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A. APPROXIMATIONS TO NONLINEAR SYSTEMS

Our problem is to determine the parameters in a number of models of given form in

order to approximate, as well as possible, a given realizable nonlinear system. The

approximation error is the mean-square error between the output of the given nonlinear

system and the output of the model when both the given system and the model have the

same white Gaussian noise input. An outline of the optimization equations and experi-

mental methods for optimizing the model are presented. Expressions for the minimum

mean-square error and some examples are given.

1. Model A

In a previous report (1) it was shown that optimization of model A of Fig. IX-1

requires determination of a set of N gains {an} and a set of N normalized linear filters

{hn(t)} that satisfy the equation

00

anhn(T2) =J K(T I , T2 ) hn (T I ) dT (1)

The magnitude of the members of the set {an} are as large as possible, and hence the

set of N gains {an} and the set of N normalized filters {hn(t)} are the N eigenvalues

CONSTANT

Fig. IX-1. Model A.
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of largest magnitude and the corresponding N normalized eigenfunctions of Eq. 1,

respectively.

First, the experimental procedure for solving Eq. 1 will be given, and then it will

be proved that the procedure is correct.

The experimental procedure for determining the linear filter hi(t) is an iterative

one in which we start off with an arbitrary linear filter fl(t), and then by a series of

measurements and a simple computation we determine a new normalized linear filter

f2 (t). The new filter fz(t) is then substituted for fl(t) and the procedure is repeated.

The linear filter hl(t) is then given by

h (t) = lim fn(t)
n-oo

The experimental circuit is shown in Fig. IX-2. The output of the circuit, f' (T)n+ 1
is the average value of the product of the output of a delay line, the output of the linear

filter f (t) and the output z(t) of the given nonlinear system minus its average value z(t).

The procedure is to measure the output of the circuit, f +l(T) as a function of the tap

position, T, of the delay line. The next linear filter fn+l(t) is related to f'n+(t) by

f' (t)
f (t) = n+I (2)

on+ /2

The gain al is given by

f' (t)
a = lim n+ (3)

1 n-oo 2fn(t)

With the determination of hl(t) and al, part of the output of the model is known. The

experimental procedure for determining each of the remaining linear filters {hn(t)} and

the gains {an} is the same as that for determining hl(t) and al, with the difference that

the output of the part of the model that has already been determined is subtracted from

the output of the given nonlinear system z(t), and enough dc voltage is also subtracted

to make the sum a zero-mean process. The experimental circuit for determining hZ(t)

is shown in Fig. IX-3.

We now prove a lemma that will be useful for proving that the procedure outlined

above is correct. We shall prove that the output r of Fig. IX-4 is

r = 2 f T 1 ) (T 2(T 2 ) K 2 (7 1 , 2) ddT 2  (4)

where Il(t) and I (t) are arbitrary, realizable, linear filters, and K 2 (T71 T 2 ) is the
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symmetric kernel associated with the second-order term in the Wiener hierarchic expan-

sion (2) of the given nonlinear system. The input x(t) is white Gaussian noise of unity

power per cycle per second.

Now, r can be written

r = sl(t) s 2 (t)[z(t) - z(t)] (5)

where si(t) and s 2 (t) are the outputs of the linear filters l(t) and I (t), respectively,

z(t) is the output of the given nonlinear system, and the bar indicates a time average.

We can expand the terms on the right-hand side of Eq. 5 in terms of Wiener's hier-

archic expansion; that is, z(t) and z(t) will be expanded in the hierarchic set G (t) and

s l(t) sZ(t) in terms of the hierarchic set {P (t)}. Thus

oo

z(t) = G (t) (6)

n=0

z(t) = Go(t) (7)

s 1 (t) s 2(t)= Po(t) + P 2 (t) (8)

The hierarchic sets have the following property:

Gn (t) P (t) = 0, for n #m (9)

Substituting Eqs. 6, 7, and 8 in Eq. 5, we obtain

r = [Pot) + Pz(t)]L G (t) - Go(t) (10)

Using the linear independence condition given by Eq. 9, we obtain

r = P 2 (t) G 2(t) (11)

Now, G (t) and P 2 (t) are given by

G 2 (t) = K 2 (T 1 , Z) x(t-T 1) x(t-72) dTldT2 - f K 2 (T, T) dT (12)

P 2 (t) = (T1 ) 2 (T2 ) x(t-T) x(t-T 2 ) dT 1 dT2 - f (T) k 2 (T) dT (13)
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By substituting Eqs. 12 and 13 in Eq. 10 and performing the averaging, we obtain

r = 2 1 f 1 l(T) 2(T) K 2 (T 1, T2 ) dT 1 dT2  (14)

which was to be proved.

We shall now prove that the experimental procedure does indeed solve Eq. 1. In

order to prove that the experimental procedure for solving for hl(t) and a 1 is equivalent

to the standard iterative procedure (3) for solving for the largest eigenvalue and corre-

sponding eigenfunction, it is only necessary to show that f +l(T) is given by

f n+ 1( T ) = 2 K 2 ( 1 T) f ( 1) dT 1  (15)

because the experimental procedure is then identical to the standard iteration procedure

for the largest eigenvalue and corresponding eigenfunction. If we equate the following
parameters of Fig. IX-1 and Fig. IX-3,

1(t ) = fn(t) (16)

z2(t) = 6(t-T) (17)

r = f' (T) (18)n+1

then from Eq. 4 we obtain

f'+l (T) =2 f (T1 ) 6(T 2  T) K(T 1, -) dTdT2  (19)

Integrating on 71, we obtain the desired result

fi+ (T) = 2 f (TL) K (T 1 T 2 ) drl (20)

The proof that the experimental procedures for obtaining the remaining linear filters

and gains is correct follows from the fact that the subtraction from z(t) of the part of the

model that has already been determined removes those previously determined eigen-

values and eigenfunctions from the kernel K2 (T 1, T2), and hence the iterative procedure

converges to the next largest eigenvalue and eigenfunction. The experimental process

is therefore correct.

From the error expression in the previous report (4) and an expansion of the
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kernel K 2 (T 1,T 2 ) in terms of its eigenvalues and eigenfunction, the minimum mean-square

error 6mi n between the output of model A (see Fig. IX-l) and the given nonlinear

system is

00 00

min 2 Z X + Z G2(t)
n=N+1 n=3

(21)

where {G (t)} are the terms in the Wiener hierarchic expansion for the output of the given

nonlinear system, and {n} are the eigenvalues of the second-order kernel K2(r1, T2 )

associated with GZ(t). The eigenvalues are so ordered that

IXn1 > Xn+l' for all n (22)

2. Model B

A model for a nonlinear system is given in Fig. IX-5. It consists of an undetermined

dc voltage c o , a given set of N orthonormal linear filters {Sn(t)}, and an undetermined set

of N linear filters {hn(t) } . The input probe is white Gaussian noise.

While the quadratic part of this model will not, in general, produce as good an

approximation as the quadratic part of model A, the form of model B has the advantage

that its unknown parameters can be determined without iteration.

CONSTANT

Fig. IX-5. Model B.
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An outline of an analytical method for choosing the set of filters {hn(t)} will now be
given. When an expression for the mean-square error between the output of the given
nonlinear system and the output of model B is derived in terms of the Wiener hierarchic

expansions of both systems (1), it is found that the set {hn(t)} appears only in the fol-

lowing quadratic error term:

00 N N2
2J j h(T ) Sn(2) + 2- S(T ) hn2)h - K 2 (T, T 2 ) dTldT (23)

0 0 n=1 n=l

where K 2 (T 1 T 2 ) is the kernel corresponding to GZ(t), the second-order term in the

Wiener expansion for the output of the given nonlinear system. A variational procedure
is then used to find the set {hn(t)} that minimizes the error contribution of expression 23.
The results of this procedure are

M
hn (t)=h(t (t)- a S (t) (24)n n nm n

where

a nm T0 0( n 1) Sm 2) K2 1 T 2 ) dl 1dT 2  (25)

and

h'(T) = 2 Sn(T) Kn(T, T) dT (26)

Using Eqs. 24-26 and the lemma of expression 4, it follows directly that the experi-
mental procedure for determining the linear filters {hn(t)}, which will now be outlined,
is correct. If h (t) is expanded as in Eq. 24, then the output of the circuit of Fig. IX-6
is 2a . The output of the circuit of Fig. IX-7 is h' (T), where T is the position of thenm n
tap of the delay line.

