
MIT Open Access Articles

Codetrail: Connecting source code and web resources

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Goldman, Max, and Robert C. Miller. “Codetrail: Connecting source code and web
resources.” Journal of Visual Languages & Computing 20.4 (2009): 223-235.

As Published: http://dx.doi.org/10.1016/j.jvlc.2009.04.003

Publisher: Elsevier

Persistent URL: http://hdl.handle.net/1721.1/51691

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Attribution-Noncommercial-Share Alike 3.0 Unported

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/51691
http://creativecommons.org/licenses/by-nc-sa/3.0/

Codetrail: Connecting Source Code and Web Resources

Max Goldman and Robert C. Miller

MIT CSAIL

32 Vassar St.

Cambridge, MA 02139

{maxg, rcm}@mit.edu

March 16, 2009

Abstract

When faced with the need for documentation, examples, bug fixes, error descriptions,

code snippets, workarounds, templates, patterns, or advice, software developers frequently

turn to their web browser. Web resources both organized and authoritative as well as

informal and community-driven are heavily used by developers. The time and attention

devoted to finding (or re-finding) and navigating these sites is significant. We present

Codetrail, a system that demonstrates how the developer’s use of web resources can be

improved by connecting the Eclipse integrated development environment (IDE) and the

Firefox web browser. Codetrail uses a communication channel and shared data model

between these applications to implement a variety of integrative tools. By combining

information previously available only to the IDE or the web browser alone (such as editing

history, code contents, and recent browsing), Codetrail can automate previously manual

tasks and enable new interactions that exploit the marriage of data and functionality

from Firefox and Eclipse. Just as the IDE will change the contents of peripheral views to

focus on the particular code or task with which the developer is engaged, so, too, the web

browser can be focused on the developer’s current context and task.

2

1 Introduction

To suggest that the web is a source of information for software developers is perhaps trite.

The web connects developers to language and API documentation, code examples, bug re-

ports and workarounds, tutorials, articles, code ranging from one-liners to sketches to pages

of boilerplate, and innumerable sources of discussion and debate on programming systems

popular and obscure. Since the domain of web resources ranges from weblog posts and forum

discussions to web-accessible interfaces for a development team’s own bug database or version

control, there is no one way to characterize web resources or shoehorn them into a developer’s

existing workflow.

Once new tools such as the web prove their worth in the developer’s toolset, they become

integrated into the development environment. The Eclipse integrated development environ-

ment provides ready evidence, with specialized plug-ins for integrating with version control

systems, bug databases, and many other tools. But integration with web resources remains

lacking.

Software developers already use a powerful tool for accessing the web: their browser.

Web browsers are customized and configured according to the user’s information needs. The

browser stores bookmarks, cookies, certificates, and browsing history. Custom style sheets and

font choices may be applied. In the case of Firefox, an extension mechanism enables users to

install components that provide additional customizations, or that allow programming-savvy

users to construct new customizations of their own. Compare this rich interface against the

built-in web browsing component that ships with Eclipse. The latter provides none of the

above features, and it is consequently the authors’ experience that this browser is rarely used.

Instead of a simple HTML renderer with minimal UI, software developers need a full-featured

web browser to be integrated into their working environment.

Our prototype system, Codetrail, integrates the web browser and the IDE via a shared

communication channel and data pool, and provides new tools that help the developer inte-

grate web resources into the programming workflow and into the project itself. Of particular

interest is the way Codetrail can enable the web browser to act as an IDE view, where the con-

tents of the browser are automatically focused on the code the developer is currently editing.

Many other Eclipse tools behave in this fashion.

3

Codetrail aims to eliminate the manual effort currently spent coordinating IDE and web

browser in order to make use of web resources. By making previously manual tasks automatic

or previously laborious tasks straightforward, the developer remains focused on software devel-

opment. Both developers and project teams gain the additional benefit of more comprehensive

and organized records of the online resources used during the development process.

In the balance of this paper we report on the results of an informal field study on devel-

opers’ web use, describe in detail a number of tools implemented on the Codetrail platform,

discuss the results of a user study in which developers worked with Codetrail, and then de-

scribe general requirements for a useful integration mechanism as well as specific elements of

our implementation. Codetrail was first presented in [2], appearing here with elaboration on

technical details and with additional evaluation.

2 Related Work

Programmers’ working environments have long been constructed by combining a variety of

tools [3], and this practice has been examined by many researchers (e.g. the case study of

[19]). In the classification of IDE tool integration from [20], Codetrail falls in the most powerful

class, synchronizing the activities of Eclipse and Firefox using a loosely-coupled architecture.

Developers’ information needs have also received study. Much of the historical information

about code critical to developers’ work is implicit [11], and Codetrail is an attempt to make

some of that knowledge explicit and discoverable. Given the results from [9], which suggest

that programmers often turn to their colleagues for help, we contend that giving those pro-

grammers tools to connect with web resources may be profitable. In an earlier examination of

design requirements for maintenance-oriented IDEs [8], developers in a user study spent 11%

of the total task time either reading the Java API or switching between applications such as

their IDE and web browser, suggesting that even for relatively small tasks, documentation is

important and there is overhead to be eliminated.

A variety of systems have been proposed that attempt to help developers use the web

more effectively. Assieme [5] augments search results with code excerpts, and improves search

result accuracy by combining a web crawler with a compiler that can identify implicit relations

between code. Mica [16] is an earlier system which also augments search result display. Such

4

tools certainly do increase the usefulness or accessibility of web resources, but they do not

integrate those resources into the development environment.

Other projects have integrated new tools into the IDE. Hipikat [17, 18] tracks project

memory and recommends resources to newcomers, including web resources. Jazz [1] integrates

presence and instant messaging to connect coworkers. Mylyn (previously Mylar) [6] is based

on the notion of a task-focused user interface in the IDE. It provides integrated access to

some of the same resources that might be linked using Codetrail, but does so using its own

interface. Our focus is on what the web browser, as a flexible and familiar tool for accessing

information on the web, brings to the IDE.

