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Abstract

Given n uniformly and independently points in the d dimensional

cube of unit volume, it is well established that the length of the mini-

mum spanning tree on these n points is asymptotic to /3MsT(d)n(d-l)/d,

where the constant PMST(d) depends only on the dimension d. It has

been a major open problem to determine the constant 3MST(d). In

this paper we obtain an exact expression of the constant MST(d) as

a series expansion. Truncating the expansion after a finite number of

terms yields a sequence of lower bounds; the first 3 terms give a lower

bound which is already very close to the empirically estimated value of

the constant. Our proof technique unifies the derivation for the MST

asymptotic behavior for the Euclidean and the independent model.
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tDimitris Bertsimas, Sloan School of Management, MIT, Rm E53-359, Cambridge, Ma
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1 Introduction

Research in the area of probabilistic analysis of combinatorial optimiza-

tion problems in Euclidean spaces was initiated by the pioneering paper by

Beardwood, Halton and Hammersley [3], where the authors prove the fol-

lowing remarkable result:

Theorem ([3]): If Xi are independent and uniformly distributed points in

a region of Rd with volume a, then the length LTSP of the traveling salesman

tour (TSP) under the usual Euclidean metric through the points X1 ,..., X,

almost surely satisfies

lim LTSP Tsp(d)al/
n-*oo n(d-1)/d -

where PTsp(d) is a constant that depends only on the dimension d.

This result was generalized to other combinatorial problems defined on

Euclidean spaces, including the minimum spanning tree (MST) ([13]), the

minimum matching (M) ([10]), the Steiner tree (ST) ([12]), the Held and

Karp (HK) lower bound for the TSP ([6]) and other problems. Indeed, Steele

[12] generalized the previous theorem for a class of combinatorial problems

called subadditive Euclidean functionals. These theorems assert that there

exist constants that depend on the dimension d and on the functional F

involved, such that limn- oo L = F(d) almost surely. Unfortunately

the exact value of the constants F(d) is not known for any interesting

functional F. One of the important open problems in this area is the exact

determination of these constants.

In a different direction researchers started the investigation of the values

of combinatorial optimization problems under the independent model, in

which the distances dij are independent and identically distributed random
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variables with a common cdf F(z). Karp [8] introduced the model and

analyzed the TSP and the assignment problem in [9]. Frieze [5] and Steele

[11] analyzed the MST and proved that the MST converges in probability as

n -+ oo to ((3) = FS=1 under the assumption that the dij are uniformly

distributed. Until now the analysis under the independent and the Euclidean

model use entirely different techniques. We believe that another important

problem in the area is the unification of both models so that results for one

model can be used for the other.

In this paper we make progress in both these directions for the MST.

In particular we obtain an exact expression for the MST constant 3MST(d)

under the Euclidean toroidal model as a series expansion. The main rea-

son we use the toroidal model is to avoid disturbing boundary effects. We

believe, however, that the constant is the same with the usual Euclidean

model. Moreover, our techniques generalize to the independent model. In

this way we derive both these results in a very similar way, thus obtaining

a certain degree of unification between the two models.

The paper is structured as follows. In the next section we introduce a

set of conditions under which we can characterize the MST constant as a

series expansion. In Section 3 we prove that the Euclidean toroidal model

satisfies these conditions and therefore we find exactly 3MST(d). In Section

4 we prove that the independent model also satisfies these conditions and

thus we find the known results for the MST in the independent model in a

simpler way. In Section 5 we use the series expansion from Section 3 to find

better bounds for the MST in the plane. The last Section includes some

concluding remarks.
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2 The MST in a Unified Model

In this section we introduce the following model. We are given a set of

distances dij, 1 < i,j < n of random distances with dii = 0 and dij = dji.

We assume that the distances dij satisfy the following conditions:

1. (Isotropy of the points). The distribution of the random vectors

{dljjn=l,. .,{dnj)j= is exchangeable.

