
Optimal
Discretionary

Location of
Service Facilities

by

Oded Berman, Richard C. Larson, and
Nikoletta Fouska

OR 231-90 November 1990

I

Abstract

Automatic teller machines and gasoline service stations are two examples of a

growing number of "discretionary service facilities." In consuming service from

these facilities, a significant fraction of customers do so on an otherwise preplanned

trip (e.g., on the daily commute to and from work). A system planner, in

determining the best locations of such facilities, is more concerned with placing the

facilities along paths of customer flow rather than, say, near the center of a cluster of

residences or work places. We formally model this problem and present a method

for determining the optimal locations of m discretionary service facilities so as to

intercept the maximum possible potential customer flow. We also show how to

determine the minimal number of facilities required to intercept a prespecified

fraction of total customer flow. Computational results are included.

- 2-

Introduction

Finding the optimal locations of service facilities on a transportation network

has been a major concern of researchers since the pioneering work of Hakimi [1, 2].

Hakimi defined the m-median and m-center problems and proposed algorithms for

their solution. The vast majority of location theory research in the past 25 years has

built from this foundation.

Central to the Hakimi class of location models is a simple behavioral

assumption: the individual consuming service at a facility travels from his (her)

home or place of work on a one-stop tour to the service facility, consumes the

service and returns home or to the work place; or, equivalent mathematically, the

service provider travels on a one-stop tour from his (her) service facility location to

the customer's location, provides the service there, and then returns directly back to

the facility. The "customer traveling" assumption is often reasonable for major

services activities such as automobile purchases, weekly grocery shopping, and

going to a bank to apply for a loan. The "server traveling" assumption is often

reasonable for ambulances, certain emergency repair services and certain home

delivery services. Thus the median problem, which minimizes the average travel

distance (time) over all customers consuming service, and the center problem,

which minimizes the worst case travel distance (time), have been successfully

employed to locate optimally automobile dealerships, bank branch locations, major

retail outlets, ambulances and home locations for certain other "dispatched" mobile

services.

But an increasing number of services are consumed in a discretionary way, in

which the customer (consumer) does not embark on a one-stop tour solely to

consume the service. More likely for these services the customer is already on a

- 3-

preplanned trip from "A" to "B" and, if (s)he passes by one or more discretionary

service facilities on his (her) preplanned route, (s)he may consume that service.

Examples are automobile service stations ("gasoline stations"), automatic teller

machines, and "convenience" stores. We recognize that on occasion a customer

may embark on a one-stop tour to consume one of these services. But, we believe

that a more compelling behavioral model for the majority of discretionary service

purchases is based on a model of consumer "flow" due to preplanned trips. If this

model is valid, then the provider of a discretionary service would not resort to a

Hakimi class (one-stop tour) model to locate optimally service facilities, but rather

would attempt to locate facilities to maximize the flow of different potential

customers that pass his organization's facilities.

This is the motivation for the model and algorithms developed herein. We

assume we know traffic levels (e.g., number of potential customers per day)

traveling between all origin-destination node pairs on a network. This in turn gives

us flow rates on each branch and through each node of the network. The objective

is to locate m discretionary service facilities on the network so as to maximize the

flow of (different) potential customers that pass at least one of the service facilities.

(We do not value multiple passings: a customer traveling past three facilities is

counted as one "captured" customer in our model).

In the remainder of the paper, we provide two equivalent formulations of the

model, propose a "greedy" heuristic which has been found to provide near optimal

solutions in the vast majority of test problems, develop a branch-and-bound exact

procedure, apply the methodology to determining the number of facilities necessary

to intercept a prespecified fraction of flow, and discuss computational results.

- 4-

2. The Problem

Let G(N, A) be a transportation network where N is the set of nodes with

cardinality n and A is the set of arcs. P is the set of non-zero flow paths through the

network arcs and nodes and fp is the rate (per unit time) of flow travel along any

path p E P. The total network flow is f = A fp. We let m be the number of
pe P

facilities to be located on the network. All the facilities are assumed to provide

identical service and thus no customer needs on any given trip to stop at more than

one of them. It is therefore crucial to avoid double counting of the common flow

past two or more facilities. Also, traffic flow on paths is assumed to be independent

of service facility locations.

The objective of this paper is to find a set of locations for the m facilities on the

network so as to maximize the total flow intercepted by the facilities excluding any

double counting.

Before proceeding to formulations of the problem we state a very useful result:

Theorem 1: An optimal set of locations exists on the nodes of the network.

This theorem is easy to prove. We therefore provide just an informal

reasoning for its validity. Suppose a facility is located on the interior of an arc (a, b).

Then, by moving this location to either a or b the same flow must be intercepted

since any flow along (a, b) passes through both a and b. Moreover the facility in the

new location might intercept additional flow as well. Therefore the new solution,

created by moving the facility to a node will result in an objective function value

greater than or equal to the old one.

-5-

Due to Theorem 1, we can reduce the search from an infinite set to a finite set

of feasible solutions, namely the possible of m out of n combinations of network

nodes.

