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60bDipartimento di Fisica, Università di Perugia, I-06100 Perugia, Italy

61aINFN Sezione di Pisa, I-56127 Pisa, Italy
61bDipartimento di Fisica, Università di Pisa, I-56127 Pisa, Italy
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We measure branching fractions and integrated rate asymmetries for the rare decays B ! Kð�Þlþl�,
where lþl� is either eþe� or �þ��, using a sample of 384� 106 B �B events collected with the BABAR

detector at the PEP-II eþe� collider. We find no evidence for direct CP or lepton-flavor asymmetries.

However, for dilepton masses below the J=c resonance, we find evidence for unexpectedly large isospin

asymmetries in both B ! Klþl� and B ! K�lþl� which differ, respectively, by 3:2� and 2:7�, including

systematic uncertainties, from the standard model expectations.

DOI: 10.1103/PhysRevLett.102.091803 PACS numbers: 13.20.He, 11.30.Er, 11.30.Hv

The decays B ! Kð�Þlþl�, where lþl� is either eþe� or
�þ��, arise from flavor-changing neutral current pro-
cesses that are forbidden at the tree level in the standard
model (SM). The lowest-order SM processes contributing
to these decays are a WþW� box diagram, and the radia-
tive photon and electroweak Z penguin diagrams [1]. Their
amplitudes are expressed in terms of hadronic form factors
and effective Wilson coefficients Ceff

7 , Ceff
9 , and Ceff

10 , rep-

resenting the electromagnetic penguin diagram, and the
vector part and the axial-vector part of the Z penguin and
WþW� box diagrams, respectively [2]. New physics con-
tributions may enter the penguin and box diagrams at the
same order as the SM diagrams, modifying the Wilson
coefficients from their SM expectations [3].

We report results herein on exclusive branching frac-
tions, direct CP asymmetries, the ratio of rates to dimuon
and dielectron final states, and isospin asymmetries, mea-
sured in two regions of dilepton mass squared chosen to
exclude the region of the J=c resonance: a low q2 region
0:1< q2 � m2

ll < 7:02 GeV2=c4 and a high q2 region

q2 > 10:24 GeV2=c4. We also present results for the two
regions combined. The c ð2SÞ resonance is removed from
the high q2 region by vetoing events with 12:96< q2 <
14:06 GeV2=c4. For K�eþe� final states, we also report
results in extended low and extended combined q2 regions
including events q2 < 0:1 GeV2=c4, where there is an
enhanced coupling to the photonic penguin amplitude
unique to this mode. Recent BABAR results on angular
observables using the same data set and similar event
selection as is used here are reported in [1].

The B ! Klþl� branching fraction is predicted to be
ð0:35� 0:12Þ � 10�6, while B ! K�lþl� for q2 >
0:1 GeV2=c4 is expected to be roughly 3 times larger at
ð1:19� 0:39Þ � 10�6 [3]. The�30% uncertainties are due
to lack of knowledge about the form factors that model the
hadronic effects in the B ! K and B ! K� transitions.
Thus, measurements of decay rates to exclusive final states
are less suited to searches for new physics than rate asym-
metries, where many theory uncertainties cancel [4].

The direct CP asymmetry

AKð�Þ
CP � Bð �B ! �Kð�Þlþl�Þ �BðB ! Kð�Þlþl�Þ

Bð �B ! �Kð�Þlþl�Þ þBðB ! Kð�Þlþl�Þ (1)

is expected to beOð10�3Þ in the SM, but new physics at the

electroweak scale could produce a significant enhancement
[5].
The ratio of rates to dimuon and dielectron final states

RKð�Þ � BðB ! Kð�Þ�þ��Þ
BðB ! Kð�Þeþe�Þ (2)

is unity in the SM to within a few percent [6]. In two-
Higgs-doublet models, including supersymmetry, these
ratios are sensitive to the presence of a neutral Higgs
boson, which might, at large tan�, increase RKð�Þ by
�10% [7]. In the region q2 < ð2m�Þ2, where only the

eþe� modes are allowed, there is a large enhancement of
B ! K�eþe� due to a 1=q2 scaling of the photon penguin
contribution. The expected SM value of RK� including this
region is 0.75 [6], and we fit the K� data set over the
extended combined and extended low q2 regions in order
to test this prediction.
The CP-averaged isospin asymmetry

