
MIT Open Access Articles

Prediction of Chronic Obstructive Pulmonary Disease 
(COPD) in Asthma Patients Using Electronic Medical Records

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Himes, Blanca E et al. “Prediction of Chronic Obstructive Pulmonary Disease (COPD) 
in Asthma Patients Using Electronic Medical Records.” Journal of the American Medical 
Informatics Association 16.3 (2009): 371-379. © 2009 by the American Medical Informatics 
Association

As Published: http://dx.doi.org/10.1197/jamia.M2846

Publisher: American Medical Informatics Association

Persistent URL: http://hdl.handle.net/1721.1/52454

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/52454


doi: 10.1197/jamia.M2846
 2009 16: 371-379JAMIA

 
Blanca E Himes, Yi Dai, Isaac S Kohane, et al.
 
Electronic Medical Records
Disease (COPD) in Asthma Patients Using 
Prediction of Chronic Obstructive Pulmonary

 http://jamia.bmj.com/content/16/3/371.full.html
Updated information and services can be found at: 

These include:

References
 http://jamia.bmj.com/content/16/3/371.full.html#ref-list-1

This article cites 31 articles, 10 of which can be accessed free at:

service
Email alerting

box at the top right corner of the online article.
Receive free email alerts when new articles cite this article. Sign up in the

Notes

 http://jamia.bmj.com/cgi/reprintform
To order reprints of this article go to: 

 http://jamia.bmj.com/subscriptions
 go to: Journal of the American Medical Informatics AssociationTo subscribe to 

 group.bmj.com on February 3, 2010 - Published by jamia.bmj.comDownloaded from 

http://jamia.bmj.com/content/16/3/371.full.html
http://jamia.bmj.com/content/16/3/371.full.html#ref-list-1
http://jamia.bmj.com/cgi/reprintform
http://jamia.bmj.com/subscriptions
http://jamia.bmj.com/
http://group.bmj.com/


Journal of the American Medical Informatics Association Volume 16 Number 3 May / June 2009 371

 group.bmj.com on February 3, 2010 - Published by jamia.bmj.comDownloaded from 
Research Paper �

Prediction of Chronic Obstructive Pulmonary Disease (COPD) in
Asthma Patients Using Electronic Medical Records

BLANCA E. HIMES, PHD, YI DAI, ISAAC S. KOHANE, MD, PHD, SCOTT T. WEISS, MD, MS,
MARCO F. RAMONI, PHD

A b s t r a c t Objective: Identify clinical factors that modulate the risk of progression to COPD among asthma
patients using data extracted from electronic medical records.

Design: Demographic information and comorbidities from adult asthma patients who were observed for at least 5
years with initial observation dates between 1988 and 1998, were extracted from electronic medical records of the
Partners Healthcare System using tools of the National Center for Biomedical Computing “Informatics for
Integrating Biology to the Bedside” (i2b2).

Measurements: A predictive model of COPD was constructed from a set of 9,349 patients (843 cases, 8,506
controls) using Bayesian networks. The model’s predictive accuracy was tested using it to predict COPD in a
future independent set of asthma patients (992 patients; 46 cases, 946 controls), who had initial observation dates
between 1999 and 2002.

Results: A Bayesian network model composed of age, sex, race, smoking history, and 8 comorbidity variables is
able to predict COPD in the independent set of patients with an accuracy of 83.3%, computed as the area under
the Receiver Operating Characteristic curve (AUROC).

Conclusions: Our results demonstrate that data extracted from electronic medical records can be used to create
predictive models. With improvements in data extraction and inclusion of more variables, such models may prove
to be clinically useful.
� J Am Med Inform Assoc. 2009;16:371–379. DOI 10.1197/jamia.M2846.
Introduction
Electronic medical records (EMRs) have been widely her-
alded for their potential to improve the quality of patient
care.1 Less obvious is the use of such records for clinical
research, in particular, to develop predictive tools with an
eye to the future of personalized medicine. The Partners
Healthcare Research Patient Data Registry (RPDR), which
contains information on over three million patients that have
been treated in Partners-affiliated hospitals, is one of the
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larger collections of electronic medical records from aca-
demic medical centers. The RPDR has been used for a
multitude of studies from quality improvement to drug
efficacy and genomic discovery.2 The computational infra-
structure developed by the National Center for Biomedical
Computing “Informatics for Integrating Biology to the Bed-
side” (i2b2) has been used to develop an “asthma data
mart”, which was refined and analyzed using the i2b2
workbench.3–5 The asthma data mart contains codified an-
notations of patient records (e.g., billing codes) that have
been augmented with additional concepts/phenotypes ex-
tracted from the textual notes of medical records using
Natural Language processing (NLP) techniques.6 The au-
thors tested whether an effective clinical predictor could be
designed using data extracted from the asthma data mart’s
hospital admission and emergency room visit EMRs.

