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Polyphase Nonlinear Equalization of
Time-Interleaved Analog-to-Digital Converters
Joel Goodman, Member, IEEE, Benjamin Miller, Matthew Herman, Gil Raz, Member, IEEE, and

Jeffrey Jackson, Member, IEEE

Abstract—As the demand for higher data rates increases,
commercial analog-to-digital converters (ADCs) are more com-
monly being implemented with multiple on-chip converters
whose outputs are time-interleaved. The distortion generated by
time-interleaved ADCs is now not only a function of the non-
linear behavior of the constituent circuitry, but also mismatches
associated with interleaving multiple output streams. To miti-
gate distortion generated by time-interleaved ADCs, we have
developed a polyphase NonLinear EQualizer (pNLEQ) which is
capable of simultaneously mitigating distortion generated by both
the on-chip circuitry and mismatches due to time interleaving.
In this paper, we describe the pNLEQ architecture and present
measurements of its performance.

Index Terms—Compressed sensing, mismatch distortions, mul-
tidimensional filter, nonlinear compensation, nonlinear equaliza-
tion, polynomial filter, time-interleaved analog-to-digital converter
(ADC), Volterra.

I. INTRODUCTION

D EMAND for high sampling rate ADCs is driven by
the desire to process information from wideband signal

sources, where much of the signal information processing
has migrated from the analog front-end to the digital backend
of the receiver [1]–[4]. Systems currently being developed
to operate across wide bandwidths with high sensitivity re-
quirements are limited by the inherent dynamic range of the
receiver’s analog and mixed-signal components. Among these
components (e.g., LNA, mixer), the ADC commonly has
the lowest dynamic range [1]. An ADC’s deviation from its
ideal “linear” performance is commonly characterized by its
spurious- and/or intermodulation-free dynamic range (SFDR
and IFDR), which is a frequency-domain measurement that
determines the minimum signal level that can be distinguished
from distortion components [5]. The SFDR and IFDR of an
ADC are typically dominated by circuit-based (e.g., buffer
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Fig. 1. Simplified block diagram of a time-interleaved analog-to-digital con-
verter. Note that in most implementations the multiplexer is omitted, allowing
for a system-level power reduction when the lower-rate data streams are pro-
cessed off-chip.

amplifier, sample-and-hold) nonlinearities that are distinct from
the nonlinear process of ideal quantization, which in principle
can be circumvented with processing gain [6].

Currently, the highest sampling rate ADCs are time inter-
leaved, such that the outputs of multiple on-chip converters are
aggregated [7] as depicted in Fig. 1. Time-interleaved ADCs are
designed so that the timing phases of the sampling clocks to
the constituent converters are ideally adjusted so that the dig-
itized samples at the output of the composite ADC are evenly
spaced in time. This enables a time-interleaved ADC to achieve
an effective sample rate of times the sample rate of any indi-
vidual converter operating in isolation, where is the number
of on-chip converters. However, as we show, small gain and
phase mismatches in the linear and nonlinear response of the
ADC create unwanted spurs that can in some cases dominate
the device’s SFDR and IFDR. We refer to these distortions as
mismatch distortions, which are nonlinear distortions that occur
at frequencies that do not correspond to polynomial combina-
tions of the input signal.

A. Previous Approaches

There are descriptions in the literature of how to mitigate dis-
tortion generated by gain, phase and offset errors in time-in-
terleaved ADCs [8]–[11]. However, there are relatively few de-
scriptions of realistic compensation for nonlinear polynomial
distortion. In [12], single-channel static integral and differen-
tial memoryless nonlinearities are mitigated; however, this ap-
proach is ill-suited for wideband ADCs, where memory effects
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are significant due to variations in the (multidimensional) fre-
quency response of the converter [13]. In [14], the dynamic na-
ture of time-interleaved nonlinearities is modeled, with a pro-
posed compensation technique employing randomization of the
channel ADCs, and imposing the constraint that the ADCs be
designed with pairwise complimentary nonlinearities. This ap-
proach, however, does not address mitigation of distortions gen-
erated by existing interleaved ADCs, and imposes a difficult
constraint on future chip designs.

