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Log-Concavity Property of the Error Probability
With Application to Local Bounds for

Wireless Communications
Andrea Conti, Member, IEEE, Dmitry Panchenko, Sergiy Sidenko, and Velio Tralli, Senior Member, IEEE

Abstract—A clear understanding of the behavior of error prob-
ability (EP) as a function of signal-to-noise ratio (SNR) and other
system parameters is fundamental for assessing the design of
digital wireless communication systems. We propose an analytical
framework based on the log-concavity property of the EP which
we prove for a wide family of multidimensional modulation for-
mats in the presence of Gaussian disturbances and fading. Based
on this property, we construct a class of local bounds for the EP
that improve known generic bounds in a given region of the SNR
and are invertible, as well as easily tractable for further analysis.
This concept is motivated by the fact that communication systems
often operate with performance in a certain region of interest
(ROI) and, thus, it may be advantageous to have tighter bounds
within this region instead of generic bounds valid for all SNRs.
We present a possible application of these local bounds, but their
relevance is beyond the example made in this paper.

Index Terms—Error statistics, fading channels, local bounds,
log-concavity, performance evaluation, probability.

I. INTRODUCTION

T HE performance evaluation for digital wireless commu-
nication systems in terms of bit error probability (BEP)

and symbol error probability (SEP) requires a careful character-
ization of disturbances, such as noise and interference, as well
as of the wireless channel impairments due to small-scale and
large-scale fading (see, e.g., [1]–[3]). This can result in cumber-
some expressions for the error probability (EP) which require
numerical evaluation.1

At a first thought, this fact does not appear a relevant issue
from the performance study point of view due to the increasing
trend of computational power of computers. On the other hand,
these cumbersome solutions do not provide a clear under-
standing of the performance sensitivity to system parameters,
which is of great importance for system design, as well as they
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1Hereafter, when EP is indicated without specification of BEP and SEP then
the concept is valid for both BEP and SEP.

are often too complicated for further evaluation or inversion,
which is as example needed in order to obtain thresholds in
adaptive communication systems (see, e.g., [4]–[6]). Moreover,
it has to be emphasized that simple parametric approximations
and bounds on the performance at lower layers, such as physical
layer, can avoid long bit-level simulations in upper level proto-
cols network simulators, provided that they are able to capture
the main aspects affecting the performance at lower levels.

Mainly, but not only, for these reasons the derivation of
approximations and bounds on the exact EP is still of interest
in the communication theory community. An example is given
by -ary quadrature amplitude modulation ( -QAM) that
is adopted in several standards for wireless communication
systems, due to its bandwidth efficiency, and is largely studied
in conjunction with adaptive techniques which change mod-
ulation parameters to maximize transmission rate for a given
target BEP in wireless channels. In fact, although early work
on -QAM dates back to the early 1960s [7]–[10], the eval-
uation of BEP for arbitrary is still of current interest.2 To
briefly summarize some relevant results for additive white
Gaussian noise (AWGN) channel, we recall that: parameterized
exponential approximations fitting simulative BEP are adopted
in [12]–[15]; approximations based on signal-space concepts
were given in [16]; an exact method to derive the SEP was
proposed in [17]; a recursive algorithm exploiting the relation-
ship among different constellation sizes was developed in [18];
and exact expression of the BEP for general was derived
in [19]. Comparisons among approximations, bounds, and the
exact solution in fading channels (with small-scale fading and
large-scale fading, i.e., shadowing) are given in [5], where it is
shown that, for low and medium values of the signal-to-noise
ratio (SNR), approximations depart from exact solutions as the
constellation size increases. Moreover, small differences be-
tween exact solution and approximation in AWGN channel can
become relevant when the instantaneous BEP is averaged over
small-scale fading. Similarly, in systems with multichannel
reception, known approximations depart from the exact EP as
the diversity order increases [20], [21].

It is well known that bounds carry more information than ap-
proximations and also enable system design based on the worst
or best case. Quite often bounds are tight to the exact EP only
for high SNRs (namely, asymptotic bounds). Here we are inter-
ested in deriving simple invertible bounds tight in a given region
of interest (ROI) for the EP (e.g., for the BEP of uncoded sys-
tems typical ROIs are or ).