3 Code and the Web

In order to better understand the nature of developers’ interaction with web resources, we

conducted a small informal field study that examined the development-related browsing be-

havior of research group members. Four subjects participated for between one and three

weeks each by installing a tool that recorded information about files edited in Eclipse and

web pages loaded in Firefox. All were actively involved in software development at the time.

Before submitting their data, participants had the opportunity to “scrub” the log of any web

site visits they considered sensitive and did not wish to report, and no record of the number

or nature of these scrubbed sites was retained. In total, 6,409 page loads were reported.

The URLs and contents (where accessible) of the pages were examined and each page

was hand-labeled according to whether it was self-evidently development related, e.g. because

it contained code or described programming tools. As a result, the count of development

related pages may be an underestimate, if participants visited sites whose connection to

software development was non-obvious or only by virtue of the problem domain. Overall,

10% of reported page loads (646) were obviously development related.

Since we are interested in usage of the web browser and IDE together, we considered events

in temporal proximity. For page loads that occurred within a 5-minute window of saving some

code file, 23% were development related.

Development related pages took a variety of forms, described below and enumerated in

Table 1:

5

Searches Searches of all kinds were performed almost exclusively using the Google web search

engine1.

Code elements Example code element searches include “java.lang.math,” “JSplitPane,”

and “setBorder,” where the searcher is using the name of some language element.

Code ideas Example code idea searches include “php xsl” and “read from input java,”

where the searcher is looking for implementation-level information but has not identified

particular code elements.

Sites Rather than discover information sources using queries for specific entities (e.g., by

code element search), search queries were sometimes used to locate the sites themselves.

Examples include “java 1.5 api” and “xulplanet.” It is likely that these searches are a

re-finding mechanism for developers who already know about the sites but choose not

to use bookmarks or memorize URLs.

Tools An example tool search is “subversion branch,” where the subject of the search is a

component of the developer toolchain, not the program code.

Concepts At a higher level than code elements or tools, searches were observed where

the subject was conceptual, related to general computational ideas. Examples include

“fibonacci heap” and “halloween problem.”

Documentation Documentation sites exhibit careful structure and are organized by docu-

mented element.

Official Often results of code element searches led users to official documentation, such

as the Java API documentation provided by Sun2. Other examples include Facebook’s

API documentation3 and Adobe’s documentation on Flex4.

Unofficial Not all documentation is maintained by the originator of a framework or sys-

tem. Examples visited include XUL Planet’s documentation on Mozilla APIs5 and

W3Schools’ web technologies references6.

Other resources Non-documentation resources.
1http://www.google.com/
2http://java.sun.com/reference/api/
3http://wiki.developers.facebook.com/index.php/API
4http://livedocs.adobe.com/flex/3/langref/
5http://www.xulplanet.com/references/
6http://www.w3schools.com/

6

Project Some visits were to project-related resources maintained by developers on the

project; a bug database and web frontend for a version control repository are examples.

Navigation Example navigation, or portal, pages include the Eclipse and Sun home pages.

Content Most web information sources are not organized as documentation. Technical

articles and tutorials, blogs and other personal web pages, wikis, forums, and mailing

list archives were all visited by participants.

Note that the particular population of developers who reported results heavily influences

the numbers in Table 1. All did at least some development in Java, increasing the relative

representation of official documentation, since Sun provides extensive API documentation

on the web. Participants were also working on smaller, loosely-organized academic projects,

decreasing the relative number of project resources used in comparison to a large industry

project with infrastructure to manage features and coordination.

This taxonomy motivates a general two-pronged approach to connecting code and the web

in Codetrail. First, site searches and code element searches are targeted for automation, by

creating stronger links between identified sources of official and unofficial documentation and

the code. With these links, the user no longer needs to turn to a search engine. Second,

connections between code and other useful web resources are facilitated by a general-purpose

bookmarking mechanism that is less automated, but significantly more straightforward than

currently available.

4 Applications

Having revealed some aspects of developers’ web behavior, we now describe several tools we

have implemented in Codetrail, considering usage scenarios and relevant design principles.

The variety of tools serves to demonstrate that the system is a robust and flexible integration

mechanism. We begin by describing how Codetrail automatically integrates structured doc-

umentation sites, first in the context of automatically identifying and browsing to Javadoc

documentation (Sections 4.1 and 4.2), and then more generally in 4.3. Section 4.4 turns to

integration with unstructured resources via user-created bookmarks, and in Section 4.5 we

discuss automatically-created bookmarks in the case of copied code.

7

All of these tools were designed using an iterative process. Early versions of the system

were deployed to students and faculty in our research group, who provided feedback on the

usefulness and usability of Codetrail’s features.

4.1 Automatic Javadoc Attachment

Eclipse already includes a mechanism for “attaching” Javadoc URLs to libraries, although

the user interface for this feature is somewhat obscure. Attached Javadocs are used to display

relevant documentation for the code element (class name, method name, etc.) under the editor

cursor in a separate view, and to add information to code completion suggestions (Figure 1).

While often useful, the amount of information presented and visible at any time is limited.

The separate view, in particular, is an impoverished window on the Javadocs, with no ability

to navigate to related methods or classes, or to see any context for the current artifact.

Codetrail bypasses the obscure Javadoc attachment UI by automatically identifying rel-

evant Javadoc documentation when the user browses to it in Firefox. Documentation sites

generated by Sun’s javadoc tool have a fixed form and include a machine-readable file enu-

merating the packages that the site documents. Codetrail downloads this file and searches the

active Eclipse projects for libraries containing those packages. When a match is found, the

user is prompted as in Figure 2. Since the matching process takes trivial time, the prompt

appears almost immediately after the user loads the Javadoc site.