In [15], a so-called “phase plane error compensation” ap-
proach is taken in which a look-up table following the ADC
is used to compensate for errors. The corrected ADC output

is formulated as

(1)

where is the vector of ADC output code words,
is the vector of output conversion errors,

are the slopes of the input signals, and is the DFT
matrix given by

...
...

. . .
...

(2)

where are the frequency locations where
the distortions fall. Formulating the output conversion
error as , where the columns of

are the basis functions (i.e., a Gaussian
basis), and are the coefficients, then the least
squares solution for the coefficient vector is given by

(3)

where denotes the Hermitian operator. Consider the case of
an interleaved ADC with two constituent on-chip converters

, where the converters are driven by clocks that are
180 out of phase from one another. Then, if the matrix in
(3) is split along its even and odd time samples, we can con-
struct a polyphase matrix expressed as

...
... (4)

where corresponds to entries in the th row of matrix
. The polyphase least squares solution has the same form as

(3), with the exception that is replaced by , and is
now twice as long. There are some drawbacks to the approach
outlined in (1)–(4). First, even though the slope of the signal is
being used in the adaptation, explicit signal state dependence
(i.e., a nonlinearity with memory) is not being considered.
Second, only a single tone at different frequencies was used
during training, i.e., [16] does not address intermodulation
distortion.

B. Original Contributions

The uniqueness of pNLEQ is that it simultaneously sup-
presses not only frequency-dependent linear mismatch dis-
tortions in time-interleaved ADCs, but also polynomial and
polynomial mismatch distortions in a computationally efficient
fashion. Existing approaches to achieving computationally
efficient polynomial filter architectures for RF compensation,
principally developed to mitigate distortions generated by
power amplifiers in transmitters, limit the multidimensional
signal space over which the architecture can suppress spectral
regrowth and in-band spurs [17], [18]. In this paper, we develop
a technique to construct a polynomial filter architecture that
searches over an unrestricted multidimensional signal space
to select polynomial components that yield the highest equal-
ization performance for a given computational complexity. In
particular, we develop a coordinate system representation for
polynomial filters, and leverage compressed sensing techniques
to identify a sparse polynomial representation of an inverse
nonlinearity. As we demonstrate in Section IV using measured
data from commercial time-interleaved ADCs, frequency-de-
pendent polynomial and polynomial mismatch distortions can
be on the same order as linear mismatch distortions, which,
if not equalized, will limit an ADCs spur- and intermod-free
dynamic range.

C. Organization of This Paper

The rest of this paper is organized as follows. In Section II,
we formulate the effect of gain and phase mismatches between
the linear responses of time-interleaved ADCs, and develop an
efficient equalizer to mitigate distortion resulting from these
mismatches. In Section III, we introduce the polynomial basis
used to mitigate nonlinear distortion, develop a formulation for
nonlinear equalization (NLEQ), and show how NLEQ can be
augmented to address the polynomial mismatch distortion that
arises in interleaved ADCs with a computationally efficient
polyphase version of NLEQ (pNLEQ). In Section IV, we
demonstrate the performance of pNLEQ on both Maxim and
National Semiconductor interleaved ADCs and compare its per-
formance to other interleaved ADC compensation approaches.
In Section V, we provide a brief summary.

II. MISMATCHES IN TIME-INTERLEAVED ADCS

Although there are papers that address gain, timing and
offset mismatch errors in time-interleaved ADCs from a linear
signal processing perspective [8], [19]–[24], for completeness
we briefly review the effect of frequency-dependent interleaved
ADC mismatch errors and derive an equalizer to compensate
for these errors. Note that in many practical applications,
particularly those that involve detecting weak signals in the
presence of strong interference (e.g., near-far problems), the
effect of weak distortions landing on top of strong interference
are insignificant. However, distortions generated by strong
signals may interfere with or obscure the detection and/or
demodulation of weak signals, and in practice these distortions
must be eliminated.
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A. Effect of Frequency-Dependent Gain, Timing, and Offset
Mismatch

Consider the case of two ADCs, each sampling at half the
Nyquist rate of , whose outputs are interleaved to
produce an aggregate set of samples that are evenly spaced in
time, where the following analysis easily extends to more than
two converters. Let denote the sampling phase error that is
offset from the ideal 180 phase difference between the two
ADC sample clocks, let and denote the
linear impulse responses (gain, phase and memory) of the in-
dividual ADCs, and let represent the analog input signal.

