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Reliability-Based Optimization Using
Evolutionary Algorithms

Kalyanmoy Deb, Shubham Gupta, David Daum, Jürgen Branke,
Abhishek Kumar Mall and Dhanesh Padmanabhan

Abstract— Uncertainties in design variables and problem
parameters are often inevitable and must be considered in
an optimization task if reliable optimal solutions are sought.
Besides a number of sampling techniques, there exist several
mathematical approximations of a solution’s reliability. These
techniques are coupled in various ways with optimization in
the classical reliability-based optimization field. This paper
demonstrates how classical reliability-based concepts can
be borrowed and modified and, with integrated single and
multiobjective evolutionary algorithms, used to enhance their
scope in handling uncertainties involved among decision variables
and problem parameters. Three different optimization tasks
are discussed in which classical reliability-based optimization
procedures usually have difficulties, namely 1) reliability-
based optimization problems having multiple local optima, 2)
finding and revealing reliable solutions for different reliability
indices simultaneously by means of a bi-criterion optimization
approach, and 3) multiobjective optimization with uncertainty
and specified system or component reliability values. Each of
these optimization tasks is illustrated by solving a number of test
problems and a well-studied automobile design problem. Results
are also compared with a classical reliability-based methodology.

Index Terms— Ditlevsen’s bound, evolutionary multiobjec-
tive optimization, most probable point, Pareto-optimal front,
reliability-based optimization, reliable front, system reliability.

I. INTRODUCTION

FOR PRACTICAL optimization studies, reliability-based
techniques are getting increasingly popular, due to the

uncertainties involved in realizing design variables and sto-
chasticities involved in various problem parameters. For a
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canonical deterministic optimization task, the optimum solu-
tion usually lies on a constraint surface or at the intersection
of more than one constraint surface. However, if the design
variables or some system parameters cannot be achieved ex-
actly and are uncertain with a known probability distribution,
the deterministic optimum (lying on one or more constraint
surfaces) will fail to remain feasible on many occasions. In
such scenarios, a stochastic optimization problem is usually
formed and solved, in which the constraints are converted
into probabilistic (or chance) constraints, meaning that the
probability of failure (of being an infeasible solution) is limited
to a prespecified value (say (1 − R)) [1], [2], where R is the
specified reliability of the design.

Existing reliability-based optimization techniques differ in
the manner they handle the probabilistic constraints. One
simple approach is to use a Monte Carlo simulation technique
to create a number of samples following the probability
distribution to represent uncertainties and stochastitices in
the design variables and problem parameters and evaluate
them to compute the probability of failure [3]–[5]. However,
such a technique becomes computationally expensive when
the desired probability of failure is very small (say, one in a
million).

Recently, optimization-based methodologies, instead of
sampling methods, are suggested to take care of the proba-
bilistic constraints. In these methods, stochastic variables and
parameters are transformed into the standard normal variate
space, and a separate optimization problem is formulated to
compute the probability of failure and equate it with the
desired value (1 − R). At least three different concepts—
double-loop methods, single-loop methods, and decoupled
methods—exist. In this paper, we extend the double-loop
method to be used with an evolutionary optimization tech-
nique. To handle multiple constraints, we borrow the system
reliability concepts through the use of Ditlevsen’s bounds to
compute a more accurate probability of failure. Furthermore,
we propose and use a computationally faster technique to
compute the reliability estimate of a design. We apply the
proposed methodology to three different types of optimization
problems and demonstrate by solving test problems and an
automobile design problem that the evolutionary optimization
techniques are good candidates for reliability-based design.
Results are compared with a couple of classical methods, and
the advantages and disadvantages of them are discussed. This
paper clearly brings out problem domains in which reliability-
based evolutionary algorithms will have an edge over their
classical counterparts and should encourage more such studies.

1089-778X/$26.00 © 2009 IEEE
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The paper is structured as follows. Section II introduces the
reliability-based optimization problem and describes currently
used classical reliability-based methodologies. Further related
work, in particular in the area of evolutionary computation,
is surveyed in Section III. Then, three possible scenarios for
reliability-based optimization are described in Section IV.
Our evolutionary approach describing the computationally
faster technique is presented in Section V. Then, Sections VI
to VIII report empirical results of our approach on the
aforementioned three scenarios with a comparison to classical
approaches. The paper concludes with a summary and some
ideas for future work in Section IX.

II. PROBLEM DEFINITION AND

CLASSICAL RELIABILITY-BASED METHODOLOGIES

A. Problem Definition

Let us consider here a reliability-based single-objective
optimization problem of the following type:

Minimize
(x,d)

f (x, d, p)

subject to g j (x, d, p) ≥ 0, j = 1, 2, . . . , J
hk(d) ≥ 0, k = 1, 2, . . . , K
x(L) ≤ x ≤ x(U ),

d(L) ≤ d ≤ d(U ).

(1)

Here, x is a set of design variables which are uncertain. That
is, for a particular vector μx considered in the optimization,
the realized value is distributed with a probability distribution.
In our discussion here, we shall assume a normal distribution
N (μx, σx) with mean μx and a covariance matrix σx, which
is dependent on the variable vector value μx. Appropri-
ate transformation techniques are available to consider other
probability distributions as well [4]. Similarly, p is a set of
uncertain parameters (which are not design variables) and
follow a probability distribution N (μp, σp) representing the
uncertainty. However, d is a set of deterministic design vari-
ables, which are not uncertain and can be realized as they are
specified exactly. Thus, the stochasticity in the optimization
problem comes from two sets of parameters: x and p. However,
although the above problem is written in a way to mean
that x and d are decision variable vectors to the optimization
problem, in reality, μx and d are decision variable vectors. In
most cases, fixed covariance vectors are used for x and p, or
covariances as known functions of x and p are assumed.

Here, we only consider inequality constraints. This is be-
cause if an equality constraint involves x or p, there may not
exist a solution for any arbitrary desired reliability against
failure. All inequality constraints can be classified into two
categories: 1) stochastic constraints g j involving at least one
stochastic quantity (x, p or both) and 2) hk involving no
stochastic quantity.

Fig. 1 shows a hypothetical problem with two stochastic
inequality constraints. Typically, the deterministic optimal
solution [the solution to the problem given in (1) without
any uncertainty in x or p] lies on a particular constraint
boundary or at the intersection of more than one constraints,
as shown in the figure. In the event of uncertainties in design
variables, as shown in the figure with a probability distribution

Uncertainities
in x1 and x2

Deterministic
optimum

Feasible
region

x2

x1

Reliable
solution

Fig. 1. Concept of reliability-based optimization procedure.

around the optimal solution, in many instances, such a solution
will be infeasible. In order to find a solution that is more
reliable (meaning that there is a small probability of resulting
in an infeasible solution), the true optimal solution must be
sacrificed, and a solution interior to the feasible region may
be chosen. For a desired reliability measure R, it is then
desired to find that feasible solution that will ensure that the
probability of having an infeasible solution instance created
through uncertainties from this solution is at most (1 − R).
To arrive at such a solution, the above optimization problem
can be converted into a new optimization problem. Since the
objective function f and constraints g j are probabilistic due
to the randomness in variable set x and parameter set p, the
following deterministic formulation can be made:

Minimize
(μx,d)

f (μx, d, μp)

subject to P(
∧J

j=1(g j (x, d, p) ≥ 0)) ≥ R
hk(d) ≥ 0, k = 1, 2, . . . , K
x(L) ≤ μx ≤ x(U ),

d(L) ≤ d ≤ d(U )

(2)

where μx and μp denote the mean of variables x and p,
respectively. The term P() signifies the joint probability of
the solution x being feasible from all J constraints under
the uncertainty assumption. The quantity R is the desired
reliability (within [0, 1]) for satisfying all the constraints.
The conversion of the constraint g j (x, d, p) ≥ 0 into a
probabilistic constraint with the introduction of a reliability
term is a standard technique and the transformed probabilistic
constraint is also known as a chance constraint. However,
finding the joint probability of a solution being feasible from
multiple constraints is a difficult mathematical proposition and
approximate methods are used to make an estimate of the
above probability. We discuss some of the commonly used
procedures in Section II-B and shall discuss a couple of ways
of handling the joint probability term for multiple constraints
later in Section II-D. Many reliability-based optimization
studies simply break the above probability constraint into J
chance constraints as follows:

P(g j (x, d, p) ≥ 0) ≥ R j , j = 1, 2, . . . , J (3)

where R j is the desired probability of constraint satisfaction
of the j th constraint. Of course, this requires the definition
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of sensible reliabilities for each individual constraint, while a
decision maker is usually only interested in the overall system
reliability R.

A nice matter about the optimization problem given in (2)
with the joint probability term or the individual probability
term as given in (3) is that constraints associated with the
optimization problem are now deterministic, and hence, any
existing optimization methodology can be used to solve the
problem. What remains to be done is a computational proce-
dure to estimate the probability P(). As we see next, this is
not an easy matter, and most of the remainder of this paper
is devoted to estimating this probability in an accurate and
computationally efficient manner.

