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A. QUANTITATIVE METHODS IN THE ANALYSIS OF NEUROELECTRIC

ACTIVITY (1)

The ease with which "new" neurophysiological phenomena can be discovered and

observed stands in marked contrast to the practical difficulties that are encountered

when one attempts to quantify neuroelectric activity with a view towards formulating

related theoretical models that are both descriptive and predictive in character. Four

major obstacles to such quantification are: (i) Neuroelectric events, though in prin-

ciple definable, are not always visually detectable. (ii) Even clearly detectable

neuroelectric events exhibit considerable variability, especially when one records from

the higher neural centers of unanesthetized animals; it is this variability that renders

the description of the "typical" event so hazardous. (iii) It is seldom possible to

describe meaningfully these spatio-temporal patterns of neural activity by a single

number. (iv) Often, measured characteristics become significant only as they are

related to neuroanatomical data, to studies of physiological background activity, or

even to psychophysical judgments.

The inherent variability of the electrical activity of the nervous system forces us

to choose procedures that result in statistical estimates of the quantities of interest to
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us. The reliability and validity of these statistical estimates depends clearly on the

number of events that compose the sample population from which the estimates are

derived. If the variability of the observed events is great, the number of samples

required in order to draw valid inferences is also large - a circumstance that makes

the application of many established neurophysiological techniques impractical.

We have attempted to solve this problem by using digital and analog computers

for the reduction of electrophysiological data. The types of events that we have

attempted to quantify are (i) responses evoked by sensory stimuli, and (ii) time

patterns of activity in electroencephalographic records.

Using computers, we have averaged the amplitudes of a number of responses evoked

by identical stimuli at discrete instants in time following stimulus presentation. In order

to obtain a measure of dispersion around the averages, sample variances have also been

computed.

Using a correlator, we have analyzed EEG recordings to obtain estimates of the

spectral composition and temporal relationships seen in the data. In this paper, these

analysis techniques are described and results obtained through the use of these techniques

are presented.
T. T. Sandel, C. E. Molnar, T. F. Weiss, J. S. Barlow,

R. M. Brown, M. H. Goldstein, Jr., W. A. Rosenblith
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B. COMPARISON OF EEG ACTIVITY RECORDED FROM HOMOLOGOUS

LOCATIONS ON THE SCALP BY MEANS OF AUTOCORRELATION

AND CROSSCORRELATION ANALYSIS

That there is a great degree of similarity and synchrony in the EEG activity

recorded from homologously located scalp electrodes on human subjects has been well

known since the early days of electroencephalography (1-3) and there has been much

speculation on the underlying nature of this effect. Among the possible neuronal struc-

tures that might operate to synchronize the activity on the hemispheres are the corpus

callosum (4) and the reticular formation together with the diffuse thalamic projection

system (5). In order to study the similarity of activity from the two sides of the head

in normal subjects, and of the departures from normal activity that appear in patients

with unilateral cerebral lesions, autocorrelations and crosscorrelation analyses were

performed on magnetic tape recordings of EEG's.

As a standard against which to compare the results of the analysis of EEG
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Fig. XV-2. Crosscorrelogram of two sine waves shifted in phase 90 and mixed with
two independent noise sources of the same rms amplitude. Duration of
sample, T = 1.5 seconds.
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recordings, some data for signals of known properties are illustrated first. In Fig. XV-1

the autocorrelogram for a 400-cps sine wave, filtered noise of 300-500 cps bandwidth

(with 18 db per octave roll-off outside these limits), and an equal amplitude mixture of

these two signals are shown. The heavily damped sinusoidal form of the correlogram for

the filtered noise (in contrast to the persistently uniform shape for the sine wave) simply

illustrated the fact that the average correlation, or degree of coherence between any given

wave in the noise (illustrated on the left side of Fig. XV-1) and the waves immediately

following it are rapidly lost with increasing delay. The bottom photograph represents

another property of autocorrelation functions, that of superposition, representing as it

does the simple addition of the two autocorrelograms above it. The length of the sample

used for these correlograms was so chosen that these results would be comparable with

those for 1-minute recordings of EEG's with a dominant frequency of 10 cps.

