Origin of Intrinsic Gilbert Damping

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.102.137601</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://hdl.handle.net/1721.1/51819</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
</tbody>
</table>
Origin of Intrinsic Gilbert Damping

M. C. Hickey* and J. S. Moodera
Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 150 Albany Street, Cambridge, Massachusetts 02139, USA

The inhomogeneous damping term can be written as $M \times d \nabla \times M/dt$ which gives rise to nonlocal effects such as spin wave dissipation \cite{6,8}. These nonlocal theories are successful in quantifying the enhancement of the Gilbert damping, but do not derive the intrinsic Gilbert term itself.

There are models \cite{9,10} which deal with the scattering of electron spins from thermal equilibrium in the presence of phonon and spin-orbital interactions which is a dynamic interaction and this allows us to determine the strength of the Gilbert damping for itinerant ferromagnetic metals, generalizing the Gilbert damping response to a tensorial description. Both the s-d exchange relaxation models \cite{11,12} and the Fermi surface breathing models of Kambersky \cite{9,13} either presuppose a Gilbert damping term in the dynamical equation or specify a phenomenological Hamiltonian $H = -1/(\gamma M_s) \hat{\alpha} \cdot dM/dt$ While this method is \textit{ab initio} from the point of view of electronic structure, it already assumes the Gilbert term ansatz. Hankiewicz \textit{et al.} \cite{14} construct the inhomogeneous Gilbert damping by connecting the spin density-spin current conservation law with the imaginary part of magnetic susceptibility tensor and show that both electron-electron and impurity scattering can enhance the damping through the transverse spin conductivity for finite wavelength excitations ($q \neq 0$). In previous work \cite{15}, there are derivations of the Gilbert constant by comparing the macroscopic damping term with the torque-torque correlations in homogeneously magnetized electron gases possessing spin-orbital coupling. For the case of intrinsic, homogeneous Gilbert damping, it is thought that in the absence of spin-orbital scattering, the damping vanishes. We aim to focus on intrinsic, homogeneous damping and its physical origin in a first-principles framework and the question as to whether spin in a homogeneous time-varying magnetization can undergo Gilbert damping is addressed.

In this work, we show that Gilbert damping does indeed arise from spin-orbital coupling, in the sense that it is due to relativistic corrections to the Hamiltonian which couple the spin to the electric field and we arrive at the Gilbert damping term by first writing down the Dirac equation for electrons in magnetic and electric potentials. We transform the Hamiltonian in such a way as to write it in a basis in which the canonical momentum terms are even powers. This is a standard approach in relativistic quantum mechanics and we do this in order to calculate the terms which

\textbf{PACs numbers:} 76.20.+q, 75.30.$-$m, 75.45.+j

\textbf{DOI:} 10.1103/PhysRevLett.102.137601

\textbf{References:}

\textbf{Acknowledgments:} We would like to thank the U.S. Army Research Office for support through the MURI program. We also thank the National Science Foundation for support through Physics Division grants DMR-0515106 and DMR-0515112.

\textbf{Author Contributions:} M.C.H. and J.S.M. contributed equally to this work.

\textbf{Address correspondence to:} J. S. Moodera, Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 150 Albany Street, Cambridge, Massachusetts 02139, USA (jsm@mit.edu).
couple the linear momentum to the spin in a basis which is diagonal in spin space. This is often referred to as a non-relativistic expansion of the Dirac equation. This allows us to formulate the contributions as a perturbation to an otherwise nonrelativistic particle. We then wish to calculate the rate equation for the spin observable with all of the spin-orbital corrections in mind.

Now, we start with a purely relativistic particle, a Dirac particle and we write the Dirac-Pauli Hamiltonian, as follows:

\[H = e\alpha \cdot (p - e\frac{A}{c}) + \beta m_0 c^2 + e\phi \]

where \(\Lambda \) and \(\phi \) are the magnetic vector potential and the electrostatic potential, respectively, and

\[\alpha = \begin{pmatrix} 0 & \sigma_i \\ \sigma_i & 0 \end{pmatrix} \]

while

\[\beta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \]

We observe immediately that \(\beta \mathcal{O} = -\mathcal{O} \beta \). \(\mathcal{O} \) is the Dirac canonical momentum, \(e \) and \(\epsilon \) are the speed of light in a vacuum and the electronic charge, respectively.

