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A. NOISE

1. Minimum Noise Figure of Traveling-Wave Amplifiers

The one-dimensional, single-mode theory of noise in beams at microwave frequen-

cies predicts a minimum noise figure for traveling-wave amplifiers that is given (1) by

the expression

Fmi n = 1 + J(S-II) (1)

where

J 4 (4QC f f )1/2 (2)kT max min (2)

X W
S= e eV 10 1/10 (joules) (3)

q

The quantities f and f are the largest and smallest values of the f-function, whichmax mmin
was first defined by Watkins (2); T is the ambient temperature in degrees absolute; k

is Boltzmann's constant; QC, Pierce's space-charge parameter (3); q, the reduced

plasma wavelength; V , the beam voltage; e, the electron charge. The electronic wave-

length ke is given as

X e = 2r v o/ (4)

where v 0 is the drift velocity, and o is the frequency which is of interest. W 1 is the

average of the noise standing wave in the drift region, in decibels with respect to shot

noise. The quantity II is a measure of the correlation between current and velocity

fluctuations in the beam. By use of this equation, it is possible to determine experi-

mentally whether or not correlation exists. Thus we rewrite Eq. 1 in the form

F -1
II min
S1- J (5)

II/S can assume values between +1 and -1, where a value of zero corresponds to a

condition of no correlation.

The aforementioned theory also predicts the noise standing-wave ratio and helix

position that are necessary to achieve minimum noise figure. These values are given as

* This work was supported in part by Purchase Order DDL-B158.
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f
2 max max (6)

Popt -: in - finmm mm

+ (7)
opt = 0o

where 0 is the angle from the helix entrance to the closest maximum of the f-function.

T represents the noise power in the drift region, attributed to current fluctuations in

the beam. If Eqs. 6 and 7 agree with the experiment, then Eq. 5 can be assumed to be

applic able.

a. Experimental results

This experiment was performed on three RCA low-noise guns, in a demountable

vacuum system. The helix that was used had an inside diameter of 0.096 inch. The

cavity used to measure W 1 resonated at 2930 mec. Figures V-1, V-2, and V-3 are the

noise curves of the guns for the conditions that give minimum noise figure. The exper-

imental and calculated results are summarized in Table V-1. The first minimum and
2

maximum were used in each case to determine W 1 and Ppt The quantities J, 0
2 I Opt opt

theoretical, and p theoretical were found from the curves of references 2 and 4. All
opt

experimental results were obtained 2.5 to 7 hours after activation.