2For a brief history of� -QAM, see [11].
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In this paper, we define the concept of locally valid bounds
(in the following called local bounds) that are tight upper and
lower bounds on the EP valid only within a given region of the
EP and not for all SNRs. This concept is motivated by the fact
that there is often a ROI for the performance of the system under
consideration and it is preferable to have tight bounds in this
region instead of bounds valid for all SNRs which are far from
the exact solution within the ROI.

The behavior of the EP is important for the definition of local
bounds. In fact, the proposed framework is based on its log-con-
cavity property. We recall that a function is log-concave
if is concave.3 In most cases, the EP is reported on
log-scale and investigated as a function of the signal-to-total dis-
turbance ratio in decibel (dB). It is commonly recognized that
on this scale the function is concave in several cases of interest.
Even though it is generally assumed, as the authors often ac-
knowledge, there is not known formal proof of the log-concavity
of the EP (examples of related issues are: convexity properties in
binary detection problems that were analyzed in [22], and some
results for the asymptotic behavior of bounds that were investi-
gated in [23]).

In this paper, we introduce the problem of log-concavity for
general multidimensional decision regions and we prove this
property for a class of signals with constellation on a multidi-
mensional regular grid in the presence of Gaussian distributed
disturbances, such as thermal noise and interference. In fact,
there are several wireless systems and situations in which
the interference can be modeled as Gaussian distributed (see,
e.g., [24]–[29]). After having proved the log-concavity in both
AWGN and fading plus AWGN channels for single- and mul-
tiple-channel reception schemes, as examples of application, it
will be shown how to take advantage of this property in order
to simplify the derivation of bounds valid for all SNRs, as well
as to define local upper bound (LUB) and local lower bound
(LLB) valid in a given ROI. Moreover, the form of the local
bounds and the fact that they are easily invertible also enables
the derivation of local bounds for other relevant performance
figures such as the EP-based outage probability, which is the
probability that the EP averaged over small-scale fading exceed
a given tolerable target value [30], also exploited for the eval-
uation of the mean spectral efficiency for adaptive modulation
techniques [6]. It is finally emphasized that the log-concavity
property for the EP can have many other applications, thus its
relevance is beyond the applications illustrated in this paper.

The rest of this paper is organized as follows. In Section II,
the log-concavity property of the EP is proved in AWGN and in
AWGN plus fading for systems employing single- and multiple-
channel reception, and in Section III, it is applied to define a new
class of bounds and local bounds, with a discussion on possible
applications. Finally, our conclusions are reported in Section IV.

II. LOG-CONCAVITY PROPERTY FOR THE ERROR PROBABILITY

In this section, the log-concavity property for the EP is dis-
cussed first for transmission in AWGN channel by highlighting
the mathematical structure of the problem in the different ap-
plications of digital communications. Since we are interested in

3In this paper, notation log stands for natural logarithm.

obtaining general results, we base our framework on the origin
of detection errors in the presence of Gaussian disturbances.
Within this framework, we will then prove the log-concavity
property for the class of signals with constellation on a mul-
tidimensional regular grid (e.g., in the two-dimensional case,
this class includes the well-known -QAM constellation). Fi-
nally, we will address the log-concavity property in systems
with AWGN plus fading channels.

Consider a set of constellation points on a -dimen-
sional signal space, i.e., . Let
us consider an arbitrary probability distribution on the set and
let denote the probability of a point for
(we arbitrarily order points in without loss in generality). For
each , let us define its neighborhood

(1)

as the set of points closest to in . If we transmit a point
in an AWGN channel, then we receive where ,
and has a standard Gaussian distribution on with
mean zero and identity covariance matrix.4 We classify each
point according to a region that it belongs to, which means
that we make an error if or

(2)

Through the change of variable5 , the total probability
of making an error results in6

(3)

If we denote by a standard Gaussian measure on , then the
distribution of vector is a product measure , and therefore

(4)

where we denoted by the region translated by
, and by the region .
The function is the error probability in the detection

of digital signals, either coded or uncoded, as a function of SNR
(in logarithmic scale). Proving the log-concavity property of

this function is a challenging task. In fact, the log-concavity of
single terms in the linear combination of (4) depends on the
specific structure of regions and and in any case a possible
linear combination of log-concave functions is not necessarily
log-concave.

