeling principled in controls theory, systems theory,
and current biological understanding, (4) in the development of computational meth-

ods to address high-throughput and resource-intensive analysis, and (5) in the internet

as the medium for quick and comprehensive exchange of information [26].

Systems biology is driven by curiosity of scientists and engineers, but even more

so by the prospect of its applications to predict the outcome of complex processes.

Currently the discipline is still in its formative period, lacking a systematic approach

to modeling biochemical networks and signaling pathways in such a way that es-

tablishes experimentally testable quantitative predictions despite the complex nature

of systems biology models, not to mention the complexity of the underlying biol-

ogy. The synthesizing of experimentation with theory in systems biology models has

been a modus vivendi to the discipline. A principled and fundamental approach to

the experimentation, mathematical modeling, and quantification is crucial for further

successful development of biological science [26].

Systems biology, a new mathematical and computational science, has the joint ob-

jectives of reducing experimental and clinical treatment costs, and rapidly advancing

current knowledge of biological systems [3]. The integrative approach of systems bi-

ology provides 'sufficiently accurate and detailed' models which allow biologists to

accomplish the following tasks not possible by traditional biology research: predic-

tion of biological system behavior given an perturbation and knock-out or redesign

of biochemical networks to create completely new nonintuitive emergent biological

system properties [1]. Being that systems biology lacks a foundational and system-

atic approach across wet- and dry-labs, current collaborative efforts to progress the

discipline have been demanding, and thus matching investment into new theoretical

methods is required.



1.2 Significance of this Study

Standardization of systems biology principles can lead to practical use in a comple-

mentary technology, synthetic biology, which is to design new and improved biological

functions [4]. There are significant implications of this synergy for health (through

development of new treatments and new preventive measures), and agriculture and

ecology (through development of new strains and disease controls) [13].

In order to better understand biological systems, perturbation of these systems en-

ables us to analyze how emergent behaviors occur. Such analysis cannot be easily

or ethically performed on humans experimentally; thus, model organisms provide the

approach of choice [17]. The Human Genome and prior studies have inspired current

efforts in biology by the observation that different species have many systemic prop-

erties and molecular mechanisms in common. This might be the result of ancestral

relationships and evolutionary dynamics of life in all living organisms due to simi-

larities in genetic code, metabolic and pathways, molecular machinery. Interspecies

commonalities suggest that all life arose from a single common ancestor and leads to

predictive power in the fundamental understanding of biological systems that tran-

scends specie differentiation [7, 17]. Thus it is a common practice to generalize from

the simpler organisms to more complex organisms such as humans [17].
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Chapter 2

Background

2.1 Current Methods

The practical application of computational simulation to systems biology has transi-

tioned biology and related applied research away from being purely descriptive science

to being a predictive science [18]. Such modeling is most useful when it (1) produces

useful predictions, (2) matches experimental results, (3) generates data at a granu-

larity beyond present-day experimental capabilities, (4) yield nonintuitive insights of

the system behavior, (5) identify uncertain components, functions or processes in a

system, and (5) perform computational experiments to save time, cost, and effort [27].

Besides the enormous challenge for integrating different levels of information pertain-

ing to genes, mRNAs, proteins, and pathways, a more immediate and fundamental

barrier to systems biology progress is in defining a principle approach to modeling

methodologies, in developing powerful analyses, and in integrating this information

into experimental strategies in order to make discoveries [18]. In contrast to long-

standing engineering disciplines, there is a relative inadequacy of software and meth-

ods currently available and standardized for analyzing biological circuits. The multi-

tude and diversity of approaches to computational simulation is extensive, including

ordinary differential equations, stochastic differential equations, partial differential

equations, power law equations, petri nets, cellular automata, and agent-based mod-



els [27].

Systems biology is a science; as a science, it should aim to discover generic prin-

ciples [7]. System-level understanding necessitates a foundation of principles and

methodologies that couple molecular mechanism to biological system behavior [25].

Considering an appropriate level of complexity between abstraction and detail, math-

ematical models should be designed to synthesize and transform information into in-

sight.

Experts in the field have stressed the necessity for widespread standard notation

of theoretical frameworks and tools for integrating information, displaying models

graphically, and mathematical modeling and simulation of biological system. The

integration of technology, biology, and computation is a commanding challenge to

basic and applied systems biology research, for both academia and industry. Such

an initiative towards standardization would enable studies at different institutions to

directly exchange their fully detailed mathematical models [18].

2.2 Contributions

The progress and societal contributions of systems biology depend decisively on the

collaborative development of modeling complex systems [9]. A major motivation of

current work is the analysis of biochemical networks including gene networks, pro-

tein interaction networks, metabolic networks, and signaling networks. The presence

of biological uncertainties have driven researchers to study more realistic and de-

tailed models in order to understand these biological phenomenas. Currently there

is no standard formulation for these biochemical networks, and therefore an array of

mathematical modeling techniques and analytical methods have been implemented

in attempt to figure out what works. In this study we propose a formulation of a



three-protein interaction network, the Synechococcus elongatus circadian clock, using

mass action theory expressed in kronecker products. Such formulation may exploit

the simple algebraic manipulation of large-scale biochemical networks and serve as a

basis for efficient and general application of methods [5, 12].

The understanding of the structural-functional relationships of molecules have evolved

due to the capability of quantifying the law of mass action dynamics in systems bi-

ology models [43]. The law of mass action, introduced by Guldberg and Waage in

the nineteenth century, is a powerful and well-established concept that descibes the

average behavior of a dynamical and complex system. Specifically it states that the

rate of a reaction is proportional to the probability of interaction of the reactants.

This probability, in turn, is proportional to the concentrations of the reactants to

the stochiometry, the power of the molecularity. Implicit in the 'proportionality'

aspect of this Law is an assumption that the quantities concerned in inducing inter-

actions and transitions are in a homogeneous solution. The phenomenology of this

Law can, in principle, be derived from statistical mechanics and quantum mechanics,

although it is regarded as accurate due to the wealth of experimental information on

a varity of biological, chemical and physical science based theories that assume it [41].

This approach incorporates structural and biophysical properties of the constituent

molecules by modeling the resulting molecular mechanism. Therefore, given knowl-

edge of initial species concentrations, which is an entity of one or more molecules, and

parameterization of how these molecules interact, the law of mass action provides a

complete delineation of the biological system dynamics at all future time points. We

denote the concentration of the reactants by lower case letters

s = [S], e = [E], c = [S: E], p = [P]



where the concentration is traditionally denoted in the brackets. The biological sys-

tem dynamics is represented schematically by

S + E S : E k~- P + E.
k-_1

where the reactions occur at an associate rate parameter constant, in this case kl, k_1

or k2, and the double-stacked arrows indicate a reversible reaction and the single arrow

an irreversible reaction. The example mechanism provided here is the conversion of

a substrate S, by catalysis of an enzyme E, into a product P. The stochiometry of

this system is one, where one molecule of S combines with one molecule of E to form

a two molecule S : E complex, which eventually produces one molecule of P and one

molecule of E. The law of mass action, applied to the above set of reactions leads to

an equation per each reactant, and hence the system of ordinary differential equation

(ODE) system for nonlinear reactions as follows

d[S]

dt = -k1 i [E] [S] + (k_1 k2) [S: E],
dt

d[S : E]
dt = ki - [E] - [S] - (k_ 1 + k2 ) [S : E],

d [P]and dP k2 [S : E].
dt

The reaction rate constants, represented as the k's, are the constants of proportion-

ality in the application of the law of mass action [30]. To implement a time series

simulation, the initial conditions, which are those at the start of the process which

converts S to P, must be set for the concentration of the reactants.

To efficiently simulate an example biochemical network and compute numerical meth-

ods on nonlinear ODE models, I have implemented mass action kinetic modeling in

Kronecker product formulation [5] to assess principle methods of mass action model-

ing and analysis in systems biology. Emphasis was placed on assessing the objectivity



of this approach and how this approach affects interpretation and definition of the

biochemical network behavior. From a scientific perspective, the goal was to deter-

mine emergent properties of the system utilizing the mathematical modeling proposed

here. Although the mathematical modeling is part of an iterative model design cy-

cle including feedback from proposed experimental frameworks [9], this study was

an effort to determine the advantage of grounding systems biology approaches in the

foundational theory of mass action dynamics and computational representation in the

Kronecker product.
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Chapter 3

Analysis of the Autonomic Protein

Oscillation from Synechococcus

elongatus

3.1 Introduction

The oscillation of KaiC phosphorylation patterns in the cyanobacterium Synechococ-

cus elongatus is responsible for the maintenance of stable circadian rhythms in this

organism [19, 22, 23]. Here we have undertaken a computational approach to under-

stand better this complex biological network.

Mathematical models are emerging as useful tools for representing and testing our

understanding of complex biological systems of a variety of scales. In particular mech-

anistically detailed models are being developed to capture the underlying structure,

dynamics, and detailed mechanisms of biochemical networks. Such models are able

to account for complex biological phenomena by representing simple kinetic relation-

ships that are readily simulated and analyzed.

Even primitive networks of few proteins are made quite complex by the existence



of multiple modification states and complexes formed. In this study we use a mass

action approach for analyzing the relationship between network topology and ki-

netic behavior in the in vitro circadian clock of the freshwater cyanobacterium, S.

elongatus. The cyanobacterial circadian clock enables S. elongatus to adapt cellular

performance to daily changes in the environment and provides a daily rhythm to

photosynthetic regulation [16, 15]. Kondo et al. has shown that circadian oscillations

can be reconstituted in vitro using only three proteins: KaiA, KaiB, and KaiC [31].

KaiC phsophorylation oscillates with the circadian period. Although it is known that

KaiC phosphorylation oscillates with a circadian period, the fundamental mechanism

and a clear understanding of the dynamics is indeterminate. Understanding such

complexity may be advanced through mathematical modeling.

The cyanobacterial circadian clock is an ideal candidate to assess methodology due to

the stable KaiC phosphorylation cycle in vitro as an expected emergent behavior of

the system, which purportedly contributes to the robustness of the circadian rhythm

for cyanobacteria in vivo [19]. Plus the abundance of experimental measurements are

available for verification of mathematical models, testing assumptions and postulat-

ing predictions.

Hence, we produced a mass action model representing the circadian behavior put

forward by the Rust et al. model [40]. The approach utilizes a mechanism-based

chemical kinetic model to describe the network topology. Mathematical formulation

of the mass action kinetics is based on sparse matrices and Kronecker products that

allow efficient and straightforward application of a variety of numerical methods. In

particular, we demonstrate that simulation, parameterization, sensitivity analysis,

and network topology partitioning can be performed effectively within this mass ac-

tion modeling framework.

In this model we have explicitly represented KaiC as switched between an unacti-

vated or activated enzyme, where autophosphatase and autokinase are regulated by



bound KaiB or free KaiA respectively [42]. The switch-like pattern conforming to

the presence of free KaiA perserves the oscillatory dynamics of the Rust et al. model.

Recent work by Johnson et al. hypothesizes tha the switch-like pattern is driven by

free KaiA binding to the allosteric regulation site of KaiC, resulting in a conforma-

tion change that may enhance the autophosporylation rate of KaiC [21, 24]. The

conformation change may be due to KaiA disrupting the fold of the S-shaped loop

by KaiA binding to the C2 domain of KaiC in a recurrent fashion during autokinase

[21, 24, 23].
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Chapter 4

Methods

4.1 Model Structure

We adopted the model of oscillatory phosphoform interconversion from the work of

Rust et al. [40] and converted the model from Hill-Langmuir kinetics [14] to mass

action kinetics. This formulation allows the model to access a variety of optimization

and analysis tools available for mass action models.

Mathematically such a model is represented as a system of ordinary differential equa-

tions,

y(t, ; Yo(P)) = f(y(t,p; Yo(p))) (4.1)

y(0, p; yo(p)) = Yo(P) (4.2)

where y(t, p; yo(p)) E Rny are the state variables and p e (np are the parameters. We

write yo(p) as an initial condition dependent on the parameterization in anticipation

that this model is an intermediate limit cycle oscillator [45] and yo(p) will repre-

sent a point on the limit cycle. The full model contains 75 distinct chemical species

concentrations, and 349 elementary reactions of the first- and second-order; there

are no zeroth-order reactions (e.g. no protein degradation or synthesis) in this post-



translational oscillator (PTO) model. The model is parameterized with 26 unique

reaction rate values and six non-zero initial concentration values. The full system is

available for download as supplementary information (SI).

The model accounts for time-varying biochemical concentrations (state variables)

of heteromultimeric complexes formed by the Kai proteins, along with the interme-

diate protein complexes, such as Michaelis complexes, within the autokinase and

autophosphatase reactions of KaiC that maintain oscillation. The two main sites

of KaiC that accept phosphorylation are serine 431 (S431) and threonine 432 (T432)

[40, 47, 34]. Phosphorylation and dephosphorylation reactions are implemented for in-

terconversion of four KaiC phosphoforms: unphosphorylated KaiC (U-KaiC), serine-

phosphorylated KaiC (S-KaiC), threonine-phosphorylated KaiC (T-KaiC), and doubly-

phosphorylated KaiC on the serine and threonine sites (D-KaiC). The outputs of in-

terest in this study, D-KaiC (DT), S-KaiC (ST), T-KaiC (TT), and U-KaiC (UT), are

defined as some linear combination of state variables formed by multiplication of the

row vector cT (Table A.11 in SI) with the state variables y(t,p; yo(p)) as follows:

[DT ST TT UT]T = CT. y(t,p; yo(p)) (4.3)

The model represents KaiC phosphoforms in unactivated (D,S,T,U) or KaiA-bound

(D:A,S:A,T:A,U:A) state for dephosphorylation, and in activated (D*,S*,T*,U*) state

for phosphorylation (Figure A-1(II) in SI). KaiC phosphoforms are allosterically reg-

ulated by free KaiA enhancing autophosphorylation, but in the absence of free KaiA

autodephosphorylation occurs [48, 23]. The Rust et al. model dynamics were pre-

served by first-order kinetics representing phosphoform interconversion of KaiC in-

dependent of KaiB [40]: interconversion rates of unactivated and KaiA-bound KaiC

occur at the basal effect in the absence of free KaiA (Table A.3 in SI), and phospho-

form interconversion rates of activated KaiC occur at enhanced rates (Table A.4 in

SI) [40]. KaiA-KaiC interactions control the switching between the KaiC phosphory-

lation and dephosphorylation phases [23]. During autophosphorylation, the transition



state KaiA-bound KaiC can reversibly dissociate to unactivated KaiC or irreversibly

dissociate to activated KaiC (Table A.2 in SI) . In our model we support the hypoth-

esis that free KaiA allosterically regulates KaiC, causing a conformational change

from KaiA-bound KaiC to activated KaiC when free KaiA is at maximal effect in the

system. KaiC remains unactivated when free KaiA is absent from the system (Figure

5-3).