B. Determining a Solution’s Reliability

Ideally, the reliability of a solution must be determined by
checking whether the solution is adequately safe against all
constraints. Since this is mathematically and computationally
a challenging task [6], we defer the discussion on simultaneous
consideration of all constraints till Section II-D and first
discuss the procedures for computing reliability of a solution
against a single constraint (3).

Mathematically, the probability of a solution x being safe
against the j th constraint (or P(g j (x, d, p) ≥ 0)) can be
written as (1 − Pj ), with

Pj (μx, d, μp) =
∫

g j (x,d,p)<0
ϕμx,μp(x, p)dxdp (4)

where Pj is the failure probability, and ϕμx,μp is the joint
probability density function of (x, p). However, it is usually
impossible to find an analytical expression for the above
integral for any arbitrary constraint function which forces
researchers to follow one of the following two approxi-
mate procedures: 1) statistical approximation by sampling or
2) optimization-based procedures by estimating a distance of
the solution from the constraint. We discuss both of these
approaches one by one.

1) Sampling-Based Reliability Measures: In this procedure,
N different sample solutions are created by following the
known joint probability distribution of variation of x and p.
Thereafter, for each sample, the constraint g j can be evaluated
and checked for its violation. If r j cases (of N ) do not satisfy
the constraint, Pj = (r j/N ) and the probabilistic constraint
P(g j (x, d, p) ≥ 0) can be substituted by a deterministic
constraint as follows:

1 − r j

N
≥ R j . (5)

An advantage of this approach is that it can be used to
handle multiple constraints by simply checking the feasibility
of samples on all constraints. Such a method is simple and
works well if the desired reliability R j is not too close to
one [7], [8]. However, a major bottleneck of this approach
is that the sample size N needed for finding the quantity r j

must be of the order of at least O(1/(1 − R j )), such that
at least one infeasible case is present in the sample. For a
very stringent reliability requirement, such as for a limiting
failure probability (1 − R j ) of O(10−6), a large sample size

(N ∼ O(106)) is required to compute r j . This may be
computationally too expensive to be of any practical use.

The number of necessary samples can be somewhat reduced
by using a more systematic sampling, e.g., Latin hypercube
sampling [5], importance sampling [9], or directional sampling
[10] (see also [4]). Wang et al. [11] proposed a combination
of sampling and meta-modeling. Their approach applies a
discriminative sampling strategy, which generates more points
close to the constraint function. Then, in the neighborhood
of the constraint function, a kriging model is built, and the
reliability analysis is performed based on this model.

However, even these improvements may not be sufficient
to render the approach applicable if the desired reliability is
large.

2) Optimization-Based Reliability Measures: The underly-
ing idea of this class of reliability measures is to determine
a point on the constraint boundary which is closest to the
solution. This point is usually called the “most probable point”
(MPP) of failure [12]. Assuming a single constraint, and
approximating it as being linear in the vicinity of the MPP,
a solution’s reliability can then be calculated. Because of the
assumption of linearity, these methods are also known as first-
order reliability methods (FORMs).

To do so, we first convert the X coordinate system into an
independent standard normal coordinate system U, through the
Rosenblatt transformation [13]. The standard normal random
variables are characterized by zero mean and unit variance. In
this space, we approximate the hyper-surface (g j (x, d, p) = 0
or equivalently G j (U) = 0) by a first-order approximation at
the MPP. In other words, the MPP corresponds to a reliability
index β j , which makes a first-order approximation of Pj =
�(−β j ), where �() is the standard normal density function.

The remainder of this section discusses some alternatives to
calculate the MPP.

a) Performance measure approach (PMA): To find the
MPP in the PMA approach, the following optimization prob-
lem is solved [4]:

Minimize G j (U)
subject to ‖U‖ = βr

j
(6)

where βr
j is the required reliability index computed from

the required reliability R j as βr
j = �−1(R j ). The above

formulation finds a U∗ point which lies on a circle of radius
βr

j and minimizes G j (U). The original probability constraint
is replaced by

G j (U∗) ≥ 0. (7)

Fig. 2 illustrates this approach on a hypothetical problem.
The figure shows a probabilistic constraint g j in the U-space

(for ease of illustration, two variables are considered here). The
corresponding constraint G j (u1, u2) and the feasible region
are shown. The circle represents solutions that correspond to
a reliability index of βr

j . Thus, the PMA approach finds a
point U∗ on the circle for which the function G j (U) takes the
minimum value. Then, if the corresponding constraint function
value is non-negative (or, G j (U∗) ≥ 0), the probabilistic
constraint P(g j (x, d, p) ≥ 0) ≥ R j is considered to have
been satisfied.
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G = c

β j
r

G < 0

G = 0

U*

MPP

U−Space
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0

Infeasible
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j

Fig. 2. PMA approach.

G < 0

β j
r

gj
0

G = 0j

U−Space

Infeasible
region, j

gj
1

0

1

u1

u2

O

A B
C

U*
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2
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Fig. 3. Fast approach for solving the PMA problem.

Although the above optimization problem involves an equal-
ity constraint, a customized optimization procedure can be
employed to consider solutions only on the ‖U‖ = βr

j hy-
persurface, thereby making every solution a feasible solution.
Such a customized algorithm will make the search process
comparatively faster.

b) Fast performance measure approach (FastPMA): A
faster variant of the PMA approach is suggested in [14] and
is illustrated in Fig. 3. To speed up PMA, a gradient vector
∇g0

j of each probabilistic constraint g j is first computed at
the origin of the U-space. Its intersection (point A) with a
circle of radius βr

j is computed and a new gradient (∇g1
j ) is

recomputed at this point (A). Thereafter, the intersection (point
B) of this new gradient direction from the origin with the circle
is recomputed and a new gradient vector (∇g2

j ) is computed
at B. This procedure is continued till a convergence of the
norm of two consecutive gradient vectors with a predefined
tolerance (εP M A) or a fixed number of iterations ηP M A is
met. This point (U∗) is an estimate of the MPP of the original
PMA problem.

G = 0

β j
r

G < 0

U−Space

u1

u2

0

Infeasible
region,

MPP

U*
j

j

Fig. 4. RIA approach.

c) Reliability index approach (RIA): In this method, the
following optimization problem is solved:

Minimize ‖U‖
subject to G j (U) = 0.

(8)

Here, the MPP is calculated by finding a point which is
on the constraint curve in the U-space and is closest to the
origin. The optimum point U∗ is used to replace the original
probability constraint as follows:

‖U‖ ≥ βr
j . (9)

Fig. 4 illustrates the procedure. During the optimization
procedure, the desired reliability index βr

j is ignored, and
the minimum U-vector on the constraint boundary is found.
Thereafter, the minimal U∗ is compared with βr

j .
This approach also involves an equality constraint. Although

this method is computationally more expensive than the PMA
approach, a nice aspect is that the optimization problem
directly returns the distance of the solution from the constraint
(which is directly related to the reliability against a violation
of the constraint). The PMA approach, on the other hand, only
determines whether a solution is reliable or not against con-
straint satisfaction with respect to a specified reliability index.

d) Fast reliability index approach (FastRIA): There can
also be a relatively fast yet less-accurate variant of RIA,
which we propose here. First, we find an intermediate MPP
point (U∗

P M A) on a unit circle (assuming βr
j = 1) based on

the above FastPMA approach. As discussed, this operation is
computationally fast. Thereafter, we perform a unidirectional
search along U∗

P M A and locate the point for which G j (U) = 0.
We employ the Newton–Raphson approach for performing
the unidirectional search [15]. Due to the conversion of the
original multivariable problem to a single-variable problem,
the computation is usually fast, requiring only a numerical
derivative of the constraint function in the U-space. However,
it is worth mentioning here that the MPP point obtained by
this dual procedure is an approximation to the exact MPP,
particularly for highly nonlinear constraints.
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To find a better search direction U∗
P M A, we also suggest

another procedure in which we compute the MPP on a circle
of radius βr

j (computed from the supplied reliability index
R j ), instead of a unit circle. Since the MPP computation is
performed directly on the circle of interest, this approach is
expected to produce solutions with a better accuracy than the
previous approach.

With this background, we are now ready to describe the
essential procedures for reliability-based optimization.

C. Reliability-Based Optimization

The above-mentioned methods to measure a solution’s re-
liability have been integrated into an optimization algorithm
in several ways. Some of them are described in the following
subsections.

1) Double-Loop Methods: In the so-called double-loop
methods [16], a nested optimization is used. The outer op-
timization problem (usually referred as a “loop”) optimizes
the original problem given in (2) and uses (x, d) as decision
variable vectors. For each solution considered in the outer
loop, the chance constraint is computed by solving another
optimization problem (called the “inner loop”), using either
the PMA or the RIA approach described above. Because of
the nested nature of the overall optimization task, the double-
loop methods are computationally expensive.