Then, if denotes the convolution of with
at integer sampling index plus a fixed offset , i.e.,

where the symbol denotes the
convolution operator, then the upsampled output of each of the
ADCs before interleaving can be modeled by

and

(5)

where represents the symmetric Fourier transform pair.
The interleaved output of the ADC is then expressed as

(6)

To clearly see the impact of the sampling phase error, consider
the case where the impulse responses of the two ADCs are
roughly equal, i.e., . Plugging this
into (6) and rearranging terms we get

(7)

The first term to the right of the equal sign in (7) corresponds to
the Nyquist rate output of the interleaved ADC, scaled in am-
plitude by so that as , the scale factor ap-
proaches 1. The second term corresponds to a residual distortion
term at the image frequency , and this residual distortion
term goes to 0 as , and conversely, grows as becomes
large.

B. ADC Mismatch Distortion Compensation

In a time-interleaved ADC with constituent converters,
the distortions that are generated by the constant offsets are
located at the fixed frequencies , for

Fig. 2. Equalizer structure for frequency-dependent gain, timing, and offset
mismatches in time-interleaved ADCs.

. Suppressing these distortions simply requires estimation and
subtraction without application of a stimulus.

For frequency-dependent gain and timing mismatches be-
tween ], [constituent converters, (5) can be recast as

(8)

where , for , corresponds to the output from
converter , and the distortions now land at image fre-
quencies. To suppress these distortions, we use the equalizer il-
lustrated in Fig. 2. The idea is to model the distortions by fil-
tering the input data, upconverting to the image frequencies, and
subtracting the output of the equalizer from the input signal to
eliminate the residual distortion. Let each filter have taps with
coefficient vectors for . We collect

ADC output samples from which we construct the Toeplitz
matrix given by

(9)

where

(10)

so that is the output of the th filter. The index is used to
center the data over the taps, and the symbol is the matrix
transpose operator. The output of each filter is upconverted to its
corresponding image frequency via the product , where

is the diagonal matrix given by

(11)
for , and

(12)
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for , where the symbol
represents rounding up to the nearest integer, and separate

sine and cosine diagonal matrices are used to ensure that is
real. The equalizer filter coefficients used to model the residual
distortions after upconversion are derived by solving

(13)

where

(14)

, is the
vector of ADC outputs, and is a pruned DFT matrix that
keeps only the frequencies where the nonlinear distortions fall.
To isolate the signals at the image frequencies during training,
a tonal excitation set is used across a preselected grid of fre-
quencies with

(15)

where is the number of different frequency excitation sets,
and is analogously defined in (2).

III. POLYPHASE NONLINEAR EQUALIZATION

Although the analysis in Section II addresses mismatch
distortions caused by frequency-dependent gain and phase
mismatches in the linear impulse response of time-interleaved
ADCs, it does not address the polynomial and polynomial
mismatch distortions that are generated by both circuit-based
nonlinearities and mismatches in the nonlinear responses of the
constituent converters. In this section, we combine the equalizer
developed in Section II with a nonlinear equalizer developed to
mitigate additional nonlinearities that are compounded by time
interleaving the outputs of multiple ADCs.

A. Polynomial Basis

The nonlinear system response of an ADC can often be de-
scribed with the th-order (truncated) polynomial series expan-
sion [25]–[27]

(16)

where is the memory depth in each dimension of the
th-order Volterra kernel and are the th-order

kernel coefficients. The number of nonredundant terms in
is . Using samples of , (16)

can be rewritten in matrix form as

(17)

with

(18)

where each of the columns of can be repre-
sented by

The full series can now be expressed in matrix form as

(19)

with nonlinear convolution matrix
and . It was shown in [28] that a large class
of nonlinear systems can be approximated with arbitrarily small
error using the polynomial representation in (16). However, this
comes with the disadvantage that a relatively large number of
parameters (factorial in and ) are needed to represent sys-
tems with modest polynomial order and memory. To reduce the
computational complexity when using (16) to model ADC non-
linearities, we develop an efficient representation of (16) in a
new coordinate system.