The phosphoform interconversion has a regulatory feedback on the amount of free

KaiA present in the system. The S-KaiC phosphoform has a strong affinity to form a

complex with KaiA and KaiB in the C2 domain [2]. This {SIS:AIS*}:B:Ai 2 complex

effectively sequesters a dimer of KaiA, inducing KaiC dephosporylation through the

absence of free KaiA (Figure A-1(III.b) in SI). The mass action model accounts for

combinatorial intermediate binding states of the KaiABC complex, where the tran-

sient KaiABC formation is represented by second-order kinetics (Table A.1 in SI).

The assembly of KaiA and KaiB to S-KaiC is irreversible, but as this KaiABC com-

plex modulates between KaiC phosphoforms, KaiB and sequestered KaiA disassemble

from D-KaiC, T-KaiC, and U-KaiC (Figures A-1(I) and A-1(IV) in SI). The strong

binding affinity between KaiB and S-KaiC will not disassemble unless the complex

undergoes phosphoform interconversion. Note that once KaiB disassembles from D-

KaiC, T-KaiC, or U-KaiC, the phosphoform interconversion to S-KaiC may occur,

followed by further disassembly of sequestered KaiA from S-KaiC (Figure A-1(III.a)

in SI). The formation of the KaiABC complex is not explicitly represented in the

Rust et al. model. Instead, the concentration of free KaiA is modeled with the term

A = max{0, [KaiA - 2 -S]} (4.4)

corresponding to the instantaneous association of S-KaiC with KaiB to sequester a

KaiA dimer [40].



4.2 Parameterization

Initial parameter values were obtained from the Rust et al. model for the first-order

reactions where KaiC transitions between the D-KaiC, S-KaiC, T-KaiC, and U-KaiC

phosphoforms (Tables A.5, A.6, A.7, and A.8 in SI). Our parameterization for phos-

phoform interconversion was initialized to the Rust et al. model parameterization

except for the negative rate constants on serine dephosphorylation in the presence of

free KaiA which we set to zero [40].

To represent the KaiABC formation and effects of free KaiA with elementary re-

actions, we replaced Equation 4.4 and the Hill-Langmuir reaction rate function in the

Rust et al. model with fast kinetics. KaiABC assembly occurs on a faster timescale

than KaiABC disassembly and KaiA activity, effectively accounting for the negative

feedback loop in S-KaiC inhibition on KaiC autokinase [40]. The Rust et al. phos-

phoform interconversions occur at slower kinetics. With these initializations, model

parameterization was computed in two steps: (1) to measure the best fit to the nu-

merical integration of the Rust et al. model, and then (2) to aggregate the best fit

from (1) and the best fit to the phosphorylation and dephosphorylation partial kinet-

ics of the Rust et al. model.

Because many complexes are assumed to act with identical kinetics, the system was

initialized with 26 unique reaction rate values to describe the 349 elementary reac-

tions in the model. The initial species concentrations in both the mass action kinetic

model (MA) and the Rust et al. Hill-Langmuir model (HL) were fixed to the values

specified in SI Table A.9. Using the KroneckerBio package [5], in the first step we

fit the model to that of Rust et al. from randomly generated starting points where

each parameter was varied within + three orders of magnitude. The parameter opti-

mization on the full nonlinear system was performed using a gradient-based adjoint

Lagrangian method. Least-squares fitting was used for fitting the mass action kinetic

model to the Rust et al. Hill-Langmuir model. The cost function that was minimized



was the sum-of-squares error on the trajectory points of KaiC outputs (Equation 4.3),

N

minE cT"  MA(ti) - YHL (ti)2 (4.5)
i=1

where cT is a control row vector (Table A.11 in SI) that extracts the common species

from the simulation. Here the parameters were bound within [0,1.8 x 1013 cm 3h-1];

the lower-bound is set to be non-negative for feasible mass action kinetics in equilib-

ria and the upper-bound is set to the rate of cell diffusion. Due to the wide range

in valid parameterization, the stiff solver odel5s in MATLAB was necessary to effi-

ciently compute the time derivatives and the Jacobian of the system for the solution

of gradient-based minimization. Furthermore, the best optimum, with the lowest tar-

get function value, was accepted as the global optimum.

With the resulting parameterization from the first step in fitting the model, in the

second step multiple fits were performed to simultaneously fit the mass action kinetic

model to the numerical integration and the phosphorylation and dephosphorylation

partial reactions of the Rust et al. model. The three experimental trajectories are fits

to the SDS data presented by Rust et al. as non-oscillatory partial reactions of the

phosphorylation and dephosphorylation kinetics. In order to parameterize the model

to take these experimental trajectories into account, the cost function from the first

fit was updated to minimize the aggregate of the target functions

N 3 Nexpt J

min cT . YMA(ti) - YHL(ti) 2 + C T YMAxptj (t) - YHLe xpJ (t 2  (4.6)
i=1 j=1 i=1

where the first summation represents a goodness-of-fit to the Hill-Langmuir model and

the second (double) summation represents a goodness-of-fit to the three experimental

sets of trajectories. The original experiment trajectories are illustrated in the Rust

et al. publication in the following figures: 2A, 2B (or S2), and S3 [40].



4.3 Sensitivity Analysis

To assess the oscillations of the KaiC phosphoform interconversions, we used the

fitted mass action model in detailed sensitivity analysis. By probing infinitesimal

variation in parameters and initial concentrations of the state variables away from

the optimized model, influences on the state variable trajectories and their derived

quantities were useful in understanding the biological network topology and processes

setting emergent system behavior. We performed sensitivity analysis based on the

oscillatory behavior of this system by determining the influence of each state variable

and elementary reaction on system properties.

Because this mass action model is based on a set of chemical reactions without pro-

tein synthesis or degradation, mass conservation relationships of the KaiA, KaiB,

and KaiC proteins are in equilibria (Table A.10 in SI). Upon inspection of the state-

transition Monodromy matrix M defined by

M (p) = , and (4.7)0Yo T(p),p,yo

M = M(p)- I (4.8)

we were able to determine that there are dependencies in this model on initial con-

centrations and parameterization. For limit cycle oscillators (LCO) there is exactly

one eigenvalue of M on the unit circle, being full rank for a closed orbit, and for non-

limit cycle oscillators (NLCO), all eigenvalues of M are on the unit circle, being rank

deficient at zero or one for a closed orbit. The periodicity of the LCO has transient

behavior (i.e. approaches the stable limit cycle from any initial concentration) and is

determined solely by the parameterization of the system whereas the periodicity of

NLCO has no transient behavior and is determined by both initial concentrations and

parameterization of the system. Since the rank defficiency of M is rank(M) = 73,

this model has mathematical relations to LCOs and NLCOs in that transient behav-

ior persists and that the periodicity is determined by both initial concentrations and



parameterization [45].

The oscillatory behavior of this model has been classified as an intermediate-type

limit cycle oscillator (ILCO) according to Wilkins et al., a basis for the methods

presented in our sensitivity analysis [45]. Because the parameterization influences

the shape and location of the ILCO trajectory, the parametric sensitivities for the

state variables initialized to the limit cycle were not set to zero, as is usually done for

systems where initial concentrations are independent of the parameters. Therefore

the Boundary Value Problem (BVP) is formulated for the initial concentrations yo(P)

and the period of oscillation T(p) on a limit cycle such that:

y(T(p), p; yo(p)) - Yo(p) = 0 (4.9)

mT . y(t, p; yo(p)) = c (4.10)

where mT is the transpose of the mass conservation relationships matrix and 0 =

[AT BT CT]T (Table A.10 in SI) for y(t,p; yo(p)), which is given by the solution

from Equations 4.1 and 4.2.

Equation 4.10 is dictated by the rank defficiency of M, which must be full rank

to compute detailed sensitivities for the system on the limit cycle [45]. According to

Wilkins et al., a total of i = (n, + 1 - rank(M)) = 3 conditions for Equation 4.10

were required. Because the phosphoform interconversion occurs in a closed-loop PTO

system, Equation 4.10 was implemented as a constraint such that the total of each

KaiA, KaiB, and KaiC proteins be constant for all times t along the trajectory. By

enforcing the mass conservation relationships, the mass action model was stabilized

for any defined p in the following sensitivity analysis [11].

To tease out the effects a single parmeterization may have on the system, the fit-

ted mass action model was "unlumped" such that each of 349 elementary reactions

were represented as 349 independent reactions with unique rate constants instead



of the 26 shared parameterizations utilized in the fitting. The model itself was left

unchanged, but now it is possible to distinguish the effects that each parameter has

on specific reactions. This method does not imply that the biological system may be

controlled at such granularity, but rather serves to further isolate the processes and

mechanisms that set the oscillatory behavior.

Full sensitivities of the unlumped mass action model were accurately and efficiently

calculated by trapezoidal rule integration. Because there is exponential convergence

of trapezoidal rule integration when computing periodic functions, the actual error in

our results decay at 2 () ( 2N for partitioning the interval [0,T] into N uniform

subintervals [44]. The low error is because the trapezoidal rule ensures that in those

regions where the graph is concave up, the trapezoids overestimate the true area

under the curve, and likewise when the trajectory is concave down thus cancelling

out the errors. Due to the stepwise integrations of the trapezoidal rule formulation

for calculating partial derivatives of the solution from Equations 4.1 and 4.2, M was

computed for free in Equation A.1, which would not have occurred using a native

integrator of MATLAB (Equations A.1 and A.2 in SI).

Intermediate partial derivatives had to be calculated in order to compute local, first-

order sensitivities of the system to initial conditions, state variables, and parameter-

ization. Due to the class of this system as an ILCO, the quantities computed for

the period, phase, and amplitude sensitivities relate to well-defined derived functions

for this class of oscillating dynamical systems. To capture the influence that the

initial concentrations have on the period, phase, and amplitude sensitivities, the de-

pendency of the initial concentrations on the parameterization was accounted for by

solving S(T(p), p; 0) which is the parametric sensitivity for zero initial conditions at

time T(p) and solving So(p) which is the non-zero sensitivity to initial conditions, in

order to compute the resulting parametric sensitivities dependent upon initial condi-

tions S(t, p; So(p)).



To begin with, an intermediate partial derivative (derived from the relationship in

Equation 4.9) was computed to represent parametric sensitivities of the system at

time T(p) with sensitivities to initial concentrations being set to zero:

S(T(p), p;0) = (4.11)
P, P T(p),p;yo(p) y(O)=const.

Then, to uniquely determine the nonzero sensitivities of the unlumped mass action

model to the initial concentrations So(p), Equation 4.9 was differentiated with respect

to the parameterization p and the state-transition matrix M was stabilized according

to the mass conservation conditions in Equation 4.10, as shown in the resulting set

of equations rewritten in matrix form as

M y(T(p), p; yo(p)) ap SP (4.12)
i oT P [ (4.12)

mT  0 '

The inclusion of mass conservation relationships (mT) made M full rank so that we

could solve the system of equations for the matrix of unknowns

ayo 1
OPIp (4.13)

was then solved for So(p) along with the period sensitivities computed for the solution

at time T(p). With meaningful sensitivities now captured in terms of parameteriza-

tion and initial concentrations as S(t, p; So(p)), phase and amplitude sensitivities were

also computed (Equations A.3, A.4, A.5, A.6, A.7, and A.8 in SI) [45].
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Chapter 5

Results and Discussion

The circadian oscillations of KaiC phosphorylation is a well-observed phenomena of

this biochemical network. The autophosphatase and autokinase activities [32, 46] of

the KaiC enzyme [28] are modeled here, exhibiting oscillatory phosphoform intercon-

version at serine 431 (S431) and threonine 432 (T432) sites [34, 47] in the C2 domain

[34, 33, 47]. Rust et al. suggest that KaiC autophosphorylates and autodephospho-

rylates in an ordered pattern where free KaiA enhances autophosphorylation and the

presence of KaiB complexed with S-KaiC sequesters free KaiA and thus diminishes

the effect of KaiA on KaiC [29, 33, 40].

To further explore this interpretation, we converted the model of Rust et al. [40]

for the circadian clock of Synechococcus elongates to a mass action kinetic model,

which enabled us to apply a collection of modeling and analysis tools that we have

developed around mass action modeling. The original Rust et al. model was built

and parameterized using experimental data for protein phosphorylation and dephos-

phorylation. We fit our model to trajectories directly computed from their model,

to achieve model equivalence over the range of experimental conditions used in the

original fit.

