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RESEARCH OBJECTIVES

This group continues to study the electrical activity of the nervous system with
emphasis upon a quantitative and analytical treatment of specific responses to sensory
stimuli and of so-called ongoing activity. We have made increasing use of special-
purpose and general-purpose computers to the point where most of our experiments are
now designed with a view toward data reduction by means of appropriate programs. This
approach has been carried farthest in the "on-line" use of ARC-1 (average response
computer, ref. 1), which, without delay, provides experimenters with numerically inter-
pretable displays of average evoked responses.

Use of ARC-1 and of ERD (evoked response detector, ref. 2) has permitted us to
carry further the analysis of potentials evoked by flashes (3, 4) and auditory stimuli (5, 6)
and, in particular, has permitted us to detect responses - presumably of cortical origin
- from the skull of awake subjects at stimulus intensities that are comparable to psycho-
physical thresholds (7).

A preliminary study of the combined effects of acoustic stimulation and electric
stimulation of the auditory nerve has been reported (8). Certain adaptation phenomena
in the somesthetic and auditory systems have been compared (9). The relation of
intrinsic alpha activity to sensory after-discharges to photic stimulation has been further
investigated (10). A technical report has been published (11) which summarizes a first
study in the use of a general-purpose digital computer for giving a quantitative descrip-
tion of certain characteristic patterns in the electroencephalogram.

A review article (12) by Mary A. B. Brazier provides a historical perspective on
the development of concepts relating to the electrical activity of the brain.

Our studies of statistical models for the description of evoked responses are being
continued (13). An account of some of the earlier work has now appeared in print (14).

In psychophysical studies we have dealt with loudness judgments of clicks (15) and
with reaction times to clicks delivered against a background of noise (16).

Completion of the construction of Eaton Peabody Laboratory of Auditory Physiology
in the courtyard of Massachusetts Eye and Ear Infirmary has provided facilities for
microelectrode studies and other physiological studies of the auditory system. Joint
experimentation by members of Massachusetts Eye and Ear Infirmary and of the
Research Laboratory of Electronics is under way.
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A. DISPERSION MEASURES OF EVOKED ELECTROCORTICAL ACTIVITY

We recently programmed the TX-0 digital computer to provide a rough measure

of the dispersion of the amplitude distributions seen at various fixed points in time

following presentaticn of stimuli. A measure of dispersion is of interest to us

because we feel that eventually with this information a logical reduction of the proc-

esses underlying evoked cortical activity, which is not possible on the basis of

measures of central tendency alone, can be made.

WRITER COMPUTER

STIMULUS CATHODE-
GENERATOR RAY

DISPLAY

Fig. XXI- 1. Block diagram of recording and computing procedure for
TX-0 digital computer.

Figure XXI-1 is a block diagram of the system that we have employed. In

keeping with methods previously used (1, 2) the cortical signals are recorded and

played back on FM magnetic tape. An analog-to-digital converter is used to pro-

vide an adequate input to the TX-0 computer. The computer has been programmed

to calculate the median, the first and third quartiles, and the interquartile range

for 8 time intervals or "instants." Programs have been written to display the

amplitude histograms on a cathode-ray tube and to print the associated numerical

values on a typewriter. Figure XXI-2 shows a typical display that was photographed

from the cathode-ray tube. The numbers in the upper left-hand corner represent,

from top to bottom: identification number; first quartile, Q 1 ; median, Q 2 ; third

quartile, Q 3 ; absolute difference of Q1 and Q 3 ; a crude measure of skewness

(2Q2 - - Q 3 ); number of responses sampled.

When the information produced by these operations is plotted as a function of

time, a representation such as that shown in Fig. XXI-3 is produced. Here, the

points along the heavy line represent the medians of the amplitude distribution for

the various instants of time following the presentation of the stimulus (T = 0). The

vertical bars represent the magnitude of the interquartile ranges around the
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Fig. XXI-2. Amplitude histogram on TX-O cathode-ray tube display.

c
z

00-

20
S20 0-496,SECTION AT 02

T-134,E-F,1-7

S30 - STIMULUS : 2900~ TONE BURST

S ' +40DB RE THRESHOLD

S....150MSEC DURATION

z 40
0 RESPONSE : MEDIAN,Q, AND 03

800B RESPONSES

50 _TIME INTERVAL 1.125MSEC

0 50 100

TIME (MILLISECONDS)

Fig. XXI-3. Medians and interquartile ranges as functions of time.
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Fig. XXI-4. Absolute magnitude of interquartile range as a function of time.

corresponding medians. Figure XXI-4 shows the interquartile ranges plotted as

magnitudes.