In [27], the kernels in (16) were rewritten in terms of elements
of a horizontal coordinate system (HCS) in which a th-order
processing element (PE) is formulated as

(20)

Hence, it is possible to sum all the th-order HCS PEs to obtain
the th-order kernel

(21)

where the variables in (20), like in (10), are used to center
the data over the taps of the multidimensional filter. Equation
(20) geometrically corresponds to coefficients selected along a
single horizontal dimension while the other dimensions of
the th-order kernel ( to ) remain fixed. The HCS represen-
tation has a very appealing interpretation, which is that we can
represent (16) as the sum of one-dimensional convolutions, each
multiplied by the product of time-delayed values of the input.

Let the data matrix associated with the th HCS PE of order
be defined as with the th column given by

for (22)
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Fig. 3. Nonlinear equalization of ADC distortions by modeling and subtraction.

where , rep-
resents the Hadamard product, is the number of samples,

is the number of filter taps
in HCS processing element , and . Using
(22), we can formulate an approximation to (16) in which

...
(23)

where is the data matrix associated
with processing element set . The construction in (23) both
simplifies the computational burden of using sequential estima-
tion in architecture identification, described next, and provides
a regular structure for hardware implementation.

B. Nonlinear Equalizer Architecture Identification

Using (23), we can derive an equalizer architecture for miti-
gating harmonic and intermodulation (nonlinear) distortion gen-
erated by an ADC, as illustrated in Fig. 3, where the nonlinear
response of the ADC is estimated and subtracted from an ap-
propriately delayed version of the ADC output. The objective
of this section is to present techniques that enable the construc-
tion of a (polyphase) polynomial equalizer using a minimum set
of PEs by efficiently searching over the multidimensional signal
space.

1) Forward–Backward Sequential Estimation in Architecture
Identification: In this section, we develop a sequential algo-
rithm for selecting PEs that minimize the mean square error,
. Let denote the modeling error,

where , is the set of PEs in the ar-
chitecture with cardinality , and is the vector of ADC
output samples. Let , where is the set of user-defined
candidate processing elements with , then the pseu-
docode for sequentially selecting processing elements to con-
struct an NLEQ architecture is shown in Fig. 4. The total number
of processing elements can be adjusted according to compu-
tational considerations; the PEs that comprise a set are unique in
their polynomial order, delay values and filter coefficients. The
parameter in the outer loop of the pseudocode is a threshold
for the MMSE; alternatively a fixed number of iterations can be
used. In either case, the parameters and , where , are
user defined and (can) change from iteration to iteration. In our

Fig. 4. Pseudocode for forward–backward sequential estimation. Each new PE
� from the set � that yields the best minimum mean square error (MMSE)
performance in combination with the previous � � � PEs is added to the set �
in the forward stage. In the backward stage, a PE is removed one at a time from
� and placed back into � such that the PE removed has the least impact on
MMSE performance.

experiments, is typically set to constrain real-time computa-
tional complexity and is set to be at most .

2) Global Estimation in Architecture Identification: An alter-
native to forward–backward sequential estimation is to formu-
late the problem of NLEQ architecture identification as a con-
strained optimization, in which the constraints are imposed to
insure a computationally efficient solution. In [29], basis pursuit
was used to find a sparse set of coefficients in a linear system
identification problem. However, unlike linear systems, the size
of the convolution matrix representing the nonlinear com-
binations of the input data can grow prohibitively large. One ap-
proach to reducing the dimensionality leverages the following
theorem.

Theorem 1: Let , with , be a nonsin-
gular matrix whose columns correspond to the -fold products
of the input, and let correspond to some vector in . Then
there exists a projection matrix with

, and hence an orthogonal projection matrix

, such that , where
.

Proof: Consider a matrix with full column rank having
singular value decomposition

with , and . Further, consider the solu-
tions to the least squares problems
and , where is a matrix
that projects any -dimensional vector down to an -dimen-
sional space. Then if , .

It is possible to use the left singular vectors to reduce the
dimensionality without any loss in performance; however, the
computational cost of computing the SVD (singular value de-
composition) of a large matrix, coupled with the fact that The-
orem 1 is only valid for , is of very little practical value.
We propose two techniques for reducing the dimensionality in a
computationally efficient fashion. To reduce the dimensionality
of the rows, we leverage the following lemma [30].