Table V-1

Gun A Gun B Gun C

Xe/ q  0.0193 0.0195 0.0185

QC 0.39 0.41 0.42

d 0.1 0.1 0.1

2
Popt (theoretical) 2. 6 2. 55 2.5

pt (experimental) 2. 75 2. 10 2.4
opt

@opt (theoretical) -380 -380 -380

Opt (experimental) -460 -580 -41o

J (joules)- 1  1.76 X 1021 1.75 X 1021 1.76 X 1021

W 1 (db) -19.2 -17.0 -18.1

-21 -21 -2l
S (joules) 5.91 X 10 10.05 X 10 7.24 X 10-2

Fmi n (db) 8.1 9.2 10. 2

I/S +0.48 +0.58 +0. 26

Probable error A(0. 15 ±0. 12 0.26



gun end

Fig. V-I. Noise curve -Gun A, 0.040-inch
W1 =-19.2 db V1 = 0 voltI 1

I = 322 La

I. = 3 ia1

V = 496 volts

V2 = 30 volts

V = 82 volts

Iheat = 0. 91 amp

oxide-coated cathode;
Vheat = 3 volts

B = 955 gauss

P = 5 X 10-7 mm Hg

Troom = 31. 8Croom

gun end

gun end

Fig. V-2. Noise curve - Gun B, 0.040-inch
W 1 =-17.0 db V = 0 voltl 1

I = 314 La

I. = 2.8 [a

V 0 = 499 volts

V= 25.3 volts

V3 = 70 volts

Iheat = 0.91 amp

oxide-coated cathode;
Vheat = 3 volts

B = 930 gauss

P = 8. 5X 107 mm Hg

Troom = 330 Croom

gun end

Noise curve -
W = -18.1 db

Io = 304 ±a

i 2. 6 a

Gun C, 0.040-inch
V 1 = 0 volt

V2 = 28 volts

V = 80 volts

V ° = 493 volts Iheat = 0. 92 amp

oxide-coated cathode;
V heat= 3 volts

B = 955 gauss

P = 7. 5 X 10-7 mm Hg

T
room

Fig. V-3.

= 31'C
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b. Conclusions

The increasing noisiness of the curves, which is not predicted by theory, is not

understood at the present time. Calculations indicate that interception current and

electron-gas collisions are probably not the cause.

In spite of these anomalous effects, the theory does closely predict the conditions

for minimum noise figure, indicating that the excess noise is not pronounced at the

helix beginning, where the noise figure is primarily set up. Thus, since Eqs. 6 and

7 are applicable, Eq. 5 is probably applicable too.

Presuming, then, that Eq. 5 can be used, we conclude that, within the range of

probable error, there is evidence of positive correlation in all of the guns that were

tested. The results of this experiment are presented in more detail in reference 5.

T. J. Connor
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Note added in proof: The results reported above still appear to be in contradiction

to those obtained at the RCA Laboratories, Princeton, N. J. (See the following table.)

Aside from the fact that our data indicate II/S > 0, and the RCA data make II/S = 0, the

MIT RCA 1 , Z

Gun A B C 1 2

SX 1021 (joules) 5.9 10 7. Z2 4.8 4.8

Fmin (ratio) 6.5 8.3 10.5 12. 6 10.8

II/S +0.48 ± .15 +0.58 + .12 +0.26 ± .23 0 ± .3 0

differences lie in the higher value of S and the low noise figures in the M. I. T. measure-

ments. Whether these differences are real or experimental remains to be determined.

L. D. Smullin
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B. HIGH-POWER MICROWAVE TUBES "

1. Multicavity Klystrons

In the Quarterly Progress Report of April 15, 1956, page 25, we presented a small-

signal analysis for nmulticavity klystrons in which all cavities are identical, tuned syn-

chronously, and spaced equidistantly along the electron beam. It was shown that a

two-wave theory predicts very high gain for tubes with a large number of cavities.

When considering bandpass characteristics of multicavity klystrons the structure

must be allowed to assume a more general form. The cavities will, in general, be

detuned with respect to a center frequency, will possibly have different Q's, and may

not be spaced equidistantly. The multicavity klystron gain must now be written in such

a form that it shows explicitly the effect of each cavity and drift.

The interaction region of a multicavity klystron can, in general, be divided into

three parts (see Fig. V-4): (a) the input cavity, which is fed by the signal source and

impresses a (kinetic) voltage V upon the beam; (b) the output cavity, which is excited

by the current modulation I in the beam and delivers the amplified signal to the load;

and (c) the intermediate interaction space, which is uncoupled to both input and output

cavities. The gain (actual power out divided by available power in) is

M 4 G. G 2

4 inmL I (1)
/ ' = 4 (1)

Yin Yout 12  V

where Gin = G s + Gel of the input cavity, Yin is the gap admittance of the input cavity,

and Yout is the gap admittance of the output gap. Hence the gain is proportional to I/V,

SIGNAL SOURCE
LOAD DRIFT DRIFT

ELECTRON BEAM 0 ELECTRON
BEAM

ELECTRON GUN COLLECTOR

INTERMEDIATE
INPUT V CAVITIES I OUTPUT V "SHORT GAP ICAVITIES
CAVITY CAVITY CAVITY

Fig. V-4. Multicavity klystron structure. Fig. V-5. Simple multicavity klystron
interaction structure.