Figures XXI-3 and XXI-4 suggest that although the median of the late activity of

evoked responses returns to values quite close to zero, the variability remains rela-

tively high. This leads to the tentative conclusion that in some way a representa-

tion of a signal persists beyond the initial deflection that is ordinarily identified as

the "early" or "late" components of evoked-response activity.

This conclusion gives us reason to believe that further study of measures of dis-

persion is pertinent to our investigations. We anticipate writing more elaborate

programs for computing other possibly meaningful statistics of the process.

T. T. Sandel, T. F. Weiss, C. E. Molnar, G. L. Gerstein
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B. RESPONSE OF AN IDEALIZED NEURAL POPULATION TO A TRAIN OF

REPETITIVE STIMULI

Electrophysiological responses to repetitive stimuli are of interest in studies of

sensory systems in which such stimuli correspond in some ways to "natural" stimuli,
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and as a means of studying the dynamical properties of the neural elements contributing

to the responses. Here we shall consider a very simple statistical model of a population

of "neural units." It is a zero-interaction model in which the dynamical properties of

the units are described by a single random variable. The response is taken as the

summated activity of the units of the population. The postulates defining the mathemat-

ical model are:

I. A population is composed of N statistically homogeneous units that have no

mutual interaction.

II. At the presentation of a stimulus, each unit of the population either "fires" or

"does not fire." Units do not fire spontaneously.

III. Recovery time, , is the time interval required before a unit which has fired

will be refired by a stimulus of given intensity. Recovery time for any unit is not a

constant but is a random variable described by a probability density function. Since the

units are statistically homogeneous, recovery time of each unit is described by the same

probability density function. The random variable, , is a function of stimulus inten-

sity.

IV. The response, nk , of the population to the k t h stimulus in a train is equal to

the number of units that fire when this stimulus is presented. The relative response

to the kth stimulus is nk/N.

In the postulated model there is no explicit consideration of a neural threshold. The

fluctuating threshold of a unit and the recovery of responsiveness following the time when

a unit fires are both represented in the random variable a.
We shall derive the relationship between the statistical average of the responses of

a neural population to a train of repetitive stimuli and the probability density of recovery

time. The averages would be obtained experimentally by presenting the train of stimuli

to the preparation many times and averaging the responses to the first stimulus in the

train to obtain E(no), the responses to the second stimulus to obtain E(nl), and so forth.

The relationship of these average responses to the probability density of a takes the

form of difference equations, the solutions of which are the sum of two parts: a tran-

sient part, and a steady-state part. We shall consider both parts.

Assume that the population is excited by a train of stimuli occurring at times

0, T, 2T, ... , kT, .... Call the responses of the population to these stimuli

no , n 1 , n2 . . .. . nk' '....

The expectation of nk+ 1 can be expressed by

N

E(nk+) = P(nk+1) • nk+l (1)
nk+l = 1

in which P(nk+l) is the probability distribution of nk+l. It follows that
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N N

E(nk+l) P(nk+ Ink) P(nk) nk+l

nk+l = 1 nk= 1

N

Z E(nk+l Ink) P(nk) (2)

nk= 1

We shall consider the case in which the probability density function of the recovery

time a is zero for a greater than 2T. Then

2T
p( ) d = 1

o (3)

p() = 0 > 2T

where T is the time between the stimuli of the train. Call

T
Tp(a) dg = P 1  

(4)

which gives the probability that a unit recovers in a time less than T. Consider the

response at the time (k+l) T. If we know that nk units fire at time kT, then from

Eqs. 3 we know that the remaining N - nk units will fire at time (k+l) T. On the aver-

age, P1 * nk units will also refire at time (k+l) T. Thus

E(nk+ 1 Ink ) = N - nk + Pink

= N - nk(1- P) (5)

Therefore

N

E(nk+l) = P(n k ) [N- nk(1-Pl (6)

nk= 1

and it follows that

E(nk+l) + (l-P 1 ) E(nk) = N (7)

The solution (1) of this difference equation with the condition that E(n o ) = N (i. e.,

all units fire in response to the first stimulus) is

E(nk) P (-
1 )k (1 -Pk+l + 1 (8)

The mean relative response,
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E() 1  [()k (1-P )k+1 +1 (9)

is independent of N.