Lemma 1 (Johnson–Lindenstrauss): For any
and any integer , let be a positive integer such that
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. Then for any set of points in ,
there is a map such that for

(24)

Extensions to the Johnson–Lindenstrauss lemma [31] have used
concentration measure theory to show that if points in a vector
space are projected onto a randomly selected subspace of suit-
ably high dimension then the distances between the points (in
a Euclidean sense) are approximately preserved. Therefore, we
can construct a matrix whose elements are ran-
domly drawn from a Gaussian distribution ,
so that the projected matrix given by where

does not impart a significant error during architecture
identification.

To further reduce the size of the matrix , its columns can be
pruned by projection and subtraction. First, the columns of

are unit normalized so that each column can be considered
as the coordinate of a point on the surface of a unit hypersphere.
From the set of vectors, vectors are selected one at a time,
such that the th vector chosen has the highest correlation with

after the projections of the previously selected
columns have been subtracted off, that is

...

(25)

In (25), the symbol is the column of that has
the highest correlation with , whose column index is
given by , and is the dot product of and . The
goal of projection and subtraction is to find the points on the unit
hypersphere with widest angular separation that have a signifi-
cant projected component on the received data. We use projec-
tion and subtraction to reduce the dimensionality of the data so
that the subsequent constrained optimization is computationally
tractable. Defining the matrix such that keeps
only the columns of we get from projection and subtraction
in (25), the constrained optimization to find a sparse NLEQ ar-
chitecture is given by

(26)

where and , with

and . Equation (26) is easily
solved using second order cone programming (SOCP) [32]. The
basis pursuit (BP) cost function, along with the constraint that

, in (26) is an norm that favors sparse solutions [29].
The scalar regularization parameter in the constraint balances
the residual reconstruction error, that is, it ensures that the
sparse solution whose nonzero entries span the columns
of is in the cone of feasible solutions. Note that unlike
forward–backward sequential estimation, the columns selected
(nonzero entries of ) correspond to single-tap processing

elements, where individual PEs are not connected with any spe-
cific coordinate system (e.g., horizontal, etc.).

C. pNLEQ Formulation

Like in the case of linear mismatches, there are also distor-
tions at the (nonlinear) image frequencies due to mismatches
in the nonlinear response between on-chip converters. Consider
the case of a simple third-order nonlinearity that is present in the
converters on a two-way interleaved ADC , but whose
response (amplitude and phase) is somewhat different. Let

(27)

where from (16) is a constant associated
with the third-order nonlinear response of converter 1, and

(28)

such that the sampling phase error is absorbed in the com-
posite third-order nonlinear response , and is a constant
associated with the third-order nonlinear response of converter
2. Equations (27) and (28) have the same form as (5), where
there is a distortion term at both the frequency associated with
the third-order polynomial nonlinearity, and a mismatch distor-
tion at its image frequency.

To mitigate the distortions exemplified in (27) and (28), and
those generated by linear mismatches, we now combine the
linear mismatch equalizer in (13) with a polyphase version of
the polynomial matrix from (26) for -way in-
terleaving. Define

...
. . .

...

...
...

...
. . .

...

(29)

where corresponds to the th row of . Then the
component used to formulate the polyphase nonlinear equalizer
using sequential estimation in Fig. 4 or SOCP in (26) is given
by

(30)

with , where
and corresponds to the coefficients associated with the th
linear and nonlinear equalizer, respectively, and for
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Fig. 5. The polyphase nonlinear equalization (pNLEQ) architecture for an
� -way time-interleaved ADC.� � � linear filters are used to remove distor-
tions generated by the linear frequency-dependent gain and phase mismatches,
and � polynomial filters are used to remove distortions due to the nonlinear
response of the constituent converters.

and are defined in (13). The overall pNLEQ
architecture is illustrated in Fig. 5, where there are
linear filters and offsets to equalize distortions generated by
mismatches in the overall linear response of the constituent con-
verters. polynomial filters are used to model the nonlinear
distortions and mismatches between the nonlinear responses of
the constituent converters, which are also subtracted from the
ADC output. In Fig. 5, corresponds to the set
of processing elements chosen using (30) that comprise the th
component of the polyphase nonlinear equalizer, where

, and corresponds to the output of the ADC when
stimulated by (analog) tone set . Each component of the
nonlinear equalizer operates on data at the full Nyquist rate,
and outputs data at the full rate. This is illustrated in
Fig. 5, which shows the output of each filter being selected
in a round-robin fashion using

, where corresponds to th equaliza-
tion component of pNLEQ. If the ADC outputs data from each
of the on-chip converters on a separate set of output pins in par-
allel at the clock rate, which we have found is often the
case in practice, then synchronizing the selection of the th non-
linear equalization component is trivial.