Only in few special cases, as example when all the regions
have the same measure and a special symmetry around the

axis intersecting points and , these issues may be over-
come with the help of the Prekopa–Leindler theorem [31], [32],
which states that the function , where

4Note that � is inversely proportional to the SNR.
5Which is strictly related to the transformation of the SNR from the linear to

the decibel scale.
6Notation ��� stands for probability of event �.
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Fig. 1. Decision regions � for (a) Example 1 and (b) Example 2 of Section II,
respectively.

, is log-concave in if is log-con-
cave in and is a convex subset of .

Two examples, one for uncoded system and the other for
coded system, will illustrate these simple cases below. In
all the other cases, an inspection of log-concavity property
should be based on the specific properties of the signal set .
In Section II-A, we will provide the proof of log-concavity
property for the specific case of signals with constellation on
a multidimensional regular grid, which covers all the relevant
applications based on -QAM signaling.

Example 1 ( -PSK): Let us consider a two-dimensional
signal set where points are regularly placed on a circle.
The angular separation between closest points is [see
Fig. 1(a)]. This is the signal set used by -phase shift keying
(PSK) signaling. The regions are circular sectors, have
the same form and the same measure, and are convex. The
same holds for regions , which are concave instead. If we
split each region in two parts, and , using the line
including the points and (i.e., point in the figure),
all these subregions have the same Gaussian measure and are
convex. Since , the log-concavity of a
single term has to be checked. The two-dimensional Gaussian
measure can be evaluated by using polar coordinates7 in as

(5)

where describes the boundary of
region . Since the function is log-concave for

, the Prekopa–Leindler
theorem8 assures that is log-concave with respect to .

Example 2 (Parity Check Linear Block Codes and BPSK):
Let us consider the -dimensional signal set repre-
senting signals obtained by combining a simple parity-check

binary block code and binary antipodal modulation.
All the points are placed on (half of) the vertices of a

-dimensional cube and are equidistant from the origin.
Each point has closest points or neighbors and

7The origin is the point� and � is the angle with respect to the line orthogonal
to � boundary.

8Here, the domain is restricted to � ������ ����.

each region is bounded by faces in the -dimen-
sional space [see Fig. 1(b)]. All regions have the same form
and the same measure, and are convex. The same holds for re-
gions , which are concave instead. Let us now simplify the ex-
ample to for better understanding. We have four equidis-
tant points placed on four vertices of a cube. Regions and
are bounded by planes intersecting in . If we split
each region into three parts, , , and , using three
half-planes generated by the line connecting the points
and , all these subregions have the same Gaussian measure
and are convex. Since , the log-con-
cavity of a single term has to be checked. By using cylindrical
coordinates9 in , the three-dimensional Gaussian measure can
be evaluated as

(6)
where with de-
scribes the boundary of region , ,
and is the Gaussian -function. Since the func-
tion is log-concave10 for

, the Prekopa–Leindler
theorem assures that is log-concave with respect to .

A. Log-Concavity Property: Signals With Constellation
on a Multidimensional Grid in AWGN

Given , consider a set of points on

for all (7)

that form a regular finite grid on with each coordinate taking
possible values .11 Since is a regular grid, all

sets take a particularly simple form, namely, each such set is
equal to one of the sets given by

for (8)

up to a permutation of coordinates. The product measure is
invariant under permutation of coordinates, thus we can identify
each set with one of the sets in (8). If is the sum of prob-
abilities of points contained in the regions of type , then we
obtain

(9)

We note that making a change of variables
it suffices to consider the case of . Let us now define

(10a)

9Here, the origin is the point � , � is the coordinate along the line orthogonal
to � boundary, and � is the angle on the plane orthogonal to �-axis.

10Note that 	�
�
�� is log-concave, whereas �� � 
 ����� is convex.

11Without loss of generality � can be translated.
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(10b)

This leads to the following representation:

(11)

Since , we obtain

(12)

where

(13)

Remark: Notice that all derivatives of with respect to are
nonnegative and .

We now prove the log-concavity of with respect to
starting with two lemmas. The main theorem with proof will

follow.

