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A. ANALYSIS OF FM TRANSIENTS

A careful study of the conditions for low-distortion transmission of FM signals

through linear filters suggests that, for purposes of quasi-stationary response, the most

important characteristic of a frequency modulation is the maximum rate at which it tends

to sweep the frequency of the carrier. Indeed, this maximum rate of change of instan-

taneous frequencies offers an excellent basis for classifying frequency modulations in

the analysis of filter response. On this basis, three types of possible frequency changes

may be recognized: (a) those that are relatively slow on the time scale of the system

under consideration; (b) those that are so fast (on the time scale of the system) that

they are essentially abrupt; (c) those that occur at a rate that is comparable to the

speed with which the system response can build up and decay.

The analysis of filter response to an FM excitation can be carried out on an instan-

taneous-frequency basis, provided that
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where wi(t) = instantaneous frequency of excitation, and Z(jw) is the system function.

The quantity E has the significance of being an upper bound on the relative error in

approximating the complex amplitude of the response by the quasi-stationary term only

(Technical Report 332, in press, and Quarterly Progress Report of Jan. 15, 1958, p. 65).

Equation 1 provides the criterion for deciding when dwo/dt is sufficiently slow on the

time scale of the system to justify the use of the instantaneous-frequency method for

analyzing the system response. In other words, only when this condition is satisfied

can the system function be assumed to change instantaneously with wi(t).

When the frequency change of the excitation is essentially abrupt, we have another

situation in which the analysis can often be reduced to a greatly simplified pictorial

tIz

C R L

Fig. VIII-1. High-Q resonant circuit and definition of symbols.
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Fig. VIII-2. Phasor representation of response at t = 0+.

form. We shall illustrate this situation by considering the response of a single-tuned

high-Q circuit to a frequency step.

With reference to Fig. VIII-1, assume that the excitation is described by

i(t) = exp j [ .+u -l(t)(f- i)] dt + o (2)

where u-_(t) is the unit-step function. The impedance of the high-Q single-tuned circuit

can be written as

1
z(j) = 1+

+ja

-= w - oW

where a = 1/(ZRC), and w is the frequency of resonance. Before t = 0, the filter

response is assumed to be in a steady-state condition. After t = 0, the response is made

up of two sinusoids - one at center frequency and one at w= wf. The sinusoid at the center

frequency dies out with time, whereas the sinusoid at w= f represents the steady-state

component that corresponds to the new excitation at w= wf. If e(t) is the filter response,

then

rZ(iH .) ex)(iw.t) for t -< 0

e (t) =

(jwot) + Z(j2 f) exp(jwft) for t > 0

Since the two expressions must be identical at t = 0, we have

A;= Z(jo i ) - Z(jQf)

If we take exp(jwft) as a reference, then at t = 0+ the response is completely described

by the phasor diagram shown in Fig. VIII-2.
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Usually, the frequency deviations from the final frequency wf are of interest. There-

fore, the analysis is best carried out by taking the final steady-state response as refer-

ence and normalizing with respect to Z(jQf)exp(j ft). The result of this operation is

the simplified representation

e'(t) = Z(j exp(-j t)

= I +ATexp(-at) exp[j(T.T- ft)] (5)

which is illustrated by the phasor diagram of Fig. VIII-3, where the symbols are also

defined.

The phasor model of Fig. VIII-3 can be used to explain all of the amplitude

and frequency transient phenomena that

are observed in the laboratory (see

Section VIII-B). Moreover, all of the sig-

Ixat -A x nificant information (for example, the
ATexp( (l+x2)1/2

(-at AT= +/2 magnitudes and times of occurrence of

overshoots and undershoots, the conditions

OT=tn I/xi that give rise to amplitude nulls, and rise

o times) can be quickly obtained from this

Fig. VIII-3. Simplified phasor diagram diagram by inspection. Indeed, the simpli-
of filter response. fication is so great that the problem

becomes almost trivial!