Chronic obstructive pulmonary disease (COPD), a slowly
progressive disease characterized by increased nonrevers-
ible airflow limitation, is a leading cause of morbidity and
mortality worldwide.7 A heterogeneous disease process,
COPD differs among patients in its development, pathology,
and comorbidity, and is traditionally divided into two types:
chronic bronchitis and emphysema.8 One of the risk factors
for COPD is asthma.7 Asthma is a complex respiratory
disease characterized by airway hyperresponsiveness and
reversible airflow limitation that often develops early in life.
Patients with asthma seem to be at an increased risk to

develop COPD, which is a significant source of morbidity
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and mortality among asthmatics.8–10 Smoking is the known
major risk factor for COPD yet only 25% of smokers get
COPD.11 According to the “Dutch Hypothesis” for the
development of COPD it is the inherited susceptibility to
increased airway responsiveness and allergy in asthmatics
that leads to the development of COPD in some subjects.12,13

However, particularly in the clinical setting, a thorough
understanding of which asthma patients go on to develop
COPD has not been achieved. The ability to predict which
asthma patients develop COPD would be useful to under-
stand the pathology underlying the development of this
disease and to alter the clinical course of these patients.
Traditional studies that look into the development of COPD
are longitudinal epidemiological studies that focus on ini-
tially normal subjects and use a wide variety of clinical
measures, including lung function tests, and medical and
smoking history to follow and evaluate disease onset rather
than progression.14 These studies typically include a small
numbers of milder asthmatics and have not given a clear
picture of the relationship of asthma to COPD.

In this work, we created a predictive model of COPD in
asthma patients using demographic and comorbidity data
extracted from the i2b2 asthma data mart. The predictive

F i g u r e 1. Procedure outline. (A) Clinical data was extracted
(B) Patients were divided into two groups, network and indep
was created using Bayesian networks with data from the netw

was evaluated using receiver operating characteristic (ROC) curves w
model was created using Bayesian networks, multivariate
models that are able to account for simultaneous associa-
tions and interactions among variables to make predictions
of COPD. Bayesian networks have been successfully used in
a wide variety of medical applications, from public health
surveillance systems,15 to the classification of brain tumors
based on radiological data16 and ovarian tumors based on
the integration of clinical and literature data.17 Mortality is a
favored outcome to predict with Bayesian networks as
illustrated by studies predicting risk of death among cardiac
surgery patients18 and sickle cell anemia patients.19 Addi-
tionally, Bayesian networks have been used to predict
clinical phenotypes including the diagnosis of acute appen-
dicitis,20 the assessment of ballistic penetrating trauma,21

and the identification of patients at risk for asthma exacer-
bations.22 The authors describe here the extension of the
application of Bayesian networks to the task of prediction of
a clinical phenotype using data extracted from EMRs.

Methods
Data Collection
A set of 10,341 asthma patients from the i2b2 asthma data
mart was obtained (Fig 1a). Records from these patients

electronic medical records of asthma patients using i2b2 tools.
t, according to initial observation date. (C) A predictive model
oup of patients. (D) The performance of the predictive model
from
enden
ork gr
ith data from the independent group of patients.
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have been parsed for coded data and variables such as
smoking history extracted by NLP of unstructured text.6 The
collection and study of these data is approved by the
Institutional Review Board of Partners Healthcare System.

Patients were included if observed for at least 5 years as
determined by the dates of the earliest and latest records
available, were at least 18 years of age at the initial obser-
vation date, and had race, sex, height, weight, and smoking
history data available. Age at initial observation (age), race,
sex, height, and weight values were lifted directly from
EMRs, as they are structured information in the RPDR. Age
was categorized into four groups: 18–44, 45–64, 65–74, and
75� years old. The values of race, as extracted from EMRs,
were “White,” “Black,” “Hispanic,” and “Asian.” The BMI
was calculated with the average height and weight measure-
ments for each subject’s EMRs as weight in kilograms
divided by height in meters squared. The BMI was catego-
rized as follows: underweight (BMI � 18), normal (18 � �
BMI � 25), overweight (25 � � BMI � 30), obese (30 � �
BMI � 40), and morbidly obese (BMI � � 40). Smoking
status for each EMR was determined using the method
outlined in Zeng et al., 2006.6 Briefly, the Health Information
Text Extraction (HITEx) tool, which uses the Collection of
Reusable Objects for Language Engineering (CREOLE) in-
cluded in the General Architecture for Text Engineering
(GATE) platform,23 was used to determine for each EMR
whether a subject’s smoking status was “current smoker,”
“past smoker,” “never smoker,” “denies smoking,” or “in-
sufficient data.” The HITEx NLP procedure to classify
smoking status consisted in (1) splitting an EMR into sec-
tions, (2) finding all occurrences of regular expressions of
interest (i.e., smoking keywords) (3) filtering sections into
appropriate categories, (4) splitting sections into sentences,
(5) extracting word fragments and their frequency from text,
and (6) classifying smoking-related fragments using a sup-
port vector machine (SVM). For this study, smoking history
was dichotomized into “Negative” if the smoking status was
determined to be “never smoker” in 90% of a subject’s EMRs
and “Positive” otherwise.