Lemma 1: For any and with given by (13),
the following inequality holds:

(14)
Lemma 2: If , for any and with given

by (13), the following inequality holds:

(15)

We will prove these lemmas in the Appendix and now show how
Lemma 1 implies main Theorem 1.

Theorem 1: For any , the function is
log-concave.

Proof (of Theorem 1): Let . A simple
calculation gives

(16)

The right-hand side is negative if and only if

(17)

where . Since

and by definition of giving

we can rewrite (17) as

or, equivalently

(18)

It is immediate to see that if , then the inequality holds.
For , the proof follows from

(19)

Here, the left-hand side inequality can be derived from

(20)

which is verified12 for , and the right-hand side inequality
follows from Lemma 1.

Remark: The instantaneous BEP expression for coherent
single reception -QAM systems with arbitrary as a func-
tion of the instantaneous symbol SNR is given by

(21)

where denotes the integer part of [19]. One might con-
sider to try to prove log-concavity directly using this explicit
expression. However, this seems to be a difficult task since sum
of log-concave functions is not log-concave in general and the
BEP is a linear combination of positive and negative terms con-
taining the complementary error function,13 , making the
analysis of (21) not at all straightforward.

B. Log-Concavity Property: Signals in AWGN Plus Fading

In the above proof of log-concavity for the function
the size of the grid was fixed. When we transmit

a symbol related to the constellation point with fixed in
AWGN plus fading channel, the receiver observes
where is a random variable (RV) representing the channel
gain due to fading. This is equivalent to the observation of

when the constellation has a random scaling parameter

12Both sides of (20) tend to � as � � �, therefore, it is enough and simple
to show that for any � � �

�

��

�

� � �
� � �

��
� �� �

13The complementary error function is in well-known relationship with
Gaussian �-function, i.e., ���� � ����� ��	
 ��

�
� .
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with the same statistics of the fading gain .14 Thus, we show
now that when the constellation is scaled with a real random
parameter , the average of over is still log-concave
in .

Let us now make the dependence of on explicit, through
the change of variable , thus . We
obtain the function , which is log-concave as a
function of both variables if is log-concave with
respect to . Hence, what follows is valid for all signal sets
with log-concave instantaneous EP function of . To obtain the
EP averaged over fading we have to evaluate the expected value
of with respect to the RV .

Theorem 2: If has a log-concave probability den-
sity function (pdf), then the average of over , that is

, is also log-concave.
Proof (of Theorem 2): Suppose that has a distribution

with log-concave density, that is density of the form for
some convex function . Then15

is the average of over . Since is log-concave
in both variables , Prekopa–Leindler inequality [31], [32]
implies that is log-concave.

Theorem 2 shows that if the distribution of has log-concave
density, then the average over is log-concave. This applies to
several cases of interest (e.g., single- and multiple-channel re-
ception in Rayleigh, Nakagami- , and log-normal fading) thus
leading to log-concave average EP. This can be verified by con-
sidering that if the pdf of is given, then the pdf of

results

(22)

For Nakagami- fading (having ) the pdf of is
given by16

(23)

from which by (22), we obtain

(24)

that is log-concave in since is concave and
. For log-normal fading (i.e., in decibels is

a zero-mean Gaussian RV with variance ) the pdf of is
given by

(25)

14For example, this represents the case of flat fading channel and coherent
reception.

15We omit here the dependence on set � .
16It is well known that Rayleigh fading is included in Nakagami-� when

� � �.

from which by (22), we obtain

(26)

that is log-concave in since is positive. For maximal ratio
combining of -branches independent identically distributed
(i.i.d.) Rayleigh fading, the pdf of at the combiner output
is given by

(27)

from which by (22), we obtain

(28)

that is log-concave in since is positive and is
concave.

It is also important to remark that the log-concavity property
for the EP proved above can have several applications, thus its
relevance is beyond what is illustrated in Section III, where an
application example for bounds and local bounds is provided.