2.1. Problem PI All Integer

We present two formulations of the problem, the first involving two sets of

integer variables:

if there is a facility located on node j

lo otherwise,

V j E N, and

f 1, if at least one of the facilities located by a
particular feasible solution is on path p

1 0, otherwise,

VpE P.

The problem can be formulated as an integer linear problem

max I fpyp
peP

n
s.t. I xj=m

j=1
(1)

Z xj > yp,
jEp

xj = 0, 1

for all p e P

yp = 0, 1

6-

XjJ

Yp

(P1)

(2)

The second set of constraints ensures that yp will be zero if all the xj for j E p are

zero, that is , if there is no facility located on path p. On the other hand, if there is at

least one facility located on path p, at least one xj will be one and therefore, yp could

take on the value of zero or one. But, since ours is a maximization problem, yp will

be forced to be equal to one. Since yp can only be 0 or 1, there is no "double

counting" when the same flow passes more than one facility. If we assume that

only single (e.g., shortest) paths between origins and destinations of flow are

allowed, then the number of constraints is n 2 + 1 - n, and the number of variables is

n2 . However, our formulation allows any subset of network paths to have positive

flow. We note that links do not have any significance in the formulation as long as

specific paths are specified for the flows in the network.

It is interesting to observe that the formulation of the problem above is

identical to that of another problem in location theory which is called the Maximal

Covering Location Problem (MCLP) [3]. In contrast to our problem where the total

path flow covered is maximized, in the MCLP the objective is to find a set of m

locations on a network that maximizes the total nodal demand that is (covered)

within a prespecified distance from the closest facility. In [3] the search for the

optimal set of locations is restricted to the set of nodes. In a later paper [4] it is

shown that at least one optimal set of locations exists that is composed entirely of

points belonging to a finite set of points called the Network Intersect Point set that

include non nodal points of the network. It is when the MCLP is restricted to nodes

(or when artificial nodes are created at the Network Intersect Points) that the

formulation of our problem and of the MCLP are identical.

As mentioned in [5] the maximum coverage location problem is obviously NP-

hard on a general network. Therefore our problem is NP-hard as well. In the MCLP

- 7-

the set of constraints (2) correspond to the n nodes of the network. Therefore our

problem is still NP-hard on general networks even for the case when paths are

restricted to be the shortest paths between O-D pairs (number of constraints (2) is n2 -

n+1). Reference [5] includes a polynomial algorithm to solve the MCLP problem on

a tree network.

2.2. Problem P2 Relaxed

The linear formulation (P1) can be recast into an equivalent nonlinear

formulation (P2) with far fewer variables and constraints. We allow fractional

facilities by defining

xj = fraction of a facility located at node j, j N 0 < xj < 1.

Define bj to be the flow that passes through node j,

bj - fp j ,2,...,n,
p ejPE Pj

where Pj c P is the set of all paths that contain node j. If flow bj is passing through

node j, then we assume that the flow intercepted at node j is bj xj.

Suppose we have along path i - k, flow fp that encounters along the path

fractional facilities x1, x2 and x3. After first flowing through node 1, fp x1 represents

the intercepted flow. The fractional facility at node 2 intercepts an additional

fp(1 - x 1) x 2 units of flow. Finally, the fractional facility at node 3 intercepts an

additional fp(1 - x 1 - (1 - x 1) x2) x3 units of flow. Total flow intercepted along this

path is fp [1 - (1 - x1) (1 - x 2) (1 - x3)]. Note that if any xj (j = 1, 2, 3) is equal to one,

then all the flow fp is intercepted; if all xj's are equal to zero, then no flow is

intercepted. There is no "double counting" of intercepted flows; for instance, 2 or 3

xj's could be equal to one, and still the intercepted flow is correctly evaluated as fp.

- 8-

The product term (1 - x1) (1 - x2) (1 - x3) is intuitive. At each node j a fraction

(1 - xj) of the flow is not intercepted. The total fraction of flow along the i - k path

not intercepted is (1 - x 1) (1 - x2) (1 - x3). The complementary fraction, 1 - (1 - x1)

(1 - x2) (1 - x3), represents the fraction intercepted by at least one facility.

P2 can now be stated succinctly,

max ,p fp 1 n (1 - xn)
pe P n) p

n
s.t. I xj =m

j=1

o < xj < 1.

To demonstrate that this formulation is equivalent to (P1), we must prove that this

relaxed formulation (i.e., no xj integer constraint) produces integer ("whole facility")

results and that the two formulations have the same objective function value when

the solutions are all integer.