Patients were determined to have comorbidities on the basis
of International Classification of Diseases, Ninth Revision
(ICD-9) codes being used as admission diagnosis codes for
hospitalizations or primary diagnosis codes for emergency
room visits. Such codes were obtained via direct extraction
from billing codes in EMRs. For this study, if a patient had
at least one instance of a code being used for admission
and/or primary diagnosis during the entire time course of
observation, then the ICD-9 code variable was assigned a
value of “1,” otherwise it was assigned a value of “0.” The
time order of diagnoses was disregarded to simplify the model,
maximize the amount of information per patient, and because
the authors could not be certain of a patient’s medical history
before the initial observation. Cases are those subjects who had
COPD, determined by having a value of “1” in ICD-9 codes
corresponding to at least one of the following: “Chronic
Bronchitis,” “Emphysema,” or “Chronic Airways Obstruc-
tion, not otherwise specified.” Controls are those subjects
who had a value of “0” in these ICD-9 codes. The remaining
104 comorbidity variables had a value of “1” in at least 1% of

the patients.
Study Populations
Patients were divided into two groups according to initial
observation date (Fig 1b). A cohort of 9,349 patients (843
cases, 8,506 controls), who were initially observed between
1988 and 1998, were selected to create the predictive model
of COPD. A future independent set of 992 patients (46 cases,
946 controls) had initial observation dates between 1999 and
2002. The independent group was used to test the predictive
model.

Predictive Modeling
Because of the large number of variables available to create
the model and the expectation that relationships among
many of these variables are complex, the authors used
Bayesian networks to find a predictive model. A Bayesian
network is a directed acyclic graph where nodes represent
variables and edges between nodes represent probabilistic
relationships between variables (i.e., a node that has an
incoming arrow is dependent on the node from which the
arrow originates). The topology of a Bayesian network and
the associated probabilistic relationships among variables
can be learned directly from data, making Bayesian net-
works powerful for extracting complex and unbiased rela-
tionships among variables. Bayesian networks are better
equipped to find complex relationships than traditional
regression approaches because they are not limited to rep-
resenting the dependencies of a single outcome variable on
predictor variables. Among other machine learning methods
that can create predictive models with many variables,
including artificial neural networks24 and support vector
machines,25 Bayesian networks have the advantage of cre-
ating an intuitive graphical representation of the complex
relationships among variables that can help to understand
the underlying quantitative relationships. In this work, a
Bayesian network was constructed from the set of 9,349
patients (843 cases, 8,506 controls) and 109 clinical variables
using the K2 algorithm, a common and efficient approach to
identify the most probable network of dependency from a
dataset.26 To find such a network, a space of different
network models is explored and each is scored by its
posterior probability given the data. The model with maxi-
mum posterior probability is returned. The network found
with all 109 variables contained many relationships among
variables, and several of these relationships did not directly
influence COPD. The authors focused on the nodes that
directly modulate COPD, the so-called Markov Blanket of
COPD (Fig 1c). These nodes consist in the nodes with edges
directed to COPD (i.e., parents of COPD), nodes with edges
originating from COPD (i.e., children of COPD), and nodes
with edges directed to children of COPD (i.e., parents of
children of COPD). Model robustness was tested via a
fivefold cross-validation in which each of five non-overlap-
ping data subsets, obtained by randomly splitting the orig-
inal dataset, is used as an independent dataset while the
remaining four subsets are used to quantify the network
dependencies. The odds ratios of single variable effects
were calculated using median-unbiased estimation in R.27