Figure 5-1A shows an overlay of oscillatory trajectories for the various KaiC phos-

phoforms between the original Rust et al. model and our mass action version. The
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0phosphorylated on serine 431 and threonine 432), S-KaiC (serine 431 phosphorylated),

trajectories overlay so closely as to be indistinguishable in the figure, which indi-0 5 10
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Time (h)Figure 5-1: Model Verification. Mass action modeling dynamics overlayed with
the original Rust et al. dynamics. (A) The original Hill-Langmuir model and our

mass action model trajectories overlaid. Total KaiC accounts for the total amount

of phosphorylated KaiC, excluding U-KaiC (unphosphorylated): D-KaiC (doubly

phosphorylated on serine 431 and threonine 432), S-KaiC (serine 431 phosphorylated),

and T-KaiC (threonine 432 phosphorylated). Experimental data (solid symbols) for

phosphorylation (B-C) and dephosphorylation (D) kinetics was used by Rust et al.

to fit their model (hollow symbols).

trajectories overlay so closely as to be indistinguishable in the figure, which indi-

cates that reinterpretation of the original model in mass action terms did not alter

its behavior with respect to the fitting conditions. The model functions as a limit

cycle oscillator with a free-running period of approximately 21 hours, and the ini-

tial conditions of the Rust et al. model are somewhat off the limit cycle, as can be

seen from the differences in heights between the first peak and the rest for each of

the species. Figures 5-1B, 5-1C, and 5-1D show a similar overlay of the trajectories

developed here and those from Rust et al. (hollow symbols), together with the exper-

imental data (solid symbols) collected by Rust et al. that was used to fit their model.

The experimental data for Figures 5-1B and 5-1C resulted from SDS-PAGE experi-

ments in which the abundance of each KaiC phosphoform was measured after treat-



ment with KaiA for various time periods starting from different initial states (Table

A.9 in SI). Dephosphorylation was prevented by the absence of KaiB. The experi-

mental data in Figure 5-1D is from dephosphorylation experiments in the presence of

KaiB and the absence of KaiA.

Together the results show essentially perfect quantitative agreement between the

original Hill-Langmuir model and the new mass action model of this system over

the range of conditions used to parameterize the original model. Thus, we will use

the mass action model in what follows, so that we can apply tools we have developed

specifically for this class of kinetic representations.

The mass action model consists of 75 distinct chemical species concentrations, 26

unique reaction rate values, and six non-zero initial concentration values. However,

throughout the presentation of the results for the full system, we focus on an ab-

stracted visual representation that includes only the 13 species that accrue to signif-

icant concentrations. Intermediate protein complexes, such as Michaelis complexes,

account for over 60% of the species represented. The majority of intermediate com-

plexes and a number of other species exist in inappreciable amounts, thus permitting

the abstracted representation focusing on just 13 major species.

Figure 5-2 shows an abstracted visual representation and illustrates relative reac-

tion rates (Figure A-1(I) in SI for the full model). The arrow thicknesses represent

reaction rates, which are weighted logarithmically according to magnitude, with the

thickest arrows representing the fastest kinetics. The reaction rates along the planes

for phosphoform interconversion are equivalent in the mass action model and the Rust

et al. model (Figure A-1(II) in SI). Allosteric regulation of KaiC by free KaiA runs

perpendicular to these planes, and the combinatorial intermediate binding states in

the assembly and disassembly kinetics of the KaiABC complex are noticeably col-

lapsed in this abstraction (Figure A-1(III) and A-1(IV) in SI).



Figure 5-2: Abstracted Visual Representation of the Mass Action Model.
Here is an abstraction of our mass action model where arrow thicknesses represent
reaction rates that are weighted logarithmically according to magnitude where the
thickest arrows represent the fastest kinetics. The reaction rates are approximately:

> 1 (thick arrow), > 0.1 (medium arrow), < 0.1 (thin arrow).

The time course of these appreciable KaiC complexes, free KaiA, and free KaiB

are plotted in Figure 5-3. We identify two regimes (Phase I and Phase II) of Kai

protein behavior within the circadian period. Phase I is characterized by the absence

of free KaiA, progressive dephosphorylation of KaiC species, and saturation of the

S-KaiC:KaiB with sequestered KaiA. Phase II is characterized by the appearance

of activated KaiC species (D*,S*,T*,U*), the presence of free KaiA, and a prepon-

derance of phosphorylation kinetics. During dephosphorylation, essentially only the

lower plane of Figure 5-2 is populated because free KaiA is necessary to activate KaiC

species to the middle (Michaelis complex) and upper planes. In the lower plane, un-

activated KaiC species can only dephosphorylate. Phase II populates the entire figure

and drives the oscillatory dynamics in a manner that can be tracked but isn't readily

understood. Further analysis of the model is necessary to reveal relationships between

network structure and oscillatory dynamics.

Figure 5-4 shows the sensitivities of the oscillatory period with respect to the rel-

ative rate parameters of the model. The arrow thicknesses represent scaled period

sensitivities that are weighted logarithmically according to the highest magnitude,
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Figure 5-3: Time Course Trajectories of Species Concentrations. Here we

plot the trajectories of the species (state variables) that occur at appreciable con-

centrations. The presence or absence of free KaiA in the model drives two regimes

of behavior, Phase I and Phase II, within the circadian period. During autokinase

(Phase II), unactivated S-KaiC binds to KaiB and sequesters free KaiA to form the

KaiABC complex, as shown by the magenta trajectory. Furthermore, all free KaiA

in the system is sequestered during autophosphatase (Phase I).
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Figure 5-4: Scaled Period Sensitivities .logT Period sensitivities are imposed on
this abstracted visual representation of the mass action model. The arrow thicknesses
represent period sensitivities that are weighted logarithmically according to the high-
est magnitude where red is positive sensitivity and green is negative sensitivity. The
period sensitivity magnitudes are approximately: > 1 (thick arrow), > 0.1 (medium
arrow), < 0.1 (thin black arrow).

with red being positive sensitivity, green being negative and black being close to

zero. The positive (red) sensitivity on the reaction rate kd has a dominant length-

ening effect on the period that may be compensated by the shortening effect due to

k 5I. These phosphorylation and dephosphorylation dynamics between S-KaiC and

D-KaiC play a significant role in modulating the period. The allosteric regulation of

free KaiA supports the self-consistent processes that phosphorylated KaiC (excluding

T-KaiC) activation slows the circadian period and phosphorylated KaiC inactivation

speeds the circadian period. The reverse behavior occurs for unphosphorylated KaiC

as shown in Figure 5-4.

To understand better the system behavior between the two phases, we partitioned the

circadian period into a dephosphorylation interval (Phase I) and a phosphorylation

interval (Phase II) as shown in Figure 5-5. According to our initial observations from

Figure 5-3, we tracked species concentrations separately during these two regimes.

To track species concentrations in a given interval, partitioning of the species was

accomplished by enzyme-driven switch-like behavior. During the dephosphorylation
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Figure 5-5: Circadian Period Decomposition. The mass action model was de-
composed into a dephosphorylation interval (B) and a phosphorylation interval (C)
by implementing enzyme-driven switch-like behavior (D). (A) The superimposition
of Phases I (B) and II (C) results in the full trajectories of the mass action model.

interval, the switch was in 'off' mode due to the absence of free KaiA; likewise during

the phosphorylation interval, the switch was in the 'on' mode due to the presence of

free KaiA.

In order to track KaiC autokinase and autophosphatase, we created an artificial

species which was activated by KaiA and would bind and track KaiC behavior. Since

free KaiA exists at a much lower concentration than the amount of artificial species

required to complex with KaiC (KaiATotal < KaiCTotal), an enzyme cascade was im-

plemented as a rapid two-step process: (1) continual activation of a low concentration

enzyme XE, where XE < KaiATotal, which then (2) activated a high concentration

species X* , where X*> KaiCTotal, to rapidly and repeatedly complex with all KaiC

phosphoforms. This enzyme cascade persisted exclusively during the 'on' mode; con-

sequently X* would remain uncomplexed to KaiC once free KaiA depleted and the

dephosphorylation interval initiated. As a result, all KaiC complexes in Phase II were
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Phase II: Free KaiA present.

Figure 5-6: Scaled Period Sensitivities ioT for the Decomposed Period. The
dephosphorylation (left) and phosphorylation (right) intervals of a circadian period is
shown here. The transition from unactivated S-KaiC to unactivated U-KaiC plays the
most significant role in setting the period during KaiC dephosphorylation. Conversely,
an array of kinetics influence the periodicity during KaiC phosphorylation. The arrow
thicknesses and colors represent period sensitivities that are weighted logarithmically
according to the same spread for period sensitivities in Figure 5-4.

bound to X* and thus differentiable in a computational experiment sense from KaiC

complexes in Phase I, which were not bound to this enzyme. Through the imple-

mentation of this enzyme cascade, we were able to track transients of the system (for

implementation see Tables A.12 and A.13 in SI).

Perturbation analysis of the in vitro circadian oscillator for S. elongatus has shown

that modulations of KaiC autokinase and autophosphatase kinetics have had the most

dramatic effects on period setting [29]. By performing period sensitivity analysis on

each dephosphorylation interval (Phase I) and phosphorylation interval (Phase II)

we were able to decompose the influence that free KaiA allosteric regulation has on

KaiC phosphoform interconversion. The transition of unactivated S-KaiC to U-KaiC

was determined to be a triggering process during dephosphorylation for setting the

period. As shown in Figure 5-6 (left), this autophosphatase process has an overall

shortening effect on the period, being the singular influence particularly when free

KaiA is absent from the system. Although this same transition has the reverse effect

on the period in the presence of KaiA, there are also other kinetics at play according

to the heavily weighted sensitivities in the diagram. Upon closer inspection of Figure



5-6 (right), the decomposed period sensitivities during the phosphorylation interval

(Phase II) are comparable in magnitude and effect to the computed full period sen-

sitivities in Figure 5-4.

Analyzing the flux pathways for a circadian period provides further insight into domi-

nant processes within the model. As shown in Figures 5-7A and 5-7C, the notion that

the flux during the phosphorylation interval is comparable to the overall period flux

is in agreement with our full period sensitivity results, indicating that the processes

in the presence of free KaiA are dominant in setting a faster or slower circadian clock.

A more intuitive interpretation of this figure is that activity during the dephospho-

rylation interval occurs mainly on KaiC in the unactivated state (Figure 5-7B), due

to the fact that all activated KaiC has autodephosphorylated due to the absence of

free KaiA in the system.

Yet counterintuitive to our earlier results is that a majority of the system flux distri-

bution is through a process with relatively negligible period sensitivity (Figure 5-4),

from activated U-KaiC to T-KaiC; this flux then splits to where half cycles back to

activated U-KaiC and the remainder becomes phosphorylated at the serine site 5-7A.

According to Rust et al. observations the sequence of phosphoform interconversion

goes along the activated U-KaiC to T-KaiC, then activated T-KaiC to D-KaiC path-

way. On the contrary, our flux analysis determines that near equivalent amounts of

activated T-KaiC and S-KaiC are converted into the doubly phosphorylated form

5-7A. Other phosphoform interconversions leading to significant fluxes are along the

processes with higher period sensitivities, although not all are accounted for.

Supplemental analysis on the scaled peak-to-peak phase sensitivities, and scaled ab-

solute and relative amplitude sensitivities for the full period is uniform in denot-

ing processes of interest. When comparing sequential peaks of KaiC phosphoforms,

particularly the T-KaiC to D-KaiC phase sensitivities appear to have a significant

influence on the ordered phosphorylation timing circuitry. In Figure 5-8B for the T-



P 1Fl-wP: , WIM

Figure 5-7: Flux Pathways for the Phosphoform Interconversion during the

Full and Decomposed Period. The phosphoform flux distribution is shown here

for a full period along with the flux distribution for the desphosphorylation interval

(bottom, left) and phosphorylation interval (bottom, right) for the same period. The

majority of the flux distribution occurs during the phosphorylation interval, specif-

ically from activated U-KaiC to activated T-KaiC. The arrow thicknesses represent

the overall flux for each time course according to the highest magnitude, where the

magnitudes are approximately: > 4 (thick blue arrow), 4 > D > 1 (medium blue

arrow), > 0.1 (thin blue arrow), < 0.1 (thin black arrow). Not graphed here are

the fluxes orthogonal to the phosphoform interconversion planes, on account of these

reaction rates being invariably parameterized on a faster time-scale.



KaiC to D-KaiC phase sensitivities, the phosphorylation pathway-along the initial

accumulation of activated U-KaiC, followed by activated S-KaiC then to activated D-

KaiC which is subsequently hypophosphorylated-includes the kinetics of discernible

interest to the period sensitivities (Figure 5-4). These kinetics appear to agree in

magnitude and sign; processes that are responsible for lengthening the period are

also the same processes that proportionately lengthen the T-KaiC to D-KaiC time

interval relative to the overall period modulation.

The amplitude sensitivities also denote particular kinetics along this same pathway

that are of importance; furthermore, processes that have a lengthening effect on the

period generally increase the absolute amplitude of KaiC phosphoforms (Figures A-

2A, A-2C, A-2E, and A-2G, in SI). Notice in these figures that the activated S-KaiC

to activated D-KaiC process, which is also a major lever in lengthening the period

and peak-to-peak phase, accordingly results in higher amplitude oscillations. When

analyzing the T-KaiC to D-KaiC phase sensitivities in Figure 5-8B and the D-KaiC

absolute and relative amplitude sensitivities of Figures A-2A and 5-8B in the SI, a

self-consistent process is that this pathway modulates the phosphoform interconver-

sion oscillations to either a lengthened time interval with higher phosphoform peaks,

or a shortened time interval with lower phosphoform peaks. The S-KaiC absolute

amplitudes are affected in a similar mode along the same pathway (Figure A-2C in

SI).