Theorem 2. An optimal solution to P2 exists that is entirely integer, i.e., xj = 0 or 1

for all j=1, 2,...,n.

n
Proof. Suppose we have a noninteger solution (x 1, x2,..., x n) such that , xj = m.

j=1

Then at least two xj's, say xa and xb, are fractional: < xa < 1, 0 < xb < 1. Define

Cab = a + Xb, O < Cab < 2. Partition the flow paths into four sets, P = Pab + Pab' +

Pa'b + Pab' , where Pab is the set of paths containing both nodes a and b. Pa'b' is the

set of paths containing neither node a or b, and Pab' and Pa'b each contain one but

not the other node. Replacing xb with (cab - xa) in the objective function, and

holding (n - 2) xj's constant (j • a, b), we can write for the total intercepted flow

-9-

F = F(xa) =
p E Pa'b'

H
ne p

(1 - xn)) + fp (
p E Pab'

- (1 - Xa)
ne p
nga

- (1 - Cab + Xa) H (1 - Xn)
nep
n:b

- (1 - Xa) (1 - Cab + Xa)

)
n (1-
n a, bp
n a a, b

Taking the partial derivatives of F(xa) with respect to xa we obtain

aF(xa)

axa P E Pab'
fp (1- xn)

nep
na

a'bE Pa'b
fp HI (1 - xn)

nep
ngtb

(2xa - Cab)

E Pab
n
nep

(1 -Xn)

n • a, b

=a1 + O2 Xa, where - < al, < , a 2 0.

F(xa) a= a2 2 0.
axt

Since the second derivative of F(xa) is nonnegative, maximization of F(xa) will

always occur at a boundary point, i.e., either xa = 0 or xa = 1. Repeat the above

process up to n - m - 1 times, each time driving at least one xj to integer and

improving (or not decreasing) the objective function.

- 10-

(1 - Xn)

fp 1+ a'b
PE Pa'b

fp + b
pE Pab

xn)

U

There may be two or more all integer optimal solutions to P2. A noninteger

solution can be optimal only if the flows intercepted directly by each of the fractional

facilities are equal and no flows are shared between fractional facilities; but in such a

case, there also exists two or more optimal all integer solutions.

Lemma 1. The formulations P1 and P2 have the same objective function value

when the solution to P2 is all integer.

Proof. Suppose we have a feasible solution to P2 having xj = 0, 1 and

n

xj= m.
j=l

Then for any path p E P having at least one xn = 1, n E p, the corresponding flow fp is

included in the objective function. Hence the value of the objective function for P2

is the sum of path flows fp in which each path p contains at least one facility, i.e.,

x n = 1 for at least one n E p.

But for each such path we must have

Z Xj>1l,

jep

implying in P1 that yp = 1 and hence that the value of the objective function in P1 is

the sum of path flows for paths containing at least one facility.

In the next section, we present a very simple and efficient "greedy" heuristic to

solve the problem that is very similar to the "greedy" heuristic to solve the MCLP

[3]. This heuristic can be also used to provide an initial good solution for the

branch-and-bound algorithm that is presented in Section 4.

- 11-

3. The Greedy Heuristic

The main idea of the greedy heuristic is to locate the facilities sequentially at

nodes which intercept most of the unintercepted flow that remains in the network.

The heuristic locates the first facility at the node which intercepts the maximum

flow in the network. Afterwards, it removes the flow intercepted by the previously

located facility and locates the second one at the node which intercepts most of the

residual flow. The process is repeated until either all the m facilities are located or

no unintercepted flow remains in the network.

3.1 The Algorithm

Recall that b is the flow intercepted at node j. The steps of the heuristic are as

follows:

Step 1: = 1.

Step 2: Compute b. V j E N.

Step 3: Find bjm = jmax {bj}; locate facility I at node jmax (in a case of a

tie, choose jmax to be the node with the smallest index j).

Step 4: Delete from P the set Pjmax and delete from N node jmax (i.e.,

P = P - Pjmax, N = N- jmax)-

Step 5: If = m or if P = 0, stop. Otherwise, set I = I + 1 and return to Step
2.

By the very nature of its "greediness," one easily sees that the heuristic's

solutions demonstrate "diminishing returns to scale," i.e., incremently less new

flow intercepted with each new facility located. More formally, if f(m) is the total

- 12-

flow intercepted by the greedy heuristic with m facilities located, m = 0, 1, 2,..., the

function f(m) is monotone nondecreasing concave.

3.2. Demonstration of Non Optimality

The greedy heuristic does not guarantee an optimal solution. To show this let

us refer to the simple example in Figure 1, where P = {Pl, P2, P3, P4}, m = 2, N =

(A,B,C,D,E,F}, p=A-C-D,p2 =B-C-D, p 3 =A-E,p 4 =B-F, fpl =fp2 =1 + £

and fp3 = fp4 = 1 - .-

1-

2+2 e

1-

Figure 1: The Network for the Counter Example

Since bA = bB = 2, bE = bF = 1 - £, bC = bD = 2 + 2, we select node C (or D) as the

location of the first facility. Now P = {P3, p4), N ={A, B, D, E, F), bA = bB = bE = bF = 1

- £, bD = 0 and therefore if we locate the second facility in A (or B or E or F), P = 0

- 13-

and thus the algorithm stops with the solution (C, A) and an objective function

value of 2 + 2£ + 1 - E = 3 + C. However it is easy to verify that the optimal solution

is (A, B) with an objective function value of 4.

