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A. PLASMA OSCILLATIONS

The usual approach to the study of plasma oscillations is to postulate a potential

wave which propagates through the plasma and interacts with the plasma and beam

electrons. The analysis is similar to that used for double or slipping-stream ampli-

fiers. The usual result of the analysis is a dispersion relation which predicts, under

certain circumstances, a growing wave that will give rise to amplification, and, if feed-

back is provided, to oscillations (1).

It was recently pointed out that the growing wave is not real; its apparent reality is

caused by a misinterpretation of the dispersion relation. Piddington (2) states that the

apparent growth appears because the observer views a cut-off wave emanating from a

boundary moving with respect to the observer. The wave seems to grow because it is

viewed progressively closer to the moving boundary and hence has less attenuation. The

following analysis will show that it is possible to explain plasma oscillations without

recourse to a wave theory.

Pines and Bohm (3) analyze the plasma by expanding the electron density, which is

periodic in a unit volume, in a Fourier series. They show that the fluctuations in

density consist of two components. One is a collective oscillation associated with the

long-range part of the Coulomb force whose net effect is to shield the particle so that

the field extends only to the Debye radius. The other is a random part which represents

the unorganized motion of the plasma electrons. These fluctuations determine the

forces on a given electron.

Making use of this approach, they calculate the response of the plasma to an electron

moving with a velocity v (v > <v2~1/2, the rms velocity of the plasma electrons). If

the electron starts at z = 0 at time t = 0 and moves along the positive z-axis, the fluctu-

ation density, q(-, v, t), is given by

2 dk dk
p x y

q(, v, t) = - exp i(kxx + k y) sin ks(z - vt)

41T2 (v 2 - v 2 )  k s
z

k 2 + k + k v2 2 2

The integral is zero for z > vt; the limits are

0 < k2 + k 2 < 2/3 1/k2 = 2p/ <v >x y o p

where ko is the Debye radius.0
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If we assume that a beam of electrons of current io is moving along the z-axis and that

an electron starting at time t = to has a velocity

v(t o) = v + v 1 os Wt

the total response of the plasma is given by

t' =t- z

Q(t) = i/e dt0 q(, v(to), t - to) exp -at - () - t

-00

where a is a small damping caused by collisions. The result of performing this inte-

gration is too lengthy to write here. However, the essentials are easily outlined.

Q(R, t) is sinusoidal in space and time. The coefficients of the terms sin w(t - and

cos Wt - "are of the order v 1/Vo , which is taken to be small, and one of the coeffi-

cients is proportional to z. The coefficients are large only when

2 = 2 + 2 <v2 > /v2
p o

It appears that a premodulated beam of electrons entering a plasma can drive the

plasma oscillations, if the driving frequency satisfies the above relation which is

identical to the relation derived by Bohm and Gross (4). It is hoped that this result can

be checked quantitatively. A tube that allows a premodulated beam of electrons to enter

the plasma is nearing completion.

E. Gordon
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B. HIGH-DENSITY MICROWAVE PLASMA

A method has been developed for measuring high-density plasmas by an extension of

the microwave method. It is based on the fact that if an electromagnetic field has its

electric vector everywhere parallel to the plasma boundary and perpendicular to the

density gradient, no disturbing space-charge fields will be induced in the plasma. Space-

charge field is the factor that limits the usual microwave method to measurements of

relatively low electron densities. If, in addition, the plasma occupies a small region



(II. MICROWAVE GASEOUS DISCHARGES)

2995 I II

z
S2992

S/0

0 I0

2989

29086 50 100 150 200 250 300 350

CURRENT (MA)

Fig. 1I-1. Resonant frequency of the cavity as a
function of the plasma current.

where the field is weak, the field is perturbed very little, and a perturbation calculation

may be used.