In Fig. XV-2 some of the properties of the crosscorrelation analysis of two signals

are illustrated. On the lower left, the crosscorrelogram of two 400-cps sine waves, the

second of which is 90 ° out of phase with the first (see Fig. XV-1), is shown. The first

peak in the center of the crosscorrelogram appears not at zero delay - which would have

been tne case had there been no phase shift - but at -0. 625 msec, which indicates

900 phase shift for the 2.5-msec period of a 400-cps sine wave. On the lower right, the

crosscorrelogram for a mixture of these same two sine waves with two independent noise

signals of 300-500 cps bandwidth is shown, and the same shift in the first peak nearest

zero delay is evident. The crosscorrelogram for the two noise signals alone is shown in

the center; the essentially flat base line indicates that there is no coherence between

these two signals when they are averaged. This irregularity is indicative of short-time

correlation errors for the 1.5-sec sample that was used; the longer the sample, the less

irregular the baseline. Figures XV-1 and XV-2 show the results of computations for

1-minute samples, so that they would normally be comparable with those for 1-minute

EEG recordings.

In Fig. XV-2 the detection, by means of crosscorrelation, of a sinusoid common to

two signals is illustrated; in Fig. XV-3 the converse is shown, that is, the ability of

distinguishing (by this method of analysis) between two sinusoids that are very close but

not identical in frequency. Two sine waves, differing in frequency by only 1 per cent,

were crosscorrelated, and the result is essentially zero. The autocorrelograms,

determined at the same gain settings of the machine, are also shown in Fig. XV-3.

Had the sine waves been identical in frequency, the amplitude of the crosscorrelogram

would have been sinusoidal in form and of an amplitude equal to that of the autocorrelo-

grams. It should be emphasized that the corresponding length of recording for an EEG

with a dominant frequency of 10 cps may not be sufficiently long for comparable accu-

racy, particularly for subjects whose EEG's are characterized by the appearance of

rhythmic activity in trains that are separated by appreciable intervals of time, and hence
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Fig. XV-3. Autocorrelograms and crosscorrelogram of two sine waves differing in
frequency by 1 per cent. Duration of sample, T = 1.5 seconds.
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Fig. XV-4. Autocorrelograms and crosscorrelogram for a 1-minute simultaneous left
and right parieto-occipital recording from a normal human subject.
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the length of the recording to be used for analysis must be appropriate for the particular

determination that is being made.

Autocorrelograms and crosscorrelograms for simultaneous EEG recordings from

bipolar parieto-occipital scalp electrodes for a normal human subject are shown in

Fig. XV-4. The gain settings for the correlator were approximately 20 per cent higher

for the crosscorrelogram than for the mean of the autocorrelograms. It is evident that

the crosscorrelation is quite symmetrical about the point of zero delay, and this fact,

together with the consideration of the gain settings for the crosscorrelogram in com-

parison with those for the autocorrelograms, indicates that there is a great degree of

similarity between the activity on the two sides. Moreover, the occurrence at zero delay

of the peak deflection of the crosscorrelogram indicates that the activity recorded from

these two electrode locations is synchronous, on the average, for the 1-minute recording

that was analyzed.

Autocorrelograms and the crosscorrelogram for a 1-minute recording from similarly

placed electrodes for another normal subject are shown in Fig. XV-5, and, again, a

great degree of similarity between the activity on the two sides is apparent. A measure

of the degree to which the activity on the two sides is independent, or asynchronous, can

be obtained by comparison of the gain settings of the correlator for the autocorrelograms

with those for the crosscorrelograms; in the example illustrated in Fig. XV-5, they

were identical.

The symmetry of the crosscorrelogram about the point of zero delay, as illustrated

in Figs. XV-4 and XV-5 has been a characteristic finding from all of the EEG recordings

of normal subjects that have been examined thus far with these techniques, whether or

not the activity is of the predominantly rhythmic type shown by these two subjects.

In contrast to the results for normal subjects, analysis of the recordings from

similarly placed electrodes for a small number of patients with unilateral cerebral

lesions has shown an asymmetry with respect to the point of zero delay in the

crosscorrelogram, although the peak deflection in the crosscorrelogram is still found

at zero delay. Such a result is illustrated in Fig. XV-6, for a preoperative recording

from a patient with a tumor of the right cerebral hemisphere. The autocorrelogram for

the abnormal side is different from that for the normal side, in that it shows a consid-

erably greater content of slow-wave activity in comparison with the rhythmic activity at

a rate of 10/sec on the normal side.