Predictive Validation
A future independent set of patients, with respect to the time
interval of patients’ initial observation, was used for the
predictive validation of the model (992 patients; 46 cases, 946

controls). COPD was predicted in each patient of the inde-
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pendent set, and predicted COPD was compared to observed
COPD. The probability of COPD given the comorbidity and
demographic profile of an individual subject was calculated
using the Clique algorithm implemented in Bayesware Discov-
erer.28 The performance of the predictive model was evaluated
with receiver operating characteristic (ROC) curves (Fig 1d).
Predictive accuracy was measured as the area under the
ROC curve (AUROC), and significance for this accuracy was
obtained by comparing the classification ability of models
obtained to random classification. The standard error (SE)
for AUROCs and for the difference between AUROCs of two
curves were estimated using the nonparametric asymptotic
method proposed by DeLong et al., 198829 and described in
Lasko et al., 2005.30 For ROC plots, convex hulls were
estimated. All ROC analyses were performed in R.27

Results
Medical data for 104 comorbidities, age, sex, race, BMI, and
smoking history from 9,349 asthma patients was extracted
from the i2b2 data mart. A predictive model of COPD was
created with this medical data using Bayesian networks to
find which asthma patients develop COPD (843 cases, 8,506
controls). Because the authors were interested in predicting
COPD, the authors focused on the variables in the network
that directly modulate it: age, sex, race, smoking history, and
8 comorbidities (Fig 2). In Fig 2, each box is a node that
represents a variable, and each arrow between nodes is an
edge that represents a dependency of the node receiving the
arrow on the originating node. For example, the arrow
between “COPD” and “smoking history” indicates that
“smoking history” is dependent on “COPD.” Similarly,
“Acute bronchitis and bronchiolitits,” “pneumonia, organ-
ism unspecified,” “shortness of breath,” “respiratory dis-
tress or insufficiency,” “diabetes mellitus,” “sex,” and “age”
are dependent on “COPD.” Slightly more complex relation-
ships are indicated by three nodes connected with two
arrows. For example, “diabetes mellitus” is dependent on
both “COPD” and “race.” These two relationships imply
that “COPD” and “race” are dependent on each other when
the state of “diabetes mellitus” is known. Analogously,
“acute upper respiratory infections,” “viral and chlamydial
infections,” and “heart failure” are related to COPD through
other nodes. It is important to note that the arrows in the
network do not encode causal relationships. Although
causal relationships may be found in a Bayesian network,
proof that such a relationship exists requires further study

with isolated variables. However, probabilistic dependen-
cies represented by arrows suggest legitimate relationships
that may lead to novel findings and can quantitatively assess
the strength of known relationships. The distribution of the
COPD network variables among cases and controls is shown
in Tables 1 and 2. The model is robust to sampling variabil-
ity, as demonstrated by a fivefold cross-validation AUROC
of 0.83 (SE 0.01).

The generalizability of the network was tested by using it to
predict COPD in an independent set of 992 asthma patients (46
COPD cases, 946 controls). When performing prediction, the
information of all clinical variables, except for COPD, is used to
infer the probability with which COPD is present in each
patient based on the parameters learned by the network in the
learning stage. This inference requires reversal of the relation-
ships indicated by the edges in the network. For example, after
learning that “sex” depends on “COPD,” the authors have to
know how “COPD” depends on “sex.” The calculation of these
inverted relationships is possible because of Bayes’ theorem
and is the basis of the prediction algorithm. The ROC curve
corresponding to the classification of the independent subjects
is shown in Fig 3. The corresponding AUROC is 0.83 (SE 0.03),
which suggests the generalizability of the network and its
ability to predict COPD.

The marginal effects and predictive accuracy of individual
network variables are shown in Table 3. The marginal effect
of each variable is represented as the odds ratio for a state of
that variable being associated to COPD. The information of
single variables in the independent group of subjects was
used to predict COPD with the network. Five of the 12
variables in the network have AUROCs that are significantly
different from random classification of the patients (p �
0.01) (Fig 4). Age is the single variable with the largest
AUROC (0.81, SE 0.04), and predicting COPD with age alone
is not statistically different than using all variable informa-
tion (p � 0.21). If age information is excluded and the
remaining variable information is used to predict COPD,
then the corresponding AUROC is 0.73 (SE 0.04), which is
still significantly better than random (p � 2.95E-08).

