
~P AT IONS E RCHH ENTE

w i p

j- -12 ~ ~ ~ ~ ~ : :::-:

wor :"l ng:, : ai:;er

MASSA HUETT INITT

~~sOF TECHNOLOG

. . - - . , 7 - i � I � L -� 7.N, . I I

:I.:i' ·: .: . -� · ·- . . · .·:
1-.· .' . .'I L:

I·:. ;· I
";

;.. I;··I-··· �
;·-:3 r·

''

._i;..;

:i .::

:"
-, i

·-- i.;
�:·

:':-··



THE DERIVATION OF EFFICIENT SETS

by

Terje Hansen

OR 062-77 March 1977

Supported in part by the U.S. Army Research Office (Durham) under

contract No. DAAG29-76-C-0064.



Abstract

This paper presents an algorithm that solves the parametric

quadratic programming problem:

maximize - 1 X'AX,

subject to
BX <

-C'X <

X >

D,

-R.

O.

for all R between Rmax and Rmin.

The algorithm thus generates the set of efficient portfolios in

the portfolio allocation problem. The algorithm essentially involves

the solution of one quadratic programming problem and then one

addition pivot step in the linear programming sense for each corner

portfolio. A numerical example is given.



The Derivation of Efficient Sets.

by

Terje Hansen

1. Introduction

In a recent article G. F. Alexander [1] suggested an algorithm

for the derivation of efficient sets. Alexander's method essentially

involves repeated applications of C. E. Lemke's complementary pivot

algorithm [2] for quadratic programming. Alexander gives several

numerical examples to illustrate the superiority of his algorithm

to H. M. Markowitz critical line method [3].

The purpose of this paper is to present a parametric version

of Lemke's algorithm that determines the efficient set completely.

This algorithm essentially involves the solution of one quadratic

programming problem and then one additional pivot step in the linear

programming sense for each corner portfoliol. It is obviously superior

to the technique suggested by Alexander.

A numerical example, illustrating the working of the algorithm,

is given in section 3.

1 The efficient set is completely described by so called corner

portfolios xi, . . x. Any efficient portfolio is a convex

combination of two corner portfolios xi and xi+l.
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2. The Portfolio Allocation Problem

An investor may compose a portfolio from n risky and one riskless

asset, say cash. The riskless asset is assumed to have a return of 0.

Let us introduce the following notation:

x. = the share of wealth invested in

security i (i = 1, . . n),

ci = expected rate of return of

security i (i = 1, . . n),

aj = covariance of rates of return

of asset i and j (i = 1, . . n, j = 1, . . n),

X = ) C = ( A= 

The expected rate of return and the variance

return of the portfolio are then given by:

of the rate of

Variance of the rate of return X' A X

Expected rate of return = C X
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Various constraints representing legal and financial considerations

with respect to the composition of the portfolio are given by the m constraints

BX < D.

The above set of constraints include the constraint that the sum of

the x's has to be less or equal to 1.

Suppose Rmax is the maximum feasible rate of return on the portfolio

and that the feasible portfolio with the lowest variance has a return of

Rmin. Derivation of the efficient set is then equivalent to solving

the quadratic programming problem

(1.1) maximize - X'AX

subject to

(1.2) BX . D

(1.3) -CX < -R

(1.4) X> 0

for all R between Rmax and Rmin.

The method suggested by Alexander selects 10-15 values of R

between Rmax and Rmin and then solves (1) by repeated application of

Lemke's complementary pivot algorithm for quadratic programming. Alexander's

procedure is consequently a straightforward application of a standard

quadratic programming algorithm, Moreover this technique only approximates

the efficient set since the 10-15 portfolios generated by the algorithm are

not corner portfolios.

Let the vector Y1 and the scalar Y2 denote the Lagrange
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multipliers for (1.2) and (1.3) respectively. Moreover let U be a

column vector of the same dimension as X, let V1 be a column vector

of the same dimension as Y1 and let V2 be a scalar. The solution of

(1) is then equivalent to the following linear complementarity problem:

(2.1) ( ) = -B ( 1 + -R ()

v C'O 0 Y2 \ 1

(2.2) U'X + V1 Y1 + V2 Y2 0

(2.3) U, X > 0, V1, Y1 > 0, V2, Y2 >0.

Lemke [2] has designed an ingenious combinatorial algorithm that

solves (2) and as a consequence solves (1).

We shall denote the pairs of variables (uj, xj) , (vli , Yli)

(V2, Y2) complementary pairs. The solution of (2) requires that at most

one member of each pair is strictly positive.

In order to construct an algorithm that generates the efficient set

we shall make some stipulations on the solutions to (2). We shall later

suggest how our algorithm should be modified if these assumptions are

not satisfied.