If the developer instructs Codetrail to attach the Javadocs, the existing Eclipse documen-

tation attachment mechanism is used. The benefits are immediate in improved tool tip and

auto-complete information, and the existing Javadoc view will now become active. Further

benefits will be described in the sections to follow.

The user is prompted to confirm documentation attachment so that the system’s operation

is visible: our goal is to have Codetrail improve workflow and add new functionality without

making the development environment more inscrutable. By presenting a prompt, we provide

the developer with a mental model of how the system operates: “when I visit a documentation

page, Eclipse asks me about attaching it.” Without this model, a user might not make

the connection between visiting documentation in the browser and subsequent links to that

documentation in Eclipse. Prompting does introduce a risk of annoyance, which we mitigate in

8

several ways. Only one prompt is offered per Javadoc site, and only when matching packages

are found without an existing documentation attachment, so we expect users to find the

dialogs infrequent and timely. The prompt is also non-modal and the user may choose to

disregard it, in which case the dialog is dismissed when the next web page is loaded.

4.2 Automatic Browsing to Documentation

While automatic linking of Javadocs to library code improves the developer’s experience,

we have not yet resolved the aforementioned issues with the existing ways to access that

documentation in Eclipse. Rather than rely on an in-IDE view with limited screen space and

functionality, Codetrail uses Firefox to automatically browse to the full documentation for

code elements under the editor cursor. Automatically browsing to documentation addresses

the large number of queries for Java package, class, and method names seen in the initial field

study. It also reduces queries for information sources themselves, as developers need only

click on a code element associated with a given documentation source in order to reach that

source and begin navigating within it.

Codetrail implements automatic browsing by creating, as needed, a special browser tab

in Firefox (Figure 3). All automatic browsing occurs in this tab, which consistently displays

an identifying label and Eclipse icon. The user is free to browse within this tab, achieving

the important capacity for exploration of other documentation related to a particular code

element. While the current implementation assumes that only one documentation item is

relevant for a given element (in line with Eclipse’s model), the user could be presented with

a choice of multiple documentation sources – or, multiple browser tabs could be used to put

all sources at the ready.

Automatic browsing is our first example of treating the web browser as an IDE view,

a particular integration mode where the browser becomes subordinate to the IDE editor.

Operating as a view, the browser displays information relevant to the code artifacts on which

the developer is currently focused. This allows the developer to immediately access full

documentation for every class, method, or other keyword the cursor touches, just as views

included with Eclipse give instant information about other properties like location in a class

hierarchy.

9

4.3 Generic Documentation Attachment

Javadoc documentation is only one form of the many kinds of official and unofficial documen-

tation developers may use. We would like to allow developers to associate any useful source

of documentation with their project and receive the same benefits of immediate access.

Many documentation sources exhibit significant structure, even if that structure is unique

to the particular source. XUL Planet is an excellent example, with an individual page docu-

menting each interface in the Mozilla API.

Consider the scenario in which a developer is working on a project and visiting documen-

tation sites as he works, looking up code elements related to the project. We would like to

automatically learn the association between keywords appearing in the developer’s code and

pages on the documentation site, without having to ask the user to describe that connec-

tion. Codetrail achieves this automated documentation identification by observing both code

contents and browsing history.

By storing a record of recent browsing history, Codetrail can identify common URL pat-

terns that differ in only a particular component. For example, suppose a user discovers the

XUL Planet site via a Google query, visiting URLs:

www.google.com/search?q=nsifile

www.xulplanet.com/references/xpcomref/ifaces/nsIFile.html

www.xulplanet.com/references/xpcomref/

www.xulplanet.com/references/xpcomref/group RDF.html

www.xulplanet.com/references/xpcomref/ifaces/nsIRDFNode.html

www.xulplanet.com/references/xpcomref/ifaces/nsIRDFLiteral.html

Codetrail will extract the pattern:

www.xulplanet.com/references/xpcomref/ifaces/<keyword>.html

The values of differing components are used as keywords in a search through the user’s

Eclipse projects – in this case, nsIFile, nsIRDFNode, and nsIRDFLiteral. Matching keywords

in project files (in this case at least two of the three candidates would have to be found) is

strong evidence that the site contains relevant documentation. If a match is discovered, the

user is shown a prompt similar to the one used for Javadocs, although here we identify the

documentation link by keywords instead of library name, since we do not know anything about

10

the semantics of these keywords (Figure 4). While system visibility is important as before,

here the prompt is additionally necessary because we are using documentation identification

heuristics that may generate some false positives. With the user’s approval, Codetrail uses

the Yahoo! web search API7 to retrieve pages matching the same URL pattern, additionally

restricting matches to pages whose titles contain words that were common to the original

pages used to identify keywords. Continuing our example, the query here would be:

site:www.xulplanet.com inurl:references inurl:xpcomref inurl:ifaces

And the results returned would include:

www.xulplanet.com/references/xpcomref/ifaces/nsIUpdate.html

www.xulplanet.com/references/xpcomref/ifaces/nsIURI.html

... 900 more ...

From this set of URLs, the set of keywords to associate with this documentation source is

extracted and stored. The same automatic-browsing technique is applied when the user moves

their editing cursor over a known keyword. So now, if our example user clicks on “nsIURI”

in the Eclipse editor, XUL Planet documentation for that interface will come up in Firefox,

without the programmer ever having visited that particular page before.

As with many web structure extraction heuristics, an algorithm of this sort requires signif-

icant development effort to work across many sites, each with its own particular quirks. The

current Codetrail implementation has been tested successfully on several sites, including XUL

Planet, the MySQL Reference Manual8, and documentation sections of the Mozilla Developer

Center9.