2. There exists a constant M so that dij < M almost surely.

3. If F(x) = Pr{dij < x) we assume that there exist constants d, Cd such

that

lim F() = 1.
x--0O CdZ d

4. Let Gn(z) denote the graph of all distances which are smaller than z

and let Pk,,(z) = Pr{a given point belongs to a component of Gn(z)

having exactly k elements}. Fix k. We assume that the probabilities

Pk,n(z) satisfy:

lim Pk,n[( Y )l/d] = fk(Y).
n-oo ncd

5. For any n > k

Pk,n[( )/d ] I [k(Y), where
ncd

F1 lk(y)yl/d dy < oo

6. For all > 0 there exists a K (independent of n) such that

[//d 00 k Pk(z) - 1
[ Pn()1- adz < E.

10k=Kkn
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Conditions 1, 2 are not crucial but convenient to work with. In condi-

tion 3 we ascribe to the independent model the same marginal distances as

those of the d dimensional Euclidean model, thus creating a "d dimensional

independent model". Informally, the dependence in the Euclidean model

comes from the fact that neighboring spheres intersect, while in the d di-

mensional independent model their intersection is always void. Condition 4

will be seen below to be the natural scaling condition, which indeed leads

to an expansion of MST(d) in the parameters k and y. Conditions 5 and 6

stipulate that the contribution of large k and y becomes negligible, ensuring

thereby the validity of the expansion.

To understand the scaling in condition 4 in the case of the Euclidean

model, it is helpful to consider another model asymptotically equivalent

but sometimes more convenient to work with, obtained by randomizing the

number n of points in the torus, i.e. replacing it with a Poisson number of

points with expectation n. Then, the points on the torus become a Poisson

point process with intensity n. If we further rescale this model by a linear

magnification factor of nd our point process becomes the restriction to the

torus [0, nI]d of a Poisson point process with intensity 1. For this model it

is clear that Pk,n[( )l /d] converges to fk(y), where fk(Y) represents now the

probability that a given point belongs exactly to a k cluster in the graph

G(( )l/d). In fact, the model as a whole converges to the Poisson point

process with intensity 1. This approach, advocated by Aldous and Steele [1]

reduces in effect the problem of computing the length of the MST constant

to the problem of computing the "average" edge in the minimal tree build

on a Poisson point process of intensity one.

We can now state and prove our main theorem.
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Theorem 1 Let Tn denote the length of the MST for a model that satisfies

conditions 1-6 above. Then Tn satisfies:

E[Tn] 1 0p 1 00

n--oo (d-l)/d - d(cd)l/d k= JkY) (1)

Proof

Let Cn(z) denote the number of components in the graph Gn(z) = {(i, j) dij <

z}. Then

Tn = [Cn(z) - 1]dz.

Indeed, let 0 = Zn < Zn-1 < Zn-2... < zi be the distances, at which the

graph G,(z) attains n - 1, n - 2, ... , 1 components. Then

n-1

]°[Cn(z)-1]dz = (n-l)Zn-l+(n-2)[Zn-I-Zn-2]+ .. +[Zl-Z 2 ] = E Zj = Tn
j=1

Note that in the last equation we used the fact that the greedy algorithm

solves the MST so that indeed z = T
Ej=I z3 = T,.

Since Cn(Z)-1 > 0 by Fubini-Tonelli's theorem, we have that

E[Tn]= j E[Cn()- 1]dz. (2)

Introducing the indicator random variables: Xi,k(z), which is 1 if point i

belongs to a component of Gn(z) with exactly k elements and 0 otherwise,

we have that
Cn(z) =En X-k(z)

k=l i=1

Taking expectations and using condition 1 about the exchangability of the

points we obtain that

E[Cn(Z)] = n E k
k=l
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where Pk,,(z) = Pr{a given point belongs to a component of Gn(z) having

exactly k elements}.