Discussion
A well-known goal of the use of EMRs is to improve the
quality and efficiency of patient care.1 EMRs have been
acknowledged as a source to identify large numbers of
subjects for research studies. Such studies include those
limited to data collected through EMRs (e.g., the under-

F i g u r e 2. Predictive net-
work of Chronic Obstructive
Pulmonary Disease (COPD).
standing of individual disease courses and outcomes), but
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also extend to those requiring additional data gathering
(e.g., genetic studies of complex diseases). With these goals
in mind, data has been extracted from EMRs at various
medical centers for the identification of subjects with dis-
eases including asthma,6 diabetes mellitus,31 and heart fail-
ure.32 However, few studies have demonstrated that the
extracted data can itself be useful for clinical studies. In this
work, the authors used data extracted from EMRs with tools
available in the i2b2 asthma data mart to characterize and
predict which asthma patients develop COPD.

Table 1 y Patient Characteristics
Network

Controls
(n � 8506)

Sex
female 6354 (74.70)
male 2152 (25.30)

Age
18–44 3709 (43.60)
45–54 3261 (38.34)
55–64 1035 (12.17)
75� 501 (5.89)

Race
Asian 116 (1.36)
Black 1071 (12.59)
Hispanic 1105 (12.99)
White 6214 (73.05)

Smoking history
negative 2385 (28.04)
positive 6121 (71.96)

For each variable category, Number (%) are reported.

Table 2 y Distribution of Chronic Obstructive Pulmon

ICD-9 Code Description

0799 viral and chlamydial infections
0
1

250 diabetes mellitus
0
1

428 heart failure
0
1

465 acute upper respiratory infections
0
1

466 acute bronchitis and bronchiolitis
0
1

486 pneumonia, organism unspecified
0
1

78605 shortness of breath
0
1

78609 respiratory distress or insufficiency
0
1

For each variable category, Number (%) are reported.
Bayesian networks were used to create a predictive model of
COPD using the following extracted variables: age, sex, race,
BMI, smoking history, and 104 comorbidities. Of these, age,
sex, race, smoking history, and 8 comorbidities modulate the
risk of COPD. The model has good predictive accuracy, as
indicated by an AUROC of 0.83 (SE 0.03) when using the
model to predict COPD in an independent set of patients.
The ability of single variables to predict COPD was assessed
using the information from one variable at a time to predict
COPD with the network (Table 3). The strongest single

Independent

ses Controls Cases
843) (n � 946) (n � 46)

62.87) 698 (73.78) 31 (67)
37.13) 248 (26.22) 15 (33)

9.25) 535 (56.55) 3 (6.5)
50.42) 300 (31.71) 19 (41)
27.88) 79 (8.35) 18 (39)
12.46) 32 (3.38) 6 (13)

0.95) 22 (2.33) 1 (2.2)
12.22) 101 (10.68) 6 (13)
8.42) 144 (15.22) 3 (6.5)
78.41) 679 (71.78) 36 (78)

2.97) 299 (31.61) 2 (4.4)
97.03) 647 (68.39) 44 (96)

isease (COPD) Network Comorbidities in Patients
Network Independent

rols Cases Controls Cases
8506) (n � 843) (n � 946) (n � 46)

97.27) 819 (97.15) 926 (97.89) 44 (96)
2.73) 24 (2.85) 20 (2.11) 2 (4.4)

98.02) 796 (94.42) 938 (99.15) 45 (98)
1.98) 47 (5.58) 8 (0.85) 1 (2.2)

95.59) 693 (82.21) 927 (97.99) 40 (87)
4.41) 150 (17.79) 19 (2.01) 6 (13)

95.91) 785 (93.12) 917 (96.93) 45 (98)
4.09) 58 (6.88) 29 (3.07) 1 (2.2)

97.10) 784 (93.00) 929 (98.20) 43 (93)
2.90) 59 (7.00) 17 (1.80) 3 (6.5)

91.42) 546 (64.77) 888 (93.87) 35 (76)
8.58) 297 (35.23) 58 (6.13) 11 (24)

94.72) 623 (73.90) 905 (95.67) 38 (83)
5.28) 220 (26.10) 41 (4.33) 8 (17)

96.09) 678 (80.43) 932 (98.52) 40 (87)
3.91) 165 (19.57) 14 (1.48) 6 (13)
Ca
(n �

530 (
313 (

78 (
425 (
235 (
105 (

8 (
103 (

71 (
661 (

25 (
818 (
ary D

Cont
(n �

8274 (
232 (

8338 (
168 (

8131 (
375 (

8158 (
348 (

8259 (
247 (

7776 (
730 (

8057 (
449 (

8173 (
333 (
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variable predictor in the network is age (Fig 4). Surprisingly,
this variable alone predicts COPD with an AUROC of 0.81
(SE 0.04) in the independent subjects, which is not signifi-
cantly different than the area obtained with all variables.
The relationship between age and COPD is well known.
Because COPD is a chronic disease that worsens over time,
it is characteristically present in older adults.7 Emergency
room (ER) visit and hospitalization rates for COPD among
U.S. adults have been estimated33 and are consistent with
our findings. The 65–74 and 75� age groups have the
highest rates of ER visits and hospitalizations, while the
youngest groups have the lowest. Although the importance

F i g u r e 3. Receiver Operating Characteristic (ROC) curve
corresponding to prediction of Chronic Obstructive Pulmo-
nary Disease (COPD) in an independent group of patients.