To determine the important pathways within the network, we implemented an algo-

rithm to minimalize the full mass action network without losing oscillations. Our al-

gorithm searched for potential subnetwork motifs that could exist where the Michaelis

complex between unactivated to activated KaiC did not undergo phosphorylation or

dephosphorylation but only transitioned between the unactivated and activated KaiC

forms. Therefore phosphoform interconversion was only considered for unactivated

and activated KaiC forms, and provided that the phosphoform interconversions of

KaiC occur at equivalent reaction rates for unactivated KaiC and KaiA-bound KaiC,



Figure 5-8: Scaled Angular Peak-to-Peak Phase Sensitivities 2. The phase

sensitivities are weighted logarithmically according to the same spread for period

sensitivities in Figure 5-4. The peak-to-peak analysis was computed for sequential

peaks starting from in between the dephosphorylation and phosphorylation intervals

of the period, when U-KaiC is at a maximum. These phase sensitivities are diametric

depending on which peak is ordered first, such that the D-KaiC to T-KaiC phase

sensitivities has the same magnitude as the T-KaiC to D-KaiC phase sensitivities but

with an opposite sign.



the complexity of searching for an oscillating minimalized model was decreased man-

ifold. Our approach took into account all the combinatorics of unactivated KaiC

phosphoform interconversion, activated KaiC phosphoform interconversion, and KaiA

allosteric regulation that would conserve mass. Based on our understanding of the

known molecular mechanisms, no acyclic network motifs were allowed and a network

with atleast one cycle was enforced to account for the feedback loop to drive oscilla-

tory behavior.

From our analysis we found a collection of minimalized networks that maintained

oscillations; the two most minimalized networks are shown in Figure 5-9. Both of

these minimalized networks include processes discussed in our results for the decom-

posed period, the overall sensitivity analyses, and the flux pathways. Consistent to

our prior results and to the Rust et al. publication is the process in the minimal

networks denoting the ordered hypophosphorylation from activated to unactivated

D-KaiC, followed by threonine dephosphorylation to unactivated S-KaiC, and com-

pleting the dephosphorylation cycle with the accumulation of unactivated U-KaiC.

The core phosphorylation cycle may be interpreted to have much more variation in

dynamics as denoted by the discrepancies in ordered phosphoform interconversion,

as shown in Figures 5-9A and 5-9C. The phosphorylation cycle in Figures 5-9A and

5-9B is well-described in the Rust et al. interpretation: "Starting from the unphos-

phorylated state, KaiA promotes phosphorylation that is kinetically favored at T432;

subsequent phosphorylation at S431 produces ST-KaiC" [40]. The alternative phos-

phorylation dynamics in Figures 5-9C and 5-9D depict other core processes ancillary

to the kinetically favored phosphorylation to produce T-KaiC, as noted by Rust et al.

Our second minimalized model (Figures 5-9C and 5-9D) discerns an important role

that T-KaiC plays which is not addressed by the original study. ST-KaiC can amass

from threonine phosphorylation on S-KaiC or serine phosphorylation on T-KaiC, but

the kinetic favorability of U-KaiC to be phosphorylated on the threonine site con-

ducts a reservoir. The accumulation of T-KaiC leads to the triggering mechanisms
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Figure 5-9: Minimal Oscillating Networks. A collection of minimalized oscillat-
ing networks from the original mass action model were discovered. In (A) and (C) we
illustrate the two most minimalized networks we found, with the corresponding os-
cillatory dynamics shown in (B) and (D) respectively. These diagrams show distinct
sequences of phosphoform interconversion. The arrow thicknesses and colors in (A)
and (C) represent period sensitivities that are weighted logarithmically according to
the same spread for period sensitivities in Figure 5-4.

between the phosphorylation and dephosphorylation phases by further modulating

the quantity of available S-KaiC to sequester free KaiA. In our most minimalized

networks, the transition from U* to T* was necessary to maintain oscillations, and is

also the same process in the full mass action model through which the majority of

the system flux distribution flows.

Our model supports recent experimental data revealing a self-sustaining sequential

process of phosphoform interconversion in setting the circadian clock [33, 40] . In at-

tempt to understand this notion further we apply mass action modeling and analysis

techniques to tease out molecular mechanisms of the underlying timing circuit. We

demonstrate that there are levers within the dephosphorylation and phosphorylation



phases which significantly contribute to the oscillatory dynamics of the S. elongatus

circadian clock, namely that (1) the transition from unactivated S-KaiC to U-KaiC

directly influences the frequency of the period by setting the duration of the dephos-

phorylation phase, that (2) the dynamics from activated S-KaiC to D-KaiC and from

unactivated D-KaiC to S-KaiC respectively counterbalance positive and negative ef-

fects on the periodicity, and that (3) the S-KaiC sequestration of free KaiA is not

the only significant pooling mechanism in the system. Initially the accumulation of

activated T-KaiC is kinetically favored over the accumulation of activated S-KaiC,

leading to a reservoir of T-KaiC. Because the flux from activated S-KaiC and acti-

vated T-KaiC to D-KaiC are equivalent to each other, both these phosphorylation

sequences are significant to the phosphorylation cycle. That is, where S-KaiC pools

due to the sequestration of free KaiA, activated T-KaiC has a compensatory effect

in that process by gradually releasing into activated U-KaiC or D-KaiC, which ul-

timately results in a controlled triggering of available S-KaiC to fully sequester free

KaiA in the system, and consequently switching from the phosphorylation to the

dephosphorylation interval of the period.
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Chapter 6

Conclusions and Recommendations

6.1 Summary of Findings

The computational methods in this research was an integration of approaches based

in law of mass action, Kronecker product, and mathematical theory. This research

demonstrated the integration of experimental data and theoretical models, molecular

characterization of functional activity, and subsystem identification within system

behavior. The S. elongatus circadian clock was a preferable model because the anal-

ysis of feedback mechanisms in biological systems is challenging in that it cannot

be understood through conventional data analysis, data mining, or machine learning

because dynamic systems theory is required. Feedback mechanisms, as observed in

the circadian clock are essential for all forms of regulation, control, and coordination

at all levels of the life sciences [6].

6.2 Policy Issues

Current knowledge in systems biology is not cohesive and standardized since genes,

proteins, biological systems and their associated patents have been treated as strate-

gic knowledge-based assets [3]. The effectiveness of knowledge generated is hindered

by the reality that knowledge is valued as a good and therefore bartered with the

transactional costs of generating that knowledge kept in mind. This mode increases



commercialization and scientific competition between labs, creating accessibility and

collaboration difficulties [36]. Arguably, the widespread dissemination of current re-

sults is necessary to validate knowledge before progressing further downstream into

expensive and regulated research endeavors.

Capital costs associated with validation of systems biology predictions via 'wet lab'

biology are sufficiently high. Therefore, the high costs associated with generating

initial data, and the corresponding value associated with such data, has created a

market for such inputs to increase downstream competition. Patent rights on these

inputs have been licensed exclusively in the past; this legislation has been contentious

by not addressing the potential that exclusive rights have to block marketability of

products downstream. The further investment for development and commercializa-

tion of a particular input is currently fostered by Intellectual Property Rights (IPRs)

on upstream research. This legislation has incited the formation of small firms who

market these inputs to large firms.

Thus industry players are incentivized to accumulate an abundance of patents on

chemical compounds for the purpose of recouping the large costs associated in appli-

cable commercialization, such as preclinical and clinical trials. Even for research that

is not patented, upstream players have leveraged control over data and tool dissemi-

nation through 'exact reach-through royalties' by forcing the large firms to negotiate

with university and small firm proprietary claims on these inputs [36]. According to

Ronald Coase, this trend away from vertically integrated firms has increased trans-

action costs substantially and dampened innovation by enticing firms that are down-

stream in biotechnology research and development to avoid research areas where there

are 'patent thickets' and thus potentially large payouts to those upstream.

Therefore these considerations make lab collaboration and public-private alliances

inefficient. Furthermore, there is a misalignment of stakeholder motivations and re-

sources for players who are upstream and downstream in the biotechnology research



and development. While academia is usually more flexible in taking long-term strate-

gic positions, large firms are forced to focus on short-term tactical positions in order

to deliver products for stakeholder appraisal. Whereas large firms have resources to

platform technologies and interdisciplinary teams, academia has difficulties in lever-

aging long-term strategic positions; there is a lack of these resources internally due

to unshared investments of departments and interdepartmental competition. Amid

these extremes are start-ups, which heavily rely on securing upstream patents (or ex-

clusive licensing to upstream academia patents) in order to attract venture capitalists

and secure revenues when licensing to large firms [36].

An open and collaborative model would be ideal for rapid knowledge dissemination

and reduction of duplicative effort. However such public endeavors undermine the

ability of businesses to form around highly interdisciplinary processes. Even though

collaborative projects in systems biology have the potential to be superior in allo-

cating human creativity, and filtering and aggregating information in comparison to

the market, the low cost to contributors upstream does not offset the necessity for

industry players to patent rights on marketable molecular compounds and to make

the channeling of upstream knowledge gains proprietary [36]. Due to the hierarchal

nature of biological information in a system, systems biology knowledge generation

and dissemination are hindered by patents that exist at each of these hierarchies [3].

6.3 Policymaking

In general, policymaking comes down to funding and support [1]. However, the eth-

ical, legal, and social implications of such policies have lasting effects in addressing

bioethical questions ranging from privacy concerns to the commercialization of life. A

major concern of systems biology is whether in silico results will always require 'wet

lab' experimental confirmation, or whether the knowledge generated will have the

same legal status as in vitro and in vivo tests. Political and economical advantages

in circumventing preclinical trials such as 'wet lab' experiments and animal testing



has been anticipated as one of the significant contributions of systems biology in ad-

dressing societal concerns with drug testing [35]. Knowledge assessment is crucial

to policymaking in addressing scientific challenges within systems biology to identify

drug candidates that would have a low risk of failure when entering preclinical and

clinical testing. The capability for systems biology to produce usable inputs, alleviate

transaction cost and secrecy problems, and persuade industry and academia collab-

oration in promising lines of research are key concerns in current systems biology

policymaking.

Stakeholders have argued that systems biology will push patenting and commercial-

ization further away from biological material and more towards information. This

evolution may transform biological patenting into a less litigious activity by patent-

ing the representations of biological entities instead of the entities themselves. This

shift in patenting trends may mitigate concerns raised about the private ownership

of life [35]. Currently there have been few successful patents with many pending,

where most of the patents are for computer tools to make predictions and effective

interventions. For Technology Transfer Offices (TTOs) in university settings, soft-

ware does not generally merit the cost of patent filing because, economically, software

yields little in licensing revenues [36]. Yet, computer-generated models have similar-

ities to computer software in that patenting can lead to monopolization and network

externalities, such as standardization [35]. Historically, IPR in the sciences has led to

monetization from downstream research in stacking licenses and blocking patents on

upstream research, mainly due to the legal procedures set forth by the Bayh-Dole Act

of 1980; therefore it has been difficult for proponents of systems biology to convince

universities to disavow property rights and pursue collaborative projects [36].

For systems biology, Heller and Eisenberg's 'tragedy of the anticommons' is exac-

erbated because the discipline may require greater cooperation and collaboration as

the dominating strategy during its formative period [3]. Therefore, to avoid com-

petition and costly investments, collaboration endorsements have been made in the



past: National Institute of General Medical Sciences (NIGMS) Studies, specifically

the Alliance for Cellular Signaling (AFCS) Study, and the World Technology Evalua-

tion Center (WTEC) Study. In the NIGMS Study, all participants agreed to disavow

IPR, which is contrary to trends in patenting since the enactment of Bayh-Dole [36].

Due to historical evidence of peer-reviewer biases and incentives to tradeoff publica-

tion credibility, the NIGMS Study instead encouraged public internet access to results

in attempt to induce further collaboration beyond the scope of the Study. The AFCS

Study and WTEC Study did not necessarily confirm that collaborations contribute to

the "efficient integration of knowledge into the development of products and the effi-

cient utilization of knowledge" [3]. The link between systems biology knowledge and

the knowledge requirements for effective biological advancements for societal welfare

is not yet well established.

6.4 Policy Recommendations

Policymakers must not look to the science to definitively resolve political debates

because interpretations and metaphors matter here [39, 38]. The dissension in inter-

pretation of experimental data and defining systems biology in terms of mechanistic

models singularly misleads policymakers to believe that this science is more fixed than

it actually is. The potential of biological systems is not determined absolutely, but

rather relationally, and centralizing innovation on biomolecular identification is the

source of much IPR litigation and in essence is "limited, limiting, and misleading"

the focus and investment in scientific progression [38]. Assessment of the science for

policy action is not solely dependent on the scientific results but rather on the con-

tingency of these results to related societal and political economic outcomes of net

worth [39].

Political decisions that involve a diversity of interest groups are inherently difficult

to make since any adopted policy is bound to infringe on stakeholder interests. Here

systems biology is thwarted as a battleground for powerful economic and political



interests due to the high stakes associated with alternative policy outcomes [39]. The

politicization of science is integral to advocacy; yet scientists, clinicians, and bioethi-

cists alike are the accountable players for employing expertise in support of positions.

Lawyers, regulators, and those with commercial interests have the opportunity to

manipulate 'facts' and call upon expert opinion that mutually reinforces interests

of those in agreement. Incidentally this situation occurs more often than not when

scientists believe that the scientific results alone provide a sufficient basis for decision-

making [39]. In effect, all parties involved tend to prevent pure scientific contribution

to effective policymaking, thus compromising practices in systems biology as a po-

tential outcome.

Is the happenstance here to "make policy more scientific or the science more po-

litical" [39]? Assumptions affect both ongoing research and interpretation of research

results. Therefore, the scientific community must address the aforementioned claims

of systems biology and their significance for policy. Due to degrees of uncertainty

and interpretations of scientific results, enactment of a particular policy may involve

less science and more stakeholder justification for covert and vested interests. Even if

there were to be impartiality in the actual policymaking, science in itself is arguably

not a primitive truth; in the words of chemist Henry Bauer, science is "a mosaic of

the beliefs of many little scientific groups" [39]. Arbitration in policymaking is un-

avoidable and intrinsic to how scientific endeavors are supported and funded.