An even more marked asymmetry of the crosscorrelogram with respect to zero delay

is apparent in Fig. XV-7, in which the results for another patient with a tumor of the

right cerebral hemisphere are shown. On the left side, normal 10/sec activity is

apparent in the autocorrelogram, but this activity is not present on the right side. The

crosscorrelogram of the activity on the two sides shows maximum amplitude at zero

delay, despite the marked asymmetry for positive, as compared with negative, values
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Fig. XV-5. Autocorrelograms and crosscorrelogram for a 1-minute simultaneous left
and right parieto-occipital recording from a normal human subject.
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Fig. XV-6. Autocorrelograms and crosscorrelogram for a 1-minute recording from a
patient with a tumor of the right cerebral hemisphere. (R. A.).
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LEFT AUTOCORRELOGRAMS muT
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Fig. XV-7. Autocorrelograms and crosscorrelogram for a 1-minute recording from a

patient with a tumor of the right cerebral hemisphere. (P. C.).

of the delay. It is unlikely that the peak in the crosscorrelogram at zero delay simply

represents spread of electric fields across the midline because the forms of the auto-

correlograms for the two sides are quite different. The possibility that the asymmetry

in the crosscorrelogram about the point of zero delay might result from an artefact of

sampling (for the 1-minute sample used) is one that must be further explored from the

analyses of longer recordings.

These results, both for normal subjects and for the two patients, indicate that there

is a good deal in common between the activity recorded from homologous locations on

the two sides of the head in the parieto-occipital region. It would be of interest to know

to what extent the activity on the two sides would still be similar when all of the neuronal

connections are severed that might serve a synchronizing function. Not only trans-

callosal and transcommissural influences, but also common influences from single mid-

line structures in the brain stem (for example, the reticular formation), would be

included.

As a physiological approximation to the experiment of complete functional isolation

of the two hemispheres, Fig. XV-8 shows the results of an experiment in which simul-

taneous recordings of two normal subjects whose resting EEG tracings showed similar

dominant (alpha) frequencies were made. Recordings were made at rest and also while

both subjects were being flashed simultaneously at a flash rate of 10/sec by means of
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Fig. XV-8. Autocorrelograms and crosscorrelograms for simultaneous recordings
from two normal subjects at rest, and during 10/sec photic stimulation.
Right parieto-occipital electrodes; 1-minute recording.

two synchronously triggered Grass stroboscopes. The autocorrelograms and the cross-

correlogram for the resting recording are shown in the upper half of Fig. XV-8; it is evi-

dent that the resting activity of both subjects was quite close in frequency, for both it was

approximately 10.7/sec. Despite this similar dominant frequency for both subjects, the

crosscorrelogram of the simultaneous recordings between the two subjects is everywhere

essentially zero. However, in response to 10/sec flashing, the activity of both subjects

was entrained at the flash frequency, as is apparent from the autocorrelograms in the

lower part of Fig. XV-8, and with this common component now appearing in the EEG's

of both subjects, the crosscorrelogram also shows a pronounced component at 10 cps.

These results confirm and enhance those obtained by other workers whose methods

of study of the degree of similarity of the EEG activity for the two hemispheres, as

recorded with scalp electrodes, are different. We plan to investigate, by means of

experiments with simulated signals transformed in various ways (for example, by

rectification), the nature of the asymmetry that appears in the crosscorrelogram for

some patients with unilateral cerebral lesion.

J. S. Barlow, Margaret Z. Freeman
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C. PSYCHOACOUSTIC STUDY OF THE MECHANISM OF BINAURAL FUSION (1)

1. Introduction

When binaurally presented acoustic stimuli are sufficiently similar, the listener hears

a single virtual source. The signals are then said to be fused. When the sounds reaching

the two ears are sufficiently different, either in time of arrival, intensity or spectral

composition, fusion fails and the listener hears two sources, one at each ear. When

the stimuli fuse, the location of the virtual source is determined by the manner in which

the stimuli are administered. In a free-field situation, the virtual source is located

somewhere outside the listener. If the stimuli are administered through earphones, the

listener judges the source to be located inside his head. Our studies concern the latter

phenomenon. It is likely that these two phenomena employ the same mechanism of

binaural fusion.

David, Guttman, and van Bergeijk (2), and Deatherage and Hirsch (3), have shown

in a series of psychoacoustic experiments that, for impulsive stimuli, time and intensity

can be "traded" in fusion. If trains of electric pulses of 100- Isec duration (clicks) are

fed to the subject through earphones, the apparent source of the clicks can be moved to

the left side of the head, either by making the click on the left more intense than the

click on the right or by making the click on the left precede the click on the right.