In summary, the polyphase nonlinear equalizer has the fol-
lowing advantages.

1) pNLEQ simultaneously mitigates both linear and nonlinear
(harmonic and intermodulation) mismatch distortions in
time-interleaved ADCs.

2) Using forward-backward sequential estimation or SOCP
we can find a computationally efficient pNLEQ solution
to mitigate distortions with state-dependent behavior, i.e.,
nonlinearities with memory.

3) The pNLEQ approach works with current interleaved ADC
architectures.

In the next section, we demonstrate and compare the perfor-
mance of pNLEQ to other techniques using measured results.

Fig. 6. Simplified view of the the Lincoln Laboratory NLEQ testbed. The
testbed consists of three Agilent E8257D tone generators connected to an
analog power combiner, an Agilent 16702B Logic Analyzer used for data
capture, a temperature chamber where the time-interleaved ADCs are seated,
and a Windows-based PC running Matlab to control the instrumentation for
excitation and data capture.

TABLE I
SOURCE EXCITATION AND VERIFICATION PARAMETERS

IV. MEASURED RESULTS

A. Test Setup

To evaluate pNLEQ performance, we used the MIT Lincoln
Laboratory NLEQ testbed depicted in Fig. 6. The analog outputs
of three Agilent E8257D tone generators were combined, fil-
tered, and injected into a time-interleaved ADC that was seated
in a temperature-controlled chamber set to 20 C. A Windows
PC running MATLAB scheduled the tone generators, controlled
the Agilent 16702B logic analyzer that was used to capture data
at the output of the ADC, and transferred data from the logic
analyzer’s memory back to the PC’s hard drive. We tested two
8-bit time-interleaved ADCs: the Maxim MAX101, sampling at
a rate of 500 MS/s and the National Semiconductor ADC081000
sampling at a rate of 983.04 MS/s.

B. Training and Verification

We trained both devices with a series of one-, two-, and
three-tone sets. We spaced the tones across a 345-MHz band
of interest for the ADC081000, and a 200-MHz band for the
MAX101. The number and type of tone sets used to excite
the linear and nonlinear modalities in the ADCs are listed in
Table I. In all cases, the pNLEQ architecture’s computational
complexity was constrained so that it could be efficiently
implemented in hardware.
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Fig. 7. Representative response of the MAX101 to a single-tone stimulus. The plot to the left represents the unequalized output of the ADC, with both harmonic
and mismatch distortions present. The plot to the right represents the equalized response of the MAX101 after running pNLEQ, which demonstrates roughly 20-dB
improvement in SFDR.

TABLE II
MAXIM MAX101 ONE-TONE EQUALIZATION RESULTS

TABLE III
MAXIM MAX101 TWO-TONE EQUALIZATION RESULTS

After identifying a pNLEQ architecture with the techniques
presented in Section III, we cross-validated pNLEQ perfor-
mance using a sequence of verification tone sets. These one-,
two-, and three-tone verification sets were entirely different
from the training sets used to derive the coefficients. We
quantify dynamic range by taking the mean of the individual
SFDR/IFDR measurements for each of the verification tone
sets. This is the mean dynamic range (MDR) performance
metric, which we measure in dBFS.