2) Single-Loop Methods: The single-loop methods [3] com-
bine both optimization tasks together by not exactly finding
the optimum of the inner-level optimization task, thereby
constituting an approximate task of finding the true MPP point.
For example, in [3] the following replacement of the original
probabilistic constraint is suggested:

g j (x̄, p̄, d) ≥ 0 (10)

where x and p are computed from the derivatives of g j with
respect to x and p at the means, respectively, as follows:

x̄ = μx − βr
j σ

∇xg j√
‖∇xg j‖2 + ‖∇pg j‖2

, (11)

p̄ = μp − βr
j σ

∇pg j√
‖∇xg j‖2 + ‖∇pg j‖2

. (12)

Since the above is only an approximation to the double-
loop procedure, the single-loop methods often cannot produce
accurate results but are computationally faster than the double-
loop methods. A study [17] compares a number of single-loop
approximate ideas against double-loop methods.

3) Decoupled Methods: In the decoupled methods, two
optimization (outer-level and inner-level) approaches are ap-
plied one after the other. Decoupled methods have been
shown to be a good compromise between the two approaches
mentioned above [18], [19]. These methods are started by first
finding the deterministic optimal solution in the search space
(without considering any uncertainty on design variables x or
parameters p and using the mean of x as decision variables).
Thereafter, the most probable point (MPP) for each constraint
g j is found using the PMA or RIA approach. Then, in the
next iteration, each constraint is shifted according to their

x1

Shifted g2

Feasible region

x2

A

A2

A1

B

g2
g1

Shifted g1

B1 B2

Fig. 5. Working principle of SORA.

MPP points found in the last inner-level optimization, and a
deterministic optimization to the shifted constraint problem
is solved. This dual optimization continues in turn until no
further improvement in the current solution is achieved. The
outcome of such a strategy is sketched in Fig. 5. From the
deterministic optimum (A), both constraints are considered
(one at a time) to find the corresponding MPP points (A1
and A2). Thereafter, the corresponding constraints are shifted
at these points and a new optimization problem is solved
to find a new point B. The procedure continues (by finding
B1 and B2 for both constraints) until convergence. Fig. 6
sketches a particular approach [sequential optimization and
reliability assessment (SORA) method] suggested elsewhere
[18], in which the PMA approach is used to determine the
MPP in the second optimization problem.

D. Handling Multiple Constraints

Ideally, the reliability of a solution should be computed by
considering a cumulative effect of all constraints, as presented
by the probability term in (2). However, the above PMA and
RIA methods assume a single constraint in their approaches
and compute an MPP for a particular constraint at a time.
There are basically two ways to extend the approaches to
multiple constraints.

a) Closest Constraint: The simplest way to consider
multiple constraints is to determine the failure probability
Pj for each constraint individually and then to calculate the
following bounds on the overall failure probability PF :

max
j

Pj ≤ PF ≤ min(1,
∑

j

Pj ). (13)

Intuitively, usually, the larger the failure probability Pj of
a constraint, the closer the constraint to the solution. Thus,
the above lower bound signifies simply the failure probability
of the closest constraint and can be used as a crude estimate
(usually an underestimation) of the failure probability against
all constraints. The upper bound of PF holds if the constraints
have no overlapping regions and, in other cases, is an overes-
timation of the overall failure probability. The only reason for
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Minimize
(µ X , d)

Subject to

f(µx, d, µp),

gj(µx – sj, d, pMPP, j) > 0,    j = 1, 2, ..., J,
hk (d) > 0,   k = 1, 2, ..., K,
x(L) < µx < x(U),
d(L) < d < d(U).

t t

For j = 1, 2, ..., J
     PMA Approach to find MPP for jth constraint → (XMPP, j , pMPP, j)

t t

(µX , dt)t
t = t + 1

St
j = µX – X MPP,j, ∀j

t t

Fig. 6. Specific decoupled method (SORA) [18]. Initial value of s j is set
equal to zero for all j .

using such simple estimates is the low computational burden,
since no joint failure probability estimate need be computed
by this approach.

b) Ditlevsen’s bound: Much closer bounds on the overall
failure probability are given elsewhere [2], [20], in which first,
the failure probability Pj of each constraint is computed, and
then, the overall failure probability PF of the solution from
all constraints is bounded as follows:

P1 +
J∑

i=1

max

⎧⎨
⎩0,

⎛
⎝Pi −

i−1∑
j=1

Pji

⎞
⎠

⎫⎬
⎭ ≤ PF

≤
J∑

i=1

Pi −
J∑

i=2

max
j | j<i

Pji . (14)

The formula depends on the exact ordering of the failure
modes considered in the study. Usually, the failure modes
are ordered according to decreasing values of Pi [21]. Thus,
P1 and PJ correspond to the largest and smallest failure
probabilities, respectively. The joint probability Pji of failure
against both i th and j th constraints is given by the cumulative
distribution function (CDF) of the bivariate normal distribution

Pji = �(−β j ,−βi , ρ j i ) (15)

and the correlation coefficient ρ j i is given as follows [20]:

ρ j i =
〈
u∗

j , u∗
i

〉
∥∥∥u∗

j

∥∥∥ ∥∥u∗
i

∥∥ (16)

where u∗
j is the MPP point in the U-space for the j th constraint

alone computed for solution x. The cosine-inverse of ρ j i indi-
cates the angle between the two u∗ vectors. Fig. 7 explains this
procedure. The FORM approach makes a linear approximation
of each constraint at MPP, meaning that the MPP point is
the point where the linear approximation is a tangent to the
original constraint. Once these MPP points are found for all
constraints, the correlation coefficient ρ j i is the cosine of the
angle formed by the MPP vectors of j th and i th constraints.

The above Ditlevsen’s bounds are much tighter than the
closest constraint bound but involve computation of the
pairwise joint failure probabilities. To be conservative, we shall
consider the upper Ditlevsen’s bound here and replace all J
chance constraints in (2) with a single constraint of comparing

x
u3*u1*

g1 g3

g2

MPP1

MPP2

MPP3

u2*
ρ

12

Fig. 7. Computation of the correlation coefficient.

the overall survival probability (1 − PF ) with the desired
reliability R

1 −
(

J∑
i=1

Pi −
J∑

i=2

max
j | j<i

Pji

)
≥ R. (17)

The difference between considering only the closest con-
straint approach [lower bound in (13)] and using the
Ditlevsen’s upper bound on failure probability can be ex-
plained using Fig. 8. If there is only one constraint (the left-
most panel), it divides the space into a feasible area (grey) and
an infeasible area (white). Overall failure probability becomes
identical to P1 and both methods estimate the failure proba-
bility without any error. For the case of two constraints (the
middle panel), if only the closest constraint (C1 for the solution
marked) is considered, feasibility will be overestimated by
not computing the failures arising from the area denoted
as A2. However, using the Ditlevsen’s upper bound, both
constraints are handled accurately, as PF is now computed as
(P1+P2−P12), which corresponds to failure arising from areas
A2, A3, and A4. For more than two constraints, the Ditlevsen’s
upper bound may no longer provide an exact estimate of the
failure probability. For the scenario in the rightmost panel in
Fig. 8, true failure probability should arise from cumulative
areas marked A2 to A7. However, the Ditlevsen’s upper bound
will estimate it to be (P1 + P2 + P3 − P12 −max(P13, P23)). If
P23 ≥ P13, the failure arising from area A3 will be considered
twice; otherwise, the failure arising from A8 will be considered
twice. Thus, the Ditlevsen’s upper bound may overestimate
the actual failure probability for a problem having more than
two constraints, i.e., the true reliability will be larger than the
estimated reliability.

Nevertheless, the Ditlevsen’s upper bound is usually tight.
In principle, it would be possible to improve the bounds by
also using higher order intersections, but this involves much
more numerical effort with a little gain in accuracy of the
result [22].
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Fig. 8. Area considered (grey) feasible and (white) infeasible for (a) one constraint, (b) two constraints, (c) three constraints.

III. OVERVIEW OF OTHER RELATED STUDIES

There are two closely related aspects when optimizing in
the presence of uncertainty: reliability and robustness. The
terms are not uniquely defined in the literature, and we will
make the following distinction in this paper under variable
and parameter uncertainty. Reliability-based design (which is
the focus of this paper) aims at finding the best solution that
satisfies the constraints with a specified probability. Robust
design is usually concerned with the solution quality and not
the constraints. There are many possible notions of robustness,
including a good expected performance, a good worst-case
performance, a low variability in performance, or a large range
of disturbances still leading to acceptable performance (see
also [23, p. 127]).

As the classical reliability-based optimization has already
been discussed in depth above, the following survey focuses
on reliability and robustness in combination with evolution-
ary optimization. In recent years, there has been a growing
interest in applying evolutionary computation to optimization
problems involving uncertainty, and a recent survey on this
field can be found in [24].