4.4 Bookmarks

Not all associations between code and the web link to organized resources that can be detected

automatically. In order to handle arbitrary links, the system provides a flexible bookmarking

mechanism that the user can invoke to link any web location to any code file. Some developers

may already create a weak version of such links by including URLs in comments in source code

files. However, creating links for code files alone is, in our estimation, too restrictive. The
7http://developer.yahoo.com/search/web/
8http://dev.mysql.com/doc/
9http://developer.mozilla.org/en/docs/

11

tool searches observed in the initial field study might yield resources valuable not in reference

to a specific file or files, but to the project as a whole, or to some part of it. Build scripts,

configuration files, to-do lists, and binary libraries, for example, all might have web resources

relevant to them. Codetrail stores bookmarks as metadata, outside the target file, so that

developers can create bookmarks in files of different languages without requiring different

syntaxes; in files whose language may not have a comment syntax, or have any particular

syntax at all; on folders; and on binary files and other unmodifiable resources.

Our approach is to create bookmark files in the Eclipse project to hold the bookmark

associations. Since there is no popular cross-platform web link file type, we use a simple XML

schema that also conforms to the specification for Apple web location (webloc) files. In both

Firefox and Eclipse, Codetrail presents interfaces for accessing bookmarks, and for creating

them by associating web locations with files or directories (Figure 5). Equivalent functionality

in both applications keeps bookmarking close at hand and eliminates application switching to

record an association. Codetrail enables these interfaces by giving Firefox access to the Eclipse

file hierarchy, and Eclipse access to recent Firefox browsing. Bookmarks for the currently-

edited file are displayed in an Eclipse view shown in Figure 5c. This view shows bookmarks

directly associated with the current file at the top, but keeps in view all bookmarks attached

to containers of that file up the resource hierarchy (in the figure, for example, a link to the

Eclipse FAQ is visible from any file in the “plugin” directory of the project).

Storing bookmarks as metadata files additionally allows the developer to organize them

independently of the target code or other files or directories and provides a straightforward

mechanism for sharing them with other developers. Codetrail allows bookmark files to be

stored anywhere beneath a designated bookmarks directory in the project, meaning that

a developer or development team can organize them according to their needs: tutorials in

one folder, references in another; resources for newcomers to the project who need to orient

themselves combined in one place; arranged by source web site to track the sources of input to

a project; and so on. Whether organized or not, storing bookmarks as files also allows them

to be checked in to the project’s version control system, providing a clear path for sharing

bookmarks with other team members.

12

4.5 Code Snippets

Although the design of the bookmark tool emphasizes flexibility, creating bookmarks to code-

bearing web pages – tutorials, templates, examples, snippets of code posted in forums – may

still be a common case. In this scenario, Codetrail can automate the process by identifying

when code is copied from the web into a source file. Our approach is not limited to direct

copy-and-paste actions, since our observation suggests programmers will often copy by hand

in order to better understand the code, or to avoid introducing errors when undesired or

incorrect pieces of their source are incorporated into the target. Instead, Codetrail examines

all newly-written code as it is saved to disk, and compares those pieces of source code to

potential code blocks on recently-browsed web sites. Those potential blocks are currently

identified using a simple heuristic that searches for HTML pre elements, corresponding to

pre-formatted text, often used for displaying source code with a conventional fixed-width font.

Correspondence between saved and browsed code is determined using the Smith-Waterman

algorithm for local sequence alignment [15]. Code matches are classified as token sequences

representing at least 25% of the changed segment and of the potential web source with an

alignment score of at least 5 (gap penalty of 1). When a such a code match is identified, a

bookmark is automatically created.

Automatic creation of bookmarks to record the source of copied code serves to retain

bread-crumbs that can later allow developers to answer questions like “why did I choose to

write the code this way,” or “that variable name looks wrong, is it a bug?” Knowing the

provenance of the code can also help explain what it does and how it works, since the web

page from which code was adapted may offer more context, discussion, and caveats.

5 Discussion

With the tools in the previous section, we have demonstrated a few different automated means

of identifying that project and web resources are related: by finding tokens common to code

and URLs (for generic documentation attachment) or to code and web page contents (copied

snippet identification), and by language-specific mechanisms (Javadoc attachment). Other

techniques could be employed as well; for example work on read wear [4] could be applied

to identify related resources by their frequent use during development sessions. In deciding

13

how to automate identification of relevant resources, a primary design constraint was that

the technique must reveal not only the fact that a resource is related, but also the nature of

their relationship. For generic documentation attachment in particular, this means that our

approach enables Codetrail to link keywords in the user’s code to matching documentation

web pages even if those keywords never before appeared in the code, and the particular web

pages have never been visited, as long as the use of other keywords previously led to the

discovery of the relevant web site.

For recording the relationship between code and web resources, we have already suggested

that current practice often takes the form of URLs in source code comments, and outlined how

this is often insufficient. Links as URLs in the source code also fail in the case of documentation

attachment: since a site may document many keywords appearing throughout many source

code files, there is no single best location in the source to indicate the relationship. Thus, we

prefer a strategy of recording relationships with an independent representation that can be

stored and shared apart from source code.

6 User Study

In order to evaluate the tools implemented in Codetrail, we conducted a user study with

eleven participants, four of whom are in our research group. Users downloaded and installed

a version of Codetrail that was instrumented to record a variety of programmatic and user

interface events in both Eclipse and Firefox. The system was installed by participants on their

own computers. Before using Codetrail, users provided optional demographic information and

were given the opportunity to read descriptions or view short screencasts demonstrating some

of Codetrail’s features: documentation attachment, automatic browsing to documentation,

and creating bookmarks.

Usage logs collected from the study were periodically reported automatically as long as

participants continued to use the plug-ins. Participants were also sent a post-study survey

via email, to which seven replied; this survey solicited their feedback on Codetrail and probed

for possible improvements to the system.

All of the user study participants were male, most in their 20’s or 30’s. All indicated that

they do software development in Java; Python was the second most often mentioned language.