AKð�Þ
I � BðB0 ! Kð�Þ0lþl�Þ � rBðB� ! Kð�Þ�lþl�Þ

BðB0 ! Kð�Þ0lþl�Þ þ rBðB� ! Kð�Þ�lþl�Þ ;
(3)

where r ¼ �0=�þ ¼ 1=ð1:07� 0:01Þ is the ratio of the B0

and Bþ lifetimes [8], has a SM expectation of þ6%–13%
as q2 ! 0 GeV2=c4 [9]. This is consistent with the mea-
sured asymmetry of 3%� 3% in B ! K�� [8]. A calcu-
lation of the predicted K�þlþl� and K�0lþl� rates

integrated over the low q2 region gives AK�
I ¼ �0:005�

0:020 [10,11]. In the high q2 region, contributions from
charmonium states may provide an additional source of
isospin asymmetry, although the measured asymmetry in

J=cKð�Þ is at most a few percent [8].
We use a data sample of 384� 106 B �B pairs collected at

the �ð4SÞ resonance with the BABAR detector [12] at the
PEP-II asymmetric-energy eþe� collider at SLAC. Our
selection of charged and neutral particle candidates, as well
as reconstruction of �0, K0

S, and K� candidates, are de-

scribed at [1]. We reconstruct signal events in ten sepa-
rate final states containing an eþe� or �þ�� pair, and a
K0

Sð! �þ��Þ, Kþ, or K�ð892Þ candidate with an invariant
mass 0:82<MðK�Þ< 0:97 GeV=c2. We reconstruct K�0
candidates in the final state Kþ��, and K�þ candidates in
the final states Kþ�0 and K0

S�
þ (charge conjugation is

implied throughout except as explicitly noted). We also
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study final states Kð�Þh���, where h is a track with no
particle identification requirement applied, to characterize
backgrounds from hadrons misidentified as muons.

B ! Kð�Þlþl� decays are reconstructed using the kine-

matic variables mES ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s=4� p�2
B

q

and �E ¼ E�
B �

ffiffiffi

s
p

=2, where p�
B and E�

B are the B momentum and energy
in the �ð4SÞ center-of-mass (c.m.) frame, and

ffiffiffi

s
p

is the
total c.m. energy. We define a fit region mES >
5:2 GeV=c2, with �0:07< �E< 0:04 (� 0:04<�E<
0:04) GeV for eþe� (�þ��) final states in the low and
extended low q2 region, and �0:08< �E< 0:05
(�0:05<�E< 0:05) GeV for high q2.

The main backgrounds arise from random combinations
of leptons from semileptonic B and D decays, which are
suppressed through the use of neural networks (NN) whose
construction is described in detail in [1]. For each of the ten
final states we use separate NN optimized to suppress
either continuum or B �B backgrounds in the low, extended
low or high q2 regions. We use simulated samples of signal
and background events in the construction of the NN, and
assume rates consistent with accepted values [8].

There is a further background contribution from B !
Dð! Kð�Þ�Þ� decays, where both pions are misidentified
as leptons. The pion misidentification rates are 2%–3% for
muons and<0:1% for electrons, so this background is only
significant in the �þ�� final states. We veto these events
by assigning the pion mass to a muon candidate, and

requiring the invariant mass of the hypothetical Kð�Þ�
system to be outside the range 1:84–1:90 GeV=c2. After
all the above selections have been applied, the final recon-
struction efficiency for signal events varies from 3.5% for
Kþ�0�þ�� for the combined q2 region, to 22% for
Kþ��eþe� in the high q2 region.

We perform unbinned maximum likelihood fits to mES

distributions to obtain signal and background yields. We
use an ARGUS shape [13] to describe the combinatorial
background, allowing the shape parameter to float in the
fits. For the signal, we use a fixed Gaussian shape unique to
each final state, with mean and width determined from fits

to the analogous final states in the vetoed J=cKð�Þ events.
We account for a small residual contribution from mis-
identified hadrons by constructing a probability density

function (PDF) using Kð�Þh��� events weighted by the
probability for the h� to be misidentified as a muon. We

also account for background events that peak in the mES

signal region, arising from charmonium events that escape
the veto, and for contributions from misreconstructed sig-
nal events. We test our fits in each final state using the large

samples of vetoed J=cKð�Þ and c ð2SÞKð�Þ events, and find
that all the branching fractions are in good agreement with
accepted values [14]. We perform simultaneous fits for