Therefore, from (2)

E[T ] l/d E , (Z) 
/0 k .]dz.

k--1

Taking limits we obtain

/MST(d) = lim E[Tn] _

lim oO Ko1 h0ll 1/do n

k=1 k=Kinoo| E knz /: + jPk,n(Z) -- -)dz].

Then from condition 6

K-1

3MsT(d) = lim[Z k: j Pk,n(z)nl/ddz] + e(K).
k=l1

We introduce now the limit inside the finite summation. By making the

change of variables z = (L)1d we have

K-1

/3MST(d) = d( )1/d kE k li |Pk,n )/d]yl/d 1dy + e(K).
d(cdMl/d k=l

Using condition 5 and the dominated convergence theorem we exchange the

limit and the integration operation and use condition 4. Finally (1) follows

from condition 6 by letting K -- oo. 

Remark: Steele [13] considers the asymptotic behavior of the MST with

power weighted edges, i.e. T,(a) = En-1 z, with 0 < a < d. Using a

straightforward modification of our method we can find that

Theorem 2 Under assumptions 1, 2, 3, 4 and

5'. For any n > k Pk,n[( ) l /d] < Ik(y), where fo Ik(y)ya/d- dy < o.
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6'. For all e > 0 there eists a K (independent of n) such that

'na/d l [A k Sp·cn,_ -]dza < ,

the MST with power weights satisfies for 0 < a < d

I3 MsT(d,a) = rn E[T,(a)] _ a f(y)yad-n-oo n(d-a)/d - d(cd)a/d k f( d y . (3)

For a = d the subadditivity techniques of Steele [13] do not seem to work

and it required the new techniques of Aldous and Steele [1] to prove that

indeed E[T,(d, d)] converges (the result was first conjectured by Bland when

a = d = 2 based on experimental evidence). Our expansion (3) is still valid

for a = d.

We now prove in the next section that the Euclidean toroidal model

satisfies the conditions 1-6.

3 The MST in the Euclidean toroidal model

We consider now the Euclidean toroidal model, i.e. the metric space [-_ , ]k,

where boundary points are identified if their coordinates are equal mod 1,

the distance between two points is the distance between one of them to

the closest preimage of the other in Rd and the measure is the Lebesque

measure. Conditions 1, 2, 3 hold obviously with cd being the volume of the

ball in dimension d with unit radius. In lemma 3 below we prove that the

conditions 4, 5 are also satisfied.

Lemma 3 In the Euclidean toroidal model, conditions 4, 5 hold with fk(y)

and lk(y) defined in (7) and (8) respectively below.
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Proof

Let xo = 0. Let B'(z) denote the set of all {ZO,1x 1 , 2 ,. .,kl} such that

the "torus" spheres S'(xj, 2) j = 0, ...,- 1 form a connected set. Another

way to define Bk(z) is that it is the set of all points {xo, Xl,x2, .,xk-1

such that there exists a tree on {xo, x, 2 ,. . . k-1 } with all distances less

or equal to z. For k = 1 we define B'(z) to be the entire torus. As an

example, B2(z) = S'(O, z).

Let g(,z(XO , X, l, 2,. , k-1) denote the volume of U j=0 S (xj, z), where

xo = 0. With these definitions we obtain

Pk,,,(z) = (k I) J'(Z) [1-gkz(x0XIX, x2,.. k-1)]n-kdx1... dxk-l,(4)

where I denotes integration over the (k-1) times product of the d-dimensional

torus with itself. Moreover, Pk,,(z) = 0 if z > V/2 and n > k.