It is interesting to note that in a case of nodal interception ties, the choice in

Step 3 can influence the result of the algorithm. To see this let us refer back to the

previous example with the only difference that now fP2 = 1 - £ and fP4 = 1+ c. In

the first iteration of the algorithm, there occurs a tie among nodes A, B, C, and D for

the first location. If we choose node A(B) as the first facility, then we would have to

locate the second one at node B(A) and therefore obtain the optimal solution, whose

objective function value is again 4 units of flow. But if we start with node C or D,

we would locate the second facility at node B and would therefore, obtain a solution

for which the objective function becomes [3 + £] units, as opposed to the optimal 4

units of flow.

3. Nonconcavity of the Optimal Solution

The greedy heuristic produces solutions f(m) that are concave in the number

of facilities m. However, the optimal solution f*(m) is not necessarily concave.

As an illustration of nonconcavity, consider the example in Figure 2. Here

each "source node" (1, 2, 3) produces one unit of flow directed to respective

destination node (4, 5, 6). In each case, half of the flow goes directly over one arc to

the destination node and the other half flows first through node 7 before being

routed on to the appropriate destination node. With one facility, i.e., m = 1,

f*(1) = 3/2, corresponding to one facility at node 7. With two facilities we have

f*(2) = 2, derived from a facility at node 7 and one at any of the other 6 nodes (there

are several other optimal solutions, as well). But with three facilities, we get

14 -

1 1

1

1/2

4

1/2

Figure 2: Example Illustrating NonConcavity of Optimal
Value of Objective Function

f*(3) = 3, obtained with x1 = x2 = x3 = 1 (and with several other solutions). We see

f*(2) - f*(1) = 1/2, whereas f*(3) - f*(2) = 1, clearly not concave. Such complex

behavior is a prime motivation for the exact branch-and-bound algorithm of Section

4.

3.4. Worst Case Analysis

In this section, we derive the worst case performance of the greedy heuristic. In

locating m facilities over the n-node network having total flow f, suppose f* is the

flow intercepted by optimally locating the facilities and that f < f* is the flow

intercepted by the greedy heuristic. Suppose further that f is the flow through the

node having the most nodal flow, i.e., fl = max {bj}.
jEN

- 15-

1

f> (n-1 f) + (m ll)f.
n - n -

Define fk = the new flow added to the objective function through the kth

selected node in the heuristic. Clearly (*) holds (with equality) for m = 1.

We now prove the general result by induction.

Suppose for m = j,

+I- 1
+fn- 1 '

then we shall prove that for m = j + 1,

fn-j-1 +

Given the inductive hypothesis, some A > 0 we can write

f = fl (n + f() +A.

Recalling that the heuristic always selects next the most heavily

trafficked node in the residual network, we may write

fj+ = fj+ fj+i 2 fj
+ f-f i

or, substituting for fj,

a A {fl (f f n -1 1) fi)+An-)

n -j

= f (n-j-) + f - in - 1
+ A (in-

n -j

- 16-

f(A2n-ji.

fj+l fl n- + f
n-l n-l

Lemma 2. (*)

A\ A, .

I I
I

.

- f(n - 1 + f
n n-

Lemma 2 is intuitive. After selecting fl at the first iteration, the average flow per

node in the residual networks is (f - fl)/ (n - 1). The remaining (m - 1) node

selections must do at least as well as average, hence

2> fl + (m - 1) (f - fl) / (n - 1)) ,

which reduces to (*).

Lemma 3. f* < min (f, mfl).

Proof. Omitted

Worst case peformance is now computed in

Theorem 3.

Proof. f*- f
f*

f*- f

f,
n-m

(n - 1) m

= 1-f < 1 -f*

In-m m-lf
- fl + f

n-i n-l

min (f, m fl)

If f < mfl,

n-m f+
(n -)m< 1 -

=1 n - m +
(n-)m

If mfl < f,

- 17 -

m-l f

f

m-1
n -1

f* - f

m-1l

f* - f

f*

n - m f

1 - n-m
=1- (n -)m

m-1
+

n-i

mfl

m-1
+ -

n-i

Hence,

f* -f

f

As a test for Theorem 3, when m = 1, we have

(m-;_
n -

1 n-1
0=

(n- 1)
1 - 1 = 0,

which is the expected since the greedy heuristic is optimal for m = 1. When m = n,

n-m m-1
(n- 1)m n-1

= 1 -0- 1 = 0,

which is again expected.

For more realistic cases, the worst case performance is within 82% of optimal

for n = 100, m = 10; and within 59% of optimal for n = 20 and m = 3.

4. The Branch-and-Bound Algorithm

The decision variables of our branch-and-bound algorithm are the binary

variables xj, j E N. Within the context of formulation P1, the binary variables yp,

p E P do not need to be calculated directly as they are calculated from the xj's. In the

process of the algorithm we create partial solutions by specifying some of the facility

locations, i.e., assigning only some of the xj to zero or one, and leaving the rest of

them undefined. Then we use the objective function upper bounds, which are

18 -

mfil

i

n-1

(n-)m

.