With a more complicated filter, any initial energy that might be stored in the system

before t = 0 will be dissipated at the natural frequencies (normal modes) of the system

after t = 0. At t = 0+, the term that represents the final steady-state response will be

cancelled out by a term whose components die out with time at the natural frequencies

of the system. Once the component solutions have been determined, the determination

of the instantaneous-amplitude and instantaneous-frequency behavior of the total response

is best carried out by solving a multisignal interference problem. In the case of band-

pass filters whose pole patterns display symmetry about some frequency, significant

additional simplifications are possible.
E. J. Baghdady

B. EXPERIMENTAL STUDY OF FM TRANSIENTS

Oscillograms of the instantaneous frequency of the response of the single-tuned

circuit to a series of frequency steps that start at the mid-band frequency of the filter

are shown in Fig. VIII-4. For xf less than 0. 80, the response resembles a rising

exponential whose rise time is approximately independent of xf (see Fig. VIII-4(a)).



(a). x i = 0; Xf = 0.40

(b). x i = 0; x f= 1.20

(f). xi = 0; x = 3. 92

(g)x.x i = 0; xf = 4.00

(k). x i = 0; xf = 11.80

(1). x 1 = 0; x2 = 2.40

(c). x i = 0; x = 2.40 (h). x i = 0; xf = 5.40 (m). x1 = 0; x 2 = 14.08

(d). x = 0; x = 3.00
1

(e). xi = 0; xf = 3.92

(i). Xi = 0; Xf = 6. 20

(j). x i = 0; f = 7. 80

(n). x 1 = 7 . 04; x 2 =7. 84

(o). x 1 = -5. 24; x 2 = +5. 24

Fig. VIII-4. Oscillograms of instantaneous frequency' of response of the single-tuned

circuit to a series of frequency steps that start at mid-band frequency
of the filter.
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A small overshoot is first noticeable for xf= 0. 80. As xf becomes greater than 0. 80, the

magnitude of the overshoot increases with a corresponding decrease in the rise time of

the response and the time of maximum overshoot. An inflection point is also apparent

on the leading edge of the transient (see Fig. VIII-4(b), (c), (d)). For xf = 3.92, the

overshoot is caught in the act of turning into an undershoot, and, at the instant of transi-

tion, the instantaneous amplitude of the response drops to zero. These two effects are

shown in Fig. VIII-4(e) and (f), respectively. For xf =4. 00, the "overshoot" has defi-

nitely become an undershoot (see (g) of the figure). With a further increase in xf, the

magnitude of the first undershoot decreases in value, whereas the magnitude of the

second overshoot increases (see (g) and (h)). For xf= 6. 00, the second overshoot

becomes an undershoot (see (i)), and the instantaneous amplitude of the response again

drops to zero. For larger values of xf, the magnitude of the second undershoot

decreases in value. The third, fourth, and successive overshoots behave exactly the

same as the first and second. Note that the undershoots, when they occur, always pre-

cede the overshoots and that, for a given xf, successive undershoots are always larger

than the preceding ones, whereas successive overshoots are always smaller. Note also

that the frequency of ringing in all cases approximately equals Q f (see (j) and (k)).

In Figs. VIII-4(1) and (m), the leading edge of the square wave corresponds to a fre-

quency deviation away from the center frequency (xi = 0) of the tuned circuit; the trailing

edge corresponds to a deviation towards the center frequency (xf= 0). When xf = 0, the

response is always exponential and has no overshoot, regardless of the value of x..
1

Figure VIII-4(n) shows a response in which the overshoots have no inflection point in the

leading and trailing edges. Figure VIII-4(o) indicates that when x i = xf the leading and

trailing edges of the square-wave frequency response have identical rise times, percent-

age overshoots, and times of maximum overshoot.

The vector model of Fig. VIII-3 of Section VIII-A can be used to explain all the

phenomena observed in the FM transient oscillograms. Consider, for example, the

e'W 7 G
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Fig. VIII-5. Behavior of e'(t) that results in occur-
rence of instantaneous -frequency and
instantaneous- amplitude transients in
the tuned-circuit response. Note that
0-0' is the unit vector.
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situation shown in Fig. VIII-5. As the vector A T exp(-at) decays exponentially, the vec-

tor e'(t) wobbles back and forth with a period approximately equal to i/(2r2f). At point

A, e'(t) is at rest, and the instantaneous angular frequency of e(t) equals wf. As e'(t)

rotates towards B, the time rate of change of the phase angle, 0, increases and an over-

shoot in the instantaneous-frequency response of e(t) results. The maximum overshoot

occurs at point B. The time rate of change of 0 decreases as e'(t) rotates from B. At

point C, e'(t) is again at rest. As e'(t) rotates towards D, dO/dt continues to decrease

and the instantaneous angular frequency of e(t) falls below wf. The angular frequency

reaches its minimum value at point D. As e'(t) rotates from D, dO/dt begins to increase

once again. At point E, dO/dt = 0, and one cycle of ringing in the instantaneous-

frequency response of e(t) is completed. The cycle is repeated for points E, F, G, and H

and continues to repeat until A T exp(-at) is negligible with respect to the unit vector.