Symmetric sets which do not touch the torus boundary are identical on

the torus and in R k - 1 and thus for z < 

Pk,n(Z) = ) JB [1gkz(XO , X X 2 ,. X k-1 l) ] n - k d x l ... d z k _ 1, (5 )

where Bk(z) is the set of all {Xo,xl,X2,...,xk_l} such that the spheres

S(xj, ) j = 0,..., k - 1 form a connected set, gk,z(O,Xl,x2,..., k-1) is

the volume of UjoS(xj, z)),and the integral is a usual multiple integral in

Rd(k-1)

By changing variables in (5) to u,i = i = 1, d, j = 1, k-1

and noting that gk,z(Zuo, Zu2., . . . k-) = zdgk,l(UO, Ul, u2 *, , uk-l)

we get that for z < :

Pk,n() = ( l zd(k-1) [-Z 9k,1(UO, Ul,U2,... ,Uk-1)]n-kdul ... duk_1.k -1 J~k (1)
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Rescaling to z (y)l/d we obtainnc d

p, Y ]1d k- 1 Ik-1

Y) lm [ Y ]/dk-i
fk(Y) = lrn Pkf([lY = -( -

¢n-o ncd Cd

| - g9* (UOUIlU2,]---'iUk- du d1 (7)
Bk(1) edu .. dk, (7)

yielding condition 4. Note that since we are only interested in the limit as

n goes to infinity, (Y)1ld < , and thus we can indeed apply (6).

We now turn to condition 5. Fix k and y. As we mentioned before, when

z > d/2, Pk,n(Z) = 0. For z < P,4/2 we will use:

9;,z((.0 1 Ilr· Irl k~l) Z )d
-gkl(X0°Ul''"Xk-1) d l XO, l = Cd(, (

and since 1- x < e- we have:

n - 1 1-" g,

Pk,n(Z) < - ) J e(n k)kZ(5 ,(rOx1,X2kl)d2 l x dxk-1
k tI

g(k - 1)! e'k)zdddd/ 2 dxl dxk d 1

Pkn(z) < e - k k 'e get that. k-

As a result,

Pk,n-[(- )/d] < k(Y) = kk-2 e(kdd (8)
nCd (k - )!
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and obviously fo0' Ik(y)y 1/d - l dy < xoo.

We now turn our attention to condition 6.

Lemma 4 In the Euclidean toroidal model, condition 6 is satisfied.

Proof

Let CK,n(z) be the number of components having more than K points in

the graph Gn(z). As in the proof of theorem 1

CK,n(z) = n k
k=k

As a result,

n1/d A[ Pk,n(z)-- ]d =

1J'°°
1-/d o (E[CK,n(z)]- 1)dz.

As z increases it is clear that CK,n(Z) will vary (both increase and decrease).

Let z + z be the lengths of the edges + whose addition makesi,K, i,K i,K, i,K

CK,n(z) to increase and decrease respectively. Let J the set of indices.

Summation by parts yields that

j (CK,n(z) - 1)dz = [Zt K - Z+,K] C E Zi
iEJ iEJ

Our goal is to bound EiEJ Z-K The edges K connect components with at

least K points. The edges l-K do not form a tree, but rather a "pseudo-

tree", in the sense that they connect clusters of points rather than individual

points. This "pseudotree" has the smallest cost among all possible "pseu-

dotrees". From each component in J choose an arbitrary point. Form the

MST among the representatives. This tree has clearly largest cost than

'iEJ Zi',K since it is also a "pseudotree" combining the clusters. But, in
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the Euclidean plane in dimension d the MST among any r points is less
d-1 d-1

than kdr d for some constant kd. Therefore, EieJ ZiK < kdIJI- d Since

IJI < , then
1 1

nI/d [Z IPk(Z) - ]dz
k n

1 fl d-1

< l/d( )r = kd Kl l/d e 0,

as K - ooC.

Combining theorem 1 and lemmas 3, 4 we can now find a series expansion

for the MST constant as follows:

Theorem 5 In the Euclidean toroidal model

3MST(d) = lim l)/d d )/d 1 fk(Y)Y / d - l d y , (9)

d/2
where d = F(g is the volume of the ball of unit radius in dimension d,

k-1

fk(Y) = k( 1)! uOU(1) 2uk- dul ... duk-l,

where the integration is performed on the set Bk(l) of all points uo, Ul, U2 ,..., Uk-1}

(uo = 0) such that the spheres S(uj, 1) j = 0, . . ., k- 1 form a connected set

and 9k,1(uo , U2, * * *., k...) is the volume of Uj2S(Uj, 1), where uo = 0.