The expression for the minimum error with model B is developed as follows. The
dc voltage co can duplicate exactly the G (t) dc term of the Wiener expansion for the

output of the given nonlinear system. The quadratic part of model B can only approxi-
mate the G2 (t) term. Model B cannot approximate any of the other terms in the Wiener
expansion of the output of the given nonlinear system. We now examine the quadratic
error term given by expression 23.

If we now expand K2 (Tl T 2 ) in the complete orthonormal set (the first N terms of
which are given in Fig. IX-4), expression 23 becomes
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f 00f 00 
[ N

n=1

1
hn(T I)Sn(( 2) +y

2
N co oo

Z Sn(T 1)hn (T Z) - bijSi (TI)Sj( dT 1 dT 2n=l 1=l j= l

(27)

It can be shown that by proper choice of {hn(t) }, all terms containing at least one

Sn(t) (n<N) in the expansion of K 2 (T 1 T 2) can be removed. Any other choice of {hn(t)}
will increase the quadratic error given in expression 27. After choosing {hn(t)} in

this manner, and substituting it in expression 27, the minimum quadratic error becomes

o00 0o0 oo

2
0 0o i=N+1

If we integrate and use

reduces to

Z [bijSi(T1) STj(2)]2 dT1dT 2  (28)
j=N+1

the orthonormality of the set {Sn(t) }, we find that expression 28

oo o

i=N+1l j=N+l 1 3

The total minimum mean-square error fmin is then given by

min = 2 i
i=N+1

c0 00
Z b. + G2 (t) + G (t)

j=N+ 1 I n=3

where the set {Gn(t)} is the Wiener expansion for the output of the given nonlinear system.

3. Model C

A model for a nonlinear system is given in Fig. IX-8. The dc voltage co, the set

of N normalized linear filters {hn(t)}, and a set of N gains {an} are to be determined.

Each member of the set {hn(t)} is restricted to being composed of linear combinations

of a given set of M orthonormal linear filters {Sm(t)}, where M is greater than N. Each

member of the set {hn(t)} can be written as

M

h (t) = Cnm S (t )
m=l

(31)

The set of linear filters {hn(t)} is determined by the set of constants {cnm}.
Without this restriction on the set {hn(t)}, the quadratic part of model C would be

identical with the optimum quadratic form of model A. While, in general, it increases

the approximation error, the restriction allows the determination of the set {hn(t)} by

(29)

(30)
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measurements of constants instead of measurements of complete impulse responses.

An outline of the derivation of the optimum values for the undetermined parameters,

co, {hn(t)}, and {an} will now be given. If the output of the given nonlinear system is

expanded in terms of the Wiener hierarchy (Gn(t)}, and if the output of model C is simi-

larly expanded, then the mean-square error d between the output of the given nonlinear

system and the output of model C is

= (t) -c ° - a + G (t) + Z G (t)
n=l n n=3

+ 2 0 0 Z ahn(T1) hn( 2 ) - K 2 ( T dT dr2 (32)

where K 2(- 1, T 2 ) is the quadratic kernel associated with G 2 (t).

It can be seen that the mean-square error & of Eq. 32 is minimized by choosing the

de voltage c 0 so that

N
c0 = G(t) - an (33)

n=l

If the symmetric kernel K 2 (Ti 1 T 2 ) is expanded in terms of the complete orthonormal

set {Sm (t)},

00 00

K 2 (Ti T 2) Z=l Z b iS.(i ) S j(T) (34)
i=l j=l 1

(where the first M terms of the set {Sm(t)} represent the filters that the set {hn(t)} is

restricted to being composed of), then the minimum value of the mean-square error

is obtained when the sets {an} and {hn(t)} are equal, respectively, to the largest N eigen-

values {Xn} and normalized eigenfunctions {pn(t)} of the expression

M M

Z Z b .Si(T ) S.(T2) (35)
i=l j=l 1

That is, if

oo00 M M

Xknn(T2) = 4n(T 1 j bijSi(T1) S (T 2 ) dT 1 dT2  (36)

and if
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II > >Xl = + 1, .. M (37)

then we should choose

a = X n = 1,...N (38)n n

h n(t) = n(t) n = 1, ... N (39)

If the optimum values for the undetermined parameters given by Eqs. 33, 38, and 39,

and the expansion for the kernel K 2 (T 1 , TZ) given by Eq. 34, are substituted in the error

expression 32, it follows that the minimum mean-square error Imin is

M M o 00 00 z o
=  + 4 b. + 2 b. + (t) + G2 (t)

min n=N+ n i=l j=M+1 i=M+l j=M+1 n=3 n

(40)

The experimental procedure for determining the linear filters {hn(t)} and the set of

gains {an} will now be presented. From the lemma of Eq. 4 it can be shown that the

experimental procedure is equivalent to the standard iterative procedure for solving the

eigenvalue problem of Eq. 36.

The experimental procedure for determining the set of M constants {c1m} that deter-

mine the linear filter hi(t) is an iterative procedure in which only constants are meas-

ured. We start off with an arbitrary set of M constants {dlm} which determines a linear

filter fl(t) by

M
fl(t) = dlm S (t) (41)

m=l

By using fl(t) in the circuit of Fig. IX-9, we can measure as the output of the circuit a

set of M constants d' associated with the set of filters {S (t)}. We now define a new2, m
set of M constants by

m =d' [d 2 (42)
d2, m 2, m 2, m

A new linear filter f 2 (t) is then defined as

M
f2 (t) = d 2 mSm(t) (43)

m=l

The filter f 2 (t) is then used in place of fl(t) and the experimental procedure is repeated.
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Fig. IX-9. Experimental circuit no. 1 for model C.

It follows from the standard iterative procedure for solving eigenvalue problems that

d'
c = lim d. and that a = lim i+1,m (44) (45)

lm i i, m 1i-o d!i-~o ioo 2d!
1, m

Hence the linear filter hl(t) and the gain {an} are determined.

The procedure for determining the remaining linear filters {hn(t)} and gains {an} is

similar to that for determining hl(t) and al with the difference that the output from the

part of the model that has already been determined is subtracted from the output of the

given nonlinear system.

4. Examples

As examples of the effectiveness of these approximation techniques, we now examine

the approximation error when the given nonlinear system of Fig. IX-10 is approximated

by each of three models. This system consists of the cascade of a normalized linear

filter gl(t) and an ideal no-memory full-wave rectifier. The normalization of the linear

filter gives the result

g2(t) dt = 1 (46)

0 1

The input x(t) is white Gaussian noise of unity power per cycle per second. The output

of the given system z(t) is given by

WHITE
GAUSSIAN

NOISE LINEAR FILTER

(t) FULL-WAVE z(t)
(t) g RE TIFIER

Fig. IX-10. Given nonlinear system.
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z(t) = f g 1 (T) x(t-T) dT (47)

Example Al: The first model that we shall consider is that of Fig. IX- 11. The

dc voltage c , the normalized linear filter hl(t), and the gain al are all to be determined

CONSTANT

Fig. IX-11. Model for examples Al and C I .

in such a way that the normalized mean-square error, 6 , between the given system

output z(t) and the model output u(t) is minimized. * is defined as

= [z(t) - u(t 2

z2(t)
(48)

The result is that 6* is 0. 045.

Example B 1 : The next model that we shall consider is that of Fig. IX-12. The

dc voltage co and the linear filter hi(t) are to be determined. The given normalized linear

filter S (t) of the model is

S (t) [g l (t) + g 2 (t)] (49)

where

g l(t) dt = 1

g2(t) dt = 1

0 g(t) g 2 (t) dt = 0

Note that gl(t) is the linear filter of the given nonlinear system. In this case,

0
(50)

(51)

(52)
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CONSTANT
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h (t)

Fig. IX-1Z. Model for example B 1.

the minimum normalized mean-square error A is 0.05.

