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We describe black holes in dþ 3 dimensions, whose thermodynamic properties correspond to those of

a scale-invariant nonrelativistic ðdþ 1Þ-dimensional quantum system with a dynamical exponent z ¼ 2.

The gravitational model involves a massive Abelian vector field and a scalar field, in addition to the

metric. The energy per particle in the dual theory is j�jd=ðdþ 2Þ at any temperature (� is the chemical

potential). The ratio of shear viscosity to entropy density is @=4� in any dimension d � 2.
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Introduction.—Scale invariance is an important concept
in physics, with fundamental applications in diverse areas
including critical phenomena and high energy physics. One
can think about scale invariance as a symmetry under
simultaneous rescaling of both space and time xi ! �xi,
t ! �zt, where � > 0 is the scaling parameter, and z is the
dynamical exponent. Relativistic scale-invariant systems,
such as blackbody radiation, have z ¼ 1, while many non-
relativistic scale-invariant systems have z ¼ 2. An inter-
acting nonrelativistic quantum system which has recently
attracted much interest is given by a collection of cold
fermionic atoms in the unitary limit [1]. In this limit the
scattering length of atoms formally diverges, whereas the
mean particle distance is considered (arbitrarily) large
compared with the range of the interaction. The only
relevant length scales are then given by the mean particle
distance and the thermal wavelength, which are deter-
mined through the fermion density or chemical potential
and the temperature. All quantities can therefore be ex-
pressed by their analogues in the noninteracting theory
times a universal function only depending on the dimen-
sionless ratio of chemical potential and temperature [2].
Consequently, the system at zero temperature and density
should be described in terms of a nonrelativistic scale-
invariant theory with z ¼ 2 [3].

The methods of the gauge-gravity duality [4] have been
extremely helpful for understanding strongly interacting
scale-invariant relativistic models, and it is reasonable to
ask whether the same tools can be useful in understanding
strongly interacting scale-invariant nonrelativistic models.
The key idea lies in realizing the relevant symmetry group
geometrically, rather than directly on the Hilbert space of
the quantum theory. The algebra of the nonrelativistic
conformal group (the Schrödinger group) can be obtained
from the relativistic group by reducing along the light cone
and identifying the corresponding momentum with the
particle number operator [5]. A spacetime realizing this
symmetry as its isometry group was recently identified in
[5] for z ¼ 2, and independently in [6] for arbitrary z:

ds2 ¼ �r2zdu2 � 2r2dudvþ r2dxidxi þ dr2

r2
: (1)

Here r is the radial coordinate in the standard gauge-
gravity duality description with the boundary at r ! 1,
u is the boundary time coordinate, xi are d-dimensional
spatial coordinates, and v is an additional coordinate
whose conserved momentum corresponds to the particle
number operator. For d ¼ 2 and z ¼ 2, this spacetime and
its nonextremal generalizations were embedded in type IIB
string theory [7–9], and the equation of state in the dual
field theory together with its shear viscosity were deter-
mined. In addition, the authors of [8,9] found a five-
dimensional gravitational model which admits a nonextre-
mal version of (1) as a solution, corresponding to a (2þ 1)-
dimensional scale-invariant field theory at nonzero tem-
perature and density. (Other recent work on holographic
realization of nonrelativistic theories includes [10–12].)
Given that most experiments on cold atomic gases are