Most research in the EA community so far has focused on
the robustness of solutions, in particular the expected fitness
given a probability distribution of the uncertain variable. From
the point of view of the optimization approach, this reduces the
fitness distribution to a single value: the expected fitness. Thus,
in principle, standard evolutionary algorithms could be used
with the expected fitness as the driving force. Unfortunately,
it is usually not possible to calculate the expected fitness
analytically; it has to be estimated. This, in turn, raises the
question how to estimate the expected fitness efficiently, which
is the topic of many studies of robustness within EAs. In [25],
it was shown that for the case of an infinite population size
and proportional selection, adding random perturbations to the
design variables in each generation is equivalent to optimizing
on the expected fitness function. For finite population sizes,
explicit averaging (e.g., [23], [26]) or the use of metamodels
(e.g., [27]) may be successful.

Robustness based on expected fitness has also been studied
for the case of multiobjective problems [28]–[30]. These
approaches rely on multiple sampling for estimation. Then, a
standard EMO algorithm is used to work with these expected

fitnesses. Reference [29] thereby extends [28] by additionally
taking into account robustness with respect to constraint
violations.

In contrast to searching the solution with the best expected
fitness, the worst-case cannot usually be obtained by sampling.
Instead, finding the worst-case for a particular solution may
itself be a complex optimization problem. In [31], this is
solved by running an embedded optimizer searching for the
worst-case for each individual (called anti-optimization in
[31]). Similarly, in [32] a simplified meta-model around a
solution is constructed and a simple embedded local hill
climber to search for the worst-case is used. In [33], the
maximum disturbance range that guarantees fitness above
a certain threshold is used. Again, this is determined by
an embedded search algorithm.1 In [34], a coevolutionary
approach for a scheduling problem, co-evolving solutions,
and worst-case disturbances are used. Others simply calculate
some bounds on the worst-case behavior (e.g., [35]). In [36],
a multiobjective evolutionary algorithm is used to evolve
the tradeoff between Pareto optimality and worst normalized
variation among all objectives due to uncertainty.

A few papers treat robustness as an additional criterion to be
optimized. Robustness is measured, e.g., as variance [27], [37],
[38], as maximal range in parameter variation that still leads
to an acceptable solution [33], [39] or as the probability to
violate a constraint [40], [41]. This allows the decision maker
to analyze the possible tradeoff between solution quality and
robustness/reliability. The challenges and approaches are quite
similar to the single objective optimization in determining the
performance measures.

An excellent and comprehensive survey on robustness op-
timization, which also discusses the connection to reliability
optimization and the role of evolutionary computation in this
area, can be found in [42].

With respect to evolutionary reliability optimization, several
studies [5], [43] have used Monte Carlo simulation with
Latin hypercube sampling (LHS) within an EA to estimate
reliability. Reference [44] uses a Taguchi approach to analyze

1These approaches are similar to what is proposed below in the sense that
they use an embedded optimizer to evaluate a solution. However, they consider
robustness, while we consider reliability, and we use techniques specifically
designed to calculate a solution’s robustness.
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Fig. 9. Sketch of two optima A and B and their corresponding reliable
solutions (A′ and B′) for a fixed reliability index.

the sensitivity of engineering designs found by an evolutionary
algorithm. An overview of the reliability-based design opti-
mization methods for automotive structures is given by [45],
which also includes sampling techniques, nonlinear response
surface methodologies, robust assessment, and robust design
formulation. None of the above sampling-based approaches is
applicable if very high levels of reliability are desired. Another
study used interval arithmetic approach with an evolutionary
algorithm to find reliable solutions [46].

This paper summarizes and extends the approaches pre-
sented in [40], [41], where it has first been suggested to
integrate classical methods to calculate a solution’s reliability
within an EMO algorithm.

IV. THREE RELIABILITY-BASED OPTIMIZATION CASES

In this section, we present three different aspects of
reliability-based optimization problems which may be difficult
to solve using the classical optimization techniques mentioned
in Section II-C but for which evolutionary algorithms (EAs,
search heuristics mimicking the natural evolutionary principles
[47]–[49]) may be suitable.

A. Single-Objective, Multimodal Reliability-Based
Optimization

Many single-objective optimization problems involve mul-
tiple global and local optima. Most classical methods start
with a deterministic optimum and then search for a close
reliable solution. However, in some problems the deterministic
global minimum is highly constrained, and the closest reliable
solution is far away. On the other hand, a different local
optimum may be much less constrained, and a close reliable
solution might actually be better than the reliable solution
close to the global optimum.

This is illustrated in Fig. 9. In a sufficiently nonlinear
problem, the reliable minimum (point A′) corresponding to the
global deterministic minimum (point A) need not be the best
solution and the reliable minimum (point B′) corresponding
to a local deterministic minimum (point B) may be better.
The classical serial procedure of first finding the deterministic
global optimum (solution A) and then finding the reliable

solution (solution A′) may not be a good idea in such
problems. Evolutionary optimization methods are population-
based approaches and do not need to start their search from
a deterministic optimum. They can be directly used to solve
the reliability-based optimization problem (2). Moreover, due
to their population approach, they are more likely to avoid
the locally optimal reliable solution and converge to the true
reliable solution.

It is worth mentioning here that although we discussed
the multimodality issue in the context of single-objective
optimization, such a scenario may very well exist in the case
of a multiobjective optimization problem. In such a scenario,
a classical method may find it difficult to converge to the
globally reliable frontier and may instead get stuck in a locally
Pareto-optimal frontier.

B. Optimization for Seeking Multiple Solutions for Different
Reliability Values

In most reliability-based design optimization (RBDO) stud-
ies, the aim is to find the reliable optimum corresponding
to a given failure probability (or a given reliability index).
However, in the context of design optimization, it would be
educative to learn how the reliable solutions change with
different levels of reliability index, as shown in Fig. 10. When
reliability is not considered, the deterministic optimum is the
desired solution. As discussed earlier, when the optimization
is performed for a particular reliability (say R = 0.9), a
solution in the interior to the feasible region becomes the
corresponding reliable solution. As the desired reliability value
is increased, the resulting solution will move further away
from the constraint and inside the feasible region. That is,
if we can locate the reliable optimum for small (say 80%)
to large value (say 99.999%, meaning a failure of one in
a thousand) of reliability, the trace of solutions will reveal
important insights about how to change decision variables to
make the corresponding solutions more and more reliable.
Fig. 10 shows such a trace on the decision variable space
for a hypothetical problem. Such multiple reliable solutions
can be found simultaneously by treating the problem as a
two-objective optimization problem of optimizing the original
objective and, in addition, maximizing the reliability index (R
or β), as well as by locating a number of tradeoff optimal
solutions using an evolutionary multiobjective optimization
(EMO) strategy to this bi-objective optimization problem

Minimize
(μx,d)

f (μx, d, μp)

maximize
(μx,d)

R(μx, d, μp)

subject to hk(d) ≥ 0, k = 1, 2, . . . , K
x(L) ≤ μx ≤ x(U ),

d(L) ≤ d ≤ d(U )

(18)

where
R(μx, d, μp) = 1 − PF .

The overall failure probability PF can be computed by com-
puting individual failure probabilities Pj involving inequality
constraints g j . The procedure for computing PF was discussed
in Section II-D.
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Fig. 10. Different reliability indexes may result in an interesting relationship
among reliable solutions. Circles show a solution’s distance to the constraints
(not a quantile of the probability density function).
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Fig. 11. Bi-objective formulation of minimizing objective function f (x) and
maximizing reliability index R(x).

The scenario is depicted in Fig. 11. The shaded region
marks the objective space, but the solid front at the bottom-
right part of the shaded region marks the optimal solutions
corresponding to different reliability index values within a
prespecified range [RL , RU ]. The EMO procedure is capable
of finding multiple Pareto-optimal solutions for solving such
a bi-objective optimization problem, thereby finding multiple
reliable solutions corresponding to differing reliability values.
Such a study will help to analyze the effect of the reliability
index on the quality of solutions (both in objective value
and in decision parameter values) and may help to determine
a suitable reliability index for a particular application. It is
worth mentioning here that instead of finding the complete
front using an EMO, a number of reliability index values
(such as R illustrated in the figure) can be chosen; for

each case, the objective function f (x) can be optimized
with the consideration of constraints, variable bounds, and
uncertainty, and a corresponding reliable solution x∗ can be
found. Such multiple independent applications of a posteriori
multiple criterion decision making (MCDM) method (such as
the ε-constraint method [50]) works in a similar principle as
an EMO and can also be used for this purpose. However,
a recent study [51] has discussed the difficulties of using a
posteriori MCDM methods, particularly in handling difficult
optimization problems. Also, sequential methods are usually
computationally more expensive than an EMO procedure,
searching for several Pareto-optimal solutions concurrently.

C. Multiobjective Reliability-Based Optimization

The concept of reliability-based optimization methods can
also be applied to solve multiobjective reliability-based opti-
mization problems

Minimize
(x,d)

( f1(x, d, p), . . . , fM (x, d, p))

subject to g j (x, d, p) ≥ 0, j = 1, 2, . . . , J
hk(d) ≥ 0, k = 1, 2, . . . , K
x(L) ≤ x ≤ x(U ),

d(L) ≤ d ≤ d(U ).