14

Three identified themselves as professional software developers; the rest identified as students

or researchers. We did not request specific details of participants’ current projects or tasks.

Participants used Codetrail for an average of 17.6 days (σ=11.9), not counting days during

which no events were recorded in either Eclipse or Firefox (e.g. for installations on a profes-

sional developer’s office computer). We counted as active development time all time intervals

within one minute of a user interface event in Eclipse (selecting windows, saving files, etc.).

Participants averaged 24.6 hours of active development during the study (σ=27.9).

During that development time, each user browsed to an average of 74.5 URLs per hour

(σ=58.7). This number may have been influenced by the presence of Codetrail, but supports

our assertion that the web is an important resource for developers.

6.1 Automatic Browsing to Documentation

We tracked usage of the automatic browsing to documentation feature (Section 4.2) by logging

when users activated the browser tab created by Codetrail to show documentation, and when

they gave the Firefox application focus with that tab foremost. Nine of the eleven participants

used this feature; those who used it did so an average of 7.9 times per development hour,

viewing an average of 3.1 different documentation pages per hour.

In survey feedback, participants who used this feature were unanimously positive:

“I used this feature often. I found it very useful” (User 4).

“I used (and still do) this feature all the time. This is one of the most useful features that

I’ve encountered in Eclipse ever since I started using the IDE” (6).

“It’s much better than popup dialogs/hovers which obscure the code” (11).

Some users suggested further automation of the browsing, for example: “I did use this

feature, and I found it useful. I feel it would have been nice if some hotkey would put the focus

on Firefox, and bring the special tab to the front” (7). And one user found it problematic

that Codetrail would always update the tab to the documentation of the identifier under the

Eclipse editing cursor, even if he was still using the previous page: “... it was too quick to

browse *away* from documentation that I still needed” (10).

Additionally, participants’ use of the automatic browsing feature was almost exclusively

with Javadoc documentation sources that were already known to Eclipse. These sites included:

15

• Java 5.0 API (http://java.sun.com/j2se/1.5.0/docs/api)

• Java 6 API (http://java.sun.com/javase/6/docs/api)

• JUnit 4.3 API (http://www.junit.org/junit/javadoc/4.3)

Use of the features to automatically identify and attach sources of Javadoc and generic

documentation (Sections 4.1 and 4.3) were limited: four users elected to attach Javadocs at

least once, and none used the generic attachment mechanism.

For Javadoc attachment, a total of nine attachment prompts were shown to those four

users, who instructed Codetrail to do the attachment every time. URLs attached included:

• New JSR 166 Java 7 APIs

(http://gee.cs.oswego.edu/dl/jsr166/dist/jsr166ydocs)

• JavaMail email & messaging API

(http://java.sun.com/products/javamail/javadocs)

• JUnit API, current version (http://junit.sourceforge.net/javadoc)

• ImageJ image processing & analysis API

(http://rsbweb.nih.gov/ij/developer/api)

• A proprietary API

(file:/C:/build/dev[...]/[...]Framework/main/javadoc)

All but the last of these URLs represent the documentation for Java libraries used by par-

ticipants, precisely the use case for which this feature was intended. The last URL represents

an instance in which the user has attached documentation for libraries developed internally to

his employer. Regarding these attachments, one participant called the feature “very useful”

(8); another, his “preferred way to attach online documentation to an existing project” (4).

In contrast, while 86 generic attachment prompts were shown to eight users, none were

affirmed. This large number is due in part to a bug in the version of Codetrail initially used

in the study, which failed to remember negative answers and would prompt users again on

subsequent visits to the same site.

16

User feedback was lackluster, and several users indicated that documentation sources were

not accurately identified:

“I noticed this feature, but I found it sometimes misinterpreted my behavior” (2).

“I think I used this [feature] once to attach a Javadoc, and I found that useful, but the

system was never correct when it asked me to link any other sort of documentation...” (7).

At least some users were also unsure about how the feature would work, being familiar

with Javadocs but unsure how other documentation sources would be integrated with Eclipse:

“At the end, I don’t believe I ended up attaching any of the pages. I think the most likely reason

was that, even if I had attached any page, I wouldn’t know where to look for it” (6).

We conclude that the automatic browsing feature of Codetrail, and the use of Firefox

as an IDE view for documentation, will be appealing and useful to a large population of

developers. Automatically attaching documentation is convenient, but more work is needed

to make it effective with documentation that does not provide a machine-readable description

of the code elements it documents. The heuristics must be more accurate, taking into account

more than URL keywords; and the consequences of attachment must be clear to developers,

perhaps with a more descriptive attachment prompt and immediate feedback in Eclipse.

6.2 Bookmarks and Code Snippets

The bookmarks feature (Section 4.4) was largely unused. Five of the eleven user study par-

ticipants created one or two bookmarks; the rest did not use the feature. Nearly all of those

bookmarks appear to be created in order to test or explore the Codetrail interface, and none

meet the subjective self-evidently development-related test used in the initial exploratory

study (Section 3).

Although users were asked to describe why the feature was not useful or how to improve it,

they offered limited feedback. One user made reference to the common pattern of re-finding as

an alternative to bookmarking: “I don’t use bookmarks much... I generally just search again”

(User 7). Another participant wrote that he “didn’t use this feature actively. I put some

URLs in source code comments... however, because that’s how I habitually include links...”

(10).

These comments suggest that web bookmarks as implemented were not in line with our

17

participants’ development practices. Other survey feedback pointed to a lack of knowledge of

this feature in Codetrail: “I wasn’t really sure how to create bookmarks or where to look for

them inside Eclipse” (6). This feature of the system was the only one in which participants

had to explicitly enable an Eclipse view in order to make use of it. Since seven of the

eleven participants did so, we conclude that while the bookmarks interface could certainly be

improved, discoverability was not the primary barrier to uptake, and that our model of how

bookmarks link code artifacts to web resources may require revision.