If the click on the left is more intense than the click on the right, the apparent source can

be moved back to the center of the head by making the click on the right arrive sooner

than the click on the left. These psychophysical results have been discussed in terms

of latencies of the characteristic peaks in the electrophysiological response of the

auditory nerve to click stimuli.

Goldstein and Kiang (4) have conducted a series of neurophysiological experiments

to investigate synchrony of responses to transient stimuli. Their recording was from
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gross electrodes placed at the round window and on the auditory cortex of cats. When

the stimulus was a. click, if enough masking noise was added to eradicate the character-

istic neural response to the click at the round window (the N 1 , NZ peak configuration),

the neural response at the auditory cortex was also eradicated. When the stimulus was

the sudden onset of wideband Gaussian noise (the beginning of a noise burst), more

masking noise was required to eradicate the neural response at the auditory cortex than

to eradicate the N 1 , N2 peaks at the round window. Their explanation of this was that

masking noise desynchronized the response to the noise burst, but not to the click, and

that desynchronization destroyed the response at the round window, but not at the audi-

tory cortex.

Their experimental results can be explained in terms of a simple mathematical

model (5). According to this model, the response recorded by gross electrodes

is the summated response of a large population of mathematically postulated

"neural units." The units contributing to the round-window response produce a

sharp spike-like waveform, but those contributing to the response at the auditory

cortex produce a broader waveform. If the times of firing of the units at both

round window and cortex are desynchronized by an amount that is small com-

pared with the duration of the response at the cortex but large compared with

the duration of the response at the round window, the summated response at the

round window will be reduced much more than the summated response at the

auditory cortex. The addition of masking noise to a noise burst produces this

desynchronization. The addition of masking noise sufficient to mask the round

window response to a click does not (according to the model) produce desyn-

chronization, but rather, by a "line-busy" effect, prevents units from responding

to the click.

Although Goldstein and Kiang presented stimuli monaurally, their experiments

indicate that there is a way of controlling two parameters of the neural response

to impulsive stimuli: The times of firing of responding neural units can be

desynchronized by adding masking noise to a noise burst, or the number of

units responding to the stimulus can be reduced without desynchronizing the

response by adding masking noise to a click. This suggested that a series

of psychoacoustic experiments similar to those performed by David, Guttman, and

van Bergeijk could be conducted, in order to determine the importance of synchrony of

neural discharges in binaural fusion by using as stimuli clicks and noise bursts in the

presence of masking noise. The apparent trading relationship between time difference

and intensity difference provides a measure of the strength of a signal for fusion because

time difference can be measured directly.

Three experiments were conducted with three subjects who had not had

previous experience in psychoacoustic experiments.
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2. Experiment 1. Effect of Masking Noise on Fusion of a Click with a Noise Burst

a. Procedure

The stimulus consisted of a train of clicks in the left ear, a train of noise bursts in

the right ear, and steady masking noise in either or both ears. See Fig. XV-9a. The

burst lengths and repetition rates investigated were 50-msec, 20-msec, and 10-msec

noise bursts at 5 pps, and 10 msec noise bursts at a rate of 20 pps. Thresholds were

determined monaurally by the method of limits. We determined thresholds at 5 pps,

using a 50-msec noise burst. The intensity at which a noise burst or a click is just

audible depends on the noise-burst length and on the repetition rate, but we did not

compensate for this when we changed the stimuli. We kept the intensity of the stimuli

unchanged for all conditions, to provide a stable reference level.

The subject sat in a soundproof room, wearing a matched pair of PDR-8 earphones.

On the arm of his chair was an unmarked control with which he could control the rela-

tive time of arrival of the click and noise burst. He was instructed to adjust the control

until the apparent source was in the center of his head, and notify the experimenter by

means of a buzzer. If he could not get a centered image, he was to notify the experi-

menter.

b. Results

With masking noise only in the ear receiving noise bursts, the level of masking noise

L L t

B RL B RL

----- T L- -T

(a) EXPERIMENT I (b) EXPERIMENT 2

TBC

8 C

L t.,

TRL TRL

A

(c) EXPERIMENT 3 (d) EXPERIMENT 4

Fig. XV-9. Schematic representation of stimuli used in experiments. Repetition rate,

1/T; noise-burst duration, TBC; interaural time delay (right ear leading),
T RL
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that was necessary to prevent fusion (in 50 per cent of the presentations) was, on the

average, 7 db less than the level of masking noise that was necessary to make the noise

burst inaudible (in 50 per cent of the presentations). With masking noise only in the ear

receiving clicks, the level of masking noise necessary to prevent fusion was, on the

average, l db less than the level necessary to make the clicks inaudible. With masking

noise in both ears, the level of masking noise necessary to prevent fusion was 1 or 2 db

greater than with masking noise only in the ear receiving bursts of noise.