We now need to rewrite the Hamiltonian in a basis where the odd operators (whose generators are off diagonal in the Pauli-Dirac basis: \(\alpha^i, \gamma^i, \gamma_5, \ldots \)) and even operators (whose generators are diagonal in the Pauli-Dirac basis: \(1, \beta, \Sigma, \ldots \)) are decoupled from one another.

If we are to find \(\mathcal{S} \) so that \(H' \) does not contain odd powers of spin operators, we must chose the operator \(\Sigma \), in each way as to satisfy the following constraint:

\[\left[\mathcal{S}, \beta \right] = \frac{-\mathcal{O}}{im_0 c^2}. \]

In order to satisfy cancellation of the odd terms of \(\mathcal{O} \) to first order, we require \(\mathcal{S} = -\frac{\mathcal{O}}{2m_0 c^2} \) and this is known as the Foldy-Wouthuysen transformation in relativistic quantum mechanics and it is treated in some detail in, for example, Ref. [16]. We now would like to collect all of the terms into the transformed Hamiltonian, and this is written as

\[H' = \beta \left(m_0 c^2 + \frac{\mathcal{O}^2}{2m_0 c^2} - \frac{\mathcal{O}^3}{8m_0^2 c^6} \right) + \epsilon \]

\[- \frac{1}{8m_0^2 c^6} [\mathcal{O}, [\mathcal{O}, \epsilon]] + \beta \frac{\mathcal{O}^3}{2m_0 c^2} [\mathcal{O}, \epsilon] - \frac{\mathcal{O}^3}{3m_0^2 c^4}. \]

The expression above contains odd powers of the canonical momentum \(\mathcal{O} \), so we redefine the canonical momentum to encapsulate all of these odd power terms. So we now apply the procedure of eliminating odd powers once again:

\[\mathcal{S}' = -\frac{i\beta}{2m_0 c^2} \mathcal{O}' = -\frac{i\beta}{2m_0 c^2} \left(\beta \frac{\mathcal{O}^3}{2m_0 c^2} [\mathcal{O}, \epsilon] - \frac{\mathcal{O}^3}{3m_0^2 c^4} \right), \]

\[H'' = e^{i\mathcal{S}'} H' e^{-i\mathcal{S}'} = \beta m_0 c^2 + \epsilon' + \mathcal{O}'', \]

where \(\mathcal{O}'' \) is now \(\mathcal{O}(\frac{1}{m_0^2 c^6}), \) which can be further eliminated by applying a third transformation (\(S'' = \frac{ip\mathbf{p}}{2m_0 c^2} \)), we arrive at the following Hamiltonian:

\[H''' = e^{iS''} (H'') e^{-iS''} = \beta m_0 c^2 + \epsilon' \]

\[= \beta \left(m_0 c^2 + \frac{\mathcal{O}^2}{2m_0 c^2} - \frac{\mathcal{O}^4}{8m_0^2 c^6} \right) + \epsilon \]

\[- \frac{1}{8m_0^2 c^6} [\mathcal{O}, [\mathcal{O}, \epsilon]]. \]

Thus we have the fully Foldy-Wouthuysen transformed Hamiltonian:

\[H''' = \beta \left(m_0 c^2 + \frac{\mathcal{O}^2}{2m_0 c^2} - \frac{\mathcal{O}^4}{8m_0^2 c^6} \right) + \epsilon \Phi \]

\[- \frac{e\hbar}{2m_0 c^2} \beta \Sigma \cdot \mathbf{B} - \frac{ie\hbar^2}{8m_0^2 c^6} \Sigma \cdot (\nabla \times \mathbf{E}) \]

\[- \frac{e\hbar^2}{4m_0^2 c^4} \Sigma \cdot \mathbf{E} \times \mathbf{p} - \frac{e^2 \hbar}{8m_0^2 c^6} (\nabla \cdot \mathbf{E}). \]