This work was sponsored in part by the Office of Naval Research under contract Nonr 1841(05).
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Fig. V-6. Signal flow graph for structure of Fig. V-5.
is the characteristic impedance of the drift.
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Fig. V-7. The tvo basic gain mechanisms.

v I 2 I
- j 

Y 
s i n 3 

A zlz

+ Y sin 0 sin 20 (z I + z2)

+ j Yo sin 30

Fig. V-8. I/V for a four-cavity klystron with equidistant spacing
between cavities. The characteristic impedance of the
drift is Yo; z = M 2 Z.
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3 + zZz

4 + zqz3)

+ Y sin 0 sin 40 (z I + z4)

+ Z sin 20 sin 30 (z + z3)

+ j Yo sin 50

Fig. V-9. I/V for a six-cavity klystron with equidistant
spacing between cavities.

Yo = I/Z
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which characterizes the intermediate cavities. It is this quantity that we shall use in

describing the gain behavior of the multicavity klystron.

In order to determine I/V for an arbitrary multicavity klystron intermediate struc-

ture, it is useful to recognize that under small-signal operation superposition applies.

Consider the simple structure shown in Fig. V-5. Assuming that the electron beam

enters with a voltage V, we wish to find the current I at the output. The usual tech-

nique would involve combining the matrix relations for the drift region and cavity gap
and solving for I/V. We shall illustrate this process with the aid of S. J. Mason's

flow-graph technique. Figure V-6 gives the signal flow graph for our structure. The

desired result is

I 2 .2 2VI = Y sin M Z + cos 0 j Y sin 0 + j Yo sin 0 cos 0

= Y sin 2 M Z + j Y sin 20 (2)

From the second equation in Eqs. 2, we recognize, however, that the tvo terms

actually represent two, physically distinct, types of gain. The first term represents

a "cascade" type of gain (Fig. V-7); that is, by drifting, V produces II, which flows

through the gap and thus impresses V 2 upon the beam, which then drifts to produce I.

The second term is a "feedforward" type of gain; that is, V drifts through 20, ignoring

the cavity, and produces I. This latter type of gain exists because of current continuity

at a short gap. The over-all I/V is, by superposition, equal to the sum of these two
terms.

Once we recognize the existence of this superposition technique, we can write

I/V by inspection without recourse to tedious matrix manipulations or even to flow

graphs. It also follows that I/V for any multicavity klystron can be written by inspec-

tion with the use of our superposition technique. Figure V-8 gives an example of the

I/V for a four-cavity klystron. The first term is the cascade term for both cavities;

the second term is obtained by feedforward over one cavity at a time; and the last term

is a feedforward over two cavities at a time - simply a drift of 30. A more complex

example, a six-cavity klystron, is shown in Fig. V-9. I/V is written directly, without

any algebraic manipulations, by using the superposition technique. It is easily shown

that straightforward multiplication of the nine 2 X 2 matrices involves 2040 multipli-

cations, and 36 additions, and results in an answer that contains 256 terms which can

only be reduced to our expression after further algebraic maniupulations.

The frequency response of multicavity klystrons has been programmed on the analog

computer of the Dynamic Analysis and Control Laboratory, M. I. T. The gain and phase

characteristics of a four-cavity klystron (like the VA-87) and of a seven-cavity klystron

are being evaluated.

A. Bers
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2. Stagger-Tuning Experiments on Pulsed Klystrons

The small-signal gain-bandwidth characteristics of a stagger-tuned klystron were

measured (measurements were made at Lincoln Laboratory) on a Varian Associates

VA-87 four-cavity klystron which was designed for powver outputs up to the one megawatt

range. This tube has four identical, equally spaced, tunable cavities and a measured

small-signal gain of 64 db with all cavities synchronously tuned. It was operated with

the following characteristics:

Beam voltage, 95 KV
S-6 3/2

Perveance, 1. 8 X IU amp/voi

Pulsewidth, 1 jsec

Distance between successive
cavity gaps, 0. 148 Xq

q
Gap coupling coefficient, 0.765

Gap transit angle, 1.6 radians

Q and R shunt, including beam
and circuit loading: Q R

Input cavity

Output cavity

Intermediate cavities

40

110

8 X 103 ohms

5 X 103

12. 5 X 10

With the use of these parameters, the calculated value of the quantity K (defined by

A. Bers, Section V-B. 1), in terms of the normalized impedances, F 1 and F 2 , of the

first and second intermediate cavities, is

K =-j 553 F1F 2 + 28.1 (F 1 + FZ) + j (0.4)

I o 1 o
where K V sin F 1 + , and x = 2Q

V sin ' 1 + jx '

It would have been desirable to measure only the effect of the stagger tuning of the

intermediate cavities, that is, the gain-bandwidth characteristics of 1K 2 , since a

klystron designed for broadband use would have input and output cavities with band-

widths comparable to that of JK 2 . Because of a mechanical failure of the tuning

mechanism in the tube that was tested, the characteristics of the input cavity were not

known with sufficient accuracy for the correction of this effect. The output cavity, which

has a bandwidth more than twice that of the intermediate cavities, would have small

effect over the band covered. Thus the curves in Fig. V-10 include the bandwidth

reduction effect of the input and output cavities. However, they agree both in band-

width and relative amplitude with curves obtained from computer solutions of the IK 2

t
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-12 -

-J 2850 2850 2850
2815 2885 2815 2885 2815 2885

FREQUENCY (MC)

Fig. V-10. Small-signal frequency response of VA-87 four-cavity klystron amplifier.
Arrows indicate tuning of intermediate cavities; first and last cavities are
tuned to center frequency.

expression, indicating that, for the amount of detuning shown, the input and output
cavities can be considered sufficiently broadband. (Analog computer solutions for this
and other cases will be included in a future report.)

The curves (Fig. V-10) give the relative value of power to the output load versus
frequency for: (a) all cavities tuned to a center frequency of 2856 mc; (b) intermediate
cavities tuned to one-half bandwidth on opposite sides of the center frequency; and
(c) intermediate cavities tuned to 3/4 bandwidth on opposite side. The resonant fre-
quencies of each are indicated by arrows on the frequency axis.

Preparations are being made to obtain similar curves under large-signal conditions.

B. A. Highstrete

3. High-Perveance Cylindrical Electron Beams

The use of high-perveance tubular beams (see Quarterly Progress Report, Jan. 15,
1956, p. 51) in microwave tubes offers a number of advantages. As a matter of fact,
such beams have already been successfully used in traveling-wave tubes and backward-
wave oscillators. It seems probable that appreciable improvement in high-power
klystrons could be obtained with Harris-flow beams. In this fashion, not only the higher
perveance requirement would be fulfilled but also the main focusing solenoid(s) could
be dispensed with. The need for an inner conductor can be satisfied by a "transparent"
(nonsynchronous) helix. Such a helix will not couple to the beam at the operating fre-
quency of the tube, and will couple very weakly to the cavities; but it should provide
the necessary dc inner-drift tube potential. The advantages offered by a preliminary
Harris-flow klystron design seem to justify further investigation of the associated
problems.

C. Fried
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C. FERRITES

1. Ferrite Resonance Isolator in Trough Waveguide

An investigation of resonance ferrite isolators in the new "trough" waveguide

(1, 2, 3, 4) was undertaken. The waveguide has the cross section shown in Fig. V-11.

It can be considered as a rectangular waveguide cut along the middle of one of the broad

walls and bent across the middle of the other, whereupon the side walls are extended to

prevent radiation from the structure.

The main advantages of this structure over the ordinary rectangular waveguide are

the following: (a). Since even TE modes cannot exist here, it carries the TE 1 0 mode

in a frequency range of 3:1, instead of 2:1. (b). The open structure is more convenient

for experimental work. (c). Transitions to coaxial lines are simpler, and it is believed

that broadband operation is more easily obtainable (Fig. V-12).