Assumption 1 (Uniqueness)

The solution to (2) is unique for any Rmin < R < Rmax
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Assumption 2 (Nondegeneracy)

If X is a corner portfoliodifferent from the one with the lowest

rate of return, then only one complementary pair has both members equal

to 0. All non-corner portfolios have the property that all complementary

pairs have one member strictly positive.

Suppose we solve (2) for R -c, where e is a small positive

number. By assumption each complementary pair has one member strictly

positive. Let us define 2 new vectors of variables m and such that

a component of w will represent the member of the complementary pair

which is positiveandthe corresponding component of will represent

the other member, i.e.

= x. and . u. if x. > 0 and
j j j 3 3

= u. and . = x. otherwise,

"n+i = Yli and En+i = Vli if Yli > 0 and

Wn+i =Vli and n+i = Yli otherwise,

Wn+m+l Y2 and n+m+l = V2 if

Y2 > 0 and

n+m+l = V2 En+m+l Y2 otherwise.

The system of equations given by (2.1) may then be rewritten

W = ME + Q1 - R Q2
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We must have

H = Q1 Rmax Q2 > 

with one component of H identically 0, otherwise Rmax

would not be the maximum feasible rate of return. Moreover the

corresponding component of Q2 has to be strictly positive since by

assumption

Q1 - (Rmax- ) Q2 > 0.

H yields the first corner portfolio. The second corner portfolio is

derived by reducing R until one component of

H = Q1 - R Q2 > 0

becomes 0. Say R can be reduced to R. By assumption only one component

of H becomes 0. Without loss of generality suppose the first component

of H becomes 0. We shall argue that mil > 0.

Let us begin by observing that we must have q21 < O. Suppose

now that m < O. If so choose

. = > 0

R = R + (> R)
q21
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Then for A sufficiently small we must obviously have that

R < Rmax

and that

a M1 + Q1 - (R + 11 ) Q > 0,
1 21- 2

where M1 is the first column of M, since by construction

mllA 1 + -ml R 1 -l l q A - qll -R q2 O,
a 11

+ 21 l -21 2 q 21

and all,but the first component of

H = Q1 - RQ 2

are strictly positive by assumption. But then there is more than one

solution to (2) for R = R + A , a contradiction. We have thus
- q21

proved that mil > O.

Define 1, * = i otherwise and * w1 and = E. otherwise1 1= 1 ,I 1 1
The system of equations may then be rewritten after a pivot operation

has been performed.

"* M* E* + Q* - R Q

where we have

Q1 RQ2 = -R Q2

and specifically

qll- Rq*l = 0

and

>0 .
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Next R is reduced from R until one component of

H = - R Q > 

becomes 0, and the third corner portfolio is determined. The process

goes on until Y2 becomes O, at which point Rmin has been reached. Once

the quadratic programming problem has been solved for Rmax - only a

pivot step in the linear programming sense thus has to be performed

for each new corner portfolio.

It may be instructive to illustrate the redefinition and pivot

step by a simple example, where we have w1 = ul

= '

= -2E1

and =Xl

. . . . . . . -8 + R'4

. . . . . . -4 + R.12

9

Wn+m+l = 10 1
. . . . . . . . . -2 + R.10

R is reduced till it becomes 2. We redefine =

* = U11 u1

x1 w = w. otherwisexI 1 1

and i* = &. otherwise. We thus geti 

*)

2m~ + W2 = 0. 1

. . . . . -8 + R-4 ,

. . . . . -4 + R.12 ,

. . . . . . . -2 + R-10 -10m~ +

W1

= *
'1

= 0. E
I
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We next pivot on - and get

= *
1

= -2E1

n+m+ln+m+l = lo

. . . . . . . . . +8 - 4R ,

......... -2 + 20 R ,

. . . . . . . . . 78 - 30 R .

R is then further reduced and the next corner portfolio determined.

Suppose Assumption 1 and 2 do not hold. The following problems

may then arise:

i) mil = O, i.e. the pivot operation may not be performed.

ii) mil < 0, i.e. the pivot operation may be performed, but

R may not be reduced.

iii) mil > 0, but R may not be reduced because

Wj = 0 (j > 1) and q2j <0 '

*WI
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If either of these situations should arise we suggest that R is

reduced by , (2) next is solved using Lemke's algorithm and our

procedure then is applied to the resulting solution. Practical

applications of our algorithm suggest that these problems would

occur relatively seldom.

Finally let us conclude that Rmax is determined by solving

the linear programming problem

maximize C'X,

subject to

BX < D,

X > 0.
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3. A Numerical Example

We shall illustrate the working of the algorithm by a numerical

example and shall consider a portfolio allocation problem when m = 1,

i.e. the only constraint imposed upon the composition of the portfolio

is that the sum of the x's is less or equal to 1. In this special case

it is not necessary to use Lemke's algorithm to determine which member

of each complementary pair that is positive for R = Rmax -.