Codetrail also automatically identified 33 snippets of code duplicated by participants and

created bookmarks for them (Section 4.5). Six participants logged at least one snippet. Based

on informal discussions with three of the study participants accessible to us, some of these

snippets indeed represent code copied from Java API documentation pages, including:

• Exception handling

(http://java.sun.com/javase/6/docs/api/java/lang/Throwable.html)

• Cache flushing

(http://java.sun.com/javase/6/docs/api/java/util/LinkedHashMap.html)

In other cases, the snippets represent instances where the user was viewing in Firefox part

of the same source code he was editing in Eclipse, either because the code was being posted

online, or because some code was reproduced in the output of an automated build system.

Without anecdotes describing the use of this feature in its primary intended mode –

copying source code from example or tutorial pages – and since URLs and matching code

segments of participants’ suspected code clones were not collected for privacy reasons, it is

difficult to evaluate this feature. Most users said they had not noted or used the feature.

One was positive: “I saw those bookmarks created in one case, and I was happy because they

were the right ones” (10). Another opined that “... the code copying stuff would be useful

if an organization had a library of such snippets accessible via a web front-end – which is

not the case here” (11), a reminder of how this feature may need specialization for use in a

closed-source setting. Overall, we conclude that these bookmark-related features of Codetrail

need more refinement to become useful. In particular, bookmark storage in source code, as

opposed to metadata files, merits examination.

18

To close this user study discussion, we note that ten of the eleven participants continued

to have Codetrail installed and enabled for at least a week after the study ended, based on

continued submission of usage logs. Of those, seven participants made use of the automatic

documentation browsing feature, including one who had not used that feature during the

study period itself. We take this as strong evidence that, for at least some users, the system

provides substantively useful integration of the IDE and web browser.

7 Infrastructure

Both Eclipse and Firefox provide plug-in mechanisms for extending their functionality, and

Codetrail uses these facilities. The design of Codetrail was motivated by the following goals:

Shared data Both Firefox and Eclipse are powerful computation engines in their respective

domains, but most essential to Codetrail’s operation is the sharing of data between them.

Much of Codetrail’s power is derived from combining data produced by or (previously)

known to only the individual applications. At least session-long persistent data is a

requirement to enable, for example, heuristics that rely on the user’s recent web browsing

or code editing history.

Publish-subscribe Components in both applications must be able to listen for patterns of

data produced by other components and take appropriate action in response.

User feedback In order to facilitate a responsive user interface, components must be able

to present user feedback at the source of an event. Immediate at-the-source feedback

is important especially when the user should be prompted about their current web

browsing location, and we wish to present that prompt while the user is still focused on

that site.

Modularity As a research system, the ability to add new modules to the system, rapidly

explore new ways of combining data and functionality, and keep dependencies between

modules at a minimum was necessary. Modular design is also important to users, so

that individual pieces of functionality can be enabled or disabled by developers who find

them more or less useful.

Cross-platform We require a cross-platform system that works for Eclipse and Firefox users

19

on all three of the major operating systems – Windows, Mac OS X, and Linux – where

they are used.

The implementation of Codetrail uses Java in Eclipse and JavaScript in Firefox. A simple

socket protocol is used for communication, and the pool of shared data is represented by

an RDF graph (Resource Description Framework, in which data are modeled as (subject,

predicate, object) triples forming a directed labeled multigraph) [10]. The graph is managed

in the Eclipse JVM using the Jena RDF framework [12]. It is exposed in Firefox according

to the existing Mozilla interface for RDF datasources. The use of RDF in a tuple space is

similar to other work on semantic tuple spaces [7, 13].

The functionality of Codetrail is divided into separate modules. The system maintains a set

of currently-activated modules, where each module implements some integrative functionality,

and is coupled to other modules only by virtue of the data it produces or consumes and the

schema of those data. The user has control over which modules are active in order to selectively

enable functionality useful to them.

7.1 Shared Data

Codetrail modules communicate and coordinate by adding RDF triples to the shared graph,

and subscribing themselves as listeners for patterns of new triples. For example, one module

we have implemented tracks the user’s web browsing and adds to the graph structures with

data about each page load (such as the URL). Another module is concerned with automatically

identifying Javadoc sites in order to attach them in Eclipse. This module listens for updates

from the browsing module, identifies Javadoc sites, and takes the appropriate actions.

Figure 6 shows the evolution of the shared RDF graph over time with these two modules in

operation, based on triples added by the browsing module. Initially (6a), we suppose there are

structures in the graph corresponding to two URLs, perhaps from previous browsing activity.

One of these URLs is in an #ignore relationship with #mod-javadoc-attacher, indicating that

while it is a Javadoc site, the user has previously elected not to attach it. If the user browses

again to that site, the graph is extended as in Figure 6b with a structure recording the page

load. Browsing to the second, non-ignored site, would add the structure in 6c.

Adding to the graph is straightforward, but subscribing to notifications about those addi-

20

tions is more complex. To subscribe to updates, graph listeners specify both a template triple

and an anchored query. The template triple takes the form (subject, predicate, object), where

each of subject, predicate, and object may be null. This template is compared to new triples

added to the shared graph, with nulls acting as wildcards.

When the template matches a new triple, the listener’s anchored query is executed. This

query uses the SPARQL language for querying RDF graphs [14]. It is anchored because it may

include a particular clause that assigns variables in the query to elements of the newly-added

tuple which matched the template and triggered query execution. If the results of executing

the query – which may include additional filters – are nonempty, they are forwarded to

the listener’s callback method. This anchored query mechanism enables listeners to extract

relevant information from the updated graph without having to filter out matches from old

data, combining the expressive power of a relational query with the efficiency of template

matching for examining new triples. Template triples alone cannot match a significant amount

of data, so listeners would inevitably have to run queries to select out more. Subscription

with queries alone, on the other hand, would require the system to re-run all queries after

every change to the graph, and to maintain a record of what data had already be returned

by a given query so as not to report it again.