Example C 1 : The next model that will be considered has the form of Fig. IX-11.

The de voltage c , the linear filter hi(t), and the gain a1 are to be determined in such

a way that the normalized mean-square error is minimized. However, the linear filter

hi(t) is restricted to be of the form

hi(t) = c 1 1S1(t) + c 1 2 S2 (t) (53)

where the orthonormal linear filters S 1 (t) and S 2 (t) are given as

S(t) 1 [g 1 (t) + g(t)] (54)

1
S (t) - gZ(t) + g 3 (t)] (55)

The functions gl(t), g 2 (t), and g 3 (t) are orthonormal. Note that gl(t) is the linear filter

of the given nonlinear system.

Therefore the quantities to be determined are the de voltage co, the constants c I1

and c 2,and the gain al. The result is that the minimum normalized mean-square

error & is 0. 142.

D. A. Chesler
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B. APPLICATION OF TRANSFORM THEORY TO CONTINUOUS

NONLINEAR SYSTEMS

In previous reports (1, 2) an algebra of continuous systems was introduced. This

algebra is related to the functional representation for nonlinear systems; that is, to

f(x) = hl(T) x(t-T) dT + f h 2 (T, T2 ) x(t - T 1 ) x(t - T2 ) dT 1dT2 + ...

+ f.. f hn (TV T n ) x(t - 1) .d.. x(t- )d ... dn + ... (1)

By means of this algebra, systems composed of linear subsystems (with memory) and

nonlinear no-memory subsystems can be expanded in terms of these component subsys-

tems. From this expansion the system kernels or "impulse responses," hn(t, ., t ),
can be determined. Just as for linear systems, analysis is greatly facilitated by the

use of transforms. In this report the relationship between the algebra and the system

transforms is shown. The use of nonlinear transform theory and some properties of

these transforms are also developed.

1. Algebra of Systems

In the algebraic notation (1) the system shown in Fig. IX-13 is represented by

f = H[x] (2)

If

H[Ex] = cnH[x] (3)

where E is a constant, then a subscript n is added to denote an nth-order system.

That is,

H [Ex] = EnHn[x] (4)

The three basic system combinations are addition, multiplication, and cascade, which

x NONLINEAR f
SYSTEM N Fig. IX-13.

are represented by +, 0, and *, respectively. The rules for the manipulation of this

algebra have been given in other reports (1, 2).

The objective is to express, or approximate, a system H by

H=H = + H 2 + ... + H (5)-- I -n
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where the H are expressed in terms of the component linear and nonlinear no-memory-n
subsystems. These expansions have already been considered (1, 2). From the expansion

the system impulse responses hn (tl . t n) can be determined. Generally, the form of

the impulse responses is cumbersome. Furthermore, calculation of the output f(t)

requires that the integrals of Eq. 1 be evaluated.
th

These difficulties are overcome by the use of transform theory. The n -order

transform pair is defined by

11 nn
e . dt (6)H n (s  , . . ., s n )  h n(tl,...,t e ... e dt n (6)

and

n nds ds (7)
hn '"tn) = ... Hn( .... sn ) e

1  ... e ntn ds.. ds (7)

The contours of integration and the values of s can be chosen to give Fourier or Laplace

transformations.

It should be noted that, in this algebra, nonlinear no-memory systems are replaced

by multiplication operations. Thus

N A=n A+nA +... + nA (8)
- -- m-

where

2 m
N[x] = nx + n2 x + ... + nmx (9)

The basic relations between the algebra and the transforms are:

Algebra Transforms

A + B A (s1 ... Sn) + Bn(S , ... Sn) (10)
-n -n n 1 + Bn1 "

A B A(s s)...s B (s ' s ) (11)
-n -n n 1' "' n m n+1 ''Sn+m

A 1  Bn A (S1 + sz + ... + s ) Bn(s .. '. ) (12)

A more general cascade situation occurs when, for example, we have

L =A 2  (B3 + C1 ) (13)

By use of the operation o (2), Eq. 13 becomes

L=A 2  (B + C )2 (14)
2 3 -1
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or

L = Ao( B2
2 Z)

+ 2A o (B-2 3 C1 ) + A 2 C21 2 0(

The transform of the term 2A 2 o (B 3 ' C 1 ) is

2A 2 (s 1 + s 2 + s 3 , 4) B 3 (s 1 , s 2 3) C 1 (s 4 ) (16)

and this generalizes in a straightforward manner.

Once a system has been expanded in terms of the algebra and the associated trans-

forms found, we are in a position to obtain the system output for a given input.

2. Transform Theory

We shall consider the second-order system in which

f2 (t) = ff h 2(T 1 T2) x(t - T) x(t - T2 ) dT 1 dT2
(17)

First, however, consider

f(z)(t t 2 ) = f h2 (T 1 , T 2 ) x(t 1 - T 1 ) x(t 2 - T2) dTldT2

F (2)(Sl, 2 ) = H2 (s 1 , S2 ) X(sl) X(s 2 )

where X(s) is the transform of the input x(t).

f(2 )(t1l t 2 ) = (2j

Formally, this can be inverted to yield

-s1 t -s2 t 2

F(2)(s1', s2) e e dslds 2

and the output of the second-order system f 2 (t) is given by

f2(t) = f( 2 )(t, t)

(20)

(21)

Alternatively, this "association" of tl and t 2 can be made in the frequency domain. If

F 2 (s) is the transform of f2 (t), then

F2 (s) = 2 F(Z)(s - u, u) du (22)

and so the transform of f2 (t) is formed by a frequency-domain computation.

These methods generalize to the higher-order transforms and can be used to

100

(15)

Then

(18)

(19)
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determine the system output.

Now, if the component linear subsystems are in lumped form, then the over-all sys-

tem transforms are in a generalized "factorizable" form. In this case, when the input

transform X(s) can be factorized, the second-order transform has the general form

A. B. C.

F(2)(si s2 S1 + s2 + a l s1 i s2 + (23)

Similar forms exist for the higher-order transforms. A typical term of the second-order

case is then

A B C (24)
Sl + s2 + f sS + ys

and the use of Eq. 22 gives

A BC (25)
s+a s+(p+y)

for the typical term of F (s). Hence

A. B.C.
F (s) = 1 1 (26)

z s + a. s + ( i + Yi)
1 1

Examination of Eqs. 24 and 25 shows that the transformation from F(2 )(1 , s2) into F 2 (s)

can be made by inspection. This inspection technique can be used successively to reduce

higher-order transforms F(n)(1 , . . ., Sn) to Fn(s).

Thus it has been shown that, in the important case of factorizable transforms,

frequency-domain inspection techniques can be used to reduce the higher-order trans-

forms to the first-order transforms of the system output.

3. Example

For the feedback system shown in Fig. IX-14,

N = N + N (27)
1 -3

A
and H has a transform . Use of the algebra gives

1 s +a

+ N H
Fig. IX-14.
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L1 = H1 * (I - H 1)

L = L 1 N o (I - L )3
-3 1 3 1

L = 3L * N o (I
-5 1 3 k- - L 1)2 - L

for the first three terms in the expansion for L.

A > a are

A
L (s) s + A1 s+A

L 3 (s1 , s 2 , s 3 )

n3A s

s1 + s 2 + s3 +A S1 +A

(30)

The corresponding transforms for

(31)

(32)
s ss2 s3

s2 +A s + A

L5(s ... s5) = s + ..
1 sl +..

22
3n 3 A

+ s 5 + A)(s 3 + s 4 + s 5 + A) (sl A)

For the input

x(t) = Xu(t)

or

xX(s) =xs

use of the inspection techniques gives

1 3X2 -3 2 X 3X2F(s) =-- + X (I - 1n -n X 4 n Xs s + A 2 3XZ 4 +3 s T3A n3 3 n3X4 X n3X4
Ss +5A 4 )

(36)

f(t) = X - X 1 2 3 2 4\
2 n3X 4 n3

e-At - 1 X(Ine -X 2n 3 XZ
3 2 4 \

+Zn 3 X e

+ X( -nX4) e - 5 At
4n3X for t > 0 (37)

which is a good estimate of f(t) for In 3X Z I < 0. 5.