The terms which are present in the above Hamiltonian, show us that we have a \(p^4 \) kinetic part which is the relativistic expansion of the mass of the particle. The terms which couple to the spin \(\Sigma \) are of importance and we see that these terms correspond to the Zeeman, spin-orbital (comprising momentum and electric field curl terms) and Darwin term, respectively. Strictly speaking, the presence of the scalar potential \(\phi \) breaks the gauge invariance in the Pauli-Dirac Hamiltonian and a fully gauge-invariant theory would require that this contain the gauge-free electromagnetic field energy. We omit the term \(e^2 \hbar/(4m_0^2 c^3) \Sigma \cdot (\mathbf{A} \times \mathbf{E}) \) (which establishes gauge invariance in the spin orbital terms) in this rotated Hamiltonian, as it is \(O(1/m_0^2 c^3) \) and we are only interested in calculating semiclassical rate equations for fields, which are manifestly gauge invariant, and not wave functions or energy eigenvalues. We can now define the spin dependent corrections to a nonrelativistic Hamiltonian:

\[H'' = -\frac{e\hbar}{2m_0 c^2} \beta \Sigma \cdot \mathbf{B} - \frac{e\hbar}{4m_0^2 c^4} \Sigma \cdot \mathbf{E} \times \mathbf{p} \]

\[- \frac{e\hbar^2}{8m_0^2 c^6} \Sigma \cdot (\nabla \times \mathbf{E}). \]

where

\[\Sigma = \begin{pmatrix} \sigma_i & 0 \\ 0 & \sigma_i \end{pmatrix} = \hat{S}_i \]

and \(\sigma_i \) are the Pauli matrices. Note that the last two terms in Eq. (6) encapsulate the entire spin-orbital coupling in the sense that these terms couple the particle’s linear momentum to the spin \(\hat{S}_i \). The first spin-orbital term in the Hamiltonian is well known and gives rise to momentum dependent magnetic fields. When the ensuing dynamics are calculated for this case, it gives rise to spin relaxation terms which are linear in spin [17]. Note that, while neither spin-
The orbital term is Hermitian, the two terms taken together are Hermitian and so the particles angular momentum is a conserved quantity and the total energy lost in going from collective spin excitations (spin waves) to single particles states via spin-orbital coupling is gained by the electromagnetic field. Recognizing the curl of the electric field in the last term, we now rewrite this the time-varying magnetic field as given by Maxwell’s equations as $\mathbf{V} \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$. We now have an explicitly time-dependent perturbation on the nonrelativistic Hamiltonian. We can write the time-varying magnetic field seen by the spin (in, for example, a magnetic material) as $\mathbf{B} = \mathbf{B}_0(1 + \chi_m^{-1}) \cdot \mathbf{M}$. We now have the spin-dependent Hamiltonian

$$H^S = -\frac{e\hbar}{2m_0c^2} \mathbf{S} \cdot \mathbf{B} - \frac{e\hbar}{4m_0^2c^3} \mathbf{S} \cdot \mathbf{E} \times \mathbf{p} + \frac{i\hbar^2 u_0}{8m_0^3c^2} \mathbf{S} \cdot (1 + \chi_m^{-1}) \cdot \frac{d\mathbf{M}}{dt} = H^S = H^S_0 + H^S(t).$$

We focus our attention on the explicitly time-dependent part of the Hamiltonian $H^S(t)$;

$$H^S(t) = i\frac{e\hbar u_0}{8m_0^3c^2} \mathbf{S} \cdot (1 + \chi_m^{-1}) \cdot \frac{d\mathbf{M}}{dt}. \tag{7}$$

