A. HYPERFINE STRUCTURE OF THE 3P_1 STATE OF MERCURY
BY DOUBLE-RESONANCE METHODS

Data were collected on the exact location of the even isotopes (isotope shift) to an accuracy of $1/100$, which is in good agreement with previous measurements made with a "magnetic scanning" technique. The double-resonance method, which was used to separate the overlapping optical lines, especially in the case of Hg204, has proved successful.

Also, a new calibration of the scanning magnet was obtained by proton resonance, up to fields of 7000 gauss, and a check of the spatial homogeneity was performed.

In concluding the measurements on the even isotopes, further measurements will be made to determine the hyperfine structure of Hg201 and Hg199. They will yield the hyperfine structure between 3000-5000 gauss, which is the field corresponding to the microwave frequency (3100 mc) that was used.

Concurrently, radiofrequency equipment (50-144 mc) is being built for use with the same scanning magnet in order to determine the hyperfine structure of the odd isotopes at much lower fields (100-250 gauss).

We believe that these data will be sufficient to give a complete picture of the isotope shift and hyperfine structure within $1/100$ of the 3P_1 state of natural mercury at zero field.

A. C. Melissinos, P. L. Sagalyn