performed in d ¼ 3 spatial dimensions, it would be inter-
esting to find a simple gravitational model, corresponding
to a (3þ 1)-dimensional scale-invariant quantum system
at nonzero temperature and density. From the field-
theoretic point of view, the situation of three dimensions
is of paramount importance because the unitary limit in
cold fermionic gases is only nontrivial in d ¼ 3 [13,14]
(the system is noninteracting in d ¼ 2, d � 4). Such six-
dimensional gravitational action would be a natural start-
ing point for phenomenological holographic models of
nonrelativistic systems, similar to the approach presented
in Ref. [15]. It is the purpose of this Letter to present black
hole spacetimes whose thermodynamic properties corre-
spond to those of a scale-invariant nonrelativistic quantum
system in arbitrary spatial dimension d � 2, including the
physically interesting case d ¼ 3. Using the standard dic-
tionary of the gauge-gravity duality, we calculate the ther-
modynamic potentials and the shear viscosity of the dual
(dþ 1)-dimensional nonrelativistic field theory. Our nota-
tions closely follow the presentation of Herzog et al. [8].
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Thermodynamics of a scale-invariant system.—Before
presenting black hole spacetimes whose thermodynamics
corresponds to that of a scale-invariant system, let us
briefly discuss what we expect thermodynamic potentials
to look like. We are interested in a translation-invariant
quantum field theory in dþ 1 spacetime dimensions in the
thermodynamic limit in the grand canonical ensemble
given by the density operator � ¼ Z�1 exp½�ðH �
�NÞ=T�, where Z ¼ tr exp½�ðH ��NÞ=T� is the parti-
tion function, T is temperature, H is the Hamiltonian, � is
the chemical potential, and N is the conserved particle
number operator which commutes with H. Scale invari-
ance means that there is a time-independent operator D
whose commutation relations within the Schrödinger alge-
bra include ½D;H� ¼ izH and ½D;N� ¼ ið2� zÞN. (The
second relation holds in systems where particle number
current coincides with momentum density. From a geo-
metric perspective, this commutation relation emerges
from the isometries of the spacetime (1) [6].) The
Hamiltonian density H has scaling dimension dþ z,
i.e., ½D;H ð0Þ� ¼ iðdþ zÞH ð0Þ. Taking the expectation
value of this equation in the grand canonical ensemble,
using the commutation relations and cyclicity of the trace
gives ½zT@T � 2ð1� zÞ�@��� ¼ ðdþ zÞ�, where � ¼
trð�H Þ is the equilibrium energy density. The solution is

� ¼ TðdþzÞ=zgðTð2�2zÞ=z�Þ, where g is an arbitrary func-
tion. Once the energy density is known, pressure p can be
determined from the relation �þ p ¼ Tsþ�n, where
s ¼ @p=@T is entropy density, and n ¼ @p=@� is the
number density. Demanding that p ! 0 as � ! 0, one
finds for z ¼ 2

�ðT;�Þ ¼ Tðdþ2Þ=2gð�=TÞ; 2�ðT;�Þ ¼ dpðT;�Þ:
(2)

We will now describe black holes in dþ 3 dimensions
whose thermodynamics has exactly the scaling form of
Eq. (2), with a particular function gð�=TÞ.

Gravitational model and black hole thermodynamics.—
We propose the following action of gravity coupled to a
massive Abelian vector field plus a scalar:

S ¼ 1

16�Gdþ3

Z
ddþ3x

ffiffiffiffiffiffiffi�g
p �

R� a

2
ð@��Þð@��Þ

� 1

4
e�a�F��F

�� �m2

2
A�A

� � Vð�Þ
�
; (3)

where Gdþ3 is the (dþ 3)-dimensional Newton’s constant,
the scalar potential is given by Vð�Þ ¼ ð�þ�0Þea� þ
ð���0Þeb�, and the coefficients are � ¼ � 1

2 ðdþ 1Þ�
ðdþ 2Þ, �0 ¼ 1

2 ðdþ 2Þðdþ 3Þ, m2 ¼ 2ðdþ 2Þ, and a ¼
ðdþ 2Þb ¼ 2 dþ2

dþ1 . For � ¼ 0, one recovers the model of

Refs. [5,6], where the spacetime (1) emerges as a solution
to Einstein equations with a nontrivial profile of A�. For

� � 0, our model admits the following planar black hole
solutions which are asymptotic to (1)

ds2 ¼ r2h�½d=ðdþ1Þ�
��ðf� 1Þ2

4ðh� 1Þ � f

�
r2du2

� ð1þ fÞdudvþ h� 1

r2
dv2

�

þ h1=ðdþ1Þ
�
r2dxidxi þ dr2

r2f

�
; (4a)

A ¼ 1þ f

2h
r2duþ 1� h

h
dv; � ¼ � 1

2
lnh; (4b)

where hðrÞ ¼ 1þ �2rdþ2
0 =rd and fðrÞ ¼ 1� rdþ2

0 =rdþ2.