Politics and pragmatism come into play especially under conditions of scientific and

moral uncertainty. Debate over scientific issues increasingly relies on personal incen-

tives, criticizing processes (i.e. peer review, sources of funding), and deligitimation

of systems biology through demagoguery of the science as a matter of scientific and

societal perspectives [20]. Scientific policymaking becomes less about the science and

more about waging political battles through science [39]. The legitimation of systems

biology usually comes by way of bargaining, negotiation, and compromise which are

all political maneuverings surpassing the scope of the science itself [20].



Amidst the bureaucracy, validation of accuracy and applicability of systems biology

may nonetheless be endorsed by policymaking. Consideration of scientific, clinical,

ethical and political issues in an integral manner may rule out actions of false di-

chotomy amongst stakeholders [38]. The risk of policy enactment may be as great

as the risk of no policy considerations; however, the deliberation of policymaking in

of itself is prospect for consideration of questions about decision-making regarding

uncertainties with systems biology, and whether those uncertainties be of scientific,

clinical, moral, or political basis.

Policymaking for systems biology should explore radical shifts in power and control,

in tandem with the development of the underlying theory and technology. Authorita-

tive and non-partisan bodies should assume more responsibility in assessing scientific

research and placing significance of this work into a policy context [39]. The depth

and scope of challenges with systems biology is just as complex as the biological

systems that are being studied. Because there are significant barriers to progress

due to socioethical engagement with commercialization, it may be opportune to take

an adaptive approach to policymaking for systems biology [35]. Practicing continu-

ous and responsive improvement with short-term gains on long-term positions would

proactively guide systems biology development, especially in this formative period

and in anticipation of a more mature systems biology.
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Appendix A

Supplemental Information (SI)
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Figure A-1: Full Graphical Description of the Mass Action Model. (I) The
model accounts for time-varying biochemical concentrations (state variables) of het-
eromultimeric complexes formed by the Kai proteins, along with the intermediate
protein complexes, such as Michaelis complexes, within the autokinase and autophos-
phatase reactions of KaiC that maintain oscillation. (II) The reactions described
here show the affect of KaiA allosteric regulation on KaiC activation, where the
KaiA-bound KaiC form is the transition state from unactivated to activated KaiC.
(III and IV) KaiABC complex assembly (III.b) and disassembly (III.a and IV) are ac-
counted for by combinatorial intermediate binding states. The general principles are
that (1) KaiB and KaiA can only assemble with the S-KaiC phosphoform, (2) KaiB
can only disassemble from the D-KaiC, T-KaiC, and U-KaiC phosphoforms, and (3)
KaiA may disassemble from any of the phosphoforms. A MATLAB implementation
of the mathematical model is provided in the following appendix.
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Relative

Figure A-2: Scaled Absolute (left) and Scaled Relative (right) Amplitude
Sensitivities log ' The amplitude sensitivities are weighted logarithmically accord-
ing to the same spread for period sensitivities in Figure 5-4. The absolute amplitude
of a species is the concentration level and the relative amplitude is the difference be-
tween its maximum and minimum concentrations, where the concentration is periodic
in time.
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KaiABC Assembly and Disassembly Reactions
No. Biochemical Process

1 B+{S S:AIS*}:{Ai, 0} f {SIS:AIS*}:B:{Ain]0 } , n E {1,2}

2 A2+{SIS:AIS*}:B - {SIS:AIS*}:B:Ai 2

3 A+{SIS:AIS*}:B:Ai -- {SIS:A S*}:B:Ai2

4 A2 d A+A

5 {CIC:AIC*}:B:{AiI0} ~- {CC:AIC*}:{AiI0}+B, C E {D,T,U}, n E {1,2}

6 {CIC:A C*}:{B|0}:Ai , k {CIC:A C*}:{BI0}+An, C E {D,T,U}, n e {1,2}

{SIS:A|S*}:Ai - ${S S:AIS*}+An, n e {1,2}

Table A.1: The assembly and disassembly reactions are shown here. The correspond-
ing reaction rates are in Table A.5 and a graphical representation of the corresponding
pathways is shown in Figures A-I(III) and A-1(IV).



KaiA Allosteric Regulation Reactions
No. Biochemical Process

7 C:{BI0}:{Ai|0}+A k C:A:{BI0}:{Ai10}, C c {D,ST,U}, n E {1,2}
8 C:A:{B 0}:{Ai10} ~ c :{Bl0}:{Ai~ 0}+A, C c {D,S,T,U}, ne {1,2}
9 C:A:{BI0}:{Ai,0} ka C*:{B0}:{Ain10}+A, C E {D,S,T,U}, n E {1,2}
10 C*:{B0}:{Ain 0} C:{B 0}:{Ai 0}, C E {D,S,T,U}, n E {1,2}

Table A.2: The KaiA allosteric regulation reactions are shown here. The correspond-
ing reaction rates are in Table A.6 and a graphical representation of the corresponding
pathways is shown in Figures A-1(II).



Phosphoform Conversions with Basal Rates
No. Biochemical Process

ko

11 {U U:A}:{B|0}:{Aidl0} "_ {S S:A}:{B 0}:{Ain0}, n E {1,2}

12 {UIU:A}:{BIO}:{AinjO} {T T:A}:{BIO}:{AinIO}, n E {1,2}

13 {SIS:A}:{BI0}:{AinjO} f {DID:A}:{B 0}:{Aij0}, n E {1,2}

14 {T T:A}:{BI0}:{Ainl0} - {DID:A}:{B 0}:{Ain|0}, n E {1,2}

15 {SjS:A}:{BI0}:{Ainl0} "-± {UJU:A}:{BI0}:{Ain|0}, n E {1,2}

16 {TIT:A}:{BI0}:{Ain~0} ~- {UIU:A}:{BI0}:{Ainj0 } , n E {1,2}

17 {DID:A}:{B 0}:{Ain]0} k {SIS:A}:{BI0}:{Ain|0}, n e {1,2}

18 {DID:A}:{BI0}:{Ain j0} {TIT:A}:{BI0}:{Ain10}, n {1,2}

Table A.3: The KaiC phosphoform interconversions at basal rates are shown here.
The corresponding reaction rates are in Table A.7 and a graphical representation of
the corresponding pathways is shown in Figure A-1(I).



Phosphoform Conversions with Maximal Effect of Free KaiA
No. Biochemical Process

19 U*:{B0}:{Ain 0} _ S*:{B 0}:{Ail 0}, nE {1,2}

20 U*:{Bf0}:{Ainl -k0} T*:{B 0}:{Ainl0}, n c {1,2}

21 S*:{BI0}:{Ai,|0} - D*:{B|0}:{Ai,|0}, ne {1,2}

22 T*:{B0O}:{Ai,|0} - D*:{BI0}:{Ain|0}, nE {1,2}

23 S*:{B 0}:{Ai0} U*:{BI0}:{Ain|0}, n c {1,2}

24 T*:{BI0}:{Ain0O} k U*:{B 0}:{Ai, 0} , n E {1,2}

25 D*:{B0}:{Ai } 0j S*:{B 0}:{AinO0}, n E {1,2}

26 D*:{B|0}:{Ainl0} - T*:{B0O}:{Aij0}, nE {1,2}

Table A.4: The KaiC phosphoform interconversions with maximal effect of free KaiA
are shown here. The corresponding reaction rates are in Table A.8 and a graphical
representation of the corresponding pathways is shown in Figure A-1(I).



KaiABC Assembly and Disassembly Reaction Rates
Process No. Param Biochemical Role Value

1 kcbf KaiB association to KaiABC com- 99999.999622 h- 1

plex

2 ksai KaiA dimer inactivation and associ- 9999.429177 h- 1

ation to KaiABC complex

3 ksai2 KaiA monomer inactivation and as- 1000000 h- 1

sociation to KaiABC complex

4 kdb KaiA dimer dissociation into 1651.394384 h-1
monomers

5 kcbr KaiB dissociation rate from Ka- 1000 h-

iABC complex

6 kdi Inactive KaiA monomer and dimer 1005.404552 h- 1
dissociation from KaiABC complex

(reactivation)

Table A.5: The KaiABC assembly and disassembly occur at a much more rapid time
scale in comparison to the KaiC phophoform interconversions.



KaiA Allosteric Regulation Reaction Rates
Process No. Param Biochemical Role Value

7 kcaf Active KaiA monomer association 6902.765488 h- 1

to unmodified KaiC

8 kcar Active KaiA monomer dissociation 768.113739 h- 1

from KaiA-bound KaiC

9 kcat KaiA-bound KaiC to KaiA dissoci- 2073.852642 h- 1

ation and modified KaiC

10 kd, Modified KaiC dissipation into un- 385.056804 h- 1

modified KaiC

Table A.6: The KaiA allosteric regulation occurs at a much more rapid time scale
in comparison to the KaiC phophoform interconversions and is at most an order of
magnitude slower than KaiABC complexing.



Phosphoform Conversion Rates with Basal Effect
Process No. Param Biochemical Role Value

11 ks 8  Unphosphorylated KaiC to Serine 0 h- 1

(S431) Phosphorylated KaiC

12 k t Unphosphorylated KaiC to Threo- 0 h- 1

nine (T432) Phosphorylated KaiC

13 kd Serine Phosphorylated KaiC to Ser- 0 h- 1

ine and Threonine (Doubly) Phos-
phorylated KaiC

14 ko, Threonine Phosphorylated KaiC to 0 h-

Serine and Threonine (Doubly)
Phosphorylated KaiC

15 ko Serine Phosphorylated KaiC to Un- 0.111013 h- 1

phosphorylated KaiC

16 kt, Threonine Phosphorylated KaiC to 0.209541 h- 1

Unphosphorylated KaiC

17 k, 8  Doubly Phosphorylated KaiC to 0.307945 h- 1

Serine Phosphorylated KaiC

18 kot Doubly Phosphorylated KaiC to 0 h- 1

Threonine Phosphorylated KaiC

Table A.7: The KaiC phosphoform interconversions at the basal rate autodephos-
phorylate due to the absence of free KaiA. Due to the role that free KaiA plays
in allosterically regulating KaiC phosphoform interconversions, no phosphorylation
occurs without it.



Phosphoform Conversion Rates with Maximal Effect of free KaiA
Process No. Param Biochemical Role Value

19 k, 8  Unphosphorylated KaiC to Serine 0.057680 h- 1
(S431) Phosphorylated KaiC

20 k t Unphosphorylated KaiC to Threo- 0.477171 h- 1
nine (T432) Phosphorylated KaiC

21 kid Serine Phosphorylated KaiC to Ser- 0.480154 h- 1
ine and Threonine (Doubly) Phos-
phorylated KaiC

22 kld Threonine Phosphorylated KaiC to 0.201779 h- 1

Serine and Threonine (Doubly)
Phosphorylated KaiC

23 kl Serine Phosphorylated KaiC to Un- 0 h-1

phosphorylated KaiC

24 k' Threonine Phosphorylated KaiC to 0.306751 h- 1

Unphosphorylated KaiC

25 kk Doubly Phosphorylated KaiC to 0 h- 1
Serine Phosphorylated KaiC

26 kit Doubly Phosphorylated KaiC to 0.166900 h 1

Threonine Phosphorylated KaiC

Table A.8: The KaiC phosphoform interconversions with maximal effect of free KaiA.
Serine dephosphorylation does not occur due to the role that S-KaiC plays in seques-
tering free KaiA from the system.



Initial Concentrations
Species Value Experiment

Do 1.36 pM Figure 5-1A
So 0.34 pM
To 0.68 pM
Uo 1.02 pM
Ao 1.3 pM
Bo 3.4 pM

Do 0 pM Figure 5-1B

So 0 M
To 0 pM
Uo 3.4 pM
Ao 1.3 pM
Bo 0 pM

Do 0 pM Figure 5-1C
So 0.9 pM

To 0 pM
Uo 2.5 pM
Ao 1.3 p M
Bo 0 AM

Do 1 pM Figure 5-1D
So 0.5 pM
To 0.7 pM

Uo 1.2 uM
Ao 0 pM
Bo 0 AM

Table A.9: The initial concentrations of six of the state variables are provided here.
The remainder of the 75 total state variables are initialized to zero.



Mass Conservation Matrix m

Species Protein

KaiA KaiB KaiC

B 0 1 0

A 1 0 0

Ai 2  2 0 0

D 0 0 1

S 0 0 1

T 0 0 1

U 0 0 1

D:A 1 0 1

S:A 1 0 1

T:A 1 0 1

U:A 1 0 1

D* 0 0 1

S* 0 0 1

T* 0 0 1

U* 0 0 1

D:Ai 1 0 1

S:Ai 1 0 1

T:Ai 1 0 1

U:Ai 1 0 1

D:Ai:A 2 0 1

S:Ai:A 2 0 1

T:Ai:A 2 0 1

U:Ai:A 2 0 1

D*:Ai 1 0 1

S*:Ai 1 0 1

T*:Ai 1 0 1

U*:Ai 1 0 1

D:Ai2  2 0 1

S:Ai 2  2 0 1

T:Ai 2 2 0 1



D:Ai 2 :A 3 0 1

S:Ai 2:A 3 0 1

T:Ai2 :A 3 0 1

U:Ai2 :A 3 0 1

D*:Ai 2  2 0 1

S*:Ai2  2 0 1

T*:Ai 2  2 0 1

U*:Ai 2  2 0 1

D:B 0 1 1

S:B 0 1 1

T:B 0 1 1

U:B 0 1 1

D:B:A 1 1 1

S:B:A 1 1 1

T:B:A 1 1 1

U:B:A 1 1 1

D*:B 0 1 1

S*:B 0 1 1

T*:B 0 1 1

U*:B 0 1 1

D:B:Ai 1 1 1

S:B:Ai 1 1 1

T:B:Ai 1 1 1

U:B:Ai 1 1 1

D:B:Ai:A 2 1 1

S:B:Ai:A 2 1 1

T:B:Ai:A 2 1 1

U:B:Ai:A 2 1 1

D*:B:Ai 1 1 1

S*:B:Ai 1 1 1

T*:B:Ai 1 1 1

U*:B:Ai 1 1 1

U:Ai2 2 0 1



D:B:Ai2  2 1 1

S:B:Ai2  2 1 1

T:B:Ai2  2 1 1

U:B:Ai2  2 1 1

D:B:Ai 2 :A 3 1 1

S:B:Ai 2 :A 3 1 1

T:B:Ai2:A 3 1 1

U:B:Ai 2:A 3 1 1

D*:B:Ai 2  2 1 1

S*:B:Ai 2  2 1 1

T*:B:Ai2  2 1 1

U*:B:Ai 2  2 1 1

mT y(t,p;yo(p)) 1.3 pM 3.4 pM 3.4 pM

Table A.10: The 75 state variables are listed here along with

the mass conservation relationships to the total amounts of KaiA,

KaiB, and KaiC for this post-translational oscillator.