III. BOUNDS AND LOCAL BOUNDS ON LOG-CONCAVE

ERROR PROBABILITY

In this section, it is shown how to take advantage of the
log-concavity property for the derivation of bounds and local
bounds, which are analytically simple and invertible for further
analysis. An example of application will be briefly discussed,
addressing local bounds of relevant performance metrics for
adaptive -QAM systems. However, the application of the
log-concavity is not limited to these cases (e.g., bounds for
multidimensional modulations17 as well as for -PSK can also
be derived). The main idea to be exploited is that, due to the
log-concave behavior proved in Section II, the EP plotted in
logarithmic scale versus the signal-to-total-disturbance ratio
in decibels is a concave function (see, e.g., Fig. 2). After having
identified the ROI, where the system typically operates, we
aim to easily obtain tighter analytically tractable and invertible
upper and lower bounds valid in the ROI. The ROI is defined
as the range of the EP which is of interest in the
specific application.

With the purpose to make a concrete example, in the fol-
lowing, we consider the case of AWGN plus fading channel
in which the performance is defined in terms of mean EP, the
EP hereafter, averaged over small-scale fading as a function of
the mean , that is . Since the EP is monotonically decreasing
in , the ROI corresponds to the SNR range , with

and .
Let us first consider bounds valid for all SNRs, that is for a

ROI corresponding to SNR in the range . This ROI in-
cludes asymptotic behavior of EP. As an example, it is worth-
while to recall that in several cases, such as in single- and mul-
tiple-channel reception fading channel with Rayleigh or Nak-
agami- pdf, the system achieves a diversity if the asymp-
totic error probability is log-linear. This means that

17See, e.g., [33] and [34]. The benefit provided by multidimensional constel-
lations has been widely known in the design of coded modulation [35], [36].
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Fig. 2. General behavior for the EP in log-scale versus � in decibels: concave
exact solution, upper and lower bounds (UB, LB) as well as local upper and
lower bounds (LUB, LLB) in the ROI of interest are reported.

where is a constant depending on the asymp-
totic behavior. In other words, a system with diversity is de-
scribed by a curve of error probability with a slope approaching

(decibel per decade) for large .
Thus, we focus our attention on systems with log-linear

asymptotical mean EP. For these systems, the log-concavity
of the mean EP immediately implies that its asymptotic be-
havior provides an upper bound in the ROI . Let us
consider the usual EP and the asymptote , both in
logarithmic scale as a function of (in decibels). Note that on
this scale the EP is concave whereas is linear. It is clear
that , since the EP is less than or equal to .
Furthermore, since and are both decreasing, and the
two curves approach at , then . Therefore,
an upper bound to can be easily defined as

(29)

The UB on the inverse EP, that is on the value of required to
reach a target EP , is thus given by

(30)

To define local bounds, let us now consider a generic ROI
with . By shifting the

asymptotic UB to touch the exact solution at extremes of the
ROI, we define local bounds tighter than previously known
bounds, easily invertible, and thus enabling further analysis. At
the lower end of the ROI, that is for a target EP ,
we can define (in decibels) as the difference between
the required for the asymptotic upper bound and the exact
solution

(31)

Then, in linear scale

(32)

We now define the LUB in the ROI as

(33)

which is an invertible upper bound within the ROI. In fact, for
a target EP in the ROI, the LUB on the required becomes

(34)

Thus, to define the LUB one needs to know the exact required
SNR at one point, namely, at the lower end of the ROI.

Similarly, one can define the invertible LLB, which is a lower
bound within the ROI, by shifting the UB of referred to

. This needs only the knowledge of the required SNR for
the EP at the upper end of the ROI . The LLB is given by

(35)

The LLB on the required results in

(36)

A qualitative example of bounds and local bounds within the
ROI is reported in Fig. 2. At this point, it is important to em-
phasize that, while the LUB is, within the ROI, a tighter bound
than the asymptotic UB and still invertible, the LLB obtained by
translation of the UB can be worse compared to known LB, but
on the other hand, the LLB is easily invertible enabling further
analysis.18

Remark: The log-concavity property opens the way for the
definition of other classes of bounds, such as based on tangent
in the extremes of the ROI or based on saddle point (steepest de-
scent method). Local bounds here proposed have the advantage
of being simple and analytically tractable for further analysis.