Here � is an arbitrary parameter, and the horizon is at r ¼
r0. It is helpful to introduce coordinates t ¼ �vþ u=ð2�Þ
and y ¼ ��vþ u=ð2�Þ, so that the solution (4) becomes

ds2 ¼ r2h�½d=ðdþ1Þ�½�fdt2 þ dy2 � r2f�2ðdtþ dyÞ2

þ hdxidxi� þ h1=ðdþ1Þ dr
2

r2f
; (5a)

AðrÞ ¼ r2�

h
ðfdtþ dyÞ: (5b)

For d ¼ 2 these solutions were discussed in Ref. [8]. Note
that Eq. (4) with fðrÞ ¼ 1, hðrÞ ¼ 1þ�d=rd is also a
solution, with � a free parameter. We will now show that
thermodynamics of black holes (4) and (5) matches ther-
modynamics of (dþ 1)-dimensional scale-invariant field
theories with z ¼ 2.
The Bekenstein-Hawking entropy of the black hole is

proportional to the area of the horizon,

S ¼ 1

4Gdþ3

rdþ1
0 ��vV ; (6)

where we assume that v has a finite size �v, and V ¼
�x1 . . . �xd is the (infinite) volume along the xi directions
which we identify with the spatial volume of the dual field
theory. The temperature of the black hole can be found
from the surface gravity 	, where 	2 ¼ � 1

2 ðr�
�Þðr�
�Þ
and 
 is a Killing vector field which is null at the horizon.
Following [8], we choose 
t ¼ 1=�, or 
 ¼ @u þ 1

2�2 @v.

This gives the black hole temperature T ¼ 	
2� ¼ ðdþ2Þr0

4�� ,

which we identify as the temperature of the dual field
theory. From the Killing vector 
 we can also infer the
value of the chemical potential. With the generator of
translations in the u direction corresponding to the
Hamiltonian and the generator of translations in the v
direction corresponding to particle number, we expect the
chemical potential to be � ¼ � 1

2�2 as the conjugate

Lagrange multiplier to the particle number [8] (this is
analogous to what happens in thermodynamics of Kerr
black holes). With this identification, the chemical poten-
tial is negative.
We identify the partition function as Z ¼ e�SE where SE

is the on-shell Euclidean action, obtained after taking t !
i�. The on-shell action is divergent at large r, and requires
regularization. To make the action finite, we add counter-
terms at the boundary r ! 1,

PRL 102, 011602 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

9 JANUARY 2009

011602-2



S ! S þ 1

8�Gdþ3

Z
ddþ2x

ffiffiffiffiffiffiffi�h
p ðK � c0 þ � � �Þ; (7)

where K is the standard Gibbons-Hawking boundary term,
c0 is the boundary cosmological constant, and dots denote
‘‘matter’’ counterterms which are polynomial in the fields
�, A� and their derivatives. The on-shell action evaluated

on the solution (4) can be made finite by choosing c0 ¼
dþ 1, together with the appropriate coefficients of the
matter counterterms, giving

S E ¼ � 1

16�Gdþ3

Z
ddþ2x rdþ2

0 : (8)

[Alternatively, the Euclidean on-shell action can be regu-
larized by subtracting the action of the zero-temperature
solution (5) with fðrÞ ¼ 1 and hðrÞ ¼ 1þ �2rdþ2

0 =rd, and
demanding that the volumes at large fixed r coincide in the
two geometries. This procedure gives the same answer (8)
.] The matter counterterms do not contribute to the finite
part of the action for d > 2. In order to evaluate the
thermodynamic potentials, the Euclidean ‘‘time’’ direction
� is compactified on a circle with period �� ¼ 4�=ðdþ
2Þr0 ¼ 1=ð�TÞ. The grand canonical potential � ¼
�pV ¼ �T lnZ is then given by