If instead of the condition of Eqs. 3 the probability density function

S p( ) dg = 1 (10)0

p() = 0 > 3T (11)

with the notation

T p(a) d = P 1

2T

0 T p( ) d = P 2

By a similar procedure, we obtain the difference equation

E(nk+ 2 ) + (1-P 1 ) E(nk+l) + (1-P 2 ) E(nk) = N (12)

The roots of the homogeneous solution may be real, equal, or complex, as deter-

mined by whether

(2P ) =(1-P 2 ) (13)

In Fig. XXI-5 an example of the solution of Eq. 12 with the initial condition

E(n o ) = N is presented for each of the three conditions of Eq. 13. The parameters have

been chosen so that the three examples have identical steady-state behavior.

Following the same procedure, we can derive the difference equation for the mean

response in the general case in which

p() = 0 ( > RT

RT (14)
p( ) dg = 1

The resulting expression is

R-2

E(nk+R- 1) + E(nk+m) (1-PR-1-m) = N (15)

m=0

where
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0sT p() d = P s 1 Z,... R- 1

The steady-state solution of this general case has the form

N (16)
E(nkss R-I

R- X P
m=l

The relative steady-state response is plotted against frequency for three different

p( ) in Fig. XXI-6. Note that a continuous p(g) (Fig. XXI-6a) leads to a continuous

decrease in response as a function of frequency; a sharply truncated p( ) (Fig. XXI-6b)

corresponds to a "scalloped" function; and the limiting case, in which recovery time

has some given value To (with a probability of 1) corresponds to the staircase function

(Fig. XXI-6c). The third case would result if the response of a neural population to

repetitive stimuli were viewed in the light of the simplest interpretation of the Wever

volley principle (2).

Further theoretical work will include investigation of statistics other than the

expectation.

The present work is in some respects an extension of the model discussed by
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Fig. XXI-5. Mean relative response to a train of stimuli for three conditions.
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Frishkopf and Rosenblith (3). A treatment of steady-state responses similar to ours

was derived independently by David (4).

R. W. Rodieck, M. H. Goldstein, Jr.
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C. AN INVESTIGATION OF THE FINITE-TIME SAMPLE AUTOCORRELATION

FUNCTION OF THE EEG

(This report is an abstract from a forthcoming thesis for the degree of Master of
Science, Department of Electrical Engineering, M. I. T.)

The autocorrelogram (machine-computed estimate of an autocorrelation function)

of the electroencephalogram (EEG) of many human subjects has been known to show a

considerable amount of cyclic activity at large values of delay (see Fig. XXI-7). There

has been some conjecture concerning the physiological significance of this apparent

marked in-phaseness in the EEG when it exhibits the 10-cps alpha rhythm. The present

investigation attempts to demonstrate that this type of cyclic behavior may be explained

by the finite length of the time sample used for computing the autocorrelation function.

In general, the autocorrelation function of a stationary, random time series is

defined as

T
1

x(T) = lim 2T x(t) x(t-T) dt (1)
T--co -T

By machine computation methods (1) an estimate of this function can be obtained by

computing the function

T
1

x(T, T) - - x(t) x(t-T) dt (2)

0

This finite-time sample autocorrelation function is, itself, a random variable

with parameters T and T. Thus far, the problem of finding the probability defisity

function of this random variable has not been solved (2). Davenport (3) and others

have, however, given the following expressions for the mean and second moment
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Fig. XXI-7. Correlogram of EEG of a "resting" subject
(left parieto-occipital used). Sample length,
3 minutes; maximum delay, 4.6 sec; delay
increment, 6.25 msec.

of the finite-time sample autocorrelation function:

E[Px(T, T)] = Q(T) (3)

T

E [cxt(T, T) = 1 -0 )E[x(t) x(t-T) x(t - T) x(t - T - To)] dTr (4)

Equation 4 shows that the fourth-order moment of the random variable xt must be

known in order to estimate a measure of the errors of a finite observation time on the

autocorrelation function of xt. It can be shown, however, that x(T, T) converges in the

mean to cx(T) as T approaches infinity (4).