4. Properties of Transforms

The higher-order transforms can be used directly to obtain sinusoidal steady-state

output and initial and final values of the output. If
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(38)

and

(39)x(t) = Re{Xej t}

then

(40)
fl(t) = Re{XH1 (jc) e j Wt}

in the steady state, as is well known.

f2 = H 2 [x]

the steady-state output is given by

f2 (t) = Re{X2 ejwt + 1 x 2}
z 2t

For

For the situation in which

(41)

(42)

f = H 3 [X]3we have

we have

f 3 (t) = 1 Re3 j3 + 31X12 X ejwt}

(43)

(44)

Similar forms hold for higher-order operations.

The initial and final value theorems are similar

f(n) (tl .. ' tn) has a transform F(n)(s1, . , sn) and

fn(t)= f(n)(t, t, .... , t)

to the linear theorems.

(45)

then

lim f (t) = lim
t-0 s i-oo

n

lim f (t) = lim
t-o s -0t-0-0 S,

F(n)(S , ...' n sn )  ... Sn

F (n)(S1 , ... s n ) s ... s n
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The validity of these relations depends upon the existence of the limits in a manner that

is similar to that of the corresponding theorems of linear transform theory.

D. A. George
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C. CONTINUOUS NONLINEAR SYSTEMS WITH GAUSSIAN INPUTS

This report is concerned with

particularly with Gaussian inputs.

relation functions, and spectra.

systems (1), we have

continuous nonlinear systems with random inputs -

We are interested in obtaining output averages, cor-

Using the notation of the algebra of continuous

f(t) = H[x(t)]

and we define

f(t+T) = H[x(t+T)] = HT [x(t)]

In general, a system is described, or approximated, by

H =H + H + ... +H n
1 -2 -n

in which the impulse response hm(t, .
associated with H . Then

-m

S., tm) , or the transform Hm(s1 ... . Sm), is

f(t) = H[x(t)] = fl(t) + f 2 (t) + ... f fn(t)

where

fm(t) = Hm[x(t)]

Hence the average value of f(t) is given by

f(t) = f(t) + f 2 (t) + .. . + f n(t)

and the correlation function of f(t) is

f(t) f(t+T) = [f (t) + ... + fn(t)][f (t+T) + ... + f n(t+T)]
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or

n n

f(t) f(t+T) = Z fi (t) f(t+T) (8)
ij J

This report is concerned with obtaining

f.(t) (9)
1

and

(10)f.(t) f.(t+T)
1

so that f(t) and f(t) f(t+T) can be calculated.

Now, to illustrate the method of computing f(t), consider, for example,

f 4 (t) = H 4 [x(t)]

or

f 4 (t) = f h 4 ((Ti T2 , T 3 T4 ) x(t - TI) x(t - T2 ) x(t - T3) x(t - T4 ) dTIdTz2 dT3 dT4

Then, by interchanging orders of averaging and integration, we have

f 4 (t) = ffffh 4 (T1 . TZ, T 3 , 4) x(t - T 1 ) x(t - 72) x(t - T 3 ) x(t - T4 ) d1 dT 2 dT 3 dT4

In our algebraic notation this is represented by

f4 = H 4 (x 1 x 2 x 3x 4 )

(13)

(14)

Similar forms hold for higher-order situations and also for correlation calculations. If

we consider

(15)f = H 1 [x]

and

(16)f3 = 11H3 [x]

then

(17)fl(t) f 3 (t+T) = H1 * HT3 (1X3X 4 )1 3 H3 ( 1 x2 x3 4 )
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f1(t) f 3(t+T) = f h 1 (T 1 ) h 3 (T 2 , T 3 T 4 )

X x(t-T 1 ) x(t--T2) x(t+T- T3) x(t+T- T 4 ) d1 dT2 dT3 dT4 (18)

In general, if the system impulse responses hn (t' . .. tn) and the higher-order input
correlation functions are known, then the output averages can be obtained by performing
the necessary integrations. In this report we are mainly interested in the situation in
which the input signal has a Gaussian distribution. In particular, if x(t) is white Gaussian,
then

x(t) =0 (19)

x(t ) x(t 2 ) = (t -t 1 ) (20)

x(t 1 ) x(t 2 ) x(t 3 ) = 0 (21)

x(t 1 ) x(t 2 ) x(t 3 ) x(t 4 ) = 6(tZ-t 1 ) 6(t 4 -t 3) + 6(t 3 -t 1 ) 6(t4-t 2) 6(t 4 -t 1) (t3-t 2 ) (22)

and so on, for the higher-order correlation functions. In this case Eq. 10, for example,
becomes

f 1(t) f 3(t+T) = 3 ff h 1(T 1 ) h3 (T 1 + T T 2 TZ) dT 1 dT2  (23)

and similar results are obtained for the other terms of Eqs. 6 and 8. This white
Gaussian situation has been developed by Wiener (2) and can be easily extended to the
non-white Gaussian case. In the general Gaussian case, the input signal x(t) can be
considered as being formed from a white Gaussian y(t) by a shaping filter F Then-1
the shaping filter can be absorbed in the nonlinear system H to produce a system K
with

K = H * F 1  (24)

Computations can then proceed with this equivalent situation in which K operates on a
white Gaussian y(t).

The remainder of this report will be devoted to developing the use of transform-

domain techniques for obtaining system output averages when the input is white
Gaussian. Working in the transform domain avoids the necessity of performing the

integrations illustrated in the previous equations, and also the necessity for obtaining
the h (t 1 ... t ), which often have very clumsy functional forms. These transformn 1' n
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methods will be illustrated by considering a typical situation that arises in computing

output averages.

Let us consider the term

f 2 (t) f 2 (t+T) = fffh(T. T 2 ) h 2 ( 3 , T 4 )

X x(t - T 1 ) x(t - T 2 ) x(t + T - T 3 ) x(t + T - T4 ) dT 1 dT 2 dT3 dT 4  (25)

where x(t) is white Gaussian. Then, by use of Eq. 22,

f 2 (t) f 2 (t+T) = h(Zlr' T 1 ) h 2 (T2 , T 2 ) dT 1 dT 2

+ 2ff h(T 1 , T 2 ) h2 (T 1 + T, 2 + T) dTdT 2  (26)

If h 2 (t i , t 2 ) has a transform H 2 (sI , s 2 ) that is in factorizable form, then the term

f h 2 1 1 ) dTrl 
(27)

can be obtained by

(a) Reducing H 2 (s 1 , s2) to K 1 (s) by the procedure described in Section IX-B.

(b) Taking lim Kl(s) = K 1 (0).
s-0

Then

h 2(T. T 2 ) h 2 (TZ, T 2 ) dldT 2 = K(0) (8)

This procedure is based on (a) finding the transform Kl(s) of h 2 (t, t); (b) realizing that

Eq. 27 is equivalent to the steady-state step response of a linear system with transform

Kl(s). The second term in Eq. 26 is determined by observing that

ff h 2 (T 1 T 2 ) h 2 (T 1 + Tp T 2 + T 2 ) dT 1 dr 2  
(29)

has a transform

HZ2(-S1, -s2) H2(S1, s2) (30)

These expressions are Fourier transforms, and so s 1 = j 1 , and s 2 = jw2 . Again, if we

assume factorizable transforms, Eq. 3 can be reduced to G(s) by inspection methods

(that is, setting T 1 = T 2 = T by means of transform-domain techniques). This G(s) is,
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then, the Fourier transform of

ffh 2 (T, T 2 ) h' 1 + T, T2 + T) dT 1rdT (31)

We now have

1)(s) = K2(0) 5(s) + 2G(s) (32)

where s = jw and f(s) is the transform of f2 (t) f 2 (t+T). It should be noted that, in this

case, a number of terms occur in Eq. 30 with the form

A B
L(s + s2) (33)1 s1 + a -sZ + a

The contribution of such terms, when we are transforming to a function of a single vari-

able s, is zero.