KaiC Output Control Matrix c

Species KaiC Phosphoform

D-KaiC S-KaiC T-KaiC U-KaiC

B 0 0 0 0

A 0 0 0 0

Ai 2  0 0 0 0

D 1 0 0 0

S 0 1 0 0

T 0 0 1 0

U 0 0 0 1

D:A 1 0 0 0

S:A 0 1 0 0

T:A 0 0 1 0

U:A 0 0 0 1

D* 1 0 0 0

S* 0 1 0 0

T* 0 0 1 0

U* 0 0 0 1

D:Ai 1 0 0 0

S:Ai 0 1 0 0

T:Ai 0 0 1 0

U:Ai 0 0 0 1

D:Ai:A 1 0 0 0

S:Ai:A 0 1 0 0

T:Ai:A 0 0 1 0

U:Ai:A 0 0 0 1

D*:Ai 1 0 0 0

S*:Ai 0 1 0 0

T*:Ai 0 0 1 0

U*:Ai 0 0 0 1

D:Ai 2  1 0 0 0

S:Ai 2  0 1 0 0

T:Ai2 0 0 1 0



0 0 0

D:Ai2 :A 1 0 0 0

S:Ai2 :A 0 1 0 0

T:Ai2 :A 0 0 1 0

U:Ai 2 :A 0 0 0 1

D*:Ai2  1 0 0 0

S*:Ai2  0 1 0 0

T*:Ai 2  0 0 1 0

U*:Ai 2  0 0 0 1

D:B 1 0 0 0

S:B 0 1 0 0

T:B 0 0 1 0

U:B 0 0 0 1

D:B:A 1 0 0 0

S:B:A 0 1 0 0

T:B:A 0 0 1 0

U:B:A 0 0 0 1

D*:B 1 0 0 0

S*:B 0 1 0 0

T*:B 0 0 1 0

U*:B 0 0 0 1

D:B:Ai 1 0 0 0

S:B:Ai 0 1 0 0

T:B:Ai 0 0 1 0

U:B:Ai 0 0 0 1

D:B:Ai:A 1 0 0 0

S:B:Ai:A 0 1 0 0

T:B:Ai:A 0 0 1 0

U:B:Ai:A 0 0 0 1

D*:B:Ai 1 0 0 0

S*:B:Ai 0 1 0 0

T*:B:Ai 0 0 1 0

U*:B:Ai 0 0 0 1

U:Ai2



D:B:Ai2  1 0 0 0

S:B:Ai2  0 1 0 0

T:B:Ai 2  0 0 1 0

U:B:Ai2  0 0 0 1

D:B:Ai2 :A 1 0 0 0

S:B:Ai 2:A 0 1 0 0

T:B:Ai2 :A 0 0 1 0

U:B:Ai 2:A 0 0 0 1

D*:B:Ai 2  1 0 0 0

S*:B:Ai2  0 1 0 0

T*:B:Ai 2  0 0 1 0

U*:B:Ai 2  0 0 0 1

Table A.11: This control matrix captures the outputs of interest

which are the four KaiC phosphoforms: serine and threonine phos-

phorylated KaiC (D-KaiC), serine phosphorylated KaiC (S-KaiC),

threonine phosphorylated KaiC (T-KaiC), and unphosphorylated

KaiC (U-KaiC). Alternative control matrices could be implemented

to capture KaiABC complexing levels and any other outputs of in-

terest.



Period Decomposition Reactions
Process No. Process

lexpt A+XE - A:XE
krxe

2expt A+A:XE A 2:XE

3
expt A2 :XE - XE*+A 2 X

4
expt A 2 X - A+A

5expt XE*+X - XE:X

6 expt XE:X k XE*+X*

7
expt XE* ___ XE

8
expt X* X

9
expt {CIC:AIC*}:{BI0}:{AinI0}+X*

k {onx CI C:AIC*}:{B|0}:{Ain 0}:X*, C c {D,S,T,U}, nE {1,2}
koffx

Table A.12: These reactions implement an enzyme-driven switch-like behavior. This
rapid process corresponds to the computational experiment in Figure 5-5 and the
results in Figures 5-6 and 5-7.



Period Partitioning Reaction Rates
Process No. Param Value

lexpt, 2 expt kfxe 100000 h-1

lexpt, 2 expt krxe 500000 h - 1

3 expt, 4 expt kcxe 10000000 h - 1

5 expt kfx 1000000 h - 1

5
expt krx 100000 h - 1

6 expt kcx 100000 h- 1

7 expt, 8 expt kdx 10000 h - '

9 expt konx 50000 h- 1

9
expt koffx 1000 h - 1

Table A.13: These are the reaction rates for the enzyme cascade specified in the above
table, Table A.12.
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Trapezoidal rule to compute the state-transition matrix. The trapezoidal

rule was implemented to calculate the Monodromy matrix, M = y(T,p;yo(p)) in Equa-

tion 4.8 by dividing the period T(p) into N uniform subintervals, h. The partial

derivatives of the state variables y of the ILCO were computed simply due to the

stepwise integrations which are each differentiated with respect to the initial condi-

tions yo.
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Trapezoidal rule to compute the parametric sensitivities. The trapezoidal

rule was implemented to calculate the parametric sensitivities S(T(p), p; 0) = y'(T,p;yo(p))
Op

in Equation 4.11 by dividing the period T(p) into N uniform subintervals, h. The

partial derivatives of the state variables y of the ILCO were computed simply due

to the stepwise integrations which are each differentiated with respect to the initial

conditions yo.
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Peak-to-peak phase sensitivities. The peak-to-peak phase sensitivities was calcu-

lated by taking the time difference between extrema in different outputs. The phase

sensitivity of the i-th output is the partial derivative of the time lapse 0 differenti-

ated with respect to the parameterization. / is defined as the time lapse between the

extrema for cT . y and the extrema for an output of reference,cT -y, locked at t = 0.

Instead of calculating output specific sensitivities, the sensitivity for the i-th state

variable may be calculated by replacing cT -y with yi.
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Scaled peak-to-peak phase sensitivities. The scaled sensitivities are peak-to-

peak phase sensitivities normalized to both the parameterization and the time lapse

between the two peaking events. Instead of calculating output specific sensitivities,

the sensitivity for the i-th state variable may be calculated by replacing cT . y with

yi-
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Scaled angular peak-to-peak phase sensitivities. The scaled angular sensitivi-

ties were calculated to be the change of the phase angle as a result of an infinitesimal

parameter change, instead of describing the change in time lapse between two peak-

ing events. The change of period was accounted for and normalized out. Instead of

calculating output specific sensitivities, the sensitivity for the i-th state variable may

be calculated by replacing c . y with yi.
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Amplitude sensitivities. The amplitude sensitivities are the parital derivatives

of the outputs c[ .y with respect to the parameterization at any given time t. Instead

of calculating output specific sensitivities, the sensitivity for the i-th state variable

may be calculated by replacing cT . y with yi.
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Olog p = op (T y)i,t (A.7)

Scaled relative amplitude sensitivities. The relative sensitivities were computed

as the difference between the sensitivities at the maximum and minimum of a given

output, c[ . y at any given time t. The scaled relative amplitude sensitivities are

the relative sensitivities normalized to both the parameterization and the difference

in output concentration between the maximum and minimum quantities. Instead of

calculating output specific sensitivities, the sensitivity for the i-th state variable may

be calculated by replacing cT . y with yi.
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Scaled absolute amplitude sensitivities.The absolute sensitivities were computed

as the sensitivities at the maximum of a given output, cT .y at any given time t. The

scaled absolute amplitude sensitivities are the absolute sensitivities normalized to

both the parameterization and the difference in output concentration between the

maximum and minimum quantities. Instead of calculating output specific sensitivi-

ties, the sensitivity for the i-th state variable may be calculated by replacing cT . y

with yi.
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Appendix B

Mathematical Model

d[B]= kcbr - [U : A: B: Ai] - kcbf [S : A: Ai2] [B] + kcbr [T: A: B: Ai 2]dt

+kcbr [U* : B : Ai] - kcbf - [S : Ai 2] .[B] + kcbr - [D : B : Ai2]

+kcbr [U : B : Ai] + kcbr - [D : A : B : Ai 2] - kcbf .[S* : Ai 2] .[B]

+kcbr [D* : B: Ai] + kbr [D: A: B: Ai] + kcbr [D*: B : Ai 2]

-kcbf [S] - [B] + kcbr [T : B : Ai 2] + kcbr - [U : B: Ai 2]

+kcbr [U* : B : Ai 2] + kbr [T* : B: Ai] + kcbr - [T : A: B : Ai]

-kcbf [S* : Ai] [B] + kcbr [D : A: B] + kcbr [T : B]

+k [U Bkcbr [U: B] + cbr [D : B] + kcbr [T : A: B]

+kcbr [U : A: B] - kcbf -[S : A: Ai] [B] + kcbr ' [T* : B]

+kcbr [D* : B] + kcbr [T* : B : Ai 2] + kcbr '[U : A: B : Ai 2]

+kcbr [U* : B] - kcbf [S : Ai] [B] - kcbf [S*] - [B]

+kcbr [D : B : Ai] - kcbf - [S : A] - [B] + kcbr - [T: B : Ai]

d[A]d[A]= kdi [U* : B: Ai]- kcaf [S : B: Ai2] [A]- ksai2 [S: A: B: Ail [A]
dt

+kdi - [T: A: B : Ai 2] + kcat [T : A: B : Ai 2] + kt -[S : A: B: Ai 2]

+kcat * [U : A: B : Ai] + kca r [T : A : Ai 2] - kcaf - [T : B : Ai 2] - [A]

+kdi " [D : A: B : Ai 2] + kd [D : A: Ai] + kcat " [T: A: B : Ai]

+kdi [D : Ai 2] - kcaf * [T: B] - [A] + kdi -[T : A: B : Ai]
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-kcaf

+kdi -

+kcar

+kdi -

-kcaf

+kcar

+kcat

+kcar

+k d i

-kcaf

+kd i -

-kcaf

-kcaf

A: B : Ai 2] - keaf

A: B : Ai] + kcar

B] - [A] + kcar, [T

A : Ai2 ] + kdi " [U*

Ai]. [A] + kdi [S :

Ai] + kcar [U : A]

A : B : Ai] - ksai2

Ai 2] . [A] + kdi - [T

A: B] + kcat [U :

* [D] - [A] + kd - [D : A: B: Ai]

[D : A: Ai 2 ] + kdi - [T* : B: Ai]

: A: Ai] - ksai - [S* : B] - [A]

: Ai] + kd - [D* : Ai 2]

Ai 2] + kcar - [T : A: B : Ai 2]

+ kcar [D: A: B]

* [S: B: Ai] - [A] - kcaf [T : Ai

: A: Ai 2] + kcat [D: A: Ai]

A] + 2. kdb - [A]i 2

: A] + kcat [D : A] - kcaf - [S : Ai] - [A]

A: Ai 2] + kcat - [D : A: B : Ai] + kdi * [T : B : Ai2 ]

A: B : Ai] - kcaf - [U : Ai] - [A] + kdi . [D : Ai]

* [U: B] - [A] + kcar - [S: A] + kcat - [S: A]

[T : Ai 2] - ksai - [S : A: B] - [A] + kar [U : A: Ai]

* [T: A: B] + kdi - [S : A : Ai] + kcat [D : A: B]

[D* : B : Ai] + kcat ' [U : A: Ai 2] + kcar - [D : A : B : Ai 2]

* [U : Ai 2] [A] + kdi - [U* : B : Ai 2] + kcat • [U : A: B]

S[S : A: Ai 2] + kcat [U : A: Ai] + kdi [T* : Ai]

* [S : A: B] - kcaf [T : B: Ai] - [A] + kdi. [D : B : Ai 2]

* [T: A: B : Ai] + kdi - [S* : Ai 2] + kcat. [T: A: Ai]

[U: A: Ai] + kdi [U : Ai 2] + kdi - [U: A: Ai 2]

. [D : B: Ai 2] - [A] + kdi [T : Ai] - kcaf [T] -[A]

[D : B : Ai] + kdi - [D* : B : Ai 2] + kcat - [S : A: Ai 2]

S[S] [A] + kc, - [T: A] + kct - [T: A] + kcat [S : A: B : Ai]

* [S : B : Ai] - [A] + kdi . [U : Ai] + kca, - [U : A: B : Ai]

+kcar

+kcar

-kcaf

+kcar

-kcaf

+ kdi -

+kcar

-kcaf

+kcar

S[S :

S[D :

[D :

[U :

[T :

[D*:

S[S :

-[D :

-[U :

+kcar ' [D

+kdi [S :

+kdi [U :