For the particular, and very interesting, case of a Gaussian random variable with

zero mean, the fourth-order expectation factors and the variance can be shown to be

T

S(T,T) = (T- 2 (Tx + x +o) xo(T-T) dTo (5)

Now consider the case in which x (T) is a narrow-band, quadratic function such as

(T) = e-a I cos T (6)

where Za is the bandwidth, and w the central frequency. For a value of T that is large

compared with the maximum value of 7, and for a value of T that is large compared with
1
a, the variance can be shown to approximate

2 1
ZaT (7)

Similar results were derived independently by Bendat (5).

Equation 7 indicates that for values of delay that are large compared with the time
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Fig. XXI-8. Correlogram of narrow-band, Gaussian noise (central
frequency, 237 cps; bandwidth, 13.2 cps). Sample
length, 7.5 sec; maximum delay, 185 msec; delay
increment, 0.25 msec.

constant of the autocorrelation functions, the ratio of "signal" (autocorrelation function)
to "noise" (variance of the finite-time sample autocorrelation function) is very low. Con-
sider the form of the finite-time sample autocorrelation function for large values of
delay. Figure XXI-8 shows this function computed for narrow-band, Gaussian noise.
Note the recurrence of the cyclic activity at large values of delay for which the theoret-
ical autocorrelation function is essentially zero. Figure XXI-8 suggests that successive
samples of the finite-time sample autocorrelation function for large delay are correlated,
whereas the samples of the theoretical autocorrelation function are uncorrelated for
large delay. Consider the correlation of two samples of the finite-time sample autocor-
relation function separated by an interval of delay T'

4 = E[ x(T, T) x(T + T', T)] (8)

The random process xt is again assumed to be a narrow-band, Gaussian noise with
zero mean, and T is assumed to be large enough so that x t and xtT can be assumed to
be statistically independent. After some manipulations, Eq. 8 can be shown to approx-
imate

1 -aT'
2aT e cos w T' for T' > 0 (9)

which means that the errors attributable to the finite time of observation of x() give
rise to cyclic activity in the finite-time sample autocorrelation function, as has been
shown experimentally. Further experimental work has been done to confirm the fact
that the cyclic activity at large delays decreases as the sample length is increased. If
statistically independent samples of noise are used for the computation of each point in
the correlogram, then the cyclic activity at large values of delay is replaced by random
activity, as shown in Fig. XXI-9.

It has been shown, therefore, that the long-delay cyclic activity of the finite-time
sample autocorrelation function of narrow-band, Gaussian noise results from the errors
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Fig. XXI-9. Correlogram of narrow-band, Gaussian noise (central

frequency, 237 cps; bandwidth, 13. 2 cps) computed

from statistically independent samples for each point

of delay. Sample length, 7.5 sec; maximum delay,

90 msec; delay increment, 0.25 msec.
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Fig. XXI- 10.

Fig. XXI-11.

Cumulative histogram of EEG of a "resting" subject

plotted on probability paper (50, 000 samples).

Correlograms of EEG of a "resting" subject for two values

of sample length of EEG (left parieto-occipital used). Sample

length (top), 100 sec, (bottom), 400 sec; maximum delay,
4. 6 sec; delay increment, 6. 25 msec.
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caused by the finite-time sample.

The implications of these results on the problem of estimating the autocorrelation

function of the EEG are not entirely clear. Certainly, the EEG's of many subjects in

the "relaxed state" exhibit alpha activity which results in correlograms that resemble

those of the narrow-band noise signal (witness Figs. XXI-7 and XXI-8). Preliminary

tests on the histogram of amplitudes of the EEG of a few subjects indicate that a

Gaussian distribution can be fitted reasonably well to the central part of the curve.

Figure XXI-10 shows one such histogram plotted on probability paper, which plots Gauss-

ian distributions as straight lines. However, the narrow-band noise model is a stationary

model, and it has been shown that some statistics (6) of the EEG of a subject deprived of

auditory and visual stimulation decrease with time (7). Thus all of the statistics of the

EEG computed here must be considered as time-average statistics, and the narrow-band

noise model must be interpreted as being a model of these time-average statistics.

For a sample from a single subject whose EEG shows little time dependence in its

statistics, our model has been verified. Figure XXI-11 shows the autocorrelograms of

this subject for sample lengths of 100 and 400 seconds. Note the decrease of the ampli-

tude of the long-delay cyclic activity, which indicates strongly that this cyclic activity

is a result of the finite length of the sample of EEG processed. An estimate of the root-

mean-square values of the long-delay cyclic activity for the two correlograms yields a

ratio of 2. 2, as opposed to a predicted value of 2.

T. F. Weiss
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