In this perturbation scheme, we allow the Hermitian components of the Hamiltonian to define the ground state of the system and we treat the explicitly time-dependent Hamiltonian (containing the spin-orbital terms) as a time-dependent perturbation. In this way, the rate equation is established from a time-dependent perturbation expansion in the quantum Liouville description. We now define the magnetization observable as $\dot{\mathbf{M}} = \sum_\alpha \frac{g\mu_\alpha}{V} \text{Tr} \rho \hat{S}^\alpha(t)$, where the summation is taken over the site of the magnetization spin α. We now examine the time dependence of this observable by calculating the rate equation according to the quantum Liouville rate equation;

$$\frac{d\rho(t)}{dt} = \frac{1}{i\hbar} [\hat{\rho}, H] = 0. \tag{8}$$

This rate equation governs the time-evolution of the magnetization observable as defined above, in the nonequilibrium regime. We can write the time derivative of the magnetization [18] as follows:

$$\frac{d\mathbf{M}}{dt} = \sum_{\alpha,\beta} \frac{g\mu_\beta}{V} \text{Tr} \rho \hat{S}_\alpha \hat{S}_\beta \cdot \mathbf{S} + \frac{i}{\hbar} \text{Tr} \rho \frac{d\mathbf{S}}{dt} \cdot \mathbf{S} + \frac{\delta \hat{\mathbf{S}}}{\delta \hat{\mathbf{S}}}, \tag{9}$$

and we can use the quantum Liouville rate equation as defined by Eq. (8) to simplify this expression and we arrive at the following rate equation:

$$\frac{d\mathbf{M}}{dt} = \sum_\alpha \frac{g\mu_\alpha}{V} \text{Tr} \rho [\hat{S}_\alpha, H^S(t)]. \tag{10}$$

In the case of the time-dependent Hamiltonian derived in Eq. (7), we can assume a first-order dynamical equation of motion given by $\frac{d\mathbf{M}}{dt} = \gamma \mathbf{M} \times \mathbf{H}$ and calculate the time evolution for the magnetization observable:

$$\frac{d\mathbf{M}}{dt} = \sum_{\alpha,\beta} \frac{g\mu_\beta}{V} \text{Tr} \rho [\hat{S}_\alpha \cdot \hat{S}_\beta] \cdot (1 + \chi_m^{-1}) \cdot \frac{\delta \mathbf{M}}{dt} = \sum_\alpha \frac{g\mu_\alpha}{V} \text{Tr} \rho \hat{S}_\alpha (1 + \chi_m^{-1}) \cdot \frac{\delta \mathbf{M}}{dt} = -i\frac{e\hbar u_0}{8m_0^3c^2} (1 + \chi_m^{-1}) \cdot \mathbf{M} \times \frac{\delta \mathbf{M}}{dt},$$

where, in the last two steps, we have used the following commutation relations for magnetization spins: $[\hat{S}_\alpha, \hat{S}_\beta] = i\hbar \delta_{\alpha\beta} \delta_{\alpha\beta}$, which implies that the theory presented here is that which relates to local dynamics and that the origin of the damping is intrinsic. We now recognize the last equation as that which describes Gilbert damping, as follows, whereby the constant α is defined as follows:

$$\alpha = \frac{i e\hbar u_0}{8m_0^3c^2} M_s \cdot \mathbf{M} \times \frac{\delta \mathbf{M}}{dt}. \tag{11}$$

The α defined above corresponds with the Gilbert damping found in the phenomenological term in the Landau-Lifschitz-Gilbert equation and χ_m is the magnetic susceptibility. In general, the inverse of the susceptibility can be written in the form [19],

$$\chi^{-1}_{ij}(\mathbf{q}, \omega) = \chi^{-1}_{\perp}(\mathbf{q}, \omega) = \frac{\omega_{ex}}{\gamma u_0 M_0} \delta_{ij}. \tag{12}$$

where the equilibrium magnetization points along the z axis and ω_{ex} is the excitation frequency associated with the internal exchange field. The δ_{ij} term in the inverse susceptibility does not contribute to damping mechanisms as it corresponds to the equilibrium response. In the basis $(M_x \pm iM_y, M_z)$, we have the dimensionless transverse magnetic susceptibility, as follows [14]:

$$\chi_{m\perp}(\mathbf{q}, \omega) = \gamma u_0 \frac{M_0 - i\gamma \mathbf{q}^2 \omega_0}{\omega_0 - i\gamma \mathbf{q}^2 \omega_0 M_0}. \tag{13}$$