For the TE 1 0 mode, the cutoff wavelength is equal to four times the electrical height

of the center fin. A good approximation (Fig. V-l) is

c = s + b (1)
2

For a waveguide with s/2 = 2b = 7/8 inch, the observed Xc was 11. 3 cm; but, from

Eq. 1, Xc should be 11. 1 cm.

To utilize the entire 3:1 frequency band, the distance 2b between the side walls

should be kept below one half of the next higher cutoff wavelength, since heavy radi-

ation takes place at wavelengths shorter than 4b. [For the waveguide with s/2 = 2b =

7/8 inch, heavy radiation took place for all frequencies above 6.7 kmc and prevented

the use of the upper part of the TE 1 0 frequency range (2.7-8. 1 kmc).] For practical

purposes, the height of the side walls can be made three times that of the center fin.

It is easily recognized that there is a plane parallel to the bottom of the waveguide,

in which the TE 1 0 rf magnetic fields in the two parts are circularly polarized in the

same sense as if they were seen from a direction perpendicular to the side walls. This

indicates the possiblility of making ferrite resonance isolators by placing ferrite rods

in or near that plane and magnetizing them, as shown in Fig. V-13.

The measurement apparatus is shown in Fig. V-14. The waveguide dimensions

were: s/2 = 2b = 7/8 inch. The height of the side walls was 2 5/8 inches. The isolation

was measured as the difference (in decibels) of the power level from the generator when

the magnetic field was reversed, the probe position and the probe power being kept con-

stant. The insertion or forward loss was measured by probing the fields on both sides

of the ferrite. The ferrites were Ferramic 1331, for which the saturation magnetization

(4TM) is approximately 2000 gauss, and the resonance line width (AH) is approximately

500 oersteds. The three ferrite-to-waveguide geometries shown in Fig. V-15 - all with

the same cross-section area and length - were investigated. The ferrite dimensions
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Fig. V-13. Principle of resonance isolator in trough waveguide.
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A B C

Fig. V-15. Ferrite-to-waveguide geometry.

were: in cases A and C (Fig. V-15), 2 1/2 X 1/4 X 1/16 inch; in case B,

2 1/2 X 1/8 X 1/8 inch.

To find the best combinations of resonant frequency and ferrite positions, the fre-

quency dependence of the forward and reverse losses for different fixed positions of the

ferrites was measured with the magnetic field set for resonance at each frequency. The

results of these measurements of cases A and C are shown in Figs. V-16 and V-17.

Similar measurements were made for case B. From Figs. V-16 and V-17, it can be

seen that in going from A to C: (a) the losses increase, but the ratio of reverse to

forward loss decreases; (b) the minimum of the forward losses becomes less flat;

(c) the variation of forward loss with frequency increases; (d) the optimum value

of x increases as the frequency decreases. The optimum positions are much nearer

the bottom of the waveguide than the corresponding positions for circularly polarized

fields in an empty waveguide. If we assume that the magnetic fields near the bottom

of the trough are approximately the same as those for the equivalent rectangular wave-

guide, these positions are given by

cos 2x = 1 - 2() (2)

For the waveguide in question, fc, the cutoff frequency, is 2660 mc; thus, for

4500 mc, x' will be 36'; for 5250 mc, 30. 5; and for 5500 mc, 26.

Figure V-18 shows the frequency dependence of the external dc magnetic field that

is required for resonance. For the same applied field in cases A, B, and C (Fig. V-15),

A will resonate at a low frequency, B at an intermediate frequency, and C at a high

frequency. This is caused by the demagnetization, which increases from C to A,

lowering the internal magnetic field in the ferrites and thus lowering the resonant

frequency. Theoretically, it is accounted for by the Kittel equation.