(19)

In such cases, instead of a single reliable solution, a reliable
frontier is the target, as shown in Fig. 12. When reliability
aspects are considered, the corresponding reliable front may be
different from the original front and will, in general, be placed
inside the feasible objective space. As the reliability index is
increased (to get more reliable solutions), the front is expected
to move further inside the feasible objective space. To solve
multiobjective optimization problems, EMO procedures can
be applied directly on the following deterministic optimization
problem:

Minimize
(μx,d)

( f1(μx, d, μp), . . . , fM (μx, d, μp))

subject to P(g j (x, d, p) ≥ 0) ≥ R j , j = 1, 2, . . . , J
hk(d) ≥ 0, k = 1, 2, . . . , K
x(L) ≤ μx ≤ x(U ),

d(L) ≤ d ≤ d(U ).
(20)

The probability constraint P() can be computed as before
by using any of the four methods discussed earlier. The
advantage of finding the complete reliable frontier is that
the relative sensitivity of different regions of the frontier
can be established with respect to the uncertainties in design
variables and parameters. This information will be useful to
the designers and decision makers in choosing a solution from
a relatively insensitive region of the tradeoff frontier.

There is a fourth problem scenario involving M conflicting
objectives, in which an (M + 1)-dimensional tradeoff frontier
can be attempted to be found by including an additional
objective of maximizing derived reliability R, as considered
in Section IV-B for a single-objective optimization problem.
This will provide a plethora of information about the nature
of change of the original M-dimensional tradeoff frontier with
the required reliability value. In this paper, we do not explicitly
add such a reliability objective for multiobjective optimization
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Fig. 12. Reliable front in a multiobjective reliability-based optimization
problem.

problems but perform multiple independent M-objective runs
with different fixed reliability (R) values and show the effect
of R on the obtained frontier.

V. PROPOSED EVOLUTIONARY APPROACHES

A. General Setup

We suggest here reliability-based optimization procedures
based on evolutionary optimization algorithms to handle all
three problem classes described above.

For the problems described in Sections IV-A and C, we
suggest to use the FastPMA approach of computing the MPP,
because it suffices to determine whether a solution fulfills the
specified reliability, and the method is fast. To handle problems
described in Section IV-B, the RIA-based approach is needed
because, for each solution, the corresponding reliability value
has to be determined, as this value corresponds to one of the
objectives which needs to be maximized during the optimiza-
tion task. Since computational efficiency is still an issue, we
use the FastRIA variant in this case.

For evolution, we use a real-parameter GA with a penalty-
parameterless constraint handling approach [52] to handle all
deterministic constraints in the case of the single-objective
scenario of Section IV-A. For multiobjective optimization
problems, we employ the constrained tournament concept
with the elitist non-dominated sorting GA or NSGA-II [53].
We use tournament selection with tournament size of 2,
and the simulated binary crossover (SBX) operator [54]
to create two blended offspring solutions. The crossover
probability is 0.9, meaning that 90% of the pairs are re-
combined to create offspring solutions, and the remaining
10% parents are simply chosen. The SBX operator in-
volves a distribution index controlling the spread of obtained
solutions. We have used a value of 2, which is recom-
mended in the original study [54]. Finally, a polynomial
mutation operator [49] is used to perturb the offspring
solutions in their neighborhood. A mutation probability
of 1/n is used so that on average one of the design

variables are mutated per offspring solution. A distribu-
tion index of 50 is used for mutation. For details of
these operators, see a description given elsewhere [49]. A
C-code implementing the above-mentioned GA is available
at http://www.iitk.ac.in/kangal/soft.htm.

But before we discuss the simulation results, we suggest a
procedure of identifying redundant constraints for the purpose
of computing the overall probability of failure so that overall
computational time is further reduced.

B. Identifying Redundant Constraints

Determining the MPP for every solution and every con-
straint can be computationally demanding, particularly when
dealing with a large number of constraints and population
members. The use of FastPMA and FastRIA variants discussed
earlier for MPP computations alleviates the problem to some
extent. Here, we propose a procedure to make a further reduc-
tion in computation of overall failure probability by identifying
constraints which either are far away or do not contribute much
to the overall failure probability. To understand these cases, we
first sort the constraints from the largest failure probability to
the smallest failure probability.

After sorting, we have Pi ≥ Pj for i < j . The Ditlevsen’s
upper bound can be computed in the following manner. The
overall failure probability PF can be computed by adding
terms (Pi − max j | j<i Pji ) (for i > 1) one by one to P1. It is
interesting to note that this term (within brackets) is always
non-negative. As the terms are included one by one, one of two
scenarios can happen. The value of the term becomes so small
that the inclusion of it in PF computation does not affect the
failure probability value significantly (say, the term has a value
less than a threshold η, which is set much smaller than (1−R)).
In this case, the constraint i can be said to be redundant for
the PF computation. For example, consider a two-constraint
scenario shown in Fig. 13 for which two constraints are almost
parallel to each other with respect to the current solution x
and that the solution x makes the second constraint almost
redundant. Using our check for identifying redundant con-
straints stated above, we realize that P1 > P2 and P12 ≈ P2,
thereby making the above-specified term (P2 − P12) almost
equal to zero. Thus, our proposed η-threshold check will then
declare the second constraint as a redundant one for the current
solution.

Second, the failure probability Pi of the i th constraint itself
can be so small (say, less than η) that it is not worth including
in the PF computation. In this case, all other constraints placed
beyond i th constraint in the sorted list can also be termed as
redundant. Fig. 14 shows such a scenario. Constraint g1 is so
close to the current solution compared to other constraints that
other constraints will cause a negligible failure probability (P2
and so on) compared to P1. Hence, constraints g2 and other
far away constraints can be declared redundant for the current
solution.

The inclusion of the above-mentioned terms (Pi −max j | j<i

Pji ) one by one has another advantage in dealing with
problems described in Sections IV-A and C, in which a
desired reliability (R) is supplied by the user. Recall that the
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Fig. 13. Almost parallel constraints making one constraint redundant.

chance constraints require that the probability of a solution
being feasible is at least R (or, PF ≤ 1 − R). While
considering the term for the kth constraint in the ordered
list, the Ditlevsen’s upper bound can be overestimated by
P1 +∑k−1

i=2 (Pi − max j | j<i Pji )+ (J − k)Pk and the following
condition can be tested:

Pk ≤ 1

J − k

(
(1 − R) − P1 −

k−1∑
i=2

(Pi − max
j | j<i

Pji )

)
. (21)

If the above condition is true, there is no need to proceed
with kth and all other constraints thereafter in the ordered
list. The above test can be made for including each constraint
starting from k = 2.

It is interesting to realize that the redundancy check sug-
gested above has a local property. That is, constraints which
are found redundant by a solution x may also be found
redundant for most other near-by solutions (say y, provided
‖y − x‖ ≤ ε). In all simulations in this paper, we have used
ε = 0.01 in the U-space and η = 9(10−7). This principle can
lead us to saving expensive MPP computations in the following
way. From the initial generation, we maintain a database
storing a solution x and a linked list of constraints which are
found redundant for the solution. In later generations, when
a solution y close (with the above-mentioned ε-neighborhood
check) to x is found, we do not need to compute the MPP
for the redundant constraints of y, the information of which
is taken from the database for x. This procedure will save
constraint calls for computing MPP vectors, thereby saving
computational time.

g2
g1

g3

x

u1*

u2*

u3*

Redundant

Fig. 14. Far away constraints which can be redundant.

VI. SIMULATION RESULTS ON MULTIMODAL

RELIABILITY-BASED OPTIMIZATION PROBLEMS

In a real-world optimization problem, there often exist
multiple local optima, irrespective of whether reliability is
considered or not. Often, the reliable local optima are located
close to some deterministic local optima. But the global
optimum when taking reliability into account may be close to
a local deterministic optimum. This is a problem for methods
like SORA, which first compute the deterministic optimum,
and search for a reliable solution from there.

In this section, we compare EAs with two classical
reliability-based optimization methods, and show that EAs do
not suffer from this problem.

Let us consider the following two-variable test problem:

Maximize y
subject to x2 − 1000y ≥ 0,

y − x + 200 ≥ 0,
x − 3y + 400 ≥ 0,
−400 ≤ x, y ≤ 300.

(22)

In this problem, x = (x, y) are uncertain variables, and there
exists no deterministic variable d. Also, there does not exist
any uncertain problem parameter (p). We assume independent
and normally distributed uncertainties with σx = σy = 10 and
a desired reliability index of βr = 4.