As it is evident from the previous theorem the functions fk(Y) are increas-

ingly harder to obtain analytically as k increases. In section 5 we use the

lower terms of this expansion to improve the best known lower bounds for

the MST constant for d = 2.

Remark: If we define hd(( )l/d) = l to be the number of clusters

per site (the free energy) in the continuous percolation model of spheres with

radius ( )l/d centered at points distributed according to a Poisson process
Cd ~1"" " ~""""'""~"" b"~"""~~""
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with intensity 1 and we perform the change of variables r = ()1ld we see

that the MST constant is the integral of the number of clusters per site then

we can write

fMST(d) = j hd(r)dr.

It is also natural to ask whether the above theorem which holds under the

Euclidean toroidal model also holds under the usual Euclidean model. We

only used the toroidal model to avoid the boundary effects. We conjecture

that the boundary effects become negligible in the limit and thus theorem

5 also holds under the usual Euclidean model.

4 The MST in the independent model

In this section we consider the case when dij 1 < i, j, < n are i.i.d. random

variables, whose distribution F(z) satisfies:

lim ( ) 1, F(z) = 1 V > M.
X-- Cd xd

Again conditions 1, 2, 3 hold trivially. In the following lemma we prove that

conditions 4, 5 are also satisfied.

Lemma 6 In the independent model, conditions 4, 5 hold with fk(y) and

Ik(y) defined in (11) and (12) respectively below.

Proof

In this case

Pk,,n(Z) = k- ( 10[F(z)]J[l- F(z)]k( k)+()iNk)
Pk~n (Z) =k-11 1 (0

13
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where Nk,j is the number of connected graphs with j edges and k vertices.

For example Nk,k-1 = kk - 2 . Let

hk,n(Z) = k-)[F(z)]k- (1 -F(z))k(nk)+() k+lNk,k_ 1

be the first term in the sum above. Then, it is easy to establish that

Y l/d kk-2
lim hk,n[( )1/d] = k y k- e- k y

n --+od nCd (k-1) e

Since the contribution to the limit of the other terms in the RHS of (10) is

0 we obtain:

Y )ltd] = kk-2 k-l-ky
fk(y) = lim Pk,n([( )l/d]) = ( )!yk eky, (11)

yielding condition 4.

To establish condition 5 we note again that Pk,n([( d)l/d]) = 0 for

(Y )l/d > M. For z = ()ld < M we can find 2 constants a,A such
nC d

ncd

that

azd < F(z) < Azd.

Let Mk = -j=k-1 Nk,j. From (10) we obtain

Pk,n(z) < (k )![nF(z)]k- e- knF()e k 2 Mk,

from which

Pkn[( ) l/d] < k(Y) 1 A k-lek2Mkyk-le-akycd (12)
ncd _k(Y) = k e- 1)' e

and thus condition 5 holds. 

We now turn our attention to condition 6.

Lemma 7 In the independent model, condition 6 is satisfied.
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Proof

This proof can be done along the lines of Frieze [5] by splitting

1/d j [ n 11
° 1Pk~(Z) l-]dz

fk=K

in three terms:

1 '- ynl 1 1

A = n1/d j [ E Pk,n()- -]dz,
k=K

(Aloxl/d n 1
A 2 = n l/d J d [ E Pk,n(Z)- ]dz,

k=yn' /2

A 3 :l/d M 1 1A3 n 1 n ) 1 /d [ E k Pk,n(Z) n ]dz,
ned k='yn 1/2

where 7 = 2- and A > 4 + . Using the techniques of Frieze [5] we prove

that each of the terms A 1 , A 2 , A 3 can be made arbitrarily small for large K.

