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A. PIECEWISE-LINEAR NETWORK ANALYSIS

Investigation of the algebra of inequalities, described in the Quarterly Progress

Report of January 15, 1955, page 108, was pursued further with a view to discovering

its limitations, making it more generally applicable, and increasing the facility with

which it can be handled. It appears that one of the basic assets of this algebra is its

ability to deal with piecewise-linear functions in which one or more parameters are

given in literal form only. To demonstrate this, an example is presented here in which

we want to determine the behavior of the circuit of Fig. XVII-1: the parallel combina-

tion of a capacitor, an inductor, and a voltage-controlled negative resistance N whose

characteristic is shown in Fig. XVII-2. Gc and RL represent losses associated

with the capacitor and inductor. A phase-plane representation in which the

two coordinates are the inductor current and the capacitor voltage is used. The alge-

braic symbolism is employed to obtain expressions for the isoclines. Although the

circuit is quite simple, the fact that both energy storage elements are dissipative makes

the graphical method of Linard (1) inapplicable; therefore, some method for the cal-

culation of isoclines is necessary.

An important theorem, which was not presented before, that will be used throughout

the following discussion is the implicit equation theorem.

Theorem: Given the implicit equation

F(x, y) = [f (x, y), f(x, y). ,fn(x, y)] i = 0

in which

1. Each f is monotonically increasing (decreasing) and continuous in

y for any constant x.

2. For each fp , there is some point, (x o , yo), that yields fp (Xo , y ) = 0.

3. Each f is continuous in x.
p

Then F(x, y) = 0 can be solved explicitly for y in the form,

y = G(x) = [gl(x), gZ(x) ...- gn(x)] 4:(:)

where y = gp(x) is the explicit solution of the equation, f p(x, y) = 0.

Figure XVII-3 shows the circuit rearranged to include all of the resistive elements

in a two terminal-pair unit with current and voltage reference directions as shown.

The admittance function of the piecewise-linear branch is

i N = [(e Z , I - e 2 ) , 2e 2 + 2] - = g(e 2 ) (1)
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Negative-resistance oscillator.

i=2e+2

Fig. XVII-2. Negative-resistance characteristic.

and the relations defining the phase-plane trajectories are

el = RLil + e 2

i 2 . iN 1 Gce 2 = g(e 2 ) i i + G c e 2

where

dil
I dt

(2)

(3)

and

de 2i = -C d

Substituting Eq. 4 in Eq. 2, and Eqs. 5 and i in Eq. 3, and then dividing Eq. 2 by

Eq. 3, we obtain the isocline equation

dil C RLil + ez
de 2 L [(e 2 , 1 - e2) 2e 2 + 2] - - i I + Gce 2

=M

where the parameter M is the particular trajectory derivative associated with each

isocline. Multiplying Eq. 6 by the denominator of the fraction and combining terms,

we can put it into the form
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i L L + Gce 2 -\ + 1 i1 ,
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1 + - G. e 2 - + 1 i 1 +

2- L +Gc e + 2 - +1 i = 0

If we let the complete term, [(RLC/M) + 1] i l , represent the variable for which this

equation is to be solved, the implicit equation theorem can be applied twice to Eq. 7

to yield the explicit isocline equation

= LM 1- C + G) e2 ,
1 RLC + LM LM c'

1- + CL - G) e2 j 2 -2- +Gc) eLM cLM Z

Substituting various values of M in Eq. 8 enables us to plot the family of isoclines.

However, it is interesting to observe, first, some of the significant features of this

family. In the following discussion it will be assumed that Gc and RL are much less

than unity; that is, the dissipation is a small effect compared with the power associ-

ated with the piecewise-linear branch.

Singular Points. To find singular points we set the numerator and denominator of

Eq. 6 simultaneously equal to zero. From the numerator,

RLil + e = 0

e 2

I RL

From the denominator, setting i1

1+ +G c e 2

e 2
= - , we obtain
RL

G c e2] , 2 + + Gc) e 2 + 0

il RL i2

Fig. XVII-3. Rearranged circuit of Fig. XVII-1.
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Solving for e 2 , we have

e2 0O
1

R -GL

2- -2L + G +

2+ +G
R L c-

-RL

so that

1

1 - RLG c + 1 - R L  1+R L

This is the only point at which the isoclines can cross.

Significant Isoclines. From Eq. 8,

1. M = 0oo

il= {[(1+Gc)e 2 , 1-( - G)e 2 ] +, 2 + (2 + Gc)e 2

2. M= 0

1 C {[(-C) e 2 , (-C) e2] , (-C) e2}
e 2

L

RLC
3. M --

L

il 00 L = 00 1 e2)

Breakpoints. Equating the first and second elements of Eq. 8, we obtain

e (- LM+ Gc) = 1- (1 + LM- Gc) e 2

1
2 =

which is the abscissa of one of the breakpoints of the isoclines. Likewise, equating

the second and third elements of Eq. 8, we obtain

1-(i +LM -Gc) e2  2 + (2- LM + G e 2LM cLM

1
e2 3

118

e

R Ll
1 + L ,



(XVII. NONLINEAR CIRCUITS)

/Lf

M=O

M = I

Fig. XVII-4. Phase-plane trajectory.

which is the abscissa of the other breakpoint. Note that these values are independent

of M, a fact that could have been predicted by inspection of the original circuit.

It can be observed from Eq. 8 that, if the portions of the isoclines to the left of

e 2 = -1/3 (determined by the third element in the equation) are extended, they inter-

cept the il-axis at i i = 2. Similarly, the portions to the right of e 2 = i/2 would inter-

cept the i l -axis at the origin.

This collection of significant features considerably simplifies the sketching of the

isoclines. The isoclines are shown in Fig. XVII-4, together with the limit cycle for

(RLC)/L = 1/2

T. E. Stern
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