Returning to our example, the automatic Javadoc identification module of Codetrail is a

listener with template triple (null, #action, #load), which matches new triples representing

events whose action is a web page load. This template triple is illustrated in Figure 7a.

The Javadoc module also specifies an anchored query (Figure 7b) that filters matching

page load events to those for allclasses-frame.html, a file name characteristic of Javadocs, and

which are not for URLs previously blacklisted by the user. The query further selects out just

the pertinent properties of the page load event to return to the listener: the source of the

page load (that is, which instance of Firefox) and the URL. The SPARQL query is written

as:

1 SELECT ?source ?url WHERE {

2 GRAPH :match { ?s ?p ?o }

3 { ?s :source ?source .

4 ?s :artifact [:url ?url] .

21

5 OPTIONAL { ?j :ignore ?url } .

6 FILTER regex(?url, ”.∗/allclasses−frame.html”) .

7 FILTER (! bound(?j))

8 } }

In the first page load of Figure 6a to 6b, the template triple will match (#event-1, #action,

#load), and the anchored query will be executed. Line 2 of the query will anchor the results

to this matched triple, and the query will return no results, because #mod-javadoc-attacher

is bound to variable ?j in line 5. Thus, the blacklisted URL is ignored. In the subsequent

visit (6b to 6c), the template triple will anchor the query on (#event-2, #action, #load) and

a result containing the source and url will be forwarded to the Javadoc module.

Finally, in addition to modifying and observing the graph, some Codetrail modules record

pieces of the shared graph as XML files in the user’s Eclipse projects: bookmarks and generic

documentation specifications are stored in this way. Changes to these files are synchronized

with the in-memory representation so that the effects of new files (e.g., a bookmark just

received via version control update) and power users’ manual edits are immediately reflected

in Codetrail’s behavior.

8 Future Work

Codetrail is a working system that has been developed with the feedback of users inside and

outside our research group, but future work remains. In the system itself, we plan to continue

adding new modules and improving existing ones, with a special focus on scalability that

will allow Codetrail to work efficiently with large Eclipse projects. A number of components,

including generic documentation identification and copied code tracking, use heuristics that

can also be improved with further testing.

Although we have presented some preliminary data on developers’ web usage habits, more

remains to be learned. Our user study of Codetrail has shown that while the automatic

browsing feature in particular was appreciated, there is more to be understood about how

to support programmers’ use of web resources, particularly with respect to bookmarks. And

while the user study demonstrated subjective satisfaction on the part of the participants,

we hypothesize that Codetrail will improve software developers’ measurable effectiveness as

22

well. Specifically, we predict that Codetrail can reduce the amount of time developers spend

navigating to web pages and the amount of time they spend re-finding previously-visited

pages, as well as the cognitive load of these activities; and that these reductions will lead

to increased performance in code understanding, authoring, and debugging tasks. Empirical

evaluation of these hypotheses with a controlled laboratory or field experiment remains to be

undertaken.

The ultimate resources in the software development process are people, and another area

for future work is Codetrail-supported collaboration and communication between developers,

further exploiting existing channels such as project version control, or creating new ones.

9 Conclusion

In this paper we have presented a taxonomy of software developers’ web usage as motivation for

integrating the IDE and web browser, as well as an architecture for achieving that integration,

tools that can be built using it, an implementation of the entire system, and an evaluation of

that implementation.

Web resources of a wide variety are important to the programmer’s development process,

and Codetrail provides both specific mechanisms to automate previously manual interactions

with web resources, as well as general mechanisms to integrate those resources into the de-

velopment environment where it was previously tedious. The several tools described here,

including automatic detection and connection of documentation and the creation of links, or

bookmarks, from code to relevant web sites, demonstrate the advantages of bringing the user’s

full-featured web browser into the IDE as a participant in the development process. Treating

the browser as a view, by automatically loading content relevant to the source code currently

being edited, is one notable instantiation of this idea.

The documentation tools in Codetrail aim to satisfy the important goal of bringing needed

information to the developer as quickly and fully as possible. The more general bookmarking

function helps improve the collective memory of a software project by keeping alongside the

code a record of resources that helped shape that code.

Developers don’t need a watered-down web browser in their IDE; they need their IDE to

integrate with the web browser they already use and have customized to their liking. Unlike

23

many of the tools in an IDE, the web browser is an application platform in and of itself, and

must be treated as a first-class citizen in any integration scenario before developers will be

satisfied. Codetrail demonstrates how this combination may be achieved with Eclipse and

Firefox.

Acknowledgements

We thank members of the UID group for their valuable feedback and all study participants

for their time, cooperation, and feedback. This work was supported in part by the National

Science Foundation under award IIS-0447800, by Quanta Computer, and by DARPA. Opin-

ions, findings, conclusions, or recommendations expressed are those of the authors and do not

necessarily reflect the views of the sponsors.

24

References

[1] L.-T. Cheng, S. Hupfer, S. Ross, J. Patterson, B. Clark, and C. de Souza. Jazz: a collaborative

application development environment. In OOPSLA ’03, pages 102–103, 2003.

[2] M. Goldman and R. Miller. Codetrail: Connecting source code and web resources. Proc. of

VL/HCC ’08, pages 65–72, 2008.

[3] A. Habermann and D. Notkin. Gandalf: software development environments. IEEE Transactions

on Software Engineering, 1986.

[4] W. C. Hill, J. D. Hollan, D. Wroblewski, and T. McCandless. Edit wear and read wear. In CHI

’92, pages 3–9, 1992.

[5] R. Hoffmann, J. Fogarty, and D. S. Weld. Assieme: finding and leveraging implicit references in

a web search interface for programmers. In Proc. of UIST ’07, pages 13–22, 2007.