This case illustrates the situation that arises in computing output averages or cor-

relations. Similar procedures can be applied to the higher-order terms in Eqs. 6 and 8.

For linear systems with random inputs it is usually more convenient to work in the

transform (frequency) domain, rather than the time domain. This is also true for non-

linear systems, and this report has illustrated how the higher-order transforms associ-

ated with nonlinear systems can be used.
D. A. George
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D. MAXIMUM SIGNAL-TO-NOISE RATIO ESTIMATION

1. Introduction

Consider the situation shown schematically in Fig. IX-15. The independent source,

S, generates a random variable, x, which is fed to the control system, C. System C

generates a set of N random variables, (y 1 , y 2 . . .y'N), and system D produces an

output, z, where z = f(,y 2 '''". N ) . We shall denote (y 1, 2'''. YN) by y-, a convenient

vector notation. We shall then assume that S is completely characterized (for our pur-

poses) by the probability density function p(x), C is described by the conditional probabil-

ity density function p(yfx), and D is specified by the function f( ).

From a physical point of view Fig. IX-15 might represent a complete communication
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y, _system. For example, S could be an

.p(x Y,YYN fX.) Y, .,Ny ergodic, bandlimited signal source, with

output consisting of a discrete sequence of
S C D

numbers representing Nyquist samples of

Fig. IX-15. Communication system. the signal, and C could represent a com-

munication channel that would include the

usual transmitter or encoder, transmission medium, and part of the receiver with all

storage elements; y could stand for Nyquist samples of a physical, bandlimited signal

actually sent through the channel. C could certainly contain random-noise sources that

would interfere with the transmitted signal in some manner. D could represent the non-

linear no-storage part of the detector, or decoder, in the receiver. For questions

involving time averages of the variables in the system, the ergodic hypothesis would per-

mit answers in terms of statistical averages. Then, under the assumption that the output

samples of the signal source are independent, the problem can be solved by statistical

methods, by following the abstract formulation of the system shown in Fig. IX-15.

We state the problem: Given p(x) and p(y x): How must f be chosen so that z (=f(y))

is a "best" estimate of x, on the average? Of course, the answer generally depends

upon the definition of "best." Frequently, we are interested in obtaining the least-mean-

square error; that is, in minimizing E[(x-z) ]. Some essential facts about this kind of

estimate are briefly reviewed in the next section. However, there are some practical

situations in which a signal-to-noise ratio criterion is more appropriate. We shall define

this quantity in two ways, both of which follow common usage of the term. Then we shall

find that the estimate z (and hence the function f) that maximizes the signal-to-noise

ratio (according to either definition) is the same as the least-mean-square estimate,

except for an arbitrary multiplicative constant. In the discussion that follows, we shall

assume that the system and signals do not have dc components; that is, that

E[x] = 0 (1)

and

E[z] = 0 (2)

2. Least - Mean-Square Estimation

We recall from the work of Bose (1) that for the system shown in Fig. IX-15,

E[(x-z) ] can be minimized by setting

z = f(y) = xp(xIY) dx (3)

where
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P( Ix) p(x) p(x, l )
p(xIy) =  p(Y) p()~ - (4a)

and

p(y) = p(x, Y) dx (4b)

Hereafter, we shall designate the least-mean-square estimate from Eq. 3 by zo, and the

estimator, or function, by f , to distinguish them from other estimates and estimators.

One interesting fact, which will be useful later, follows immediately: If z is any

estimate (i. e., determined by any integrable function, f, of y), then

E[xz] = xf(y) p(x, y) dxdy

=ff xp(xf) dx f (y) p(y) dy

= f f() f) p(-) dy

= E[zoZ] (5)

We next offer a method for splitting any z into additive signal and noise components.

Since we are trying to reproduce x, it appears reasonable to assume that there exists a

scalar a, that is so chosen that ax is the signal component of z. Then, the difference

between z and ax can be defined as the additive noise, n,

n = z - ax (6)

How is a to be chosen in a unique manner? From the definition of n the signal ax and

noise n cannot, in general, be made statistically independent (except in the trivial case,

a = 0). However, linear independence can always be achieved because

E[(ax)n] = E[ax(z-ax)]

= a{E[xz] - aE[x 2 D

= 0 (7)

always has the (nontrivial) solution

E[xz]
a 2 (8a)

E[x ]

E[oZ]
E[ ]  (8b)
E[x2]
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except in the case E[x2] = 0, which would be rather meaningless. Equation 8b follows

from Eq. 8a by using Eq. 5. If z = zo , for the least-mean-square error, then Eq. 8b

becomes

E z2
0

a = (8c)
o E[x 2

Calculating the mean-square error for z = z o , we obtain

E [(x-z) 2 ] = E[x2 ] - ZE[xzo] + E z]

E[x2] -E z I-

> 0 (9)

so that

0 < E[zZ] < E[x2 ] (10)

Hence, we have

O < a 1 (11)
o

which seems quite reasonable; that is, the additive signal component in the least-mean-

square estimate never exceeds the actual signal that we are trying to estimate.

3. Estimation of Maximum Signal-to-Noise Ratio

We have just seen how to split an estimate, z, into uncorrelated, additive signal and

noise components. This brings us to a consideration of signal-to-noise ratio. Signal-to-

noise ratio is often defined as the ratio of mean-square signal to mean-square noise,

expressed as a pure number, or as ten multiplied by the logarithm to the base ten of this

quantity, expressed in decibels. Since the logarithm is a strictly increasing function of

its (positive real) argument, and we are primarily interested in maximizing signal-to-

noise ratio, both definitions appear satisfactory. Therefore we shall accept the ambiguity

associated with calling both N and y by the name signal-to-noise ratio, and define

E[(ax) 2

y 2 (12)
E[n 2 ]

and

(S) = 10 logl0 y (13)
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In Eq. 12, a is defined by Eq. 8a or Eq. 8b; n is defined by Eq. 6.

We define the correlation coefficient, p, in the usual manner, using subscripts for

clarity,

E[rs]
Prs ( (14)

(E[ a] E[sZ])l/2

By using Eqs. 6, 8a, and 14, Eq. 12 can be put into a more convenient form

a2E[ x 2 ]  
E2[xz] 1

E[(z - ax) 2 ] E[ x 2 ] E[z 2 ] - E[xz] - (15

xz

This form makes it obvious that multiplying z by some constant will not change the

signal-to-noise ratio, and this must also be true for the z that maximizes this ratio.

In other words, signal-to-noise ratio is independent of any noiseless amplification

inserted in the system output.

As before, let the subscript "o" be used with quantities defined when z = zo, the

least-mean-square estimate. From Eq. 14 and Eq. 5, we can verify that

Pxz = P z Pxz (16)
o o

2
But PxZ can be found in terms of o with the aid of Eq. 15. Then

o

2 o
P o - (17)xz y + 1

Substitution from Eqs. 16 and 17 in Eq. 15 yields

o
y 1 (18)

2 (Y + 1) - y0
oPz z

2
It is apparent that y is maximum when pz z is maximum, and the latter quantity attains

o
its maximum value of unity when z is a scalar multiple of z . In other words, the

signal-to-noise ratio at the output is maximized by using any arbitrary constant multiple

of the least-mean-square estimate, which was to be proved.

The same result could have been obtained from Eq. 15 with a simple variational

technique. However, it was worth while to derive Eq. 18 in the way in which we did

for the insight that it gives into the following problem. Suppose that we have to use a

single, fixed estimator (function f in box D) in the system of Fig. IX-15, but that the
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statistics of source S and/or channel C are imperfectly known. Specifically, let us

assume that the complete situation is described by the set of joint probability density

functions, pi(x,y), and the associated probabilities Pi, with i ranging over a finite index

set. That is, we may use any one of a finite set of joint statistics, with a certain proba-

bility of use attached to each member of the set. An interesting question would then be

to ask how to choose the estimator f so that the logarithmic signal-to-noise ratio (N)

of the estimate z would be, on the average, highest. Then we would have to vary f in

K

(S) Pi 10 logl 0 yi (19)
av i=l

which, indeed, looks rather messy! However, the complication can be reduced some-

what by letting y oi be the best y for the i t h statistics alone, and zoi the corresponding

estimate for this case. Then the problem becomes one of minimizing the product

P.
K 2

i=l _ E[ iz]

subject to a constraint on E[z ]. This problem may well be intractable in the general

case, but there appears to be hope for certain simple cases.

