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A. NONLINEAR DISTORTION OF SOUND WAVES IN LIQUID HELIUM

The speed of propagation of a disturbance in a fluid depends to some extent upon the

"strength" of the disturbance. The reason for this nonlinear effect is twofold. First,
the speed of the disturbance at a point is the sum of the local speed of sound and the

particle velocity at that point and, second, the local speed of sound depends on the

pressure and temperature at that point. Although these nonlinear effects are small,
they are cumulative, so that after a wave travels a certain distance they will be of con-

siderable importance, producing, for example, repeated shocks.

Therefore, an initially "monochromatic" sound wave will continuously feed energy

into higher frequencies, which leads to a (nondissipative) attenuation of the fundamental

frequency wave component. The present study of nonlinear distortion of waves in liquid

helium was initially undertaken as a problem of separating the dissipative from the non-

dissipative attenuation of the fundamental wave, as indicated in Quarterly Progress

Report No. 53, page 170. In addition, it appears possible that a study of some of the

nonlinear wave characteristics will prove useful in the determination of certain basic

properties of the liquid itself.

In this report some initial experimental results are presented. The experimental

arrangement is shown in Fig. XIII-1. In this first experiment, multiple reflections of

1-mc wave pulses were observed. The receiver crystal, tuned to 2 me, was followed

by a filter so that the second-harmonic content of the wave pulse could be studied as a

function of the distance of wave travel. Actually, the sensitivity of the receiver

crystal was sufficiently high at other frequencies so that the behavior of higher

harmonics than the second could also be studied. Photographs were taken of the oscillo-

graphic display of the second-harmonic pulses for a wide range of wave amplitudes

associated with driving voltages of the transmitted crystal ranging from 4 to

200 volts rms. Representative pictures, taken at 2. 5' K, are shown in Fig. XIII-2.

Notice how the second harmonic grows with time, that is, with the distance

traveled, until a maximum is reached, after which the pulse decays. Notice

also how the travel distance that is required to produce maximum second har-

monic decreases with increasing wave amplitude. Examination of a number of
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Block diagram of experimental arrangement.

Fig. XIII-2. Wave pulse amplitude of second harmonic as a
(a) T = 2. 5" K, driving voltage = 9. 4 volts;
driving voltage = 23. 5 volts.

function of time:
(b) T = 2. 160 K,
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photographs of this kind have shown that

(a) For low and moderate source strengths, the position of maximum intensity of the

second harmonic moves toward the source crystal as the -0. 1 power of the source

strength.

(b) For higher source strengths, the envelope maximum varies as a much larger

negative power of the source strength, and approaches the -1 power for voltages higher

than 200 volts rms.

(c) The spatial rate of growth of the wave, before the maximum is reached, is very

nearly linearly proportional to the energy in the fundamental mode and is independent

of distance from the source.

We wish to make the following comments about the theory of the nonlinear distortion.

If we imagine ourselves on a coordinate system moving with the wave, then v can be

written as

v = vk exp[(k2Tri/X)x]* 2-O0

where vk V-k, and Ivk is a function of time only. Then v (average over space)
k 2 a 2 2 2here= Il'vk .2 We now consider the vector y = v 1 , 2 . j . . . and assume that there

exists a matrix A, with the property that dy/dt = Ay and A = D + K, where D is

diagonal and K antisymmetric. The matrix D defines the direct loss of energy by each

mode caused by viscosity, and k gives the net loss of each mode as a result of coupling.
2 2 2We expect that the energy lost, for example, by v. to v., is equal to that gained by v.

from v., so that for small motion (Re < 1) we can consider k constant and anti-

symmetric. Assuming that A can be diagonalized, we can put the solution in the form

v = Fk(. ... . ... )Ck e - kk

j k ' J

where Ck can be adjusted to satisfy boundary conditions. Considering just the first two

modes and initial conditions, we obtain

2 U 2  -t [ 2 -(X 2 -X 1 )t1
v - e -a e

1-a

2 U2ae X I e
2 U 2 ae 2 e

v 2 2 - e
1-a

where U is the initial amplitude of a sinusoidal wave, and l/ 2 = (1 +4a 2 )/(a 2 +4). The

factors XI and X2 can be evaluated in terms of constants of the medium in the equations

of motion, but this has not been done yet.

H. L. Willke, Jr., G. W. Myers, U. Ingard
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B. ACOUSTIC ATTENUATION IN THE VICINITY OF AN ORDER-DISORDER

TRANSITION IN A COPPER-GOLD ALLOY (Cu 3 Au)

There are a number of bimetallic alloys that exhibit an order-disorder transition.