AKð�Þ
CP , RKð�Þ and AKð�Þ

I summed over all the signal modes

that contribute to the particular measurement.
We estimate the statistical significance of our fits by

generating ensembles of 1000 data sets for each of the
ten final states in each q2 region of interest, and fitting each
data set with the full fit model described above. These tests
also confirm the unbiased nature and proper error scaling
of our fit methodology.
For the total B ! Klþl� and B ! K�lþl� branching

fractions averaged assuming isospin and lepton-flavor
symmetry, we measure ð0:394þ0:073

�0:069 � 0:020Þ � 10�6 and

ð1:11þ0:19
�0:18 � 0:07Þ � 10�6, respectively, where the first

uncertainty is statistical and the second is systematic.
Complete branching fraction results in all final states and
q2 regions, along with the statistical significance of each
measurement and frequentist upper limits for measure-
ments with <4� statistical significance, are available on-
line [15]. All results are in good agreement with previous
measurements [8].

Table I summarizes the results for AKð�Þ
CP . In the fits to the

separate B and �B data sets in charge-conjugate final states,
we assume a common background ARGUS shape parame-
ter. Our final results are consistent with the SM expectation
of negligible direct CP asymmetry. Table II shows the

TABLE I. AKð�Þ
CP results in each relevant q2 region. The uncertainties are statistical and system-

atic, respectively.

Mode Combined q2 Low q2 High q2

Kþlþl� �0:18þ0:18
�0:18 � 0:01 �0:18þ0:19

�0:19 � 0:01 �0:09þ0:36
�0:39 � 0:02

K�0lþl� 0:02þ0:20
�0:20 � 0:02 �0:23þ0:38

�0:38 � 0:02 0:17þ0:24
�0:24 � 0:02

K�þlþl� 0:01þ0:26
�0:24 � 0:02 0:10þ0:25

�0:24 � 0:02 �0:18þ0:45
�0:55 � 0:04

K�lþl� 0:01þ0:16
�0:15 � 0:01 0:01þ0:21

�0:20 � 0:01 0:09þ0:21
�0:21 � 0:02

TABLE II. RKð�Þ results in each q2 region. The extended
(‘‘ext.’’) regions are relevant only for RK� . The uncertainties
are statistical and systematic, respectively.

q2 Region RK� RK

Combined 1:37þ0:53
�0:40 � 0:09 0:96þ0:44

�0:34 � 0:05

Ext. combined 1:10þ0:42
�0:32 � 0:07 � � �

Low 1:01þ0:58
�0:44 � 0:08 0:40þ0:30

�0:23 � 0:02

Ext. low 0:56þ0:29
�0:23 � 0:04 � � �

High 2:15þ1:42�0:78 � 0:15 1:06þ0:81
�0:51 � 0:06
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results for RK and RK� , which are also consistent with the
SM expectations.

Table III shows the results for the isospin asymmetry

AKð�Þ
I . We directly fit the data for AKð�Þ

I taking into account
the differing lifetimes of B0 and Bþ. Figure 1 shows the
charged and neutral low q2 data sets with overlaid fit
projections. We find no significant isospin asymmetries
in the high and combined q2 regions, or for K�eþe� fits
in the extended regions. However, we find evidence for
large negative asymmetries in the low q2 region.

We calculate the statistical significance with which a
null isospin asymmetry hypothesis is rejected using the

change in log likelihood
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� lnL
p

between the nominal fit

to the data and a fit with AKð�Þ
I ¼ 0 fixed. Figure 2 shows the

likelihood curves obtained from the Klþl� and K�lþl�

fits. The parabolic nature of the curves in the AKð�Þ
I >�1

region demonstrates the essentially Gaussian nature of our

fit results in the physical region, and the right-side axis of
Fig. 2 shows purely statistical significances based on
Gaussian coverage. Incorporating the relatively small sys-
tematic uncertainties as a scaling factor on the change in
log likelihood, the significance in the low q2 region that

AKð�Þ
I is different from zero is 3:2� for Klþl� and 2:7� for

K�lþl�. We have verified these confidence intervals by
performing fits to ensembles of simulated data sets gener-

ated with AKð�Þ
I ¼ 0 fixed, and we find frequentist coverage

consistent with the� lnL calculations. The highly negative

AKð�Þ
I values for both Klþl� and K�lþl� at low q2 suggest

that this asymmetry may be insensitive to the hadronic final
state, and so we sum the likelihood curves as shown in