The first term in the dimensionless Gilbert coefficient [Eq. (11)] is small $(\sim 10^{-11})$ and the higher damping term is controlled by the inverse of the susceptibility tensor. For uniformly saturated magnetization, the damping is critical and so the system is already at equilibrium as far as the Gilbert mechanism is concerned (dM/dt = 0 in this scenario). The expression for the dimensionless damping constant α in the dc limit ($\omega = 0$) is

$$\alpha = \frac{e\hbar \mu_0 M_s}{8m_0^3c^2} \text{Im} \left(\frac{\omega_0}{\gamma u_0 M_0} - \frac{i\gamma \mathbf{q}^2 \omega_0}{\mu_0 M_0^2} \right) \frac{\omega_0}{1 - i\gamma \mathbf{q}^2 \omega_0 M_0},$$

and we have the transverse spin conductivity from the

137601-3
that there is a term which contains the curl of the electric field. By connecting this term with Maxwell's equation to give the total time-varying magnetic induction, we have found that this damping term can be deduced from the rate equation for the spin observable, giving the correct vector product form and sign of Gilbert's original phenomenological model. Crucially, the connection of the time-varying magnetic induction and the curl of the electric field via the Maxwell relation shows that the damping of magnetization dynamics is commensurate with the emission of electromagnetic radiation and the radiation-spin interaction is specified from first-principles arguments.

M. C. Hickey is grateful to the Trinity and the uniformity of nature. We thank the U.S.-U.K. Fulbright Commission for financial support. The work was supported by the ONR (Grant No. N00014-09-1-0177), the NSF (Grant No. DMR 0504158) and the KIST-MIT program. The authors thank David Cory, Marius Costache and Carlos Egues for helpful discussions.

* hickey@mit.edu

[16] W. Greiner, Relativistic Quantum Mechanics (Springer-Verlag, Berlin, Germany, 1987).

FIG. 1 (color online). Plot of the dimensionless Gilbert damping constant α in the dc limit ($\omega = 0$), as a function of electron spin polarization and disorder scattering rate.

The following relation (in units whereby $\hbar = 1$):

$$\sigma_\perp = \frac{n}{4m^*\omega_0^2} \left(\frac{1}{\tau_{\text{dis}}^\perp} + \frac{1}{\tau_{\text{dis}}^e} \right)$$

where τ_{dis}^\perp and τ_{dis}^e are the impurity disorder and electron-electron scattering times as defined and parameterized in Ref. [14]. We calculate the extrinsically enhanced Gilbert damping using the following set of parameters as defined in the same reference: number density of the electron gas, $n = 1.4 \times 10^{27}$ m$^{-3}$, polarization p, equilibrium spin density $M_0 = \gamma p n/2$, equilibrium excitation frequency $\omega_0 = E_F[(1 + p)^{2/3} - (1 - p)^{2/3}]$ and wave number defined as $q = 0.1k_F$, where E_F and k_F are the Fermi energy and Fermi wave number, respectively. m^* is taken to be the electronic mass. Using these quantities, we evaluate α values and these are plotted as a function of both polarization and disorder scattering rate in Fig. 1.

In general, the inverse susceptibility χ_m^{-1} will determine the strength of the damping in real inhomogeneous magnetic systems where spin relaxation takes place, sub-bands are populated by spin orbit scattering and spin waves and spin currents are emitted. The susceptibility term gives the Gilbert damping a tensorial quality, agreeing with the analysis in Ref. [10]. Further, the connection between the magnetization dynamics and the electric field curl provides the mechanism for the energy loss to the electromagnetic field. The generation of radiation is caused by the rotational spin motion analog of electric charge acceleration and the radiation-spin interaction term has the form

$$H^S(t) = i \frac{\hbar e^2 \mu_0}{8m_0^2c^2} \sum_\alpha[(1 + \chi_m^{-1})S_\alpha] \cdot \frac{dM}{dt}.$$

(13)

In conclusion, we have shown that the Gilbert term, heretofore phenomenologically used to describe damping in magnetization dynamics, is derivable from first-principles and its origin lies in spin-orbital coupling. By a nonrelativistic expansion of the Dirac equation, we show