�ðT;�Þ ¼ �~cVTðdþ2Þ=2
�
T

j�j
�ðdþ2Þ=2

; (9)

where the ðT;�Þ-independent constant ~c ¼
ð�vÞ�dþ12ð3d�2Þ=2ðdþ 2Þ�ðdþ2Þ=Gdþ3 determines the nor-
malization of all thermodynamic functions, and therefore
effectively counts the degrees of freedom in the dual field
theory. (In the analogous gravitational description of rela-
tivistic field theories, the normalization coefficient ~c is
uniquely related to the central charge of the corresponding
conformal field theory [16].) All other thermodynamic
functions can be easily determined as n ¼ @p=@�, s ¼
@p=@T, � ¼ �pþ Tsþ�n, and one finds 2� ¼ dp, as is
expected in a scale-invariant theory with z ¼ 2. The de-
pendence on temperature and chemical potential is pre-
cisely of the expected form (2), with the scaling function

gðxÞ ¼ d~c
2 jxj�ðdþ2Þ=2. Note that negative � is required so

that the density n ¼ @p=@� is positive. The total entropy

S ¼ �@�

@T
¼ 1

4Gdþ3

rdþ1
0 ��vV (10)

is equal to the Bekenstein-Hawking entropy (6), a consis-
tency check for thermodynamics.

Viscosity.—In a translation-invariant theory with a hy-
drodynamic regime at long distances, shear viscosity can
be evaluated using the Kubo formula

� ¼ � lim
!!0

1

!
ImGR

12;12ð!;k ¼ 0Þ; (11)

where GR
12;12 is the retarded function of the component

Tx1x2 of the energy-momentum tensor. The relevant com-
ponent of the metric perturbation in the bulk’ � h21 can be
Fourier transformed along the u and xi directions,

’ðu; v;x; rÞ ¼ R
d!ddk=ð2�Þdþ1’!;kðrÞe�i!uþik�x (note

that u is identified with the time in the dual field theory),
and only k ¼ 0 is needed to find the viscosity. The pertur-
bation is v independent, as required by the fact that the
energy-momentum tensor has zero particle number. The
field ’ decouples from other perturbations, and satisfies
the equation of the minimal massless scalar [17]. In the
black hole background (4), one finds

’00
!ðrÞþðdþ3Þrdþ2�rdþ2

0

rðrdþ2�rdþ2
0 Þ ’0

!ðrÞ

þ!2�2rd�2rdþ2
0

ðrdþ2�rdþ2
0 Þ2’!ðrÞ¼0: (12)

The equation has a regular singular point at the horizon,
with exponents � ¼ � i!

4�T . Evaluation of the retarded

function requires that one keeps only the wave going into
the black hole [18,19], which fixes the solution as ’!ðrÞ ¼
ðr� r0Þ�FðrÞ, where FðrÞ is regular at the horizon r ¼
r0. In the hydrodynamic limit! ! 0, the equation for FðrÞ
can be solved as a power expansion in !. To linear order,
one finds

FðrÞ ¼ F0 � i!�F0

ðdþ 2Þr0 ln

�
r0fðrÞ
r� r0

�
þOð!2Þ; (13)

where F0 is an integration constant which determines the
overall normalization of the perturbation. It is proportional
to the boundary value of the field ’0ð!Þ � ’!ðr�Þ, where
r� ! 1 is the large-r cutoff. The two-point function is
determined from the regularized on-shell action (7). The
Gibbons-Hawking term ensures that the action for ’ has
the form (up to contact boundary terms)

ð16�Gdþ3ÞS ¼ � 1

2

Z
ddþ3x

ffiffiffiffiffiffiffi�g
p

g��@�’@�’

¼ � 1

2

Z d!

2�

� ddk

ð2�Þd r
dþ3fðrÞ’�!ðrÞ’0

!ðrÞ�vjr¼r� :

(14)

Taking the second variation of the action with respect to
’0ð!Þ [18,19], one finds the viscosity from the Kubo
formula (11), using the solution (13),

� ¼ rdþ1
0 ��v

16�Gdþ3

: (15)

Comparing with the expression for the black hole en-
tropy (6), the ratio of shear viscosity to entropy density
s ¼ S=V is equal to (restoring @) �

s ¼ @

4� .