Fig. 2 and obtain AKð�Þ
I ¼ �0:64þ0:15

�0:14 � 0:03. Including

systematics, this is a 3:9� difference from a null AKð�Þ
I

hypothesis.
We consider systematic uncertainties associated with

reconstruction efficiencies; hadronic background parame-
trization in dimuon final states; peaking background con-
tributions obtained from simulated events; and possible
CP, lepton flavor, and isospin asymmetries in the back-
ground PDFs. We quantify the efficiency systematics using

the vetoed J=cKð�Þ samples. These include charged track,
�0, and K0

S reconstruction, particle identification, NN se-

lection, and the �E and K� mass selections. The largest
contributions to the systematic uncertainties on the rates
are particle identification, the characterization of the had-
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FIG. 1 (color online). Charged and neutral fit projections in the
low q2 region. Total fit (solid), combinatoric background (long
dash), signal (medium dash), hadronic background (short dash),
peaking background (dots).
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FIG. 2. Low q2 region AKð�Þ
I fit likelihood curves. Klþl� (long
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TABLE III. AKð�Þ
I results in each q2 region. The uncertainties are statistical and systematic,

respectively. The last table row shows K�eþe� results for the extended regions.

Mode Combined q2 Low q2 High q2

K�þ�� 0:13þ0:29
�0:37 � 0:04 �0:91þ1:2�1 � 0:18 0:39þ0:35

�0:46 � 0:04

Keþe� �0:73þ0:39
�0:50 � 0:04 �1:41þ0:49

�0:69 � 0:04 0:21þ0:32
�0:41 � 0:03

Klþl� �0:37þ0:27
�0:34 � 0:04 �1:43þ0:56

�0:85 � 0:05 0:28þ0:24
�0:30 � 0:03

K��þ�� �0:00þ0:36
�0:26 � 0:05 �0:26þ0:50

�0:34 � 0:05 �0:08þ0:37
�0:27 � 0:05

K�eþe� �0:20þ0:22
�0:20 � 0:03 �0:66þ0:19

�0:17 � 0:02 0:32þ0:75
�0:45 � 0:03

K�lþl� �0:12þ0:18
�0:16 � 0:04 �0:56þ0:17

�0:15 � 0:03 0:18þ0:36
�0:28 � 0:04

K�eþe� (ext.) �0:27þ0:21
�0:18 � 0:03 �0:25þ0:20

�0:18 � 0:03 � � �

PRL 102, 091803 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

6 MARCH 2009

091803-6



ronic background and the signal mES PDF shape. All of
these cancel at least partially in the rate asymmetries, and
the final systematic uncertainties are small compared to the
statistical ones.

We perform several additional checks of effects that
might cause a bias in our final results. We vary the parame-
trization of the hadronic background PDFs, and of the
random combinatorial background ARGUS shapes in the

low q2 region, to test the robustness of the large AKð�Þ
I

asymmetries. We remove all the NN selections, and per-
form separate fits to the two K�þ final states, and observe

no significant variation in the AKð�Þ
I results. To understand if

an isospin asymmetry might be induced by the combina-
torial background, we compare data and simulated back-
ground events within a larger region j�Ej< 0:25 GeV
outside our �E selection window and in the 5:2<mES <
5:27 GeV=c2 region. We find that the numbers of simu-
lated and data events in this larger region agree well. No
signal isospin asymmetry is found using simulated events
within the fit region.

In summary, we have measured branching fractions, and
studied direct CP violation, ratios of rates to dimuon and
dielectron final states, and isospin asymmetries in the rare

decays B ! Kð�Þlþl�. Our branching fraction results agree
with both SM predictions and previous measurements. Our
results for the directCP asymmetries and lepton-flavor rate
ratios are in good agreement with their respective SM
predictions of zero and one. The isospin asymmetries in
the high and combined q2 regions are consistent with zero,
but in the low q2 region in both B ! Klþl� and B !
K�lþl� we measure large negative asymmetries that are
each about 3� different from zero, including systematic

uncertainties. Combining these results, we obtain AKð�Þ
I ¼

�0:64þ0:15
�0:14 � 0:03, with a 3:9� difference (including sys-

tematics) from AKð�Þ
I ¼ 0. Such large negative asymmetries

are unexpected in the SM, which predicts essentially no
isospin asymmetry integrated over our low q2 region and,
as q2 ! 0, an asymmetry of �þ 10%, opposite in sign to
our observation in the low q2 region.
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