1 -

< n-m +m-1
II-(n -)m n-1

computed using the partial solutions, in order to determine whether or not the

partial solution under examination could be part of the optimal one.

In order systematically to construct and examine these partial solutions, we use

a binary tree structure, i.e., a tree whose nodes have exactly two, or zero, children

nodes. We start with the root node corresponding to a solution with all variables

undefined. Then, we move on to create the nodes of the first depth level, which are

the left and right children of the root node. These two nodes correspond to partial

solutions with one of the decision variables, say xjl, set first to zero and then to one,

respectively. We repeat this procedure, as if these nodes were the root nodes of two

distinct new trees, in order to create their four children nodes, which now

correspond to partial solutions with two defined decision variables, xjl (zero or one)

and some new xj2, (zero or one). These are the nodes of the second depth level. It

should be clear, that each level corresponds to a new decision variable xjd, for d = 1,

2,..., n, being defined as zero and one, in order to bring the feasible partial solutions

one step closer to completion. Since the maximum possible depth level reached by

the algorithm is n, the maximum number of tree nodes possibly created is:

20 +21 +2 2 +...+2n= A 2d=2n+l 1.
d=0

Thus, each node in the tree corresponds to a partial solution with as many defined

variables as the depth level of the node.

As we create these partial solutions, we will use, apart from constraint (1),

another fathoming test, in order to determine whether we should further consider

them or not. This test is the computation of objective function value upper bounds,

derived from the partial solution, and its comparison with the current lower bound

on the optimal objective function value.

- 19-

4.1 Upper Bounds

We calculate two upper bounds for our partial solutions. Let us assume that

we have a partial solution with d of the xj variables defined to be zero or one.

The first upper bound which we call the zero-ubound becomes tighter as the

partial solution includes more xj variables assigned to zero. The idea is that when

no variables are defined, the potential value of the objective function ranges from

zero to f. As soon as at least two variables xj are assigned to zero in the same partial

solution, any flow that passes through paths containing only the corresponding

nodes, cannot be intercepted by any solution, that includes this partial one.

Therefore the zero-ubound becomes:

f- fp,
pE P' (3)

where P' is the set of paths p, such that xj is set to zero for all nodes j in p, i.e.,

P'={(pe P I je p--xj=0}.

The second upper bound for a partial solution, which we call the one-ubound,

becomes tighter as the solution includes more decision variables assigned to one.

The idea behind it is that "xj = 1" corresponds to a facility already located at node j.

This facility intercepts the flow of all paths that include node j. If more than one of

the decision variables are set equal to one, the corresponding facilities might

intercept common flow. If, for instance, xjl and Xj2 are both equal to one, then the

flow of any path that includes both nodes jl and j2, is intercepted by both facilities.

Let us assume that in a partial solution with d of the decision variables defined, I of

the m facilities have already been located, i.e., there are I decision variables set to

- 20-

one. In the remaining [n - d] decision variables to be defined, there should be

exactly [m - 1] set equal to one, in order for the solution to be a feasible one. When

we compute the one-ubound, we assume that the [m -] facilities will be located at

the nodes that present the [m - I] highest flow interception values among the [n -d]

nodes corresponding to the undefined variables.

To express the one-ubound, let D be the set of nodes that comprise a given

partial solution and let U be the set of nodes N - D. Then, the one-ubound for a

partial solution corresponding to a node of depth level d, with I of the d defined xj

variables set to one is:

J E D _ E P JE p)]

where L is the sum of the [m - I] largest remaining nodal flow interceptions bj for

je U (after removing from P all the flow intercepted by the I already located

facilities). The expression K) + is equivalent to max(K,O) and ensures that, if there is

no facility located by the partial solution on a path p, then its flow fp will contribute

zero to the upper bound of the objective function, not a negative amount.

Finally, we can take the minimum of these two upper bounds and declare it the

global upper bound (ub) for the objective function value of the partial solution of

interest. As mentioned earlier, the zero-ubound favors partial solutions with many

xj's set to zero and the one-ubound favors those with many xj's set to one. Thus, the

intention is that the two bounds will complement each other in providing one

useful upper bound for any partial solution.

- 21 -

4.2 The Algorithm

For any node in the tree, let d denote its depth level and c denote the count

(number) of facilities already located by the corresponding partial solution. The

branch-and-bound algorithm can be presented as follows:

Step 1: Guess an initial complete feasible solution [x1, x2 , .. ., x n] and compute

its objective function value. Set the lower bound [LB] of the optimal

objective function at this value and declare this initial solution as the

best solution found so far.

Step 2: Choose as node 1 of the branch and bound tree the variable that

intercepts the maximum flow in the network, and compute its upper

bound ub(1), which, since no variable is yet defined, is set to be equal

to the total network flow. Go to Step 6.