A. D. Hause
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E. AN UPPER BOUND ON TREE PROBABILITY IN A PROBABILISTIC GRAPH

The probabilistic graph has been described previously (1, 2). Briefly, it consists of

an ensemble of linear graphs generated from a particular graph, the base graph, by

randomly erasing links in such a manner that in the ensemble every link of the base

graph appears independently with a probability, p. The tree probability, PT' of a prob-

abilistic graph is the total measure over the ensemble of the graphs that contain at least

one tree.

In general, we do not know how to arrange a base graph containing n nodes and f

(undirected) links to yield, for a given link reliability, p, the maximum tree probability.

Such an optimum base graph does exist, since the number of possible n-node k-link

graphs is finite. It is possible, however, to obtain upper bounds on the tree probability

of all n-node k-link graphs, including the optimum graph. In this report, a rather
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interesting upper bound is derived by a direct application of the factoring theorem (2).

The factoring theorem can be stated as follows:

PT = qP + P (1)

where q = 1 - p is the probability of link failure, and PI and P" are the tree probabili-

ties of probabilistic graphs which differ from the original graph only in having one link

omitted from the base graph when calculating P' and by having that same link "shorted"

(superimposing the nodes at either end of the link) in the base graph when calculating P1.

Now, let Pl(n, ) be the tree probability in the optimum n-node i-link graph. Let

P 2 (n,f) be the desired upper bound on Pl(n, k). From Eq. 1,

Pl(n, k) < qPl(n, I - 1) + pPl(n - 1, I - 1) (2)

The right side of Eq. 2 is larger than the left for two reasons. First, when we remove

a link from the optimum n-node i-link graph in order to calculate PT, an n-node

(C-l)-link graph is obtained that may not be optimum. Assuming that this n-node

(f-l)-link graph is optimum yields an upper bound. Likewise, when we short out the

same link in order to calculate P", we obtain an (n-l)-node structure that has, at most,

(f-l) links. (It contains - 1 links if and only if no other links in the original base graph

join the same two nodes as the shorted link.) Since Pl(n,k) is a monotonically increasing

function of k, P1 is bounded above by Pl(n - 1, k - 1).

Now, the bound in Eq. 2 is further increased if we substitute in the right side the

upper-bound probabilities P 2 (n, I - 1) and P 2 (n - 1, I - 1) for the probabilities Pl(n, I - 1)

and Pl(n - 1, I - 1), respectively.

Pl(n, k) < qP 2 (n, I - 1) + pPZ(n - 1, I - 1) (3)

The upper bound, P 2 (n, k), can now be defined. We shall do so by means of a differ-

ence equation and appropriate boundary conditions. Let, for n > 2 and I > n - 1,

P 2 (n, f) = qP 2 (n, I - 1) + pP 2(n - 1, I - 1) (4)

The boundary conditions are:

P 2(2,1) = P 1 (2, ) (5a)

P 2 (n, n- 1) = Pl(n, - 1) (5b)

It is clear from Eqs. 3 and 4 that P (n, I) is an upper bound on Pl(n, I).
Let us obtain the boundary conditions explicitly. In a 2-node probabilistic graph,

the probability of at least one tree is equal to the probability that at least one link exists

(is not erased). Thus since q is the probability that a link is erased, and erasures

are independent,
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P(2, ) = P(2,) = (1 - q) = p[l + q+ q2 + ... q 1 (6)

Likewise, if there are only (n-l) links in an n-node graph, all links must be present to

obtain a tree. Therefore

P (n,n - 1) = Pl(n,n - 1) = p1 (7)

It is now possible to solve Eq. 4 with the boundary conditions of Eqs. 6 and 7. The

solution is

1-n+1
P2 (n, ) = pn- n+k- k (8)

k=0

By inspection, it is evident that P 2 (n, f) as defined in Eq. 8 satisfies the boundary con-

ditions, Eqs. 6 and 7. To see that it satisfies Eq. 4, we substitute Eq. 8 in Eq. 4, and

obtain

1-n+l k =-n +-n+
n n+k-2 qk = qn-1 n n+k-2 k n-2 n+k-3 k (9)

kO ) kO k k

Collecting terms on the right, we find that Eq. 9 becomes

n-1 -n+l (n+k-2) k n-1 -n+ n+kl3) k n+k-3 k
P Z q =p X + q (10)

k=0 k=O

where, by convention, (n 1)= 0.

Thus, in order for Eq. 10 to be an identity, it is only necessary for

(n+k-2) = (n+k-3) + (n+k-3) (11)
k k- k(11)

However, Eq. 11 is a well-known recursion for binomial coefficients. (See, for example,

Riordan's (3) Eq. 7.)

Several properties of P 2 (n, f) as defined by Eq. 8 are of interest. First, let us note

that as f tends to infinity, for any fixed n, P 2 (n, 1) tends to 1 from below. This limiting

result is obtained by noting that the sum on the right side of Eq. 8 approaches (l-q) (n 1 )

as i tends to infinity.

We next wish to determine the conditions under which P 2 (n, k) is an attainable upper

bound; that is, the conditions under which P 2 (n, f) = Pl(n, f). First, note that, as p

tends to zero, the tree probability of any graph behaves as

PT = NTPn- for p << 1 (12)
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where NT is the number of trees in the graph. Equation 12 is quickly obtained
by considering the tree probability as the probability of a union of nondisjoint events,
the events being the occurrence of each of the possible trees in the graph. The
probability of a union of nondisjoint events can be calculated by adding the proba-
bilities of the individual events, as if they were disjoint, then subtracting the proba-
bilities of the events occurring in pairs, adding on the probabilities of the events
occurring three at a time, and so on. However, all terms in this alternating series
will have a higher power of p than the first term, the term in which the events
were treated as disjoint. Thus, this first term will dominate all others, as p tends
to zero, and result in Eq. 12.

Let us examine the behavior of P 2 (n, ) for small p. From Eq. 8, it is
evident that

n -n+1
P 2 (n, = p (nk-) , for p << (13)

Equation 13 can be reduced by another binomial coefficient identity (actually an iteration
of Eq. 11; see Riordan's (3) Eq. 8). Using this identity, we have

P 2 (n, ) = n 1) pn- for p << 1 (14)

Comparing Eq. 14 and Eq. 12, we see that if P (n, f) is the tree probability of a realiz-
able graph, this graph must contain l trees. Thus

NT(n 1) (15)

However, Eq. 15 states that every set of (n-1) links in the graph is a tree. In general,
this is impossible. In particular, Eq. 15 can be satisfied by a realizable graph if and
only if f = n - 1 or f = n. If the number of links is larger than the number of nodes,
P 2 (n, 1) is an unattainable upper bound.

Finally, by use of the recursion of Eq. 11, the coefficients of the powers of q in
Eq. 8 can be simply obtained. See Table IX-1. Each entry in the table is the sum of
the entry directly above and the entry directly to the left. The a i are defined by writing
Eq. 8 in the following way:

P2 (n,) = n-l [a + alq + aq ... an+1q -n+l (16)

Thus, for n = 5 and I = 8,

P 2 (5, 8) = p4[1 + 4q + 10q2 + 20q 3 + 35q 4 ]
(17)
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Table IX-1. Coefficients of Eq. 16.

n ao a a a 3  a4  a 5  a a 7

2 1 1 1 1 1 1 1 1 1

3 1 2 3 4 5 6 ...

4 1 3 6 10 15 21 ...

5 1 4 10 20 35 56 ...

6 1 5 15 35 70 126 ...