In every case, with masking noise at 0-db sensation level in both ears the subject

put the noise burst from 2 to 4 msec ahead of the click for a centered image. As masking

noise was added to the noise burst this gap increased. When masking noise was added to

the click it was necessary to present the click earlier relative to the noise burst to obtain

centering.

Table XV-1 lists the standard deviation of delay between click and noise burst for a

centered image. Each point represents the average of 15 trials (12 for subject JP).

Table XV-1. Experiment 1. Train of clicks
bursts in right ear.

in left ear, train of noise

Stimulus
(Burst Length,
msec/pps)

50/5

10/5

10/5

50/5

10/5

10/20

20/5

10/20

Side Presented
with Masking
Noise

R
L
B

R
L
B

R
L
B

R
L
B

R
L
B

R
L
B

R
L
B

R
L
B

Standard Deviation
of Delay for Cen-
tered Image

(msec)

1.9
1.8
2.3

1.2
0.8
1.0

1.6
1.8
1.5

1.4
0.9
1.0

0.9
0.7
0.8

1.2
0.6
0.8

0.7
0.5
0. 8

1.2
0.6
0.8

Level of Masking Level of Masking
Noise to Prevent Noise for Inaudible
Fusion in 50 per Stimulus (Sensation
cent Trials Level, db)
(Sensation Level, db)

17.5 26
26 28

13.5
30.5

17
31.5

20.5
39.5

This standard deviation is the average over all levels of masking noise considered. In
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general, it increased as masking noise approached the level that would prevent fusion.

Table XV-1 also lists the level of masking noise for which the subject could get a fused

image in 50 per cent of the trials, and the level of masking noise necessary to make the

stimulus inaudible monaurally.

3. Experiment 2. Effect of Masking Noise on Fusion of a Noise Burst with a Noise

Burst

a. Procedure

The stimulus consisted of 20-msec noise bursts at 20-db sensation level in both ears,

and masking noise in either or both ears. See Fig. XV-9b. The noise bursts were pre-

sented at a rate of 20 pps. All noise sources were uncorrelated. The experimental pro-

cedure and instructions to the subject were otherwise the same as in Experiment 1.

b. Results

Averaging over all trials for all subjects, with masking noise in one ear, the level of

masking noise necessary to make fusion impossible was 2 db below the level of masking

that would make either noise burst inaudible monaurally. With masking noise in both

ears, the level of masking noise necessary to prevent fusion increased in some trials

and decreased in others. We do not consider the change to be significant.

4. Experiment 3. Effect of Masking Noise on Fusion of a Click to One Ear with Two

Closely Spaced Clicks to the Opposite Ear

a. Procedure

The stimulus consisted of a repetitive train of single clicks (click A) in the right ear,

and a train of two closely spaced clicks (clicks B and C) plus masking noise in the left

ear. See Fig. XV-9c. In each trial, the subject attempted to get centered images by

varying TRL, the relative timing, of click A. If the B-C separation, TBC, was suffi-

ciently large, there were two relative positions of click A that resulted in centering. If

the separation was too small, only one relative position of click A resulted in centering.

The experimenter varied TBC in 0. 5-msec steps from an interval for which the subject

was consistently able to get centering with two positions of click A to an interval for

which the subject was able to get centering with two positions of click A in less than

25 per cent of the trails.

The clicks were held at a level of 20-db sensation level throughout the experiment.

The experiment was performed for subject JP at a repetition rate of 8 pps, with masking

noise at sensation levels of -40 db, 15 db, and 20 db, and for subject JH at 20 pps and

8 pps, with masking noise at -40 db sensation level and 20 db sensation level.

185



(XV. COMMUNICATIONS BIOPHYSICS)

b. Results

In every case, the addition of masking noise to the pair of clicks resulted in a reduc-

tion of the average value of TBC for which the subject was able to get two centering

positions of click A in 50 per cent of the trials. This interval for the various conditions

is listed in Table XV-2.