This is a transition from an orderly arrangement of atoms in the crystal lattice to a

disorderly arrangement in the same lattice. There is a critical temperature below which

disorder increases rapidly with temperature and above which disorder is complete. The

transition is accompanied by marked changes in certain physical properties of the alloy,

such as the resistivity and specific heat. Investigation has shown that there is also a

sudden change in the absorption of sound waves in the vicinity of the critical tempera-

ture of the alloy Cu 3 Au.

The experimental arrangement is shown in Fig. XIII-3. The pulse generator delivers

600-kc rf pulses to crystal No. I where they are converted to sound. The sound passes

through the sample and two glass buffer rods. It is then received by crystal No. 2,

amplified, and displayed on the oscilloscope.

The physical length of the pulse is shorter than either glass rod, but considerably

longer than the sample. The first received signal, therefore, is a superposition of

reflections in the sample, and the measurement is not a simple transmission measure-

ment. However, if the frequency is varied until all reflections arrive in phase, it can

be shown that the height of the received signal, S, is S = e-PLT2/1 - RZe- 2 L, where

R and T are the reflection and transmission coefficients of the glass-sample interface,

L is the length of the sample, and p is the attenuation of sound in nepers per unit

length. R and T can be found from the build-up rate of the received signal, and p can

be calculated.

The results, which include a correction for absorption by the glass rods, are shown

in Fig. XIII-4 as a function of temperature. Specific heat and resistivity measurements

as a function of temperature (1) are given in Fig. XIII-5.

Qualitatively, we can say that the increase in resistivity depends on the increase in

disorder, as they both increase smoothly to a certain value at the critical temperature

and remain there. The specific heat, as would be expected, depends on the rate of

change of disorder, because it returns to its normal value after the transition. Sound

attenuation seems to depend on both because there is a large residual attenuation

beyond Tc and a large peak just below Tc where the rate of change of disorder is most

rapid.

Quantitatively, the attenuation in nepers per centimeter increases by a factor

approximately 104 times that at room temperature.

Various observers have investigated the possible existence of an additional

order-disorder transition in this alloy at 6000 C. No change in sound attenua-

tion was observed near this temperature. Because of the sensitivity of this
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Fig. XIII-3.

0.05

o 004
aw
a

U)

w 0.03 -
a

o
0

0.02

w

Diagram of sound attenuation apparatus.

0 100 200 300 400 500 600

TEMPERATURE (OC)

Fig. XIII-4. Sound absorption in Cu 3 Au as a function of temperature.
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Fig. XIII-5. Resistivity and specific heat in Cu 3 Au as a function of temperature.
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method we might doubt the existence of this second transition.
P. M. Scop, L. W. Dean III
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C. ATTENUATION OF SOUND IN ALUMINUM

The vibration-measuring apparatus originally developed by Bordoni (1) and used by-

him at low temperatures (2) was modified for measuring the attenuation of sound in

aluminum at room temperature. The effects of air damping and of holes were also

explored. In the Bordoni apparatus, the extensional vibrations of a small metal rod

cause a change in the capacitance between the rod and a nearby electrode. This capaci-

tance is used in the tank circuit of a high-frequency oscillator, so that changes in the

capacitance will modulate the frequency of the oscillator. The frequency-modulated

signal is then detected, the resulting output being linearly proportional to the motion of

the end of the bar.

The original detector was replaced by a ratio-detector circuit, which offers better

linearity, less noise, and higher output. The attenuation of aluminum was measured

in two ways with this apparatus. First, the rod was driven at its fundamental resonant

frequency, the excitation was turned off, and the decay of the vibration was recorded

graphically. Second, the amplitude of the vibration as a function of frequency was

plotted, and a resonance curve drawn. Both of these methods gave the same value for

the attenuation within 10 per cent. A quality factor, Q, was defined in the usual way,

and the value of Q for aluminum at room temperature was found to be 3. 6 x 10 4

We found that the resonant frequency could be located with great accuracy. The

resonant frequency becomes lower with increasing temperature. Thus, if the sample

is slightly heated and the driving frequency set slightly above resonance, the sample

can be allowed to cool through resonance. A continuous resonance curve then can be

drawn by the recorder. This curve can be calibrated by plotting points as a function of

frequency, and the resonant peak can be located with an accuracy better than one part

in 105

The effect of air damping was noted by allowing air to leak slowly into the sys-

tem and observing the effect on the Q. The results show that air damping is very small

until a pressure equal to approximately 0. 001 mm Hg is reached. At this pressure the

air damping begins to reduce the Q. At approximately 0. 1 mm Hg, when the Q has

been reduced roughly one-half, further increases in pressure begin to have little effect

on the Q. These data are illustrated in Fig. XIII-6.
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develop that would not be present with no hole, and the dissipation is increased.