I. M. Jacobs
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F. SOME CRITERIA IN PULSE TRANSMISSION PROBLEMS

This report concerns the pulse transmission system shown in Fig. IX-16, in

which N is a linear network and D is a threshold detector. Pulses of the same

shape are applied to the system with-

out noise. The detector samples the

s(t) LINEAR r(t) THRESHOLD network output and indicates in which inter-
NETWORK DETE

h(t) d(t) DETECTOR val of a finite number of possible voltage
N D

(or current) intervals the sampled out-

Fig. IX-16. Model for a pulse trans- put lies.
mission system. We wish to explore the implications of

different criteria on the pulse shape. Since

we assume that no random noise perturbs the pulses, the input and output levels

can be quantized so that, if we send only one pulse through the system (now noisy)

and we know when to sample the output, the probability that the output sample lies

in an incorrect interval is negligibly small. The practicability of pulse code modu-

lation tells us that this is a reasonable assumption. We are focusing our attention

on interpulse interference.

117



(IX. STATISTICAL COMMUNICATION THEORY)

1. Definitions

The symbol - will stand for "has the Fourier transform." The following defini-

tions will be used: s(t), the input pulse; r(t), the output pulse; h(t), the output pulse

resulting from a unit impulse at the input; g(t), the input current (voltage) caused by a

unit voltage (current) impulse at the input; and d(t) is an ideal output pulse that will be

defined differently in different parts of our discussion.

These functions have the following Fourier transforms:

s(t) S(f) ejy (f )  h(t) - H(f) ejp ( f )  g(t) G(f) e j a ( f )

r(t) - R(f) e j ( f )  d(t) D(f) e- (f )

The modulus functions are real, nonnegative, and even. The phase functions are

real and odd, and they take on values in the interval -w < 0 < Tr. Note that R(f) = H(f) S(f)

and 5(f) = p(f) + y(f).

2. Matched-Pulse Criterion

We make the following assumptions: (a) We know the exact instants at which the

detector will sample the output. (b) The sampled output at a given measuring instant,

tm, will be the real number K. (c) We are interested in sending one pulse through the

network (or, equivalently, we are willing to take whatever pulse shape is dictated by the

other constraints and then adjust the pulse repetition rate so that the interpulse inter-

ference will be negligible). (d) The energy of the one input pulse will be minimum, sub-

ject to the preceding constraints. (e) The input impedance of the filter is resistive

(i. e., g(t) is an impulse).

This problem can be stated mathematically by saying that we want to minimize

J [s(t)] dt by varying s(t) subject to the constraint

00
r(t m ) = s(T) h(t m - T) dT = K

The solution to this problem is well known (1, 2). It is given by the formula

s(t) = Xh(t m - t), where X is a Lagrangian multiplier that is determined from the con-

straint equation

K f= Xh(t m - T) h(t m - T) dT

or

K

/f [h(t)]2 dt
-00
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It is not difficult to solve the problem under the added constraints that s(t) and h(t)

be zero for t less than zero. The solution is then

s(t) =
elsewhere

K K

m h( - T)]2 dT m [h(t)]2 dt

Thus, the pulse energy required to satisfy these additional constraints is, in general,

greater than before.

Other extensions of this "matched-filter" (or, more accurately, matched-pulse)

argument have been made to situations in which (a) noise of an arbitrary power density

spectrum enters the network with the pulse (3); and (b) the input impedance of the net-

work is not assumed to be pure resistance (4). However, even these extended criteria

for matching implicitly assume that only one pulse is to be sent through the network

and that the sampling instant is known exactly. In the following discussion we shall

attempt to shape the input pulses so that they can be sent through the network as rapidly

as possible.

3. Thin-Pulse Criteria

The problems in this section are related, because here we wish to transmit pulses

at a rapid rate by making each pulse as thin as possible. Such pulses might be most

useful in a nonsynchronous system whose detector can recognize each pulse as it arrives,

if there is enough space between pulses. However, for consistency, we shall continue

to use our original model as a background.

a. Output-energy criterion

We shall use assumptions (a), (b), and (c) of section 2. The input pulse energy will

be constrained to a fixed value K 1 . Our measure of pulsewidth will be

f 0 [r(t)]2  dt

r(t m

Thus, we wish to minimize f [r(t)]2 dt, subject to the constraints

t (T) g(t-T) T dt = K
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and r(tm ) = K 2 .

Let us define r(t) = rl(t - t m ) and rl(t) - R(f) exp [j 6 1 (f)]. Since, by definition,

we have r(t) - R(f) exp [j6(f)], then 6(f) and 6 1 (f) have the relation 6(f)= 6 1 (f) -j2Tftm

Our restated problem is, then, that we must minimize f [R(f)]2 df subject to the

0 j6 1 (f) 00
constraints [S(f)] 2 G(f) e j a ( f ) df = K 1 and R(f) e df = K 2 .

This is equivalent to minimizing the integral

, [R(f)]2 - XR(f) e 1 + [S(f)] 2 G(f) eja(f) df

Since the interval of integration is (-o, oo), we may discard the odd part of the integrand

to obtain

( [S(f) H(f)] - XS(f) H(f) cos 61 (f) + p[S(f)] 2 G(f) cos a(f) df

We want the second term of this integral to be negative and large. With S(f) and H(f)

given this can be accomplished by letting X be positive and 6 1 (f) be zero.

Now we must select S(f) in the best possible way. Our new problem is to minimize

0{[S(f) H(f)] 2 - \S(f) H(f) + [S(f)] G(f)
-cc

cos a(f)} df

A necessary condition for the minimization is that

2S(f) [H(f)] - XH(f) + 2f S(f) G(f) cos a(f) = 0

S(f) =
x H(f)
2

[H(f)] + LG(f) cos a(f)

We determine X and L from the two constraint equations:

[S(f)] G(f) cos a(f) df =

6R(f) (f)
R(f) e

00

df =

-0c

cc [H(f)]Z G(f) cos a(f)

[(H(f))2
-c [(H(f)) + LG(f) cos a(f)]

H [H(f)] Z

[H(f)] 2 + IG(f) cos a(f)
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Combining Eq. 1 with our choice of 61 (f) yields

SH(f) ej ( - P( f ) - 2 f t )

H(f) e
S(f) ejy (f ) = 2 (2)

[H(f)] Z + 4G(f) cos a(f)

and

X [()2 -j2ft

R(f) e(f) 2
[H(f)] + 4G(f) cos a(f)

If we select the values K 1 and K Z arbitrarily, we have no guarantee that we can solve

the constraint equations for i and X. But, given any pair of positive real numbers (,X),

we can compute K1 and K2. We may then vary 4 and X to bring us closer to the desired

values of K 1 and KZ . The possible range of values for the pair (4, X) is determined by

the fact that S(f) must remain real and nonnegative.

Since Eq. 2 will appear as a special case of Eq. 7, this problem will not be discussed

further here.

b. Weighted-energy criterion

Using assumptions (a), (b), (c), and (e) of section 2, we shall now take for our meas-

ure of pulsewidth

00 t 2 [rl(t)]2 dt

r(tm)

where r(t) and r l (t) are related as in the previous problem. This measure puts greater

emphasis on portions of the pulse that are far away from the measuring instant t = tm
It is analogous to the variance of a probability density function.

Then f0 t2 [r 1 (t)] 2 dt must be minimized, subject to the constraints K1 = [s(t)]2 dt

and K2 =r(tm).

Expressed in the frequency domain, we want to minimize

dfR (f) e(f) df

-oo00

subject to the constraints

K 2 = f R(f) e df and K1 = [S(f)] df
-00 -00
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If we use primes to denote differentiation with respect to f, this is equivalent to min-

imizing

[R'(f)]2 + [6'l(f) R(f)]2 - XR(f) e 1 + [S(f)] 2  df
-00

subject to no constraint, and determining the values of the Lagrangian multipliers from

the constraint equations.

Again, we select X as positive, and 6 1(f) = 0. This drops out the second, positively

contributing term of the integrand and makes the third term real and negative.

With R(f) = S(f) H(f), we proceed to minimize the integral

f {[S(f) H'(f) + S'(f) H(f)] 2 - XS(f) H(f) - p[S(f)] 2 } df

A necessary condition (5) for the minimization of this integral as we vary S(f) is that

S(f) must satisfy the differential equation

H(f) -2 [S(f) H(f)] = H(f) + S(f)
df

2

Note that S(f) must be zero wherever H(f) is zero and that y(f) = -p(f) - 2wt mf because

6 1 (f) = 0.