C. Results

In Tables II and III, we list the results for the MAX101. In
this case, the MDR is computed over the one-tone and two-tone
verification sets. For the one-tone data, pNLEQ gives 55.8-
dBFS mean dynamic range, which is 18.9 dB greater than the
performance without any equalization or with only linear mis-
match compensation and 16.1 dB greater than the performance
with linear mismatch compensation and memoryless polyno-
mial equalization. Similarly, for two-tone data, pNLEQ pro-
vides 58.3-dBFS MDR, which is 15.9 dB greater than the per-
formance without equalization and 13.2 dB greater than the im-

provement with linear mismatch compensation and memoryless
polynomial equalization. We also report the complexity of each
equalization technique in operations per sample, where the total
number of operations is the sum of the number of additions and
multiplications. Note that each polyphase HCS component re-
quires multiplications and additions
per sample, where is the number of taps in the polyphase
FIR filter, is the polynomial order, and is the number of
interleaved ADCs. Here we use ten-tap polyphase HCS com-
ponents up to fifth order, and pNLEQ requires 198 operations
per sample. In Fig. 7, we show the response of the MAX101
to a single sinusoidal input (in the second Nyquist zone) both
before and after pNLEQ. This example yields 20-dB improve-
ment in SFDR. Similarly, Fig. 8 shows 23-dB improvement in
IFDR for an example two-tone set. In addition to these exam-
ples, we plot the SFDR as a function of frequency in Fig. 9,
and this graph demonstrates that pNLEQ outperforms the phase
plane error compensation method [16] by roughly an order of
magnitude.

We also derived a pNLEQ architecture for the ADC081000
and we present a summary of our results in Table IV. For this
ADC, the MDR measurements are computed over the three-tone
verification sets. In this case, pNLEQ provided a 15.4-dB im-
provement in MDR with a computational complexity of 220
operations per sample. This is 12.1 dB greater than the im-
provement using a memoryless polynomial equalizer with linear
mismatch compensation. In Figs. 10 and 11, we show exam-
ples of the ADC response before and after pNLEQ in which we
achieve 15-dB and 20-dB improvement in dynamic range.
In this case, we also compare the performance of pNLEQ to a
Volterra equalizer constructed over the space from which we se-
lected 8-tap HCS processing elements using forward–backward
sequential estimation. The space from which we selected HCS
processing elements was comprised of a second-order kernel
with process delays ( s in (21)) ranging from 2 to 6, a third-
order kernel with process delays ranging from 0 to 3, and a
fourth-order kernel with process delays of only 0. The Volterra
approach required over an order of magnitude more operations
per sample, while only achieving an additional 1.1 dB of dy-
namic range improvement over pNLEQ. We did not derive a
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Fig. 8. Representative response of the MAX101 to a two-tone stimulus. The plot to the left represents the unequalized output of the ADC, with both intermodula-
tion, harmonic and mismatch distortions present. The plot to the right represents the equalized response of the MAX101 after running pNLEQ, which demonstrates
roughly 23-dB improvement in dynamic range.

Fig. 9. SFDR as a function of frequency for one tone inputs to the MAX101. The plot on the left shows the results for phase plane error compensation method
[16]. The plot on the right shows the results for pNLEQ. Note that the authors in [16] operated the MAX101 in the first Nyquist zone (baseband sampling) to
obtain the results for the phase plane error compensation method. Due to the ready availability of analog filters in our lab, the MAX101 was operated in the second
Nyquist zone (IF sampling) to obtain pNLEQ performance results.

TABLE IV
NATIONAL SEMICONDUCTOR ADC081000

THREE-TONE EQUALIZATION RESULTS

Volterra equalizer for the MAX101 over the space from which
we constructed pNLEQ using second- through fifth-order ker-
nels, memory depth 10 and process delays ranging from 2 to
3, as this was computationally prohibitive.

D. Convergence

In Fig. 12, we plot the MDR in dBFS versus the number of
operations per sample of pNLEQ operating on verification data.
In both cases, pNLEQ was derived using forward–backward se-
quential estimation. For the MAX101, 11 polyphase HCS PEs
achieve an MDR of 57 dBFS using both one- and two-tone
verification sets. For the ADC081000, 17 polyphase HCS PEs

achieve an MDR of roughly 70 dBFS. In all cases, we found
that backward iterations helped only marginally ( 1 dB), as the
forward iteration of sequential estimation was able to identify
HCS components on the first pass that yielded performance on
par with a full Volterra equalizer as is shown in Table IV.