These conditions are satisfied by a narrow cylindrical plasma with axially symmetric

density distribution, introduced coaxially into a cylindrical cavity that resonates in the

TE011 mode. The field of this mode is given by E z =0, Er 0, E Eo J(Xr/a)

sin (Trz/L), where a is the radius of the cavity, L is its length, and x = 3. 832. To

illustrate this method, measurements were made on a cylindrical plasma with a diame-

ter of 1. 30 cm. The diameter of the cavity was 13. 6 cm and it resonated at 3000 mc.

Figure II- shows the measured shift in the resonant frequency as a function of the

current through the plasma tube. Since the voltage across the tube remained approxi-

mately constant, the electron density averaged over the cross section of the tube is

proportional to the current. It is estimated that the highest electron density reached in
11 -3

this experiment was about 5 x 10 cm . Even for these high densities, corresponding

to the plasma frequency wp 2w, the frequency shift is directly proportional to the

electron density in the plasma.

S. J. Buchsbaum

C. PULSE BREAKDOWN IN GASES

To understand the various fundamental processes that occur during the breakdown

of a pulse, it is important to know how the electric field varies with the electron
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density of the discharge in a resonant cavity. A detailed discussion of the significance

of several quantities has been given in three technical reports (1).

The normalized impedance of the cavity and the discharge terminating the line is

Z + 1 (1)
gs g' + jb'

where g' = g+gd, and b' = b + b d . The power absorbed is Pa = Pi( I - I rl), where I r
is the magnitude of the complex reflection coefficient given by

1 -y
Irl = (2)

1+y

From Eq. 1, we have for the admittance:

gs(g' + jb')

y = (3)
(g' + gs) + jb'

which can be written as

g' (+ g' /gs) + b' 2 /g s + jb'

2 2(4)
(1+ g' /g 2 + b' 2/g 2

The susceptance b is given by

1
b = wec -

and the susceptance b' by

1 1 1
b' = we - e (5)

if we assume that the discharge susceptance for the present case is inductive. The

presence of the discharge susceptance bd changes the resonant frequency w0 to a

new value w' given by o' c = i/o' l' ,where ow' - = Aw << w Equation 5 may be

written as

b' = w c(w/ w' - w/w)

which at w = w becomes
o

b' = ' c W -1 (6)
So w (6)

The Q of the cavity at empty resonance is given by
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(= o

g(1 + g/gs)

Substituting this in Eq. 6, we get

b' = -2Q u g(1 + g/gs) f (7)

Assuming that the discharge produces a negligible change in ri and that there is suffi-

cient padding between the magnetron and the load, we have

(1 - F 2 ) Q'
(E/E)2 u

0 (- IF 12) Qu

where E is the field at the resonant frequency o 0 for the empty cavity, and E is the
o o
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Fig. 11-2. Variation of the electric field with electron density.

field when the discharge is present, at the same frequency. When the cavity is per-

fectly matched to the line, that is F = 0 and g = 1, we have

(1 - Irl ) ( + 1/gs )

(E/Eo)2 = (8)/E0) g'(1 + g'/ gs) (8)

The discharge admittance gd can be computed from the equation (ref. 1)
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n Qu(1 + i/g s) XZ(V/W)
gd + c in cgs units (9)

2. 44 X 1013 [1 + (vc/w)2]

and the shift in resonant frequency from

n = 4. 87 x 1013 L[ + (vc/w)2] A/ 3 cm - 3  (10)

Equations 10 and 11 show that the discharge admittance gd and the shift in resonant

frequency are dependent upon the ratio of the collision frequency vc and the angular

frequency o. This dependence is most marked at a value of VC/w = i. With the use

of Eq. 8, the theoretical values of the ratio E/Eo for various values of the electron

density are plotted in Fig. 11-2, with vc/w as a parameter. Computations were made

with assumed values of Qu = 2000 and X = 10. 7 cm.

We wish to point out that the computations given above are valid for values of
10 -3

n < 10 electrons cm

M. P. Madan, J. J. McCarthy
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