First, we present results obtained with a real-coded genetic
algorithm with the proposed FastPMA to check reliability of a
solution. The proposed EA uses the simulated binary crossover
and the polynomial mutation operators [49], and a population
size of 20. The GA is terminated after 60 generations have
elapsed. Recall that the FastPMA approach (discussed in
Section II-B2b) begins with a guess of a MPP direction using
the derivative vector of the underlying constraint function and
then iterates to converge on a particular direction. We termi-
nate the MPP direction finding strategy when the difference
between two consecutive direction vectors is εP M A = 0.001 or
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TABLE I

COMPARISON OF PERFORMANCES OF DOUBLE-LOOP METHOD, SORA, AND PROPOSED GA. IN EACH CASE, A TOTAL OF 2500 RUNS ARE PERFORMED

Method # Proportion Solution Evaluations
success success Best Average Worst

GA (εP M A = 0.001) 2500 100% 9483 9756.2 9768
GA (ηP M A = 2) 2500 100% 3663 3663.0 3663
SORA 1630 ∼65% 491 1394.0 15 679
Double-loop 1219 ∼49% 2910 147 994.7 413 040
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Fig. 15. Proceedings of three GA simulations showing how population-best
solution can progress toward the global maximum (B′).

less. We perform 2500 runs with different initial populations
to check the robustness of the proposed procedure. The first
row in Table I shows the performance of the proposed GA. We
observe that in all 2500 runs, the GA is able to find a solution
near the correct reliable optimum solution (237.908, 11.820)T ,
with a function value of 11.820. Fig. 15 shows how three
different GA simulations starting at different regions in the
search space (considering the population best) avoid the local
maximum (A′) and converge to the global maxima (B′). One
of the runs has its best located near A′ in the initial population
and even then the GA with the proposed FastPMA approach
can advance and converge near the globally optimal reliable
solution. Fig. 16 shows all 2500 points obtained by the 2500
GA applications.

To investigate the effect of the extent of iterations on finding
the MPP direction on the final outcome of the algorithm, next
we terminate the MPP direction finding strategy only after
two (ηP M A = 2) iterations. The second row in Table I shows
the performance of the modified GA. Again, we obtain 100%
successful result but this time with far fewer overall solution
evaluations. A plot of the obtained solutions in the decision
variable space produces a similar plot as in Fig. 16 and is
not presented here for brevity. In this problem, the choice of
the gradient direction on βr -circle as an initial guess of the
MPP direction is close enough to the true MPP direction, and
two iterations were enough to locate a near MPP point for

this problem. This reduces the solution evaluations drastically
without degrading the performance of the GA procedure.

Now, let us compare the performance of the EA with two
classical methods. First, we have implemented the classical
SORA approach [18] discussed in Section II-C3 to solve the
above problem. The MATLAB code fmincon is used to
optimize both the PMA and the overall optimization tasks.
We terminate each of the two optimization tasks when the
tolerances in variable vector (TolX), function value (TolFun)
and constraint value (TolCon) are 10−8. We performed a
number of simulations using larger tolerance values in order
to find the smallest number of solution evaluations for a
successful application of SORA, but most runs resulted in
nonoptimal solutions, other than solutions A′ or B′. We argue
that a larger tolerance value causes intermediate unidirectional
search iterations of fmincon to prematurely terminate to
nonoptimal solutions, thereby not allowing the overall algo-
rithm to advance to the true optimal solutions. Fig. 17 shows
the final obtained solutions from each of 2500 simulations. It
is clearly visible that, even with a tolerance value of 10−8,
not all runs converge to the true reliable optimum near B′, but
many runs find their way to a solution near the deterministic
optimum A′. The fact that the approach sometimes finds the
true reliable optimum is surprising, and may probably be
attributed to the fact that SORA first stage, which searches
for the deterministic global optimum, gets stuck in the local
optimum B′. This situation happens particularly when the
initial starting point is chosen near the local optimum B.
Combined solution evaluations for 2500 runs are recorded and
presented in Table I. Although overall function evaluations are
much smaller than that required with our proposed EA, the
SORA method is found to be successful in only about 65%
of the simulations.

Next, we implement the double-loop method using MAT-
LABs fmincon code for both upper and lower level op-
timization tasks. After some trials using different tolerance
values, we observe that an identical tolerance value (10−8)
in each optimization task as that needed in SORA is needed
to obtain near-optimal results. Fig. 18 plots the solutions
obtained by 2500 runs. Interestingly, nonoptimal solutions
are found in many runs. It seems that the outcome of the
procedure strongly depends on the chosen initial points. For
some initial points, the MPP solution obtained by the lower
level search cannot be improved by the upper level search
and the combined algorithm gets stuck to a point parallel to a
critical constraint boundary and requires in a huge number of
function evaluations.
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Fig. 17. SORA results.

Results of all three approaches for 2500 independent runs
are compared in Table I. From these extensive computer
results, we conclude the following.

1) The proposed GA can find the correct reliable optimum
in 100% of all runs, compared with 65% for SORA and
49% for the double-loop method.

2) SORA is the fastest approach in terms of function eval-
uations. The double-loop method is the second fastest
(in terms of the best algorithm performance) but with
some extremely long runs. However, the GA performs
second in terms of average required function evaluations
but does best in terms of worst function evaluations in
2500 simulations.

3) The double-loop method is not as accurate and also
requires more solution evaluations than SORA.

4) The performance of the proposed GA approach is con-
sistent and more reliable than both SORA and the
double-loop method.
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Fig. 18. Double-loop results.

5) The double-loop method is prone to get attracted to sub-
optimal solutions due to complex interactions between
upper and lower level optimization tasks.

This paper clearly indicates the importance of EA-based
approaches to difficult reliability-based optimization problems.

VII. SIMULATION RESULTS ON

FINDING MULTIPLE RELIABLE SOLUTIONS

Here, we consider two problems—the two-variable problem
considered in the previous section and an automobile car side-
impact problem.

A. Test Problem Revisited

We now consider an additional objective of maximizing
the reliability index. To handle two objectives, we employ
the NSGA-II algorithm, in which every population member
is checked with the RIA optimization approach to find the
corresponding reliability index of the solution. Here, we
employ the fastRIA approach described in Section II-B2d.
The reliability index is restricted to lie within 0.05 and 5.0,
corresponding to 51.98388% to 99.99997% reliability values.
We use a population size of 40 and run NSGA-II for 80
generations. The resulting population members are shown in
Fig. 19. It is clear that as the reliability index is increased,
the corresponding optimal function value gets worse (reduced
here). There seems to be two different patterns of variation of
the optimal function value. Up until about a reliability index
of 0.7 (meaning about 75.8% reliability), the drop in optimal
function value is more rapid, but thereafter, the rate is slow.
To illustrate, a number of intermediate solutions with their
associated reliability index is marked on the figure with a
diamond. A plot of these solutions in the decision variable
space (see Fig. 20) reveals that up until βr ≤ 0.7, a solution
near the global optimum (solution A) is still the reliable
optimum. However, with a larger reliability requirement, the
reliable optimum moves near the local optimum (solution B).
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Fig. 19. Optimal objective value reduced with desired reliability index.

Fig. 19 also depicts that the worsening of optimal objective
value is almost linear in the increase in reliability index βr .
Fig. 20 shows how the optimal solution starting near the global
optimum (for a small reliability requirement) moves inside the
feasible search space with an increased demand in reliability,
then moves near the local optimum, and finally moves further
interior to the search space with an increase in reliability index.
Such information provides a good understanding of how the
optimal solution varies depending on the desired reliability and
is extremely valuable to designers and practitioners in solving
real-world optimization problems.

We now consider an engineering design problem and
employ both the closest constraint and multiple constraint
strategies to find and analyze the solutions to decipher
more meaningful design principles associated with reliable
solutions.

B. Car Side-Impact Problem

A car is subjected to a side-impact based on European
Enhanced Vehicle-Safety Committee (EEVC) procedures. The
effect of the side-impact on a dummy in terms of head
injury (HIC), load in abdomen, pubic symphysis force, viscous
criterion (V ∗C), and rib deflections at the upper, middle, and
lower rib locations are considered. The effect on the car are
considered in terms of the velocity of the B-Pillar at the middle
point and the velocity of the front door at the B-Pillar. An
increase in dimension of the car parameters may improve the
performance on the dummy but with a burden of increased
weight of the car, which may have an adverse effect on the
fuel economy. Thus, there is a need to find a design balancing
the weight and the safety performance. The optimization
problem formulated elsewhere [55] included the minimization
of the weight of the car subject to EEVC restrictions on
safety performance. There are 11 design variables x which
can be grouped into two sets: uncertain decision variables
x = (x1, . . . , x7) and uncertain parameters p = (x8, . . . , x11).
All variables/parameters (in millimeters) are assumed to be
stochastic with standard deviations (in millimeters) given
below. Problem parameters x8 to x11 are assumed to take
a particular distribution with a fixed mean of 0.345, 0.192,
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Fig. 20. Location of optimal solutions with desired reliability index.

0, and 0 mm, respectively. Thus, the stochastic optimization
problem involves seven decision variables and three stochastic
parameters which all vary with a normal distribution. Their
description and the standard deviation of their variations are
given in the Appendix.