Step 3: Create the next tree-nodes, by choosing variable xj which intercepts

the maximum remaining flow. Compute the depths, counts and

upper bounds for the two children of xj, xjl and xj2.

Step 4: For the child with the larger upper bound, perform the following

fathoming tests:

(i) If ub < LB, or if n - d < m - c then fathom the tree node and

move to Step 6,
(ii) Else if c = m, then fathom the tree node and move to Step 5.

Otherwise go to Step 6.

- 22-

Step 5: Since c = m, all the facilities are already located and therefore the tree

node corresponds to a complete, not partial solution, with all the

undefined variables set to be zero. Compute the objective function

value of this solution. If it is equal to LB, then move to Step 6. If it is

greater than LB, then update LB to resume its value and this solution

becomes the best solution found so far. In this case, go back and

repeat the first fathoming test for all the tree nodes which are

currently not fathomed leaves in the tree structure, i.e., the current

subtree root candidates. Then move on to Step 6.

Step 6: If no unfathomed leaves are left in the tree, then stop; the best

solution found so far is indeed the optimal one and its objective

function value is the current LB. If there exist more unfathomed

leaves in the tree, then choose that leaf of the tree with maximum

upper bound and go to Step 3.

4.3 Example and Computational Results

Figure 3 presents the branch-and-bound tree for the example of Figure 1. This

example was first presented as a case where the "greedy" heuristic fails to provide

the optimal solution. Now, we will show how the branch-and-bound algorithm

will produce the optimal solution. Let us assume that is 0.2. We arbitrarily choose

an initial feasible solution, say xC = 1 and xD = 1. The initial objective function

value is 2.4 flow units, which is also the initial lower bound (LB) for the optimal

objective function value. Since the upper bound for all the nodes up to node 9 is

larger than that of the lower bound set by the initial solution at 2.4 units, no

fathoming occurs before node 9. At this point, c = m = 2 and we obtain the first

- 23-

feasible complete solution in the tree: xA = 1 and xB = 1. Its objective function

value is four flow units, greater than the current LB and therefore the solution

[xA = 1 and xB =1] becomes the new best solution found so far and LB gets updated to

four flow units. But now, nodes 3, 5, 6, and 8 which are the current unfathomed

tree leaves, get fathomed, because their upper bound is not greater than the current

LB. Having done so the tree cannot be expanded any more and the algorithm has to

stop. Its current best solution is indeed the optimal one: nodes A and B are the

optimal locations for the two facilities.

Any feasible solution can be selected to provide the initial lower bound for the

algorithm. Based on our computational experience we recommend the feasible

solution produced by the "greedy" heuristic.

The computer code implementing the algorithm is written in PASCAL TURBO

and tests were run on an IBM PC/XT with 512K.

In order to produce test results we generated randomly network sizes, their

paths and corresponding flows. In Table 1 we illustrate a typical sample of our test

cases. The table provides the CPU time and number of nodes generated in the

branch and bound tree for networks with number of nodes and number of paths

ranging from 10 to 100 and number of facilities ranging from 2 to 5.

- 24-

Initial Solution = C,D
LB = 2.4

lB = 4

1

=4 C 3 = 3.2

Fal

UB=4

XA=0 /

=0

XB=

UB =

0 c=1 UB=3.2

Fatl

1

UB
=1

=1

=41

Optimal Solution A,B

Figure 3: Branch and Bound Tree for the Example in Figure 1

- 25-

c=

XD= =1

UB

- -

4

CPU # of
Time nodes

0:0:1:39 4
0:0:4:87 14
0:0:15:08 28
0:0:30:18 39
0:0:42:96 40
0:1:21:40 55

0:2:10:86 69
0:3:14:92 80
0:4:29:31 89
0:5:34:20 90

CPU # of
Time nodes

0:0:3:92 11

0:0:48:01 103
0:1:10:14 99

0:1:22:17 83
0:5:45:53 279

0:11:42:08 359

0:14:58:37 432

0:29:40:08 698

0:21:10:16 396

CPU # of
Time nodes

0:3:20:68 302

0:6:15:70 372

0:12:32:01 620
0:29:12:55 1105

1:14:24:19 2231
1:35:17:1 2449

2:15:8:21 3100

CPU . # of
Time nodes

0:12:11:12 865

0:14:40:13 877

0:40:12:10 1470

1:19:15:01 2539

2:36:1:48 4800

3:46:20:90 5900

6:8:25:29 7623

Table 1: CPU Time and Number of Nodes on the Branch and Bound Tree for
n= I PI =10,..., 100and m = 2,3,4,5

(Time presented as Hours: Minutes: Seconds: Hundredths of Second)
*The greedy heuristic gives a solution that intercepts all the flow in the network.

In 65% of cases tested (more than 200 runs), the "greedy" heuristic produced the

optimal solution. In the cases for which the heuristic's solution was suboptimal the

difference in the objective function value was always less than 3.5% and in most

cases less than 1%. The CPU time of the heuristic for a network with n = I PI = 100

and m = 5 is 24 seconds. Also, the one bound proved in general to be more useful

than the zero bound.