Since such points as B and F occur at increasingly greater distances from 0, over-

shoots in the frequency response of e(t) occur with successively smaller magnitudes.

The occurrence of undershoots in the instantaneous frequency of the response is

explained with the use of Fig. VIII-6. For the case shown, the vector AT exp(-at) is

sufficiently large with respect to the unit vector at t = 0, and the frequency Qf is suffi-

ciently high to enable the tip of the e'(t) vector to encircle the origin, O, twice as

A T exp(-at) revolves at the angular frequency, f. Since the instantaneous frequency

of the resultant of two signals of different frequencies always overshoots in the direction

of the frequency of the stronger signal, the instantaneous frequency of e(t) undershoots

at such points as A and B, which occur to the left of O, and overshoots at such points

Fig. VIII-6. Behavior of e'(t) that results in
C - DO occurrence of both undershoots

and overshoots in the instanta-
neous- frequency response of
e(t). Note that 0-O' is the unit
vector.
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as C and D, which occur to the right of O. Note that the undershoots, if they occur,

must always precede the overshoots; also, successive undershoots have magnitudes that

increase in value, whereas successive overshoots have magnitudes that decrease in

value. When the tip of the e'(t) vector passes through the origin, the magnitude of e'(t)

equals zero, and the instantaneous frequency of the response is transitional between an

overshoot and an undershoot.

When Wf = wo' 0 f = 0 and the vector AT exp(-at) is stationary with respect to the unit

vector. Thus, the response to a frequency jump that terminates at W consists of a

smooth exponential rise caused by the exponential decay of A T exp(-at). (See Fig. VIII-3

of Section VIII-A.) When wf approximately equals w ' ,f is very small. Thus,

= T -ft is approximately constant as A T exp(-at) decays, and the response is again

an exponential rise.

The inflection point that occurs, for certain values of Qf, in the leading edge of the

frequency response is caused by the fact that the transients in the frequency-step

response of the single-tuned circuit are the result of the exponential decay of

AT exp(-at), and the angular rotation of AT exp(-at). When first one effect predominates

and then the other, an inflection point is seen on the leading edge of the response. If 2f

is small, only the first effect predominates, and no inflection point is observed. If Qf is

very large, only the second effect predominates, and again, no inflection point occurs.

D. D. Weiner

C. DYNAMIC TRAP FOR THE CAPTURE OF THE WEAKER SIGNAL

An FM receiver that incorporates a dynamic trap system for capturing the weaker

of two cochannel signals has been built and tested (1, Z). A summary of the results

follows.

The capture performance of an FM receiver is brought out clearly by a test proce-

dure that simulates the cochannel interference by the superposition of two carriers that

have easily identifiable modulations. A suitable choice of modulation for facilitating cap-

ture measurements is a sinusoidal message of known frequency. The receiver perfor-

mance can then be presented in terms of a plot of the fundamental component of stronger

(or weaker) signal modulation frequency as a function of the weaker-to-stronger signal

amplitude ratio, a; a = EW/ES. Generally a more complete presentation involves both

weaker-signal and stronger-signal capture characteristics plotted on the same coordi-

nates.