Fig. 13 is a plot of the convergence of basis pursuit (BP)
against the convergence of sequential estimation during the
training phase of pNLEQ. For BP, we pruned the number of
columns of the matrix from 4745 to 1107 using
(25), and we reduce the number of rows from from 60 522 to
2000 using random linear projections (Lemma 1). The 60 522
rows correspond to 262 3-tone sets with 231 samples per set;
the 4475 rows correspond to 8-tap filters with six incremental
process delays. A normalized mean square error metric

(31)

was used to assess performance on the training data. For BP, in
(26) was set to achieve the desired level of MSE performance.
After selecting 17 PEs, sequential estimation achieved an MSE
of 13 dB, with each iteration (PE selection) taking roughly as
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Fig. 10. Representative response of the National Semiconductor ADC081000 to a three-tone stimulus. (Two of the tones are very close together.) The plot to
the left represents the unequalized output of the ADC, with both intermodulation, harmonic and mismatch distortions present. The plot to the right represents the
equalized response of the ADC081000 after running pNLEQ, which demonstrates roughly 25-dB improvement in dynamic range.

Fig. 11. Representative response of the National Semiconductor ADC081000 to a three-tone stimulus. The plot to the left represents the unequalized output of the
ADC, with both intermodulation, harmonic and mismatch distortions present. The plot to the right represents the equalized response of the National Semiconductor
ADC081000 after running pNLEQ, which demonstrates roughly 15 dB improvement in dynamic range.

Fig. 12. Computational complexity of pNLEQ vs. mean dynamic range for sequential estimation with a polyphase HCS architecture for the MAX101 (left) and
the National Semiconductor ADC081000. The dotted horizontal lines in the plot to the right indicate MDR performance of a Volterra equalizer for a fixed number
(i.e., 2242) of operations per sample. The Volterra equalizer was composed of second- through fourth-order kernels with memory depth 8 and process delays (� s
in (21)) ranging from �2 to 3, corresponding to the space from which (polyphase) HCS components were selected via sequential estimation.
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Fig. 13. Convergence of the sequential estimation and basis pursuit algorithms
for pNLEQ identification for the National Semiconductor ADC081000. In the
case of sequential estimation, each HCS processing element has eight taps,
where each tap corresponds to a (kernel) coefficient multiplying a column in
the nonlinear convolution matrix� ���. Basis Pursuit selects a set of co-
efficients (not constrained to form processing elements) to satisfy a mean square
error constraint and minimize a sparsity objective.

long as an iteration of (26). Although BP and sequential esti-
mation performed nearly as well, we found that sequential esti-
mation was able to achieve a slightly lower MSE than BP. The
slight difference in performance was principally due to having
to project the data down into a much lower dimensional sub-
space for BP computational tractability.

V. SUMMARY

We presented a method for constructing a computationally
efficient polyphase nonlinear equalizer (pNLEQ) for mitigating
polynomial distortions as well as mismatches in the linear and
nonlinear responses of the constituent converters of time-inter-
leaved ADCs.

We developed a (polyphase) polynomial basis in a new coor-
dinate space (HCS) that enabled us to use forward–backward se-
quential estimation to construct a computationally efficient non-
linear equalizer to mitigate nonlinear distortions in ADCs. In
addition, we leveraged recent work in compressed sensing [29]
and dimensionality reduction to formulate a constrained opti-
mization problem for NLEQ architecture identification.

We combined the linear mismatch equalizer and NLEQ into
a polyphase nonlinear equalizer that accounted for linear and
nonlinear frequency-dependent timing and phase mismatches
in time-interleaved ADCs. Using pNLEQ, we demonstrated 1
to 2 orders of magnitude improvement in dynamic range using
data collected from the National Semiconductor ADC081000
and Maxim MAX101 time-interleaved ADCs on MIT Lincoln
Laboratory’s NLEQ testbed. The computational complexity of
pNLEQ to achieve this result was on the order of 100–200 op-
erations/sample, which was an order of magnitude less than a
Volterra equalizer for roughly the same level of equalization
performance.

Polyphase NLEQ outperformed the phase plane error lookup
table method by nearly 10 dB on average. Polyphase NLEQ also
outperformed a linear mismatch and memoryless (polyphase)

polynomial equalizer by over an order magnitude (12–16 dB)
on a multitone stimulus set, demonstrating the need to mitigate
frequency-dependent linear and frequency-dependent polyno-
mial mismatch distortions in time-interleaved ADCs.
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