We omit the details since they are similar to the paper by Frieze [5].O

Combining lemmas 6, 7 and theorem 1 we can find the following expres-

sion for the MST under the independent model:

Theorem 8 Under the independent model

lim E[Tn] _ 1 o r(k+ - 1)
lim +

n-oo n(d-l)/ d d(cd)l/d k!k

Proof

From (1) and (11) we have

nlmoo n(d-l)/d 1d(Cd)l/d Z k!kl/d+l (ky)kle-ky(ky)l/d- ld(k) =

r1 F(k+ - 1)
d(cd)l/d k=l k!k d+

15



Remark: The MST with power weights has the following expansion for

O<a<d
lim E[T,(a,d)] a (k+ -1)

lim a+,
n oo (d-.)/d d~cd~a/d Kit 1 k!k+d(cda/k=

For a = d = 2 the expansion gives ((3)/7r.

For d = 1 and c = 1, the distances are uniformly distributed and thus

we get the result due to Frieze [5] that limn-,O E[Tn] = ((3). For general d

the same result is obtained by Timofeev [14] who analyzes Prim's algorithm,

while we analyzed Kruskal's algorithm.

5 Improved lower bounds in the Euclidean model

We now turn our attention to the derivation of better bounds for the MST

constant under the Euclidean model for d = 2. Using theorem 5 we compute

the contribution of the first three terms in the expansion (9).

Theorem 9 For d = 2 the Euclidean MST constant satisfies:

/3MST( 2 ) > 0.599. (13)

Proof

For k = 1, B 1 (1) is the entire area and g(u) = Cd. Thus from Theorem 5

fi (Y) e-Y.

For k = 2, B2 (1) is the set of points xl such that the two spheres with

centers ul and 0 of radius intersect. If ul = (r, 0), r < 1, are the polar

coordinates of ul, then g2,1(uo, ul) = 2r - (r), where +(r) is the area of

intersection of two spheres of unit radius at distance r apart. From simple

trigonometry we can derive 9(r) as follows:

¢(r) = 2cos1 ( )-r 1-()2
2 2
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As a result,

f2(Y) = J d11 e- y (2 r- O( r ) ) / r rdr = 2yj e - y(2- c,(r)) / rdr.
Xr 0=0 r=0 r=O

Using only the first two terms in the expansion we obtain

MST > --[Y e-y-½dy + e-jj _ yTrdrdy].
2,,f ry=O =0=0 r0

Performing the integration of the first term and interchanging integrals

in the second term we obtain

1 ,r3 /2 1 r
/MST > + = dr.

2 4 =o (2ir - (r))3/2

Using the software package Mathematica to perform the integral numerically

we find that the contribution of the first two terms gives 3MST > 0.576.

We now compute the third term in the series expansion. B 3 (1) is the

set of points x1 , 2 such that the three spheres with centers u, u2 and 0

of radius intersect. Without loss of generality we assume that the sphere

with center ul intersects the sphere with center 0. Let ul = (t, 0), t < 1, be

the polar coordinates of ul. If we rotate so that 0 = 0, let u2 = (r, ) be the

polar coordinates of the second point in the new rotated coordinate system.

Then the region can be partitioned into three areas (see figure 1).

In areas A, C the third sphere intersects only one other sphere, while in

area B all the three spheres intersect. As a result, the function f3(y) can be

written as follows:

f3(Y) = Y 2 d|dO | e-Yg3,1 (tr,')/ rtdrdtd.
2r =o Jt=O.J AuBuC

From symmetry the integrals over A and C are equal. Moreover, in region

A = {(r, 4)/1 < r < t + 1, -cos- l(r 2 +t2 1) < cos-1(r 2 +t21)}

93,1(t, r, 4) = 37r - (r) - (t),
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Figure 1: Three Intersecting Spheres

where O(x) = 2cos- ()-x/1 - ( )2, is the area of intersection of 2 spheres

of unit radius, whose centers are x apart.