[6] M. Kersten and G. C. Murphy. Using task context to improve programmer productivity. In Proc.

of SIGSOFT ’06/FSE-14, pages 1–11, 2006.

[7] D. Khushraj, O. Lassila, and T. Finin. sTuples: semantic tuple spaces. Mobile and Ubiquitous

Systems: Networking and Services, 2004.

[8] A. Ko, H. Aung, and B. Myers. Eliciting design requirements for maintenance-oriented IDEs:

a detailed study of corrective and perfective maintenance tasks. In Proc. of ICSE ’05, pages

126–135, 2005.

[9] A. Ko, R. DeLine, and G. Venolia. Information needs in collocated software development teams.

In Proc. of ICSE ’07, pages 344–353, 2007.

[10] O. Lassila and R. R. Swick. Resource description framework (RDF) model and syntax specifica-

tion. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

[11] T. LaToza, G. Venolia, and R. DeLine. Maintaining mental models: a study of developer work

habits. In Proc. of ICSE ’06, pages 492–501, 2006.

[12] B. McBride. Jena: a semantic web toolkit. Internet Computing, 2002.

[13] L. Nixon, O. Antonechko, and R. Tolksdorf. Towards semantic tuplespace computing: the se-

mantic web spaces system. In Proc. of SAC ’07, pages 360–365, 2007.

[14] E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF. http://www.w3.org/

TR/rdf-sparql-query/.

[15] T. Smith and M. Waterman. Identification of common molecular subsequences. Journal of

Molecular Biology, 147:195–197, 1981.

[16] J. Stylos and B. Myers. Mica: A web-search tool for finding API components and examples.

Proc. of VL/HCC ’06, pages 195 – 202, 2006.

[17] D. Čubranić and G. Murphy. Hipikat: recommending pertinent software development artifacts.

In Proc. of ICSE ’03, pages 408–418, 2003.

25

[18] D. Čubranić, G. Murphy, J. Singer, and K. Booth. Hipikat: a project memory for software

development. Software Engineering, pages 446–465, 2005.

[19] M. Wicks and R. Dewar. Ad hoc tool integration; a case study. The International Conference on

Software Development, 2005.

[20] Y. Yang and J. Han. Classification of and experimentation on tool interfacing in software devel-

opment environments. Proc. of Asia-Pacific Software Engineering Conf., 1996.

26

List of Figures

1 Built-in Eclipse features for accessing Javadocs: tool-tips and code completion

suggestions presented within code, and a view of documentation alongside it. . 28

2 Javadoc attachment prompt shown when the user browses to a Javadoc docu-

mentation source that may be linked to a project library in Eclipse. 29

3 Automatic browsing tab, containing documentation automatically retrieved by

Codetrail, with an identifying icon and label. 29

4 Generic documentation prompt shown when the user browses within a site that

may be linked to keywords in project files. 30

5 (a) Eclipse and (b) Firefox bookmark creation interfaces and (c) Eclipse book-

mark view, showing bookmarks attached to an artifact and its containers. . . . 30

6 The shared RDF graph (a) before browsing, (b) after browsing to an ignored

Javadoc site, and (c) after browsing a new Javadoc site. 31

7 Example (a) template triple and (b) anchored query used by the automatic

Javadoc identification module to observe visits to potential sources of Javadoc

documentation. 32

List of Tables

1 Taxonomy of development-related web pages. Percentages are of the total

number of development-related pages, and do not sum to 100 due to rounding

error. 28

27

Page Type Percent Count
Searches

Code elements 12 76
Code ideas 11 72
Tools 5 32
Concepts 3 20
Sites 3 18

34 % 218
Documentation

Official 30 191
Unofficial 3 19

33 % 210
Other resources

Content 24 157
Project 5 33
Navigation 4 28

34 % 218

Table 1: Taxonomy of development-related web pages. Percentages are of the total number
of development-related pages, and do not sum to 100 due to rounding error.

View



Tool-tip Code complete

Figure 1: Built-in Eclipse features for accessing Javadocs: tool-tips and code completion
suggestions presented within code, and a view of documentation alongside it.

28

Figure 2: Javadoc attachment prompt shown when the user browses to a Javadoc documen-
tation source that may be linked to a project library in Eclipse.

} Label

Icon

Figure 3: Automatic browsing tab, containing documentation automatically retrieved by
Codetrail, with an identifying icon and label.

29

Figure 4: Generic documentation prompt shown when the user browses within a site that
may be linked to keywords in project files.

(a) (b)

(c)

Figure 5: (a) Eclipse and (b) Firefox bookmark creation interfaces and (c) Eclipse bookmark
view, showing bookmarks attached to an artifact and its containers.

30

http://example.com/old-javadocs/
allclasses-frame.html

#url

#mod-javadoc-attacher

#ignore

http://example.com/new-javadocs/
allclasses-frame.html

#url

#event-1 #artifact

#source

#firefox http://example.com/old-javadocs/
allclasses-frame.html

#url

#mod-javadoc-attacher

#ignore

#load

#action

http://example.com/new-javadocs/
allclasses-frame.html

#url

(a) (b)

#event-1 #artifact

#source

#firefox http://example.com/old-javadocs/
allclasses-frame.html

#url

#mod-javadoc-attacher

#ignore

#load

#action

#event-2 #artifact

#source

http://example.com/new-javadocs/
allclasses-frame.html

#url

#action

(c)

Figure 6: The shared RDF graph (a) before browsing, (b) after browsing to an ignored Javadoc
site, and (c) after browsing a new Javadoc site.

31

#load

#action

?s #artifact

#source

?source

?url
.*/allclasses-frame.html

#url

?j

#ignore

?o

?p

(a) (b)

Figure 7: Example (a) template triple and (b) anchored query used by the automatic Javadoc
identification module to observe visits to potential sources of Javadoc documentation.

32