] - [A]



+kcat [D : A: Ai2 ] + kdi - [D : A : Ai 2] + kcat . [S : A: Ai]

+kdi - [T: A: Ai] - ksai [S : B] - [A] - kcaf [U] -[A]

-kcaf [U : B : Ai] [A] + kcar [S: A: Ai] - kcaf [U: B: Ai 2] - [A]

+kcar " [U : A: B : Ai 2] + kdi - [S : Ai] + kdi [S* : Ai]

-kcaf [D : B: Ai] - [A] - kcaf [D : Ai] [A] + kcar [S : A: B]

+kdi - [U : A: B : Ai 2] - k,,f - [S : Ai 2] - [A] + kcat ' [U : A: B : Ai 2]

+kca, [D : A: Ai] + kcat [T : A : Ai 2] + kdi - [U : B : Ai]

+kdi [T* : B : Ai 2] + kdi " [U* : Ai 2] - kcaf [S : B] - [A]

+kcat [T : A: B] - ksai2 [S* : B : Ai] - [A] + kdi [T : B : Ai]

+kdi . [U : B : Ai 2] + kdi [T* : Ai 2] + kcat - [D : A: B : Ai 2]

Skdi . [T: A: B: Ai 2] - kai [S: A: B] [Ai 2] - ksai [S : B] [Ai 2]

+kdi [D : A: B : Ai 2] + kdi - [D : Ai 2] + kdi - [T : Ai 2]

+kdi [U* : B : Ai 2] + kdi [D : B : Ai 2] + kd [S* : Ai 2]

+kdi [U : Ai 2] + kdi - [U : A : Ai 2] + kdi - [D* : B : Ai 2]

+kdi [D* : Ai 2] + kdi - [S : Ai 2] + kdi - [T : A : Ai 2]

-kdb [Ai 2] + kdi [S : A: Ai 2] + kdi - [T : B : Ai 2]

+kdi [D : A : Ai 2] + kdi " [U : A : B : Ai 2] - ksai [S* : B] " [Ai 2]

+kdi [T* : B : Ai 2] + kdi [U* : Ai 2] + kdi [U : B : Ai 2]

+kdi [T* : Ai 2]

= -k, -[D] - kI [D] + kd - [S]

+kOd [T] + kcar [D : A] + kd [D*]

+kdi [D : Ai] + kdi - [D : Ai 2] + kcbr - [D : B]

-kca f  [D] - [A]

= k .* [D] - k~d [S] - ko - [S]

+kus, [U] + kcar [S : A] + kdc - [S*]

d[Ai 2]
dt

d[D]
dt

d[S]
dt



+kdi - [S : Ai] + kdi [S : Ai 2] - kcbf - [S] - [B]

-kcaf [S] .[A]

d[T]dt = k° - [D] - k to - [T] - ko -[T]dt

+k • [U] + ka [T : A] + kdc [T*]

+kdi [T: Ai] + k.di [T: Ai 2] + kcbr [T: B]

-kcaf ' [T] - [A]

d[U]d = k° -[S] + ko- IT]-ko~ -[U]dt tu

-k, [U] + kcar [U : A] + kc -. [U*]

+kdi. [U : Ai] + kdi . [U : Ai2] + kcbr * [U : B]

-kcaf [U] - [A]

d[D : A]
-kca, [D: A] - k, - [D: A] - kt - [D: A]

dt

-kcat [D : A] + k - [S : A] + k - [T : A]

+kdi " [D : A : Ai] + kdi [D : A: Ai 2] + kcbr [D : A: B]

+kcaf [D] - [A]
d[S : A]d = k, - [D: A] - k, a [S : A] - k - [S : A]

dt

-k - [S : A] - kat - [S: A] + k, - [U : A]

+kdi [S: A : Ai] + kdi [S : A: Ai 2] - kcbf .[S : A] - [B]

+kcaf [S] - [A]

d[T : A]
dt = kd -[D: A]- kcar -[T: A] - ko-[T: A]dt dL Ltd

-kt . [T : A] - kcat [T : A] + kot - [U : A]

+kdi [T : A: Ai] + kdi [T: A : Ai 2] + kcbr - [T: A: B]

+kcaf [T] - [A]

d[U : A]
= k - [S: A] + ko -[T:A]- kca, - [U: A]dt tu

-k~ • [U : A] - kot - [U : A] - kat [U : A]

+kdi " [U : A : Ai] + kdi [U : A : Ai 2] + kcbr [U : A: B]



+kcaf [U] - [A]

d[D] kcat [D: A]- ks - [D*] - kt - [D*]
dt

-kde [D*] + kld - [S*] + ktld [T*]

+kdi [D* : Ai] + kd - [D* : Ai 2 ]+ kcbr - [D* : B]

d[S* = kcat [S: A] + ks [D*] - kd[S*]
dt

-k, [S*] - kdc - [S*] + k1, -[U*]

+kdi - [S* : Ai] + kdi - [S* : Ai 2] - kcbf - [S*] - [B]

d[T*] kcat [T: A] + klt - [D*]- k - [T*]
dt

-kl, [T*] - kdc [T*] + kit - [U*]

+kdi [T* : Ai] + kd - [T* : Ai 2] + kcbr [T* : B]

d[U*]
dt kcat [U: A] + k1, [S*] + k [T*]

-kl, [U*] - k't - [U*] - kdc. [U*]

+kdi [U* : Ai] + kd .[U* : Ai 2] + kcbr - [U* : B]

d[D= -kO, [D : A il - kot
. [D : A i] - kdi . [D : A i]

dt

+k °  [S : Ai] + ktod [T: Ai] + kcar - [D : A: Ai]

+kdc [D* : Ai] + kd - [D : Ai 2] + kcbr [D : B: Ai]

-kcaf ' [D : Ai] - [A]

d[S : Ai]
d = kI [D : Ai] - k - [S : Ai] - k [S : Ail

-kdi . [S : Ai] + k, • [U : Ai] + kcar, [S : A: Ai]

+kde [S* : Ai] + kdi . [S : Ai 2] - kcbf - [S : Ai] - [B]

-kcaf [S : Ai] [A]

d[T: Ai]
= k - [D : Ail - ko, - [T : Ail - kto, - [T: Ai]

dt dttdt

-kdi [T: Ai] + kt - [U : Ai] + kcar [T: A: Ai]

+kdc [T*: Ai] + kdi [T : Ai 2] + kcbr - [T: B : Ai]

-kcaf [T : Ai] - [A]



d[U : Ai]

dt
k . [S : Ai] + kt -[T : Ai] - k, . [U : Ai]

-kt • [U : Ai] - kdi [U : Ai] + kar [U : A : Ai]

+kde [U* : Ai] + kdi - [U : Ai 2] + kcbr [U : B : Ai]

-k,,f - [U : Ai] - [A]
d[D : A: Ai]

dt = -kar - [D: A : Ail - ko, - [D : A: Ai]- k't [D: A: Ai]

-kdi - [D : A: Ai] - kcat - [D : A : Ai] + kd [S : A: Ai]

+ktd [T: A " Ai] + kdi " [D : A: Ai 2] + kcbr [D : A: B : Ai]

+kcaf * [D : Ai] - [A]

d[S : A: Ai]d[S: A: Ai = kI - [D: A: Ai]- kc - [S: AAi] - ko - [S: A: Ai]
dt

-k, - [S : A: Ai] - kdi - [S : A: Ai] - k,,,t - [S : A: Ai]

+ko, - [U : A : Ai] + kdi - [S : A : Ai 2] - kcbf [S : A : Ai] -[B]

+kcaf . [S : Ai] - [A]
d[T: Ai : A] [

di = kt [D : A : Ai] - k, [T : A: Ai] - kt, - [T : A: Ai]

-k, [T : A : Ai] - kdi [T : A : Ai] - kcat. [T: A: Ai]

+kIt [U : A: Ai] + kdi [T : A: Ai 2] + kcbr [T : A: B : Ai]

+kcaf [T : Ai] [A]

d[U : Ai : A]
di = k° - [S : A: Ai] + k,, - [T : A: Ail - ka, - [U: A: Ai]

-ko, -[U: A: Ai] - kt -[U: A: Ai] - kdi - [U: A: Ai]

-kat [U : A: Ai] + kdi [U : A: Ai 2] + kcbr [U : A : B : Ai]

+kcaf [U : Ai] [A]
d[D* : Ai]

dt = kat * [D : A: Ai] - k, - [D* : Ail - kit - [D* : Ai]dt dSd

-kdi " [D* : Ai] - kd [D* : Ai] + kd [S* : Ai]

+ki - [T* : Ai] + kdi [D* : Ai 2] + kcbr . [D* : B : Ai]
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d[S* " Ai] d[S [S kat : A: Ai] + k, - [D*: Ai] - kd - [S*: Ai]
dt

-k, u [S* : Ai] - kdi - [S* : Ai] - kdc - [S* : Ai]

+kl, [U* : Ai] + kdi [S* : Ai 2] - kcbf [S* : Ai] - [B]

d[T* " Ai] d[T*Ai] = kat [T A Ai] +k kt [D* : Ai]- k [T*: Ai]
dt

-k 1, [T* : Ai] - kdi - [T* : Ai] - kdc [T* : Ai]

+kit [U* : Ai]+ kd [T* : Ai 2] + kcbr [T* : B: Ai]

d[U* " Ai] = kat * [U : A: Ai] + k [S* : Ai] + k [T* : Ai] - kl, [U* Ai
dt

-kit [U* : Ai] - kdi " [U* : Ai] - kdc [U* : Ai]

+kdi . [U* : Ai 2] + kcbr - [U* : B : Ai]

d[D" Ai2] = -k°' [D : Ai 2]- kdt [D : Ai 2 ]- 2. kdi [D: Ai 2]dt

+ko . [S: Ai 2] + ktd [T : Ai 2]+ k a, [D : A: Ai 2]

+kd [D* : Ai 2] + kcbr - [D : B : Ai 2] - kcaf - [D : Ai 2] . [A]

d[S : Ai 2] = k° - [D : Ai2] - kd . [S : Ai2]- k° • [S:Ai2]
dt

-2 kdi " [S : Ai 2] + kI [U : Ai 2] + kcar [S : A: Ai 2]

+kdc " [S* : Ai 2] - kcbf - [S : Ai 2] [B] - kcaf ' [S : Ai 2] [A]

d[T " Ai2] [T kt - [D: Ai 2 ]- ktd - [T: Ai 2]- ko -[T : Ai 2]
dt

-2. kdi [T : Ai 2] +-I kt [U : Ai 2] + kcar [T : A : Ai 2]

+kdc - [T* : Ai 2] + kcbr [T : B : Ai 2] - kcaf [T : Ai 2] - [A]
d[U" Ai 2]d[U= k - [S: Ai2] + kto [T:Ai2] - k - [U : Ai2]

dt

-kt • [U : Ai 2] - 2 kdi - [U : Ai 2] kcar - [U : A: Ai 2]

+kdc [U* : Ai 2]+ kcbr [U : B : Ai 2] - kcaf [U : Ai 2] [A]

d[D: A: Ai 2] -kca, [D: A: Ai2] - kos - [D : A: Ai2] - kot - [D : A: Ai21
dt

-2. kdi - [D : A : Ai 2] - kcat - [D : A : Ai 2] + kd [S : A : Ai 2

+ktd - [T : A: Ai 2] + kcbr [D : A: B : Ai 2] + kCaf [D : Ai 2] - [A
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d[S: A: Ai 2]
dt

d[T : A: Ai 2]
dt

d[U : A: Ai 2]
dt

d[D* : Ai 2]
dt

d[S* : Ai 2]
dt

d[T* : Ai 2]
dt

d[U* : Ai 2]
dt

d[D: B]

dt

ds [D A: Ai 2] - kr [S : A: Ai 2 ] - kd [S : A: Ai 2]

-ko° . [S : A: Ai 2 ] - 2 kdi - [S: A : Ai 2] - kat .[S : A : Ai 2]

+ko, - [U : A: Ai 2] - kbf .[S : A: Ai 2] .[B] + kIa- [S : Ai 2] .[A]

kI, [D : A : Ai 2] - k ar - [T: A : Ai 2]ko ktod [T : A: Ai 2]

-kt . [T : A: Ai 2] - 2 kdi - [T : A: Ai 2] - kcat .[T : A : Ai 2]

+ku, • [U : A: Ai 2] + kcbr [T : A: B : Ai 2] + kcaf [T : Ai 2] - [A]

k - S : A : Ai2] + k, [T : A: Ai 2] - kcar - [U : A: Ai 2]

-k s [U : A : Ai 2] - kt - [U : A : Ai 2] - 2 - kdi - [U : A : Ai 2]

-kat [U : A: Ai 2] + kcbr - [U : A : B : Ai 2] + kcaf [U : Ai 2] .[A]

kcat * [D :A A Ai 2] - ks -[D* : Ai 2] - klt - [D* : Ai 2]

-2 kdi " [D* : Ai 2 ] - kdc [D* : Ai 2] + kd - [S* : Ai 2]

+ktld [T* : Ai 2] + kcbr [D* : B : Ai 2]

kcat [S : A: Ai 2] + k, [D* : Ai 2] - kid [S* : Ai 2]

-kl, - [S* : Ai 2] - 2 - kdi [S* : Ai 2] - kdc [S*

+kls [U*:

kcat [T : A

-kl [T*

+kl . [U* :

kcat [U : A

-kl, [U*:

-kdc [U* :

-kcbr [D:

: Ai 2]

Ai 2] - kcbf [S* : Ai 2] . [B]

: Ai 2] + kdt [D* : Ai 2] - ktd - [T* : Ai 2]

Ai 2]- 2 kd - [T* : Ai 2] - kdc - [T* : Ai 2 ]

Ai 2] + kcbr - [T* : B : Ai 2]