Table 3 y Strength and Predictive Ability of Individua
Variable Effect, OR

Acute bronchitis and bronchiolitis 2.52 (1.86, 3.36)
Acute upper respiratory infections 1.74 (1.29, 2.30)
Age

45–64 6.19 (4.87, 7.97)
65–74 10.78 (8.30, 14.13)
75� 9.95 (7.32, 13.57)

Diabetes mellitus 2.94 (2.09, 4.06)
Heart Failure 4.69 (3.82, 5.75)
Pneumonia, organism unspecified 5.79 (4.93, 6.80)
Race

Asian 0.66 (0.29, 1.27)
Black 0.91 (0.72, 1.12)
Hispanic 0.61 (0.47, 0.77)

Respiratory distress or insufficiency 5.97 (4.87, 7.30)
Sex 1.74 (1.50, 2.02)
Shortness of breath 6.34 (5.28, 7.59)
Smoking history 12.67 (8.68, 19.43)
Viral and chlamydial infections 1.05 (0.67, 1.58)

The second column reports odds ratios and 95% confidence interva
The referent group refers to that used to compute the odds ratio.
The fourth column reports the AUROC of the network using the s
Fifth column p values correspond to comparison of single variable
The network AUROC using all variables is 0.83 (p � 8.88E-15 com

AUROC � Area Under the Receiver Operating Characteristic curve.
of age in COPD is known, it is not obvious that it should
be the best predictor in our model. For example, smoking is
the most important cause of COPD34 and being male is also
traditionally associated with a higher likelihood of having
COPD.7 Besides age, most other single variables are unable
to predict COPD better than at random, and those that are
able to predict COPD better than at random have AUROCs
that are significantly lower than that using all variables or
age (Fig 4). If age information is suppressed while the
remaining variable information is used to predict COPD, the
corresponding AUROC is 0.73 (SE 0.04). This demonstrates

work Variables
erent Group Single Variable AUROC (SE) p Value

0 0.52 (0.04) 0.013
0 0.50 (0) 1

0.81 (0.04) 1.22E-15
18–44
18–44
18–44

0 0.51 (0.02) 0.18
0 0.50 (0) 1
0 0.59 (0.06) 1.86E-06

0.50 (0) 1
White
White
White

0 0.56 (0.05) 2.59E-08
female 0.53 (0.05) 0.17

0 0.57 (0.05) 3.33E-05
negative 0.64 (0.01) 4.34E-05

0 0.50 (0) 1

arentheses.

ariable data and corresponding standard errors (SE).
C to a random classifier.
o random).

F i g u r e 4. Predictive accuracy of individual network vari-
ables that perform better than random. *P value comparing
AUROC of all variables to using Age only: 0.21. **P value
comparing AUROC of all variables to using other single
variables shown �1E-6.
l Net
Ref

ls in p

ingle v
AURO

pared t
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that the model contains significant predictors of COPD
besides age, and that interesting interactions among these
variables are able to predict COPD, albeit with lower accu-
racy than age alone. Consistent with the Dutch hypothesis of
COPD, these results suggest that some subjects with asthma
develop COPD as they age regardless of their smoking
status and independently of other network variables. Fur-
ther study of the relationships among the network’s vari-
ables is required to confirm this premise, and incorporation
of other variables into the model is necessary to understand
what alters the progression to COPD among patients with
asthma as they age.