Without loss of generality let us assume that c > 0 and that

1 > cj, j = 2, . . n. We must obviously have that Rmax = c1 and that

the first corner portfolio is (1,0 . . . .0). Now suppose that the

investment in asset 1 is reduced by dx, whereas the investment in asset j

is increased by dx. The resulting change in the variance and expected rate

of return of the portfolio are given by:

Reduction in

variance = 2al dx - 2a1jdx

Reduction in
expected rate
of return = c1dx-cdx

Let al,n+l Cn+l - 0 and suppose that

all alk all al = 2, . . . n+.
c C C C.j j 2, n+l.
1 - Ck - c1 - cJ

We must then have that x1 1 - dx, xk = dx, x = 0 otherwise is an

efficient portfolio.
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If k = n+l the next corner portfolio contains only cash and the

efficient set consequently contains only 2 corner portfolios.

If k< n we define the initial and vectors as follows

(a. = Ui i = X.

1 = X1' 51 = U1l

(ak = Xk' k = Uk'

Wn+l Y1'

Wn+2 = Y2'

for i = 1, . . n, i , k,

= v1

tn+2 = 2 .

The algorithm then proceeds as outlined above.

For our numerical example suppose that

3

A = 1

iO

1 0

2 00 12

C= 2
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i.e. we have

u1 3

u 2 \ 1

(3) U3 0

v1

1 0 1 -3

2 0 1 -2

0 1 1 -1

-1 -1 0 0

2 1 0 0

0 0

0 0

+ 0 -R 0

1 0

0 1

The first corner portfolio is (1,0,0,0), where the last component of

the portfolio vector represents cash.

3-0
3-1

3-1
3-2 3-0

3-0

w and may now be defined.

x1

x2

= u3

2

We have k = 2 since

u1

u2

= x3

v1
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(3) is rewritten

x10 / 0 1 2 1

x 2 0 0 -2 -3 -1

U3, = -1 2 8 11 4

Y1 1 \-2 3 11 18 7

2 1 1 4 7 3

3

v

2 -1

+ -11 -R -4

-18 -7

7 3

-2

3

H = -11

-18

-7

-1

1

-R -4

-7

-3

R may be reduced to 1_I at which point the 3rd component of H becomes 0.

The 2nd corner portfolio is thus ( - , , 0, 0).

We redefine w and and rewrite the system of equations.

00 0

000

-1 2 -1

-2 3 0

-1 1 0

2 1

-3 -1

11 4

18 7

7 3

Ul~u, -2' I/ -1

u, 3 + -11 -R -4

v 1 -18 1 -7

V2 -7 3

We have

1 0 -1

Q. 1 2

O0 -8

0 0 -11

0 0 -4

0

0

0

1

0

_
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We pivot on -8 and get

1 1 5 1
4 8 8 2

1 .I I I
4 4 4

1 1
8- - T

0

1 11 1
- - 9

V U

1 11 23
4 -, 8

0 1 3
2 2

3

1

We have

-R

R may be reduced to 2 at which point the 4th component of H becomes O.

The 3rd corner portfolio is thus (1 4' 12 0).3½ T 1 5- 0

1
8 (uI>

5
-

U2

U3

V1

v1
2

1
2

0

1
2

3

1/

i

.

L

.
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We redefine w and and rewrite the system of equations.

1 0 0

0 1 0

5
8

1
4

0 0 1 1
8

000

0 0 0

0

0

0

0

1
.,m

23
8

3

2

We pivot on - 8 and8

1 1 1
8 4 8

1 1 1
4 2 4

1 1 1
8 4 8

5 1 11
8 4 8

0

0

0

-1

0

2

0

1
2

3
2

11 1
2

get

6 7
23 - 23

7 12
23 23

4 3
23 - 23

4 5 4
23 23 23

3 2 3
23 - 23

18 11 5
23 - 23 23

5 2 11 8 12
23 - 23 - 23 23 -

4 3 5 12 5
23 - 23 - 23 23 23

+

0

O

O

1

0

+

5
-8

1
4

11
8

23
8

3
2

-R

-1
2

0

1
2

3
2

-1

4
23

3
23

_ _
23

-R

_I I_ ^_ �

i

_ _

1-
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We have

4 \

3

23

-R - 23

12 /
\ 2 2/

/

R may be reduced to 0, at which point Y2 becomes 0 and the algorithm terminates.

The 4th corner portfolio thus is (0,0,0,1).

/

I

/'/
/

I
/

H

I

o

o

1

0 .

4 _ C 1 1 -1 14-41
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