Discussion.—Our model (3) can be viewed as an exten-
sion of the d ¼ 2 model of Ref. [8] to arbitrary dimension.
Such a generalization is nontrivial because it involves both
guessing the action and finding the solution to the equa-
tions of motion. We have not attempted to find a string
theory embedding of the action (3), and we do not know
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whether black hole solutions (4) uplift to ten- or 11-
dimensional supergravity for d > 2 [for d ¼ 2, it was
shown in Ref. [8] that the solution (4) of the system (3)
uplifts to type IIB supergravity]. Nevertheless, we feel that
the holographic model (3) is interesting in its own right, in
particular, because it provides a window to a novel class of
scale-invariant (3þ 1)-dimensional nonrelativistic models
with strong quantum fluctuations. One way to see that the
quantum fluctuations in the dual field theory are strong is to
note that the viscosity is small and saturates the conjec-
tured quantum-mechanical bound of Ref. [17]. This means
that the dual quantum system cannot be described as a gas
of weakly interacting quasiparticles because the latter
would imply a parametrically large viscosity to entropy
ratio. Another way to see that interactions are important is
to note that the thermodynamic scaling function gðxÞ de-
fined by Eq. (2) has different form in a noninteracting gas
and in the present holographic model. In a noninteracting
gas of fermions or bosons in 3þ 1 dimensions, the scaling

function is proportional to gðxÞ / R1
0 duu3=2ðeu�x � 1Þ�1

[20], while in the holographic model gðxÞ / jxj�5=2. This
implies that heat capacity cv ¼ Tð@s=@TÞN;V in our model

has a peculiar temperature dependence, cvðT;nÞ�T3=7n5=7

(in arbitrary dimension, cv � Td=ðdþ4Þnðdþ2Þ=ðdþ4Þ). The
energy per particle E=N ¼ �=n in the holographic model
is E=N ¼ 3

5 j�j [in arbitrary dimension, E=N ¼
j�jd=ðdþ 2Þ] at any temperature, including T ! 0.
Expressed in terms of the number density, the energy per

particle is proportional to n�2=7T10=7 (in arbitrary dimen-

sion, �n�2=ðdþ4ÞT2ðdþ2Þ=ðdþ4Þ), and as a result E=N ! 0 as
T ! 0 at fixed density. For unitary fermions at T ¼ 0, it is
conventional to parametrize the energy per particle as

E=N ¼ 3
5"F
, where "F � n2=3 is the Fermi energy in a

gas of noninteracting fermions. Lattice simulations [21]
suggest that the thermodynamic scaling function for the
black holes discussed in this Letter differs from that of
unitary fermions, in particular, giving 
 about 0.4 [22]. In
the holographic model, on the other hand, the temperature
dependence of E=N suggests that 
 is zero in any dimen-
sion. However, it is possible that at lower temperatures in
our model there exist different backgrounds with the same
asymptotics and different thermodynamic properties which
are closer to those of unitary fermions. This would be
natural as the background (4) is invariant under v trans-
lations. Therefore it does not break particle number sym-
metry and should not correspond to a superfluid state in the
boundary theory. It would be interesting to find physical
systems with the same thermodynamic scaling function as
in the holographic model.

In this Letter, we only considered a holographic model
corresponding to a quantum field theory with the dynami-
cal exponent z ¼ 2. It would be interesting to find black
holes corresponding to nonrelativistic systems with z � 2
in arbitrary d. Another question to understand is whether
black holes (4) can be embedded in string theory. Finally,
we see that for the nonrelativistic field theories studied

here, the ratio of shear viscosity to entropy density has a
universal value of @=4� in any dimension d � 2, despite
the fact that the black hole backgrounds (4) do not satisfy
the assumptions of universality theorems of [17,23,24].
This suggests that the universality of shear viscosity can
be proven for a wider class of black hole spacetimes, and
therefore for a wider class of field theories.
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