We use a population of size of 100 and run NSGA-II to
optimize two objectives f (x) (minimize weight function) and
R (maximize reliability index) for 100 generations. Fig. 21
shows the tradeoff, nondominated front obtained using three
methodologies: 1) the approach which uses only the closest
constraint to compute MPP (direction for MPP is computed
at a unit circle); 2) the approach which uses Ditlevsen’s upper
bound to compute reliability; and 3) the Ditlevsen’s approach
which does not consider redundant constraints to compute
reliability.

We make a few interesting observations from this figure.
First, the shape of the tradeoff front suggests that till up to
a reliability index near 1.5, the worsening of optimal weight
with an increased reliability requirement is less compared to
that for solutions beyond a reliability index of 1.5. This means
that larger sacrifice in weight is needed compared to the gain in
reliability index for achieving a solution having such a large
reliability requirement. Thus, unless a very large reliability
is needed, it may not be wise to unnecessarily set a high
reliability demand.

Second, the nondominated front obtained using multiple
constraint consideration is located inside the feasible objective
space relative to the nondominated front obtained using a
single-constraint case. This is due to the fact that a single-
constraint (albeit closest) consideration overestimates the prob-
ability of feasibility, thereby resulting in a front which appears
to be better. To illustrate this fact, we have computed the
overall reliability index value using the Ditlevsen’s bound for
each of the solutions obtained using the closest constraint
strategy and plotted them against the reported reliability index
in Fig. 22. It is clear from the figure that each solution
obtained using the closest constraint strategy corresponds to a
smaller overall reliability index than that obtained with respect
to closest constraint alone. Thus, when all constraints are
considered using the Ditlevsen’s bound, each of these solutions
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the car side-impact problem. Solutions shown in diamonds are obtained using
SORA.

will be infeasible with respect their specified reliability index.
When these solutions are re-plotted with the overall reliability
index computed using the Ditlevsen’s bound in Fig. 21, they
come out to be dominated by the solutions obtained by the all-
constraint strategy. Fig. 22 also shows that solutions from the
all-constraint strategy have identical reliability index values to
their reported values. As discussed earlier and evident from
this paper, the closest constraint consideration may not pro-
duce accurate computation of the tradeoff frontier, particularly
in the case of multiple critical constraints.

Third, an interesting feature is that both multiple constraint
considerations (with and without redundant constraints checks)
produce identical fronts. This is expected, since the check
for redundant constraints is suggested in this paper to reduce
the computational overhead and not to compromise on the
accuracy of the obtained solutions. The redundant constraint
consideration strategy requires only 33% (on average 329.825
constraint calls for every 1000 calls) of the total constraint calls
compared to the all-constraint approach. This is a substantial
reduction in computation. To understand this aspect better, we
compute the distance of the MPP from the current solution
in the U-space for all 10 constraints and plot the distance
values in the obtained solutions in Fig. 23. In the figure,
constraints g1, g6, and g10 produce a distance value more than
10.0 and hence are not shown. A closer examination of the
plot reveals that only two (out of 10) constraints (g2 and g8)
are critical for most reliable solutions. Thus, a consideration
of redundant constraints in this problem becomes an efficient
strategy in reducing the computational effort yet producing
an almost identical level of accuracy. Moreover, since only
two constraints are dominant in this problem, the handling of
combined failure probability using Ditlevsen’s upper bound
is accurate (as discussed in Section II-D), thereby providing
confidence on the accuracy of the obtained frontier using “All
constraints” strategy in Fig. 21.

Next, we compare our obtained solutions with an existing
decoupled method (SORA). For three different reliability
indices, SORA solutions are marked with diamonds in Fig. 21.
Since SORA uses one constraint at a time, the algorithm finds
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Fig. 22. Closest constraint solutions corresponding to a smaller overall
reliability index than reported for the car side-impact problem.

solutions similar to those obtained by our closest constraint
approach and fails to find more accurate solutions.

Finally, we make an attempt to analyze the obtained solu-
tions by analyzing the changes in the variable values, as we
move from the minimum-weight solution to the maximum-
reliability solution. Fig. 24 shows how all seven variables
vary with each solution’s reliability coefficient (recall that a
small reliability index corresponds to a small weight solution).
We gather the following important information about these
solutions.

Interestingly, x5, x6, and x7 remain fixed for all reliable
solutions (over a wide range of reliability indices [0.5, 3.0]).
Variables x5 and x7 are fixed at their lower bounds and x6
gets fixed at its upper bound. In the context of the car side-
impact problem, to ensure an optimal weight with prefixed
reliability values, the thickness of door beam (x5) and roof rail
(x7) must be chosen as small as possible and the door beltline
reinforcement (x6) must be chosen as large as possible.

Furthermore, for solutions up to around a reliability index
of βr = 2 (corresponding to about 97.725% reliability), x1
and x3 must be kept fixed to their lower bounds and there-
after they must be increased for a larger reliability solution.
These variables represent the thickness of B-Pillar inner and
floor side inner, respectively. On the other hand, till about
this critical reliability requirement, x2 (thickness of B-Pillar
reinforcement) and x4 (thickness of cross members) must take
larger values with an increase in reliability. Around this critical
reliability index, they must be set to their upper limit values.

Thus, overall it seems that a good recipe to obtain a
minimum weight solution of the car side-impact problem
under uncertainty in its decision variables and parameters is
to make the reinforcements stronger while compromising the
weight by using thinner members of other components. The
figure seems to suggest that if no upper bound were used
for these variables, the optimal strategy would have been
to use a monotonically increased dimension of x2 and x4
with increased reliability requirement. Since upper limits were
imposed, when the variables reach their upper limits at high
reliability values, the optimal strategy must change. To still
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achieve a minimum weight solution with a large reliability,
focus has to be changed to variables x1 and x3. Thicker
members for B-Pillar inner (x1) and floor side inner (x3) must
be used. Such information about the nature of solutions and
their interactions with the desired reliability index are inter-
esting and provide valuable knowledge about the problem to a
design engineer. Such an analysis procedure for finding useful
information about a problem via a multiobjective optimization
task has been termed innovization task in a recent study [56].
Here, we show a higher level concept of the innovization task
in which salient relationships among reliable tradeoff solutions
are revealed. We strongly recommend pursuing such a task
to other engineering design tasks for the sake of unveiling
important problem knowledge.

VIII. SIMULATION RESULTS ON MULTIOBJECTIVE

RELIABILITY-BASED OPTIMIZATION PROBLEMS

Finally, we consider a couple of two-objective optimization
problems to illustrate the effect of considering reliability in
multiobjective optimization.

A. Test Problem

First, we solve a two-variable, two-objective test prob-
lem [49]

Minimize f1 = x
minimize f2 = 1+y

x
subject to y + 9x − 6 ≥ 0,

−y + 9x − 1 ≥ 0,
0.1 ≤ x ≤ 1, 0 ≤ y ≤ 5.

(23)

Both variables are uncertain: x = (x, y) with σ = 0.03.
We use a population of size 50 and run NSGA-II for 50
generations. Fig. 25 shows the deterministic front and three
reliable frontiers with βr equal to 1.28 (90%), 2.0 (97.725%),
and 3.0 (99.875%), respectively.

To demonstrate the principle of using a specified reliability
index for a multiobjective optimization problem, in this prob-
lem, we employ the closest constraint strategy alone. In the
next problem, we shall use the multiple constraint strategies.
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Fig. 24. Variable values changing with different reliability requirement.

A part of the deterministic optimal front lies on constraint
g1; however, the minimum f1 solution lies on constraint g2
as well, as shown in Fig. 26. Fig. 25 shows how the reliable
tradeoff frontier moves inside the feasible objective space as
βr increases. For βr > 0, both constraints govern the location
of the reliable tradeoff frontier. The theoretical change in the
minimum f1 solution is marked (“Boundary”) in Fig. 25.
The figure indicates that optimal solutions for small f2 are
more reliable and less vulnerable to change due to reliability
consideration than the small f1 solutions.

Fig. 26 supports this argument. The figure shows how the
solutions get inside the feasible region with an increase in βr .
To be safe from both constraints, the minimum f1 solution
must be moved equally away from both constraints, as shown
in the inset figure. The circle indicates that the case in which
the βr = 2 variation boundary touches both constraints. Thus,
in the presence of uncertainties in decision variables, a part
of the deterministic optimal frontier is sensitive and a new
frontier becomes an optimal choice. This paper demonstrates
that if the user is interested in finding an optimal frontier which
is insensitive to variable uncertainties with a particular relia-
bility index, NSGA-II with the handling of chance constraints
described in this paper remains as a viable approach for the
task. We reconsider the car side-impact problem and attempt
to explain the importance of this task better.

B. Car Side-Impact Problem Revisited

We use the car side-impact problem discussed earlier, but
now use an additional objective of minimizing the average
rib deflection, which is calculated by taking the average of
three deflections g5(x), g6(x), and g7(x). All 10 constraints
are considered. Fig. 27 shows the reliable front as a function
of βr using the closest constraint strategy.