We now discuss a possible application of local bounds on di-
rect and inverse BEP to the evaluation of relevant performance
metrics for adaptive -QAM systems. Let us consider as an ex-
ample -QAM with coherent detection and -branches MRC,
whose exact BEP averaged over i.i.d. Rayleigh fading is given
in [6] and its asymptotic upper bound is in the form

where depends only on the constellation size and the di-
versity order. From , one can obtain the upper bound
on the inverse BEP, which is the bound on the SNR required to
achieve a target BEP equal to , and from this invert-
ible LUB and LLB through (34) and (36), respectively. This en-
ables the derivation of LLB and LUB on the error outage (EO),
outage probability based on the EP [30], [39], which is an appro-
priate QoS measure for digital mobile radio when small-scale
fading is superimposed on shadowing (typically modeled with

18Asymptotic expressions for the EP in the form of ���� can be found using
“systematic” approaches when exact EP expressions are not available or asymp-
totic expressions cannot be easily deduced from well-know (but often compli-
cated) expressions (see, e.g., [37] and [38]).
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log-normal distribution [1], [40]).19 In systems with slow adap-
tive modulation,20 for a given target BEP , the spectral effi-
ciency (SE) is a discrete RV with distribution that depends on
the SNR thresholds and on how they are computed (i.e., on the
BEP expression of the given system configuration). Let and

be the th element from the set of possible constellation
sizes and corresponding SNR threshold (in decibels), respec-
tively, to achieve a target BEP. Then, the mean SE results in

(37)

where and is the cumulative distribu-
tion function (CDF) of . By substituting in
(37) the required SNRs, with LUB, , we obtain
an LLB on the mean SE allowing a conservative design of the
communication system with different constellation-sizes and di-
versity orders.

IV. CONCLUSION

In this work, we proved an important property of the error
probability as a function of SNR in decibels for AWGN channel
as well as AWGN plus fading channels with single- and mul-
tiple-channel reception. In particular, we proved that the error
probability is log-concave for a wide class of multidimensional
modulation formats which include -QAM for two dimen-
sions. This property can have several applications. As an ex-
ample, we exploited log-concavity to derive upper and lower
bounds and to define local bounds that are tight in a given re-
gion of interest for the error probability. We also discussed an
application of local bounds highlighting the possibility of easy
computation for the inverse of EP formulas without loosing sig-
nificant accuracy in the evaluation of figures of merit interesting
in wireless communications. However, we believe that the rele-
vance of log-concavity property goes beyond the example pro-
vided in this paper and may be exploited for other different pur-
poses.

APPENDIX

Proof of Lemma 1: Inequality (14) holds for , hence,
from now on, we will assume that . First, let us prove
this inequality in the one-dimensional case . In this case

Therefore, we need to prove that or

19The EO becomes the bit EO (BEO) or the symbol EO (SEO) when respec-
tively related to the BEP or the SEP.

20What follows is also valid for fast adaptive modulation for which instanta-
neous EP and SNR are considered instead of those averaged over small-scale
fading [4], [6].

which results in the exact equality. Let us now consider the case
. We write the factor in the second term in (14) as

and let us think of the left-hand side of (14) as a homogeneous
quadratic form in of type

where is given by

(38)

Lemma 1 then follows from Lemma 2.

Proof of Lemma 2: Let us start by recalling the following
well-known identities involving binomial coefficients:

(39)

(40)

(41)

As for notation, if is a linear combination of , we
denote with the coefficient of in . By definition of

in (39) to finish the proof, it is enough to show that for
any

(42)

Since

(43)

we have

(44)

and

(45)

By plugging (43), (44), and (46) into (42), we obtain
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(50)

The derivative of the right-hand side with respect to is equal
to

which is negative if . Therefore, the right-hand side
attains its maximum for or . The difference for

and is

and, thus, the maximum is attained at and we need to
prove that

This is equivalent to

(46)

Using the fact that

and (39), the left-hand side of(46) can be rewritten as

(47)

Similarly, the right-hand side of (46) is equal to

Using that by (39) and (40)

(48)

after some mathematical manipulations, we obtain

(49)

Finally, comparing expansions for the left-hand side and the
right-hand side, that is (47) and (49), respectively, (46) becomes

Combining all the coefficients for each power of , the left-hand
side can be written as where

Notice that the sign of is determined by . Thus,
we can define such that if and if .
Since , this gives

It remains to show that . We observe that results
in (50) shown at the top of the page. Then, using (39)–(41), we
obtain

which is positive for .
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