The capture characteristics of the dynamic-trap receiver are determined largely by

two parameters that describe the attenuation characteristic of the trap. The more

important parameter is the maximum trap attenuation factor, 5, which is defined as

the maximum trap attenuation within the passband, normalized with respect to the
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Fig. VIII-7. Capture characteristics for four values of 6; bandwidth is fixed at 15 kc.
Curves A, A', B, B', C, C': ES is modulated ±30 kc at 400 cps; EW is

modulated ±30 kc at 1 kc. Both signals are centered in the passband.
Curve D: E S is modulated ±35 kc at 400 cps and centered in passband;

E W  is unmodulated and at edge of passband. (Primes denote weaker-

signal capture characteristics.)
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Fig. VIII-8. Capture characteristics for three

modulated ±30 kc at 400 cps. EW

Both signals centered in passband.

values of bandwidth. E S is

is modulated ±30 kc at 1 kc.
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maximum amplitude response in the passband. The less important parameter is the

trap bandwidth, BW. This corresponds to the difference between the half-power fre-

quencies of the "inverted" frequency response of the trap. At those frequencies the

relative passband gain is reduced to [1 - (1- 6)/V/].

Figures VIII-7 and 8 show capture characteristics of the experimental system. In
the measurements that led to curves A, B, and C of Fig. VIII-7 and curves A, B, and

C of Fig. VIII-8, the two signals are at the center of the band, and each is modulated

with a deviation of ±30 kc. The modulation frequencies are 1 kc for the weaker signal

and 400 cps for the stronger signal.

Curves A and A' of Fig. VIII-7 show the observed capture characteristic of the

receiver without the trap. The curves for the weaker and stronger signals are symmet-

ric about the a= 1 line. The capture transition region is relatively narrow and is cen-

tered at a= 1.

Curves B, B', C, C', and D of Fig. VIII-7 show characteristics for the receiver

with the dynamic trap for three values of 6 and a fixed trap bandwidth of 15 kc. The

best observed performance of the system is shown by curve D. Here, the weaker signal

is unmodulated and sits at the edge of the passband. The stronger signal is centered in

the middle of the band and is modulated through ±35 kc at 400 cps. The fundamental

component of the stronger signal falls to a relatively small value when a is greater than

0. 04. From this it is inferred that the output consists mostly of the weaker signal when

a is greater than 0. 04. The curves of Fig. VIII-7 clearly show that the capture transi-

tion region always occurs at az 6, and hence that the weaker signal is captured for

values of a slightly greater than 6.
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Fig. VIII-9. Preliminary stronger-signal capture characteristic
for receiver with dynamic signal selector.



(VIII. FREQUENCY MODULATION)

Figure VIII-8 shows capture characteristics for three different trap bandwidths. The

value of 6 was adjusted to the minimum attainable for a given bandwidth. It ranged from

approximately 0. 05 to 0. 1. We see that the bandwidth primarily affects the detailed

shape of the capture characteristics. The most abrupt capture transition region occurs

for an intermediate bandwidth (3).

These results indicate the feasibility of a dynamic trap system for capturing the

weaker signal. For best performance and stability, the trap should be designed for a

minimum value of 6 and a large bandwidth.

Some experimental work also has been done to test a dynamic selector (1) that

improves the capture of the stronger signal. The demodulated output from the receiver is

fed back to deviate a peaked filter in the i-f stages, so that its center frequency follows

the instantaneous frequency of the stronger signal. A preliminary capture characteristic

is shown in Fig. VIII-9. Both signals were centered in the passband. The weaker signal

was unmodulated; the stronger was modulated through ±30 kc at 400 cps. The peaked

filter had a Q of 88. As a is increased from 0 (curve A), the stronger signal is

captured 100 per cent when a is less than 1. 02. As a is decreased from 2 (curve B),

the stronger signal is recaptured only when a is less than 0. 7. Thus, the system

exhibits a hysteresis-like charcteristic. This system also shows promise of reducing

impulsive interference.

G. J. Rubissow
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D. TRANSISTOR PULSE-CIRCUIT ANALYSIS

In the usual analysis of transistor pulse circuits, the transistor is replaced by a

piecewise-linear equivalent circuit. The transistor operates as a charge-controlled

device. An oversimplified model that takes the charge-controlled operation into account

makes use of capacitors. From this approach the effects of transistor geometry and of

the constituent semiconductor material parameters are not obvious, and the analysis

often leads to results that lack physical significance.

In this investigation, the transistor is studied in a typical pulse-circuit application,

a blocking oscillator. In the earlier phases of the investigation, experiments with junc-

tion diodes and driven-transistor circuits were necessary for deducing the fundamental
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_C Fig. VIII- 10. Transistor geometry.
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Fig. VIII-11. Approximate pole pattern for p(s) in the s-plane.

properties of the transistor as a circuit element. Theoretical analysis that assumes

ideal geometry and material behavior is another way of deducing circuit performance.