Table XV-2. Experiment 3. Train of single clicks in right ear, train of pairs
of clicks in left ear. Interval in which subject can get two centering
positions of single click in 50 per cent of trials.

Masking Noise Level

Subject Repetition Sensation Level Sensation Level Sensation Level
Rate -40 db 15 db 20 db
(pps) (msec) (msec) (msec)

JH 8 3.9 -- 3. 75
JH 20 3.45 -- 2.75
JP 8 5.35 5.25 4.8

5. Interpretation of Results

We interpret the results of these experiments as supporting evidence for the
following model: The acoustic stimulus arriving at the ear evokes a timing signal.
The strength of this timing signal is determined by the short-term integrated neural
response. The timing signals from the two sides travel to a centrally located fusion
mechanism, which compares the timing signals from the two sides and under the proper
conditions produces the subjective impression of a fused virtual image. Over a limited

range, a decrease in strength of one timing signal can be compensated for by making

that timing signal arrive earlier. If the discrepancy in the strength of the timing signals

from the two ears is too great, fusion is impossible. Fusion also is impossible if the

timing signals become too weak.

With the noise burst masked, there is approximately a 7-db range of masking noise

level for which the noise burst is audible but fusion is impossible. If we accept

Goldstein and Kiang's proposition that noise masking a noise burst desynchronizes the

neural response, we may conclude that mechanisms determining audibility of the stimulus

integrate neural activity over a longer period than mechanisms of fusion. Just as

desynchronization of the neural response did not eliminate the cortical response in cats

but did eliminate the cochlear response, desynchronization of the neural response did

not make the stimulus inaudible, but did make fusion impossible.

With both the click and the noise burst at 20-db sensation level, and with masking
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noise at 0-db sensation level in both ears, the subject placed the noise burst from 2 to

4 msec ahead of the click for a centered image. According to David's time-intensity

trading relationship, this means that the timing signal from the click was stronger than

the timing signal from the noise burst. Here again, this is what we would expect if

audibility of the stimulus is determined by a relatively long integration of neural activ-

ity, and strength of the timing signal is determined by a relatively short integration.

Since the noise burst lasted longer than the click, it did not have to be as intense as the

click in order to be just audible. The timing signal was not strengthened by the increased

duration of the noise burst, because its strength is determined only by the short-term

response. Since the click was more intense than the noise burst, the click evoked a

stronger timing signal.

Masking the noise burst weakened the timing signal from the noise burst, so that the

interval between noise burst and click for a centered image increased. Masking the click

weakened the timing signal from the click, so that the interval for a centered image

decreased.

With a masked noise burst in one ear, the range of masking noise levels for which

the noise burst was still audible, but fusion was impossible, was only approximately 2 db

when the stimulus in the opposite ear was another noise burst, as compared with approx-

imately 7 db when the stimulus in the opposite ear was a click. These results indicate

that the difference in strength between the timing pulses from the two sides is a factor

in determining whether or not fusion is possible. Putting the weak timing signal from

another noise burst in place of the strong timing signal from the click decreased the

difference in strength between the timing signals from the two sides, so that fusion was

possible with higher levels of masking noise than before.

When noise bursts were presented to both ears, addition of masking noise to both

sides prevented fusion at nearly the same level as masking noise added to only one side.

Apparently, for fusion to be possible, the timing signals from the two sides must both

be stronger than some absolute minimum, and not differ too widely in intensity.

The reduction of the minimum perceptible interval between two clicks by the addition

of masking noise was exactly the result we predicted on the basis of the model of neural

activity proposed by Goldstein and Kiang. We interpret it as follows: Neural units are

refractory for some time after they fire. That is, they exhibit a raised threshold. In the

absence of masking noise, many units are fired by click B and are refractory for some

time thereafter, and hence if click C follows too closely after click B, the response to

click B is much stronger than the response to click C, and drowns it out. When mask-

ing noise is added to the pair of clicks, however, it continually renders neural units

refractory. Some units that are refractory at the onset of click B recover enough to

fire by the onset of click C. The effect of masking noise is to even out the responses to

the two clicks, and, in this way, to reduce the minimum perceptible interval.
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6. Conclusion

We have conducted a series of psychoacoustic experiments suggested by previously
established neurophysiological data, and developed a model of binaural fusion that
accounts satisfactorily for the results. The binaural phenomena explained by this

model are limited. For instance, the model does not account for fusion of high-

frequency tones. The model does, however, account satisfactorily for our experi-

mental results.
J. L. Hall II
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