Ai 2] + kl [S* : Ai 2] + k . [T* : Ai 2]

Ai 2] - kit [U* : Ai 2] - 2 kdi - [U* : Ai 2]

Ai 2] + kcbr [U* : B: Ai 2]

B] - kds - [D : B] - kot - [D : B] + kd - [S : B]

+ktd - [T : B] + kJc - [D : A: B] + kd [D* : B]

+kdi - [D : B : Ai] + kdi - [D : B : Ai 2] - kaf - [D : B] - [A]
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d[S B] = kO .[D: B]-ko -[S: B]-k o -[S: B] + k ~ i [U : B]
dt

+kcar,,, [S : A: B] + kdc - [S* : B] + kcbf [S] - [B]

-kcaf [S : B] - [A] - ksai [S : B] - [A] - ksai [S : B] . [Ai 2]
d[T B] dT kt -[D: B] - kcbr - [T: B] - ktd [T: B]

dt

-k° • [T: B] + kt - [U: B] + kcar [T: A: B]

+kde [T* : B] + kdi - [T: B : Ai] + kdi - [T: B : Ai 2]

-kcaf [T : B] - [A]

d[U" B]
= k .- [S: B] + ko - [T:B]- kcbr [U: B]

dt

-kis [U: B] - kot, [U: B] + kcar [U : A: B]

+kde [U* : B] + kdi - [U : B : Ai] + kd - [U : B: Ai 2]

-kcaf [U : B] - [A]

d[D" A B] -d[DA:r [D: A: B]- kcar -[D: A: B]- ks -[D: A: B]
dt

-kt [D : A: B] - kct - [D : A: B] + kd [S : A: B]

+ktd [T: A: B] + kdi [D : A: B : Ai] + kdi [D : A: B : Ai 2]

+kcaf [D : B] - [A]

d[S" A" B] d[SA:B] k [D: A: B]- kar [S: A: B]- koud [S: A: B]
dt

-k~ . [S: A: B] - kcat [S : A: B] + ko, - [U : A: B]

+kcbf [S : A] [B] + kcaf . [S : B] [A] - ksai [S : A: B] - [A]

-ksai [S : A : B] - [Ai 2]

d[T A: B]
= kt - [D : A: B] - kcbr [T: A: B]- kcar [T: A: B]

dt

-kd [T : A: B] - k~, [T: A: B] - kcat [T: A: B]

+kt • [U : A: B] + kdi [T : A: B : Ai] + kdi [T : A: B : Ai 2]

+kcaf [T : B] - [A]
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d[U: A: B]
dt s = k- [S: A: B] + kto - [T: A: B] - kcbr - [U : A: B]dt su tu

-ka, - [U : A: B] - ku, - [U : A: B] - kt - [U : A : B]

-kcat - [U : A: B] + kdi - [U : A: B : Ai] + kdi - [U : A: B : Ai 2]

+kcaf [U : B] - [A]

d[D* : B]
dt = kcat ' [D : A: B] - kcbr .[D*: B] - k, - [D*: B]
dt

-k' • [D* : B] - kd -[D* : B] + kd -[S* : B]

+k, [T* : B] + kdi [D* : B : Ai] + kdi [D* : B : Ai 2]
d[S* : B]

dt = kct [S : A: B] + k, - [D*: B] - kja - [S* : B]dt a sd

-k, [S* : B] - kd - [S* : B] + ks, - [U* : B]

+kcbf [S*] - [B] - ksai [S* : B] [A] - ksai [ S* : B] - [Ai 2]
d[T*: B]

d -- kcat [T: A: B] + kt - [D*: B] - kcbr [T* B]dt dt

-kld [T* : B] - kl [T* : B] - kdc - [T* : B]

+kt .[U* : B] + kdi .[T* : B: Ai] + kdi .[T* : B: Ai 2]
d[U* : B]dU = kat [U: A: B] + kul, [S*: B] + kl, - [T*: B]

dt cat

-kcbr [U* : B] - k , - [U* : B] - klt - [U* : B]

-kdc. [U* : B] + kdi - [U* : B: Ai] + kdi - [U*: B: A i2]

d[D : B: Ai]dt : = -kcb. [D : B: Ai - k, [D : B: Ai - kt - [D : B: Ai]
dt d d

-kdi. [D: B: Ai] + kd I-[S: B: Ai] + kd -[T: B : Ai]

+kca, [D : A: B : Ai] + kdc [D* : B : Ai] + kdi - [D : B : Ai 2]

-kcaf [D : B: Ai] - [A]

d[S : B: Ai]
dt = ks - [D: B: Ai]- k I-[S: B:Ai]- k -[S: B:Ai]dt d ssd Lsu

+ku, [U : B : Ai] + kcar - [S : A : B : Ai] + kd, - [S* : B : Ai]

+kcbf [S : Ai] [B] + ksai '[S : B] [A] - kcaf * [S : B : Ai] [A]

-ksai 2 [S : B : Ai] [A]
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d[T: B: Ai]
dt

-kd -[T: A: B: Ai]

d[U: A: B: Ai]

dt

k, -[T: A: B: Ai] - kdi [T: A: B: Ai]

-kcat [T : A: B : Ai] + kt - [U : A: B : Ai] + kdi [T : A: B : Ai 2]

+kcaf [T: B : Ai] - [A]

= ko.[S:A: B:Ai]+k,.[T:A: B: Ai]-kcbr, [U:A: B:Ai]

-kca, [U : A: B: Ai] - ko [U : A: B: Ai] - kI, [U : A: B: Ai]

-kdi - [U : A: B : Ai] - kcat [U : A: B : Ai] + kdi - [U : A: B : Ai 2]

+kcaf [U : B : Ai] - [A]
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= k't -[D: B:Ai]- kcbr [T: B:Ai]- kt d-[T: B:Ai]

-ko - [T: B: Ai] - kdi - [T: B: Ai] + kot [U: B: Ai]

+k,,, [T : A: B : Ai] + kd - [T* : B: Ai] + kdi - [T : B : Ai 2]

-ka,,f [T: B: Ai] - [A]

= ko [S: B:Ai] + ko -[T: B: Ai]- kcbr [U: B: Ai]

-k [U: B: Ai] - kt -[U: B: Ai] - kdi .[U: B: Ai]

+k,,, [U : A: B : Ai] + kad - [U* : B : Ai] + kdi - [U : B: Ai 2]

-kcaf [U: B : Ai] - [A]

= -kcbr [D: A: B:Ai] - kca, [D: A: B:Ai] - k, [D: A: B:Ai]

-kt • [D : A: B : Ai] - kdi [D : A: B : Ai] - kcat [D : A: B : Ai]

+k d [S : A: B : Ai] + ko . [T: A: B : Ai] + kdi - [D : A: B : Ai 2]

+kcaf * [D : B: Ai] - [A]

= k, [D: A: B:Ai]- kca, [S: A: B: Ai]- kd I[S: A: B: Ai]

-ko - [S : A: B : Ai] - kcat [S : A: B : Ai] + kos, [U : A: B : Ai]

+kcbf .[S : A: Ai] - [B] + ksai [S : A: B] - [A] + k-af .[S : B : Ai] [A]

-ksai 2 [S : A: B: Ai] - [A]

= kt [D : A: B: Ai]- kcbr - [T : A: B: Ai]- kca - [T : A: B: Ai]

d[U: B: Ai]

d[D : A: B: Ai]

d[S: A: B: Ai]
dt

d[T: A: B: Ai]

dt



d[D*: B: Ai]
dt

d[S* : B: Ai]

d[T* : B: Ai]
dt

d[U* : B: Ai]

d[D : B: Ai 2]
dt

d[S : B: Ai 2]
dt

= kct [D : A: B : Ai] - kcbr [D* : B: Ai] - k, - [D*: B: Ai]

-kit [D* : B : Ai] - kdi " [D*: B : Ai] - kd [D*: B : Ai]

+kd [S*: B: Ai] + kd [T* : B: Ai] + kdi " [D*: B : Ai 2]

= kat [S: A: B: Ai] + k1, -[D*: B: Ai] - kd [S* : B: Ai]

-k, [S*: B : Ai] - kdc - [S* : B: Ai] + k1, - [U*: B: Ai]

+kcbf [S* : Ai] [B] + ksai" [S*: B]- [A]- ksai2 *[S*: B: Ai] [A]

= kcI [T : A: B : Ai] + kit - [D* : B : Ai] - kcbr - [IT* : B : Ai]

-kd [T*: B: Ai] - ktI [T*: B: Ai] - kdi [T* : B : Ai]

-kdc. [T*: B : Ai] + kt . [U*: B : Ai] + kdi [T*: B : Ai 2]

= kt * [U: A: B: Ai] + k - [S*: B: Ai] + k - [T*: B: Ai]

-kcbr Ai] - k [U* B B Ai]] - k[U* B A] - - [U*: B : Ai]

-kdi . [U* B: Ai] - kdc - [U* : B : Ai] + kd - [U* B : Ai 2]

= -kcbr. [D: B: Ai 2] - k's - [D: B: Ai 2] - kt - [D: B: Ai 2]

-2. kd . [D: B: Ai 2] + kd [S: B: Ai 2] + kd [T: B: Ai 2]

+kcar [D : A : B: Ai 2] + kdc [D*: B: Ai 2] - kcaf [D : B: Ai 2] . [A]
= ks [D: BAi 2]-ks [S: B:Ai2]-ko. [S: B:Ai2]

+kl, - [U : B : Ai 2] + kcar [S: A : B: Ai 2] + kd - [IS* B: Ai 2]

+kcbf . [S : Ai 2] - [B] + ksai2 [S : B : Ai] - [A]

d[T: B: Ai 2]
dt

d[U : B: Ai 2]
dt

kcaf [S : B : Ai 2] - [A]

+ksai [S : B] B [Ai 2]

= kt [D: B: Ai 2]- kcbr . [T: B: Ai 2]- kd .[T BAi 2

-kto [T: B: Ai 2] - 2 - kdi [T : B: Ai 2] + kt - [U : B: Ai 2]

+kcar - [T : A : B : Ai 2] + kdc - [T*: B : Ai 2] - kcaf [T : B : Ai 2] - [A]

Sk [S : B: Ai 2] + kt - [T: B: Ai 2] - kcbr . [U: B: Ai 2]

-ku, - [U: B: Ai 2] - kt • [U: B: Ai 2] - 2. kdi [U: B : Ai 2]

+kca, [U : A : B : Ai 2] + kac - [U* : B : Ai 2] - kaf [U : B : Ai 2] - [A]
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d[D" A: B: Ai 2]
dt

d[S : A: B: Ai 2]
dt

d[T: A: B: Ai 2]

dt

d[U : A: B: Ai 2]

dt

d[D* : B: Ai 2]
dt

= -kcbr [D : A: B : Ai 2] - k,,, -[D : A: B : Ai 2]

-k • [D : A: B : Ai 2] - kt - [D : A: B : Ai 2]

-2. kdi - [D : A: B : Ai 2] - kcat - [D : A: B : Ai 2]

+k°d [S: A: B : Ai 2] + k [T : A: B : Ai 2]

+kcaf .[D : B : Ai 2] [A]

ks * [D : A: B : Ai 2] - kCar [S : A: B : Ai 2]

-kOd [S: A: B: Ai 2] - k [S: A: B: Ai 2]

-kat [S : A: B: Ai 2] + k, - [U : A: B : Ai 2]

+kcbf [S : A : Ai 2] .[B] + ksai2 [S : A: B : Ai] - [A]

+kcaf [S : B : Ai 2] [A] + ksai " [S : A: B] - [Ai 2]

= k [D : A: B : Ai 2] - kcbr [T : A: B : Ai 2]

-ka, [T: A: B: Ai2] - kd -[T: A: B: Ai2]

-k, [T: A: B: Ai 2] - 2- kdi [T : A: B: Ai 2]

-kat [T : A : B : Ai 2] + kt - [U : A : B : Ai 2]

+kcaf [T: B : Ai 2] -[A]

= k, [S: A: B: Ai 2]+ kt - [T: A: B: Ai 2]

-kcbr " [U : A: B : Ai 2] - kcr .[U : A : B : Ai 2]

-ks • [U : A : B : Ai 2] - k t [U : A : B : Ai 2]

-2-kd - [U : A: B : Ai 2] - kcat [U : A: B: Ai 2]

+kcaf [U : B : Ai 2] [A]

= kat - [D : A: B : Ai2] - kcbr [D* : B : Ai2] - k, [D* : B : Ai2]

-kt. [D* : B : Ai 2] - 2 kdi [D* : B : Ai 2] - kde [D* : B : Ai2]

+kld •[S* : B : Ai 2] + kld [T* : B : Ai 2]
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d[S* : B: Ai 2]

d[T* : B: Ai 2]
dt

d[U* : B: Ai 2]
dt

= kct [S: A: B: Ai 2] + k,-. [D*: B: Ai 2] - kd .[S*: B: Ai 2]

-k, [S* : B: Ai2] - kd - [S* : B: Ai2] + kl, - [U* : B: Ai2]

+kcbf [S*: Ai 2] - [B] + ksai2 [S* : B: Ai] [A] + ksai [S*: B] [Ai 2]

= kt * [T: A: B: Ai2] + kIt - [D* : B: Ai2] - kcbr .[T* : B: Ai2]

-kd [T*: B : Ai 2] - kl [T*: B : Ai 2] - 2 -kd [T*: B : Ai 2]

-kde [T*: B : Ai 2] + k~t. [U*: B : Ai 2]

= kcat [U: A: B:Ai2] + k -[S*: B:Ai2] + k -[T*: B:Ai 2]

-kcbr .[U* B : Ai 2] - k .[U*: B : Ai 2] - k , .[U*: B : Ai 2]

-2 kdi - [U* : B: Ai 2] - kdac [U* : B: Ai 2 ]
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