Some of the comorbidities that were found to modulate the
risk of COPD are general symptoms, such as “shortness of
breath” and “respiratory distress or insufficiency.” These
symptoms alone are insufficient to indicate COPD, but in the
context of the model are helpful to predict COPD. Infections
are known to be related to COPD exacerbations,35 which
supports some of the other variable relationships with
COPD (e.g., “pneumonia, organism unspecified”, “acute
bronchitis”). For each patient, the authors used all ER visit
primary diagnoses and hospitalization admission diagnoses
available during the observation period to infer comorbidi-
ties. The authors did not differentiate comorbidities based
on the order in which they occurred in time. Therefore, the
authors are limited in knowing whether the above comor-
bidity predictors and COPD are in causal relationships. In
future studies, more careful evaluation of the time course of
comorbidities may help to establish whether there are early
predictors of COPD. The current results are still useful to
indicate how COPD is related to other comorbidities. For
example, patients who have hospital admissions/ER visits
for COPD are likely to have separate hospital admis-
sions/ER visits for shortness of breath, but shortness of
breath events are also related to pneumonia, heart failure,
and respiratory distress or insufficiency. Though one might
intuitively expect that COPD and shortness of breath be
related, the network demonstrates that the relationship is
influenced by several other variables, and relationships
between variables that would be intuitively thought to be
directly related are not always present (e.g., acute upper
respiratory infections and shortness of breath). Further, the
network provides a quantitative measure of relationships
among variables, which is stronger than having an intuition
that relationships should exist.

Though the model performs well at predicting COPD in the
independent set of asthma patients, there is clear room for
improvement in predictive accuracy. The ROC curve in
Fig 3 shows that, in the independent group of patients, the
predictive model is highly sensitive (100/90/80%) for
thresholds at which the specificity is lower (45/60/67%).
Some of the factors that affect the predictive accuracy are
errors in data extraction, the inherent limitations of the
medical record data, and the challenge of determining
which patients have COPD.

There is virtually no error in extracting age, sex, race, and
BMI as these variables are structured data in the RPDR.
However, there are limitations to the ways in which tempo-
ral age and BMI measures can be represented as a single
value for this study. Because the authors condensed longi-

tudinal data to establish which patients were affected by
comorbidities, the authors selected single values for age and
BMI for each patient. The age that was used was that of the
patient at the initial ER visit or hospitalization recorded. The
range of observations for each patient had to be at least five
years but was never greater than 10 years. Therefore, the age
ranges that the authors used to categorize patients tended to
be much greater than the amount of aging that each patient
underwent during the observation period (i.e., most patients
remained in the same age category across observations). The
BMI that the authors calculated was based on average height
and weight values. Because subjects were adults during the
times of observation, height is expected to remain constant.
However, a person’s weight can fluctuate over time. The
authors assumed that the average weight was the best
representative weight over the course of observation be-
cause it would best account for the weight that was most
often observed for each patient. In the vast majority of
patients, there was minimal change in weight over the
extracted values.

Extracting smoking history poses greater challenges than the
extraction of other demographic variables because it re-
quires the use of NLP methods on free text portions of
EMRs. Previous work describes some of the problems in-
volved in extracting smoking status from EMRs, and how
NLP has been used to successfully determine it.4,6 The
HITEx methodology that was used to extract the smoking
data for this paper has been shown to have an accuracy of
90% compared to expert classification,6 which is very good
reliability. In addition to the challenge of extracting smoking
status by NLP, there can be uncertainty in the veracity of
patient reporting. The authors chose to define a negative
smoking history as one where a patient had “never smoked”
in at least 90% of the smoking histories extracted. A positive
smoking history could contain a mixture of “current-
smoker,” “past-smoker,” and less than 90% “never-smoked”
in the extracted smoking histories. Most often, positive
smokers had a large percentage of “current-smoker” and
“past-smoker” as extracted smoking histories. Because the
authors looked at records from patients who were observed
for at least 5 years, it was deemed more significant to
differentiate patients with a positive smoking history from
those with a negative history, than to differentiate current
smokers from past smokers. Therefore, the authors chose a
definition of nonsmokers that would attempt to ensure that
this group truly contained patients with a negative history of
smoking.

As for most demographic variables, comorbidities have
virtually no error in being extracted by the i2b2 data mart as
these variables were inferred directly from ICD-9 billing
codes corresponding to ER primary diagnoses and hospital-
ization admission diagnoses. However, the assignment of
diseases with ICD-9 codes is subject to error. In previous
work, principal diagnosis classification using ICD-9 billing
codes was measured to have accuracy between 72 and 80%,
depending on the amount of data available per record, when
compared to expert classification.6 This low accuracy was
nearly identical to that using HITEx (73–82%), but using
ICD-9 codes resulted in higher specificity values (85–91%
compared to 82–87%). Thus, most subjects classified as
having a diagnosis according to ICD-9 codes, would also be

classified as such by an expert. In addition to being limited
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in their ability to describe individualized disease presenta-
tions, the use of ICD-9 codes is often biased and subject to
error when they are assigned without a thorough patient
evaluation or by physicians inexperienced in their use.
Additionally, some diseases are not classified using uniform
criteria, leading to the labeling of patients with different
pathological processes as having the same disease. Despite
these limitations, the use of ICD-9 codes is standard in
United States hospitals for billing and record keeping be-
cause they allow a finite and uniform set of diagnoses.36 In
our work, ICD-9 codes provide a satisfactory means of
classifying patients with diseases, as evidenced by the
relationships among variables found by and good predictive
accuracy of our model.