We used both an empirical and a theoretical approach and applied the results to the

blocking oscillator. Although the study is primarily of academic interest, the results

provide a basis for circuit design and an understanding of the important effects contrib-

uting to the performance of the device.

The theoretical part of the investigation consists of the solution of the time depend-

ence of driving-point and current-transfer relations. With parallel-plane geometry

(Fig. VIII- 10), the assumption of linear diffusion and recombination of excess charge

density of a minority carrier, and suitable approximations to the boundary condi-

tions, the common-emitter transfer function for arbitrary currents in normal bias

is given by

Ic(s)
(s)ib(s) -

cosh W (STh+1) - 1
L h

The s-plane representation of this expression is shown in Fig. VIII-11. The quantity

Th is the effective recombination lifetime of bulk and surface properties of the semi-

conductor material. The transfer function p(s) can be simplified, without loss of gener-

ality except for very small portions of the transient, by taking the term corresponding

to the pole closest to the origin, so that we have

E

I
E
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22 
8

p(s) = ST + ST (2)

This is a familiar form for the current-transfer ratio. Here po is the static current

gain, and Th is the exponential time dependence. If a time constant Tr is assigned to the

transistor, experimental measurement of the recombination lifetime is unnecessary.

Other important effects are caused by the collector depletion layer, base-width

modulation, and nonlinearity in the base driving-point characteristic. Fortunately,

these are not important effects in many pulse circuits. Assumptions of an ideal current

source representation at the collector and a purely resistive base driving-point imped-

ance are completely justified in a large number of pulse circuits.

Switching from saturation, through normal bias, to current cutoff, and vice versa,

is of interest in pulse circuitry. The state of the device is determined by the excess

charge density of the minority carrier, which is a function of the applied current. Often

an initial distribution of charge density (as found in saturation, for example) is known,

and the applied base current can be found from circuit relations. For this situation,

a useful relation is

Q + Ib(s)
Q(s) 1 (3)

S+--
Th

where Qo is the initial, stored, excess charge density in the base, Ib(s) is the applied

base current, Q(s) is the time dependence of total stored excess charge in the base, and

Th is the effective recombination lifetime.

If it is possible to assume that zero stored charge density is the condition for current

cutoff, then it is possible to determine the saturation time. This assumption is justified

in most pulse-circuit applications if the base drive is not greater than the forward

current in the emitter.

From these theoretical considerations, a solution for the blocking oscillator shown

in Fig. VIII-12 can be found. The collector voltage waveform of interest is shown in

Fig. VIII- 13. The important time relations, obtained directly from active circuit

theory, are

T

T =T = r (4)
1 3 nrr j

s ruP- RpRCP -s 1

n r

+ Rf
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S1 rb TZrb
exp(-T /Tr) exp(-TZ/Tr) + R T rI 1 m

n RC m
RC

In the derivation of T 1 the concept of a right half-plane pole is made. Correspondingly,
a transient of incrementally small initial value is generated. The time relation is then

obtained directly. In computing T2 , a maximum allowed collector current supported by

- 4.5 V

0.001 L.fd

RL

20OO,2

- 4.5 V

Fig. VIII-12. Circuit of experimental blocking oscillator. L = 840 microhenrys;
re = 105 ohms; P = 20; r = 0.86 Lsec; n = 1. m

a charge in the base is equated to the load current determined by the circuit. The trans-

cendental nature of the expression for the pulsewidth is the result of the simultaneous

contribution of increasing magnetizing current and recombination of excess charge den-

sity of the minority carrier in the base. Note that the storage effects contribute only

to the width of the pulse. In the absence of this effect, a static current gain would have

-4.5

Fig. VIII-13. Collector voltage waveform.
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to exist, and its magnitude would be

R _ 18, 000 = 90 (6)

R k 200

The agreement of theory and experiment is good. Although the derived relations are

not of general applicability, the method by which they are derived can be extended to

circuits of increasing complexity, with a corresponding increase in mathematical dif-

ficulty. J. W. Conley