Let us remove our constraint on the input-pulse energy by letting ± = 0. (Discarding

this constraint allows S(f) to be nonzero when H(f) is zero.) Let us also assume that

H(f) = 0 for Ifl > W. Thus

2
d [R(f)] = Jf > w
df 2  2

or

f2
R(f) =-f + C f > W

where C is a constant. There is no first-degree term in f, because R(f) must be an

even function. S(f) and R(f) are arbitrary outside the interval [-W, W]. We shall let

R(f) and S(f) be zero outside [-W, W]. The output pulse is given by

x 2 -j 2rrt f
f2 +Ce m -W f W

R(f) e =

0 elsewhere

and
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sin 2TrW(t - t m )
r(t) = [X(W - 2W + 2) + 2C] W 2nW(t - t )

Here, X and C must satisfy the constraints that r(tm) = K2 and that R(f) is nonnegative.

Gabor's (6) "signal shape which can be transmitted in the shortest effective time" is

a particular solution of Eq. 3 when there is no constraint on r(t m ) (i.e., X = 0), and H(f)

is given by the formula

H(f) =
If < W

IflJ >W

In this case

jy~~wf _-jp(f)C cos We
S(f) e =

0

where C is determined by [S(f)] 2 df = K 1.

The general solution of Eq. 3 for S(f) in terms of H(f) appears to be difficult. We

note that if the input impedance of the network is no longer assumed to be resistive,

Eq. 3 can be replaced by

H(f) d S(f) H(f)] = H(f) + tS(f) G(f) cos a(f) (4)
df

Z

4. Least-Square Criterion

Here we shall assume that there exists some ideal individual output pulse shape that,

for prescribed rates of transmission, allows all possible message sequences to be

recognized by the detector. The input impedance of the network is not assumed to be

resistive. o

Our problem is to minimize f [d(t) - r(t)] dt by varying s(t), subject to the con-

straint that the input energy per pulse, f- s(t)[/4  s(T) g(t-T) d-T dt, is some given

value K. The solution of this simplified pulse-transmission problem will be applied

to a particular system (8).

We shall now rephrase our problem in the frequency domain. We want to minimize

the following integral:

i [D2(f) - 2D(f) R(f) ej[l(+f)- (f)] + RZ(f) + XS(f) e - j f ) S(f) ejy f ) G(f) eja(f)j df
00

123
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where K is a Lagrangian multiplier. Since the integral is symmetric and all time func-
tions are assumed to be real, we rewrite the integral as

-oo

Now we want to minimize this expression by choosing S(f) ej y (f ) . We select y(f) so that
the integrand will be smallest when ir(f) - 6(f) = 0; therefore we choose

y(f) = r(f) - P(f) (6)

Substituting Eq. 6 in expression 5, we obtain

[D(f) - ZD(f) S(f) H(f) + S2(f) H2(f) + KS2(f) G(f) cos a(f)] df
-0o

A necessary condition for this integral to be a minimum is that

2S(f) H2(f) - ZD(f) H(f) + ZkS(f) G(f) cos a(f) = 0

or

D(f) H(f)
S(f) = (7)

H (f) + kG(f) cos a(f)

Combining Eqs. 5 and 6 yields

S(f) e j y ( f ) - D(f) e j ( f ) H(f) e - jp ( f )

H Z(f) + kG(f) cos a(f)

where K must be chosen to satisfy our energy constraint. That is,

K= D2(f) HZ(f) G(f) cos a(f)

K = [HZ(f) + kG(f) cos a(f)]2
-00

The mean-squared error, E, is given by

E (f) - D(f) H2 (f) df

(f H(f) + XG(f) cos a(f)

We shall now consider two examples that differ only in that we shall be signaling

through different networks.

In both examples, the desired pulse shape is rectangular, of 1 voltage unit in ampli-
tude, and 1 time unit in duration. Thus D(f) ej ] (f ) = sin Tf/wf. The input impedance of
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each network is assumed to be 1 ohm.

For case A: H(f) = f 1/2 exp [-(10fl )1/2] W

For case B: H(f) = exp [-(0 lf )'/2]

and H(f) is zero elsewhere.

Since we shall only calculate K, E, and r(t), we do not need to specify the phase

functions of the networks. The system has been constrained to be bandlimited. Thus

the mean-square error is considered as being made up of two components - one from

bandlimiting, and one that results from inaccuracy of approximation within the band.

These will be called E B and E I.

For both cases

SsinZ wf 2 sin xEB(W) = 2 df = dx
W (if) TrW x

This expression can be rewritten as

EB(W) = - + sinW +B T 7W+

sin ud

2rW u

0. 099
A graph of EB(W) is shown in Fig. IX-17. For W > 1, EB(W) = . This calculation

reveals the somewhat surprising fact that the power in the error signal, r(t) - d(t), is

less than 1/10 of the power in the desired signal, d(t), when W is greater than 1.

The question then arises, How well does r(t) represent d(t) when EB = 1/10 (for

example, when W = 1)? We now assume that E I = 0 or E = E B . This is equivalent to

throwing away our input-power constraint by letting X be zero. Thus the desired fre-

quency function is attained exactly within the band, and no attempt is made to match

0.10
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008

0.07

006

005

0.04

0.03

0.02

0.01

0 I I I I I i t I I
1 2 3 4 5 6 7 8 9 10

Fig. IX-17. Graph of EB(W) for W > 1.

as W - co.)

( ,EB(W) 0.099.
(EB W E B = 1 at W = O; E B - 0
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* r (t) CASE A

x r(t)

- d(t)

S I X X X I

xxxXX

Fig. IX-18. Graphs of r(t) for case A, d(t), and r (t).

outside the band. Let r(t) under these conditions be r (t). We obtain r (t) as follows.

* W sin (rrf) ej2rrft

-W rf

sin (Trf) e j 2 Trft df = -2 W
-W

-2 sin ZrW (t -

S2(t-)

sin (rf) sin (2Trft) df

2 sin 2nW t +

2 T(t +)

r (t)= r (t) 1 sin x dxr = r'(t) dt =--:9 x
-oo ZW t 2

In Fig. IX-18 r (t) is depicted with d(t) for W = 1. One property of r (t) is that for

t > 1 the envelope of r (t) drops off faster than 0. 056/t 2 . Thus, if we receive pulses

shaped like r*(t) once each second, if their separate peak values are either +1 or -1,

and if the detector measures the output where each peak should lie, the maximum pos-

sible interpulse interference is less than
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x r(t) CASE B
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Fig. IX-19. Graphs of d(t), r(t) for case A, and r(t) for case B.
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Fig. IX-20, Graphs of S(f) for case A with two different values of X.
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oo 2
S(0.06) 0. 1

n=l n2 6

If the detector-measuring instants drift slightly from the prescribed positions, then the

upper bound to the interpulse interference can only decrease. However, the signal volt-

age will also decrease.

We now reintroduce our input-power constraint and consider signaling through the

networks of cases A and B. Again, we let W = 1. With the input pulses given by Eq. 8

and with X = 10- 4, the corresponding output pulses for each case are plotted in Fig. IX-19.

In the scale of this graph, r(t) for case B is not distinguishable from r (t) in Fig. IX-18.

Table IX-2.

x K(X) Ei(X)

10- 8  260 not computed

106 130 3. 1 X 106

10-4  110 1.0 X 10- 3

10-2 21 2.6 X 10-1

The output pulses for these two cases were calculated on the IBM 704 computer in

the M. I. T. Computation Center.

Figure IX-20 shows S(f) of case A for two different values of the parameter X.

Table IX-2 indicates how the input energy, K, and the mean-square error within the

band, EI, vary with X for case A.

The writer wishes to acknowledge the work of Mrs. Mabel Greber, of the Computa-

tion Center, M.I.T., in computing the data for the curves of Figs. IX-19 and IX-Z0 and

the values of K and E I in Table IX-2.

D. W. Tufts
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