5. The Required Number of Facilities

We can combine our greedy heuristic with our exact branch-and-bound

procedure to answer, as well, the following related question: what is the minimum

- 26-

Network
n, IPI

10,10

20,20

30,30

40,40

50,50

60,60

70,70

80,80

90,90

100,100

2 3 5m

number of facilities needed to "capture" an externally specified fraction of total

flow? The problem is to find the minimum number of facilities and their

respective locations that intercept a predetermined total flow at least equal to

(1 - a)
peP

fp- Cal where a = fraction of total network flow not intercepted.

Invoking nodal optimality, the problem can be formulated as:

n
min xj

j=1

I Xj > yp
jEP

jE P

(Problem Ca)

Vp P (4)

(5)Yp fp > Ca

xj=0,1, Vje N; yp=0, 1 Vpe P

Notice that if a = 0 constraint (5) becomes redundant and yp can be replaced by 1 for

all p P in (4).

First we consider problem CO, that is, the problem for which all the network

flow must be intercepted. Subsequently we solve Ca for all 0 < a < 1.

- 27-

s. t.

5.1 Solving Problem C o

Consider problem C0

n
min xj

j=1
(Problem C;)

xj 1
jEP

xj = 0, 1

Obviously C O is a set covering problem. However due to its special structure it

is a very easy problem to solve. First, even though the set of constraints (6) can be

huge since there may be many possible paths between any pair of source and

destination nodes, this is not a real concern, as shown in

Lemma 4. P can be reduced to P' where I P' I < n2 n (I A I denotes the cardinality
of a set A).2

of a set A).

Proof. For any pair of paths pl, P2 P if P1 C P2, P2 can be deleted from P in C 0.

Therefore the set P' cannot contain more elements than the number of one-link

paths in P, numbering at most (n 2 - n) / 2.

Let mO denote the optimal number of facilities. For a complete graph a direct

consequence of Lemma 1 is given in

Corollary 4.1. If G is a complete graph and there is a positive flow between all pairs

of nodes in N, then m0 = n - 1 and any subset of n - 1 nodes is optimal.

- 28-

s. t. Vp P

Vj N

(6)

(7)

Let us define a coverage matrix C with rows corresponding to paths in P' and

columns corresponding to nodes in N, where

(1 if jep

1t.0 otherwise

For the set covering problem there are three simple reduction operations that can

allow us to reduce the size of C [6] . Here we present them using set operations

(instead of column and row operations that are traditionally used [6].) The first

reduction operation, corresponding to elimination of rows (used in the proof of

Lemma 1) states that if Pi C P2, P2 can be deleted. Let Pj = {pe P' I je p, i.e., the set of

all positive flow paths in P' containing node j. Then the second reduction

operation, corresponding to elimination of columns, can be stated as follows: If

Pj Pi delete column i, set x i = 0 and delete node i from each p in P'. The third

operation, focusing on zero-length paths found during the reduction, corresponds

again to row elimination: If 3p, p = j j N set xj =1, and delete from P' all paths

that include node j.

5.2 Solving Problem Ca

By modifying the greedy heuristic, we now find the minimal number of

facilities, ma corresponding to the solution to problem C*, for any a. Define the

relaxed P1 problem RP1 with noninteger constaints 0 < xj < 1 and 0 < yp < 1.

An Ascent Algorithm to Solve Ca

Step 1 1=1, Setxj= j= 1,...,n.

Step 2. Compute bj j N.

- 29-

Ste 3. Find bmax = max {bj; locate facility I at a node max having flow

bmax, i.e., Xjmax = 1 (in a case of a tie, choose jmax to be the node with

the smallest index j).

Step 4. Delete from P the set Pmax and delete from N node jmax-

Step . If
= 1

xj j b co set mmax = I and go to Step 6. Otherwise, set

I = I + 1 and return to step 2.

Step 6. Set I = I - 1 and solve RP1. If the objective function value of RP1 is

less or equal than c , go to Step 7, otherwise solve P1 using the

exact branch and bound algorithm. If the optimal objective value of

P1 is larger than c a repeat Step 6. Otherwise go to 7.

Step 7. ma = I + 1 is the optimal objective function value.

We note that the first four steps of the algorithm are identical to the "greedy"

heuristic.

The optimality of the algorithm to solve Problem C a should be obvious as

shown in

Theorem 3. The ascent algorithm produces the optimal solution of Problem C.

Proof. mmax is an upper bound on the optimal value of the objective function of

Cc. RP1 provides an upper bound on problem P1. Therefore if this upper bound is

- 30-

less than or equal to ca the exact solution of P1 cannot provide a feasible solution

with optimal objective function value larger than c. ·

Once the optimal solution of C m is obtained, P1 can be resolved to

provide a set of ma locations possibly with better total flow.

5.3 Numerical Example

As an example consider Table 2 that includes all the paths with positive flows

of a network with 7 nodes.