Figures V-19 and V-20 show the frequency dependence of the forward and reverse

losses for fixed magnetic fields and fixed optimum position of the ferrites. It is seen

that the 3-db bandwidth is the same for cases A and C, but that A is better than C
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Frequency dependence of forward and reverse losses
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Fig. V-17. Frequency dependence of forward and reverse losses
for fixed positions of ferrites (case C).
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Fig. V-18. Frequency dependence of external dc magnetic field
for resonance.
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Fig. V-19. Frequency dependence of forward and reverse losses
for fixed magnetic fields and fixed optimum position
of the ferrites (case A).
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C: MAGNETIC FIELD,
1200 OERSTEDS,
x = 16.4 1 x = ELECTRICAL ANGLE (DEGREES OF

x THE CUTOFF WAVELENGTH)
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x 16 4

4Fig.INPUT VSWRd FaOR e TpHEo
ATTENUATING DIRECTION

5-
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1.8 DB

4.0 4.5 5.0
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Fig. V-20. Frequency dependence of forward and reverse positions
of the ferrites (case C).

with respect to the obtainable R. This superiority of A over C has also been recog-
nized for rectangular waveguide isolators. Other advantages of A over C are:

a. The impedance match is better. This is attributable to less dielectric effect,
as well as to the fact that the circularly polarized field outside the ends of the ferrites

matches better than the circularly polarized fields inside the ferrite. In fact, it is not
generally possible to have pure circularly polarized fields inside the ferrites for

case C [see ref. 5, Eq. (32)].

b. Case A is better suited for high-power operation than C because arcing is less
likely and the cooling conditions for the ferrites are better. Similar measurements

were taken for case B; they show that the properties for this configuration are, on the

average, similar to those for cases A and C.

It was expected that the rf magnetic fields near the bottom of the trough would be

equal across the waveguide for the same height above the bottom, and thus the ferrites

would act in the same way whether they were placed on the side walls or on the center

fin. However, it was found for case A, that the 3-db bandwidth of the resonance curve

was decreased from 11 per cent (Fig. V-19) to 9 per cent, and the ratio decreased from

50 to 27. It was also observed that the optimum position of the ferrites changes more

rapidly with frequency at the center fin than at the side walls.

As stated in reference 5, the theoretical limit for the figure of merit - the ratio of

reverse to forward loss - is given by
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R 4Hr 2 (3)
max A Hr

Hr is the internal dc resonance field equal to f/y, where f is the frequency in mec, and

y (the gyromagnetic ratio) is 2.8 mc/oersted. Equation 3 is based on the assumption

that the rf magnetic fields are uniform over the cross section of the ferrites. For

Ferramic 1331, for which AH is 500 oersteds, and for a frequency of 4500 mc, we

find

S4 X 450 166
Rax 2.8 X 500

Compared with this value, an R of 50 seems to be poor. If, however, we consider the

ratio of approximately 70, recently reported (ref. 5, p. 27, and related references) for

a flat slab against the broad wall of a rectangular waveguide operating at 9280 mc (in

which case Eq. 3 would give Rmax 700), the result seems better. Ratios nearer the

theoretical limit were obtained by dielectric loading of the ferrites. The best result

so far was obtained by G. S. Heller. At a frequency of 1300 mec, he obtained R ~ 15,

where R ~ 25.
max

The help and advice of Dr. G. S. Heller, of Lincoln Laboratory, M.I.T., is grate-

fully acknowledged.

E. V. Sorensen

References

1. Symposium on microwave strip circuits, Trans. IRE, PGMTT, vol. MTT-3, No. 2

(March 1955).

2. N. Karas and W. Rotman, Some new microwave antenna designs based on the trough

waveguide, IRE Convention Record, Part I, 1956, p. 230.

3. W. Rotman and N. Karas, Some further experimental results on the trough wave-
guide, Antenna Laboratory, Air Force Cambridge Research Center, March 1956

(Unpublished notes).

4. Proc. IRE 44, 2A (Aug. 1956).

5. B. Lax, Group Report M35-59, Lincoln Laboratory, M.I.T., March 14, 1956.