A further limitation of our study is the definition of COPD.
A complex disease process, COPD is not always diagnosed
using uniform criteria. Several patients with COPD feature
characteristics of emphysema and chronic bronchitis, blur-
ring the distinctions between these diseases, while some
subjects with emphysema and chronic bronchitis do not
have COPD.37 Therefore, our definition of COPD, based on
ICD-9 codes from EMRs, is likely to classify some subjects as
having COPD that would not be classified this way based on
other standards (e.g., lung function measures). This sort of
misclassification would only decrease the predictive accuracy
of our model and hence bias our result in the direction of no
effect. Nonetheless, having objective measures such as lung
function incorporated in our data extracted from EMRs
would be helpful to increase the accuracy of our model. The
i2b2 data mart will be expanded to include such measures,
although few will likely be available because lung function
tests are not routinely ordered for most patients. In this
sense, data obtained in epidemiological studies, which
gather uniform measures for all participants, have a clear
advantage over data extracted from EMRs. However, both
sources of data are important and information extracted
from them can be complementary. The fastest increase in
clinical knowledge is likely to be achieved by integrating
findings from multiple sources.

Despite all the limitations listed above, including those
attributable to extracting data by NLP, the authors have
shown that our EMR-extracted data are of good enough
quality to create predictive models. Our model’s AUROC of
0.83 for predicting COPD in an independent group of
patients is comparable to that of routine clinical tests such as
prostate-specific antigen tests (AUROC 0.62–0.86)38 and
mammography (AUROC 0.67–0.84).39 Such clinical tests are
evaluated prospectively, while our model was created and
tested with retrospective data, which may be subject to bias
in the assignment of comorbidity ICD9 codes. Despite the
limitations of the retrospective data used, the current AU-
ROC of our model suggests that the performance on pro-
spective data will be good. Gathering prospective data to
test our predictive model will provide a more objective
assessment of its predictive accuracy.

If the accuracy of NLP extraction of smoking status, which is
90% at this writing, were perfect, then the performance of
our predictive model would increase significantly. Because
smoking is known to be an important risk factor for COPD,
the authors expect that the AUROC might improve by as

much as 0.05. Similarly, if the errors associated with using
ICD-9 codes were reduced, our model’s predictive perfor-
mance would increase. One way to accomplish this would
be to improve principal/admission diagnosis assignment by
combining NLP methods with the extraction of billing
codes. Although our current accuracy of classification with
ICD-9 codes is low (72–80%), the specificity is good (85–
91%). Therefore, even though most comorbidities assigned
in our data are accurate, the authors would likely obtain
additional comorbidities per patient with better methods to
extract primary/admission diagnoses from EMRs. This would
likely strengthen some existing comorbidity relationships and
perhaps introduce new ones, increasing the AUROC corre-
sponding to prediction of COPD by 0.05–0.10. However,
even if classification of smoking status and comorbidities
from EMRs were perfect, the authors would still expect
other errors mentioned (e.g., inaccuracy in patient reporting
and limitations inherent in disease classification schemes), to
keep the prediction accuracy of our model below 100%.

Our results demonstrate the promise of using medical
records to create predictive models and attest to the utility of
approaches like i2b2’s in instrumenting the healthcare en-
terprise. Potential applications of predictive models include
improved resource allocation for healthcare systems and
more closely targeted individualized prevention/manage-
ment programs. To this end, future studies will improve the
NLP methodology used to extract data, expand our model to
include more comorbidities and medication history, and
consider the time course of patients’ medical histories.

Conclusions
The authors have created a predictive model of COPD using
comorbidities and demographic information extracted from
medical records of asthma patients and used this model to
predict COPD in an independent group of asthma patients
with good predictive accuracy. In our model, age, sex, race,
smoking history, and 8 comorbidities modulate the risk of
COPD. The AUROC corresponding to prediction of COPD
in the independent set of patients is 0.83. Age is the best
individual predictor of COPD (AUROC � 0.81), but the
remaining variables have notable ability to predict COPD in
the absence of age information (AUROC � 0.73). Our results
show that it is possible to use data extracted from medical
records to create predictive models. With improvements in
data extraction and inclusion of more variables, such models
may prove to be clinically useful and serve to better under-
stand disease trends.
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