PATH

1-3-5-2
1-3
1-2-5
1-2-4
1-6
2-1
2-5-3
2-4
2-6
3-1
3-5-2
3-5
3-4
3-7
3-7-4
6-1-3-7
4-2
6-1-2
7-4
7-3-5
7-4-2-6

TOTAL

FLOW

30
20
10
40
30
20
25
30
10
10
20
10
20
30
25
20
10
20
30
25
20

455

Table 2. Path and Flows for the Example.

- 31 -

Now we solve the problem with a = 10% or c1 0% = (.9) (455) = 409.5

STEP 1: = 1; STEP 2: b1 = 200, b2 = 235; b3 = 235, b4 = 175, b5 = 120, b 6 = 100,

b 7 = 150; STEP 3: bmax = b2, x2 = 1; STEP 4: P = {1-3, 1-6, 3-1, 3-5, 3-4, 3-7, 3-7-4,

7
6-1-3-7, 7-4, 7-3-51, N = {1, 3, 4, 5, 6, 7); STEP 5: j bj = 235, = 2; STEP 2:

j=

b 1 = 80, b 3 = 160, b4
= 75, b 5 = 35, b6 = 50, b7 = 130;- STEP 3: bmax = b3, X3 = 1;

STEP 4: P = (1-6, 7-4), N = (1, 4, 5, 6, 7); STEP 5: ; xj bj = 235 + 100 = 395, 1=3;

STEP 2: bl = 30, b 4 = 30, b 5 = 0, b 6 = 30, b7 = 30; STEP 3: bmax = bl, x 1 = 1;

STEP 4: P = 7-4}, N = (4, 5, 6, 7; STEP 5: v xj bj = 395 + 30 = 42 5, mmax = 3;

STEP 6: 1 = 2, the objective function value of RP1 is 395 and therefore the optimal

objective function is I = 3 in STEP 7. The optimal solution is to locate at nodes 1, 2,

3. If we solve problem P1 with = 3 we obtain an optimal objective function value

of 445 and optimal locations at nodes 1, 3, and 4.

5.4 Computational Results

The computer code implementing the algorithm is written in TURBO PASCAL

and tests were run on an IBM PC. In order to produce test results we randomly

generated networks, travel paths and flows. Table 3 summarizes the test results for

number of nodes (n) and number of paths (I P I) ranging from 10 to 100 with a = 5%.

In the table we summarize the average CPU time of the algorithm and the average

CPU time of the five first steps of the algorithm (which we call henceforth the

greedy heuristic) based on 10 problems solved in each category of n and I P I (to the

total of 100 problems).

- 32-

NETWORK
n, IPI

10,10
20, 20
30, 30
40, 40
50, 50
60, 60
70, 70
80, 80
90, 90
100, 100

CPU TIME
hr:min:sec: hundreths

of sec.

0:0:18:90
0:0:20:42
0:1:23:12
0:2:3:05
0:2:57:24
0:3:38:08
0:8:26:70
0:22:31:60
0:38:21:12
1:5:46:02

CPU TIME
GREEDY

hr:min:sec: hundreths
of sec.

0:0:4:77
0:0:5:43
0:0:5:86
0:0:6:44
0:0:7:50
0:0:8:33
0:0:9:52
0:0:10:74
0:0:12:88
0:0:15:42

Table 3: Computational Results for Random Problems

In addition, the following results not shown in Table 3 were obtained:

1. The algorithm terminates without the need to utilize the branch and

bound routine in approximately 75 percent of the test problems.

2. In all problems solved the optimal number of facilities was either the

same as or one less than that obtained with the greedy heuristic.

3. In all problems solved, when RP1 resulted in an objective function greater

than Coa, so did P1.

Acknowledgements

The authors gratefully thank two referees whose suggestions improved this

paper. The work of the second and third authors was supported by the National

Science Foundation, grants ECS-8714649 and SES-8709811.

- 33-

References

1. S. L. Hakimi, "Optimum Locations of Switching Centers and the Absolute
Centers and Medians of a Graph," Operations Research, 12, pp. 450-459 (1964).

2. S. L. Hakimi, "Optimum Distribution of Switching Centers in a
Communication Network and Some Related Graph Theoretic Problems,"
Operations Research, 13, pp. 462-475 (1965).

3. R. L. Church and C. ReVelle, "The Maximal Covering Location Problem,"
Papers Regional Science Association, 32, pp. 101-118 (1974).

4. R. L. Church and M. E. Meadows, "Location Modeling Using Maximum
Service Distance Criteria," Geograph. Anal., 11, pp. 358-373 (1979).

5. N. Megiddo, E. Zemel, and S. L. Hakimi, "The Maximum Coverage Location
Problem," SIAM J. Alg. Disc. Meth., 4(2), pp. 253-261 (1983).

6. Garfinkel, R.S., and Nemhauser, G.L., Integer Programming, New York: John
Wiley and Sons, 1972.

- 34-