Since the speed of sound in a metal depends directly on the elastic constants of the

metal, and since the speed of sound in a rod can be determined by this method with an

accuracy better than one part in 105, the relationship between the elastic constants of

a metal can be measured with great accuracy with this apparatus.

J. B. Schaefer, L. W. Dean III
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D. SCATTERING OF SOUND BY SOUND

Equipment has been built for the simultaneous generation of square rf pulses at

frequencies of 0. 6 mc-1. 0 mc that have durations continuously variable from approxi-

mately 40 psec to 200 iLsec. These pulses are converted to sound under water by means

of quartz crystals that are cut for the appropriate frequencies. At present, the largest

pulses that the equipment will transmit to the crystals have a peak-to-peak amplitude

of 600 volts.

The sound pulses are made to collide at right angles, and the sum frequency
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A hole was drilled in the center of

the rod, and the Q was remeasured. A

hole, whose diameter was 0.15 times the

diameter of the rod, reduced the Q one-

half. Enlarging the hole to 0.2 times the

diameter of the rod reduced the Q to

1/20 of the original value. Smaller

values than this could not be measured.

The power dissipated by the larger hole

is 19 times that dissipated by the
i I smaller one. The power scattered from
10 100 000 s

a cylinder (the holes are cylindrical) in

as a function the long wavelength limit varies as the

fourth power of the cylinder radius.

Since the fourth power of the ratio of the

ely 4, there must be some loss mechanism in addition to

nto other modes. The holes were drilled at the velocity-

n of high stress. A hole drilled here allows strains to
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component of the scattered wave is searched for by means of a quartz crystal cut for

1. 6 mec. The experiment has been performed several times, but no scattered wave has

been observed. With the present equipment, a scattered wave whose amplitude is 60 db

below the amplitudes of the incident waves could easily be detected. It may be possible

to improve this factor 20 to 40 db by increasing the signal to the crystals and by addi-

tional filtering.
L. W. Dean III

E. SOUND SOURCE NEAR A VELOCITY DISCONTINUITY

This work is reported in detail in a thesis (1) in which the derivations are given;

only a brief discussion of the results is presented here.

For many practical reasons, it is important to know the sound field that is produced

by a source near a plane interface
Ic

v between two media in relative motion.

Such a situation is shown in Fig. XIII-7,

MEDUM A G FD with the source at point P and the inter-

MEDIUM I face along AOD. The formal solution

E for any source is found by expressing the

H source function as an integral over plane

waves, and then using the plane-wave

reflection and transmission coefficients
Fig. XIII-7. Sound surface and surfaces to obtain the integrands for the reflected

of constant phase.
and transmitted fields. These formal

integrals cannot be expressed in a closed

form in terms of elementary functions, but they can be evaluated asymptotically in order

to give the far-field approximation to the reflected and transmitted waves in a closed

form. This approximation is obtained by using a saddle-point evaluation of the exact

formal integral solutions.

The contours of constant phase, shown in Fig. XIII-7, agree with what would be

expected. The semicircle AHEF represents the wave front of the direct wave from the

source at P (h is assumed to be infinitesimally small). The curve GBCD represents

the direct wave in medium 2 when h = 0 (the source is at the interface). The distance

GO is shorter than AO, and OD is longer than OF, as would be expected from the fact

that the sound travels slower upstream and faster downstream in medium 2 (relative to

medium 1 at rest). In order to have continuity of the wave front, the segments AB and

ED must, therefore, be added. These straight wave fronts violate the causality prin-

ciple because they arrive at the point of observation sooner than the curved direct wave

front. Thus these straight wave fronts cannot carry energy to infinity. This fact is veri-

fied by calculation because the straight wave fronts are found to have a faster fall-off
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with distance from the source than the curved wave fronts have.

If h is assumed to be small, but finite, then the transmitted wave is peaked at

point B, and the amplitude goes to zero at G and D. The amplitude varies fairly

smoothly over the rest of the wave front, except over the arc GB which is reduced by

an amount proportional to e-. The closed expression for this amplitude and graphs

of this expression are given in the thesis (1).
P. Gottlieb
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