In region B = {(r, )/O < r < 1, -CO-l( r 2
+

t 2 - 1 )< C os - l(r 2
+

t 2 -
1)}

g3,1(t, r, 4) 3r -- (r) - B(t) - (/r 2 + t 2
- 2rtcos)) + h(t, r, 4),

where h(t, r, ) is the common area of intersection of all the three spheres.

The computation of h(t, r, 4) is tedious but it can easily be done.

The third term is 6- fo f 3 (y)y- dy, which after some algebraic ma-

nipulations becomes:

4 t J - 2O(rt r dr dt+
8 0t=O r1 -(3r - (r) - (t))

c 'r2rl1 5 drdtd].t 0r= =-COSl(2+t2-l (3r (r)-(t) - (/r2 + t 2
- 2rtcos4) + h(t, r, 4))2

The computation of these integrals was a challenge for Mathematica. Us-

ing a Taylor expansion of the integrand up to the sixth term we evaluated

18
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these integrals to find that the contribution of the three first terms gives

/3 MST > 0.599, which is in excellent agreement with the experimental data.

O

With more work one can potentially calculate more terms in the series ex-

pansion. The best known previous bound for 3 MST was 1 and it is based

on the distance to the nearest neighbor, (see Bertsimas and van Ryzin [4]).

Note that the previous bound corresponds to the contribution of the first

term in the series expansion.

Remark: We can use the expansion to find a lower bound for the Bland

constant as well, i.e. 3(2, 2). Then the contribution of the first two terms

gives MST( 2 , 2 ) > 0.401.

5.1 Bounds for general dimensions

In higher dimensions one can use the series expansion for 3MST(d) to find

that

r( ;E 21/d r(l)
d-/d < MST(d) < d /d (14)

The lower bound corresponds to the first term in the expansion, while the

upper bound uses a technique of Hall [7] (p. 264-265) that E =l k <

limn_ Pr{a given point has no neighbors closer than ( Y)1ld and towards

the right} = e- 2. Note that Bertsimas and van Ryzin [4] find that the

exodic tree achieves this upper bound.

6 Concluding Remarks

Our analysis for the MST constants under both the Euclidean and indepen-

dent model was made possible by analyzing directly the greedy algorithm,
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which solves the MST exactly. We have also analyzed in [2] the greedy

algorithm applied to TSP and matching in both models and found series

expansions for both problems.

Another interesting observation is the relation of the two models. As

d -- oo we expect that the graph G(( )l/Ud) in the Poisson model converges

to a forest, i.e to a graph whose clusters have no cycles (the clusters are

then branching trees with Poisson distribution of offsprings with parameter

y). This is also the limit as n - oo of the independent model. Furthermore,

we expect that the number of cycles is stochastically decreasing in d (and

as d -- oo it becomes zero).

Let f(l)(y), fE)(y) be the corresponding functions in (7) and (11) for

the independent and the Euclidean model respectively. From (11), f)(y) is

independent from the dimension d, whereas fE)(y) depends on d. From the

conjectured structure of G(( )l/ d) we expect that the following connection

exists between the two models.

Conjecture

1. lim f(E)()= )(y). (15)
d-oo

2. Moreover, the function k>K fk(' is decreasing in d and

im fE)() f (16)

d-oo k - k (16)
k>K k>K

Conjecture (1) may be easily checked for the cases k = 1 and 2 by direct

computation. Furthermore, there are some interesting corollaries of the

conjecture. For example, n(E)d) > (I) (d). We can check this for d 2.fs (d) t =
In this case theorem 8 for the independent model gives /3T(2) = 0.568,

i.e. the constant for the independent model provides a lower bound for the
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Euclidean model. Also using conjecture (2) with K = 4 allows to improve

our previous lower bound to /3(MT(2) > 0.61.
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