Once again, with an increase in the reliability index, the
optimal frontier gets worse. We observe the following features
from the figure.

1) The figure indicates the rate at which the front de-
teriorates. In this problem, the rate of deterioration
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seems to be faster than linear, as was also discussed
in Section VII-B. Thus, an unnecessary large reliability
index corresponds to solutions that are far from being
optimum. Designers must carefully set a reliability index
to make a good compromise of optimality and reliability
of solutions.

2) An interesting fact about this problem is that the front
moves inside the feasible objective space parallel to
each other, indicating that the whole front is uniformly
sensitive to a change in the reliability index.

3) The near minimum-weight solutions are found to be
more sensitive to the chosen reliability index. The opti-
mal solutions obtained in Fig. 21 in Section VII-B are
also plotted in Fig. 27 (marked as “Weight versus beta”).
Interestingly, these solutions mark the boundary to the
obtained NSGA-II solutions of this section. The support
of the optimization results obtained in this section by
those obtained from a different optimization task on the
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Fig. 27. Tradeoff frontiers between f1 and f2 for different βr for the car
side-impact problem using the closest constraint strategy.
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same problem provides confidence as to the accuracy
of the obtained solutions and efficiency of the proposed
procedure.

Fig. 28 shows a comparison of tradeoff frontiers obtained
using the closest constraint strategy and the multiple con-
straints strategy (with all constraints considered) for three
different reliability values. In all three cases, the difference
occurs near the minimum-weight region of the tradeoff fron-
tiers. The minimum-weight bondaries for both closest and all-
constraint strategies are plotted on the figure using dashed lines
taken from Fig. 21. Recall from Fig. 21 that for minimum-
weight solutions, the computation of reliability index using
closest constraint strategy is different from that for multiple
constraints using the Ditlevsen’s bound. However, surprisingly,
for most other regions of the tradeoff frontier, both strategies
find almost identical solutions, except that for βr = 3, there
is slight visible difference between the obtained fronts. To
understand this behavior better, we compute the distance of
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MPP from the current solution for each obtained tradeoff
solution for βr = 2 and plot them in Fig. 29. Here, the
MPP points for constraint g6 fall outside the range of the
figure and are not shown. It is clear that only one constraint
(g8) is critical for all tradeoff solutions and lies at a dis-
tance of 2 (thereby corresponding to a reliability index of
2). Since only one constraint is critical, there is not much
of a difference between the closest constraint and multiple
constraint strategies observed in Fig. 28. However, near the
minimum-weight region, the MPP for constraint g2 is at a
similar distance to that of constraint g8, and the presence of
two critical constraints make the reliability computation using
closest constraint strategy erroneous, thereby causing a shift
in the obtained frontier near the minimum-weight region. It is
also important to report that the multiple constraint strategy
with the redundant constraint consideration finds a frontier
which is indistinguishable from the one shown in Fig. 28 with
all constraints and is not plotted in the figure for brevity.

IX. CONCLUSION

In this paper, we have reviewed the recent classical methods
for handling uncertainties in arriving at reliable solutions,
instead of deterministic optimal solutions, in an optimization
problem involving uncertainty. By reviewing these method-
ologies, we have identified at least three different problem
domains in which the proposed evolutionary reliability-based
optimization approaches have an edge over their classical
counterparts. The problems have complexities—multimodality
and multiobjectiveness—which are difficult to handle using a
classical point-by-point approach. Here, we have developed a
couple of evolutionary optimization-based approaches for han-
dling probabilistic constraints under uncertainties in decision
variables and/or problem parameters to solve the problems to
satisfaction. The suggested methodology has considered both
accuracy of obtained solutions and computational overhead
by using a system reliability approach and by identifying
redundant constraints. On a number of test problems and
an automobile design problem, the proposed procedures have

shown their efficacy in quickly (about 67% savings in con-
straint computations) finding the desired reliable solution(s).
In the car side-impact design problem, a number of interesting
properties about the reliable solutions have been revealed. The
proposed evolutionary methods are compared with a state-
of-the-art classical methodology, and the niche of the former
in single and multiobjective reliability-based optimization has
been clearly demonstrated.

We have also compared two reliability computation
strategies—the closest constraint and all-constraint strategies.
The simulation results clearly show that when a single con-
straint determines the location of the reliable optimum, both
methods perform identically. However, if multiple critical
constraints exist near the optimum, the closest constraint strat-
egy overestimates the optimum, but the use of all-constraint
strategy is recommended.

This paper should encourage researchers and practitioners
in the area of classical reliability-based design optimization
to pay more attention to EA-based search and optimization
procedures and vice versa, a process which may lead to
the development of more such hybrid evolutionary-classical
RBDO approaches in the coming years.

APPENDIX

DESCRIPTION OF THE CAR SIDE-IMPACT PROBLEM

Seven decision variables (x1 to x7) and four stochastic
parameters x8 to x11 are described as follows:

x1: Thickness of B-Pillar inner (0.03);
x2: Thickness of B-Pillar reinforcement (0.03);
x3: Thickness of floor side inner (0.03);
x4: Thickness of cross members (0.03);
x5: Thickness of door beam (0.05);
x6: Thickness of door beltline reinforcement (0.03);
x7: Thickness of roof rail (0.03);
x8: Material of B-Pillar inner (0.006);
x9: Material of floor side inner (0.006);

x10: Barrier height (10);
x11: Barrier hitting position (10).

The quantity in bracket shows the standard deviation of sto-
chastic variation of each variables. The optimization problem
formulation is as follows:

Min.
(x1,...,x7)

f (x) = Weight

s.t. g1(x) ≡ Abdomen load ≤ 1 kN;
g2(x) ≡ V ∗ Cu ≤ 0.32 m/s;
g3(x) ≡ V ∗ Cm ≤ 0.32 m/s;
g4(x) ≡ V ∗ Cl ≤ 0.32 m/s;
g5(x) ≡ upper rib deflection ≤ 32 mm;
g6(x) ≡ middle rib deflection ≤ 32 mm;
g7(x) ≡ lower rib deflection ≤ 32 mm;
g8(x) ≡ Pubic force ≤ 4 kN;
g9(x) ≡ Vel. of V-Pillar at mid. pt. ≤ 9.9 mm/ms;
g10(x) ≡ Front door vel. at V-Pillar ≤ 15.7 mm/ms;
0.5 ≤ x1 ≤ 1.5, 0.45 ≤ x2 ≤ 1.35;
0.5 ≤ x3 ≤ 1.5, 0.5 ≤ x4 ≤ 1.5;
0.875 ≤ x5 ≤ 2.625, 0.4 ≤ x6 ≤ 1.2;
0.4 ≤ x7 ≤ 1.2.

(24)
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The functional forms of the objective function and constraints
are given below:

f (x) = 1.98 + 4.9x1 + 6.67x2 + 6.98x3

+ 4.01x4 + 1.78x5 + 0.00001x6

+ 2.73x7, (25)

g1(x) = 1.16 − 0.3717x2x4

− 0.00931x2x10 − 0.484x3x9

+ 0.01343x6x10, (26)

g2(x) = 0.261 − 0.0159x1x2

− 0.188x1x8 − 0.019x2x7

+ 0.0144x3x5 + 0.87570.001x5x10

+ 0.08045x6x9 + 0.00139x8x11

+ 0.00001575x10x11, (27)

g3(x) = 0.214 + 0.00817x5

− 0.131x1x8 − 0.0704x1x9

+ 0.03099x2x6 − 0.018x2x7

+ 0.0208x3x8 + 0.121x3x9

− 0.00364x5x6 + 0.0007715x5x10

− 0.0005354x6x10 + 0.00121x8x11

+ 0.00184x9x10 − 0.018x2x2, (28)

g4(x) = 0.74 − 0.61x2 − 0.163x3x8

+ 0.001232x3x10 − 0.166x7x9

+ 0.227x2x2, (29)

g5(x) = 28.98 + 3.818x3

− 4.2x1x2 + 0.0207x5x10

+ 6.63x6x9 − 7.77x7x8

+ 0.32x9x10, (30)

g6(x) = 33.86 + 2.95x3

+ 0.1792x10 − 5.057x1x2

− 11x2x8 − 0.0215x5x10

− 9.98x7x8 + 22x8x9, (31)

g7(x) = 46.36 − 9.9x2 − 12.9x1x8

+ 0.1107x3x10, (32)

g8(x) = 4.72 − 0.5x4 − 0.19x2x3

− 0.0122x4x10 + 0.009325x6x10

+ 0.000191x11x11, (33)

g9(x) = 10.58 − 0.674x1x2

− 1.95x2x8 + 0.02054x3x10

− 0.0198x4x10 + 0.028x6x10, (34)

g10(x) = 16.45 − 0.489x3x7

− 0.843x5x6 + 0.0432x9x10

− 0.0556x9x11 − 0.000786x11x11. (35)
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