
:4~~ ~ : :i-::< 0; ft;~;;t orking paper t;; :0000:X 0 : -X--- a Ad
F, . ,,.... o

..'' ' ' ''- .' ' ' , .' ' ' ' '.' " : ' " . .' . ' ' .'' ' '' ..'' , - . ,' ' ' = -'-'-

ASAUETS I NST ITUT E
OFEi :TO ECHNYF,,$ as ~~~~~~~~·' HS . 400, .l

: ·: : :··: -· �'· -
.".. -. ·.-- rl.'l: :'r

· 1- . .· -:

'··' i·-;·��·· : ·
·. .. ---- -:.�.

---··-; '- 1i ;
··- ·� :'-
r i. ;· :·;

:··

-.'. - ·li·P. ·iI

·

·· ·I- �iI';· ;;

·;·.·

;I,-· . --I

SHORTEST PATH ALGORITHMS:

A COMPARISON

by

Bruce L. Golden

OR 044-75 October 1975

ABSTRACT

In this note we present some computational evidence to suggest that

a version of Bellman's shortest path algorithm outperforms Treesort-

Dijkstra's for a certain class of networks.

DISCUSSION

Many applications dealing with transportation and communication net-

works require the calculation of shortest paths. We discuss here the speci-

fic problem of finding the shortest paths from one node to all others. Our

objective is to present some computational experience to support the claim

that a version of Bellman's algorithm outperforms Treesort-Dijkstra's for a

certain class of networks. This note complements a recent paper by Pape [8]

and indicates that, for the class of networks under consideration, Pape's

reluctance to use a variable length list of nodes to be scanned is unwarranted

(the phrase "variable length list" refers to the fact that no realistic a

priori bound on the length of the list is known).

A sequence of distinct arcs (al,a2,..., ap), where at and at+1 are adjacent

for t=l,..., p-l is called a path; a route is defined as a sequence of adjacent

arcs which need not be distinct. We seek the shortest paths from the origin to

all other nodes. Dreyfus discusses several such algorithms in his survey paper

[3] primarily from the viewpoint of computational complexity.

Dijkstra's algorithm requires on the order of NN2 additions and NN2 com-

parisons in the worst case. This algorithm is a "label-setting" method which

-2-

assigns permanent labels asit proceeds. Initially the set T consists of the

origin alone. T is augmented one node at a time so that at each step, T is

a set of perimanently labeled nodes which corresponds to the shortest path tree

for all nodes in T. Termination occurs when all nodes of the graph are in T.

Labeling methods for computing shortest paths can be divided into two general

classes, "label-setting" and "label-correcting" methods [5]. Label-setting

methods are valid only for non-negative arc lengths.

Bellman's algorithm solves the problem in at most NN3 additions and com-

parisons or detects the existence of a negative cycle. This algorithm is an

example of the label-correcting approach in which no node labels are considered

permanent until they all are, at termination.

A- =If negative cycles exist then clearly there can be no shortest route on

a network. The shortest path problem in that case has been shown to be com-

binatorially equivalent to the Traveling Salesman Problem [4].

The performance of shortest path algorithms is heavily dependent upon the

following three factors:

(i) the sparseness of the network;

(ii) list processing and network representation

in the computer code;

(iii) distance measures on the arcs.

The topological structure of the network clearly exerts a major influence on

running time for any graph algorithm. Theoretical upper bounds have been cal-

culated assuming a complete graph with every pair of nodes connected by an arc.

If the graph is sparse, running times may be reduced significantly [5] (the

same observation has been exploited with the minimal spanning tree problem [7].

-3-

Computer representation of networks is discussed in [5]. Distance measures

will be mentioned later.

IMPLEMENTATION

For sparse graphs, Bellman's algorithm can be made quite efficient using

a list structure which keeps track of which nodes can potentially label other

nodes. This list is of nodes to be scanned.

The origin is the first element on the list. Those nodes which can be

reached directly from the origin are labeled and placed on the list. We pro-

c:eed downward from the top of the list and scan each member of the list possi-

bly adding new members, if a new label is less than a current label. When we

have scanned the entire list we have the shortest path tree. At the same time

we trace the shortest path tree through the predecessor labels for each node.

A flag associated with the active (unscanned) members of the list prevents us

from placing one node on the active list more than once at any time.

In the Dijkstra algorithm a primary computational concern involves the

determination of the minimum distance node at each step. We have implemented

a modified Dijkstra algorithm where Floyd's Treesort algorithm is used for the

sorting of these distances. This approach has been studied by Johnson [6] and

by Kershenbaum and Van Slyke [7]. The node distances dld 2,... d where

m=2 -1 are arranged in a binary tree with k levels, called a heap. The essential

property of a heap is that di<d2i and di<d2il. Below is a heap for k=3(dl=3,

d2=5,d 3=4, and so on).3

-4-

Figure 1

If the list is only of length #2 -1 then we can fill positions Q+1,...,

2k-1 for the smallest k such that <2 -1 with distances of a. Clearly d is

the minimum node distance under consideration. If we remove d from the heap,

a new heap can be constructed with relative ease. The modified Dijkstra al-

gorithm has node distances di composing the heap for all nodes i which are not

yet in T. After a new node has been added to T, and has been scanned, we re-

move the top node of the heap and form a new heap.

COMPUTATIONAL EXPERIENCE

Bellman's and Dijkstra's algorithms have been coded and tested on M.I.T.'s

IBM 370/168 system assuming non-negative arc distances. Two groups of networks

are studied: Series A and Series B. Node coordinates are generated from a

uniform probability distribution over a rectangular grid and then the euclidean

distances are calculated between "randomly selected" pairs. These pairs are

chosen in such a way that the out-degree of every node is equal to R for Series

A and the out-degree of each node takes on the value 2,3,4,5, or 6 with equal

probability for Series B. A computational consideration in Bellman's algorithm

is how long the list of nodes to be scanned grows. With euclidean distances,

one would expect for sparse networks that most nodes are not put on the list to

-6-

TABLE I. Computational Experience: Bellman vs. Dijkstra (Series A)

(average running times given in seconds).

DIJKSTRA BELLMAN
R TIME TIME

AVERAGE LIST
LENGTH

MAXIMUM LIST
LENGTH

3 .021 .014 60.0 72
4 .024 .013 55.6 66

50 .027 .017 58.5 74
".029 .021 59.7 70

3 .047 .026 117.6 131
... 4 .055 .032 128.2 - 139
1005 .062 .037 124.6 141
6 .065 .044 125.7 149

3 .084 .040 176.1 185
4 .087 .053 197.6 235
150 .102 .060 201.3 232
6 ".103 .066 195.1 220

3 .148 .072 323.3 389
250 4 .164 .090 338.9 386
5 .178 .103 327.1 363
_6 __.190 .116 333.0 377

3 .230 .108 466.6 518
350 4 . .251 .128 473.8 523

5 - .264 .152 501.3 606
6 .277 .171 509.2 595

3 .327 .155 703.0 819
So 4 - .368 .177 658.5 766
5 .406 .214 699.7 802
6_ .422 .249 722.5 782

3 .538 .229 1012.6 1136
74 50 .573 .286 1090.7 1262
755 .. .637 .334 1068.2 1140
6 .690 .402 1110.5 1241

3 .733 .309 1389.5 1589
1000 4 .809 .383 1447.6 1661

15 .848 .433 1462.0 1629
6 -.894 .518 1535.8 1676

NN

- --11111111��-1_�"__--�_I_------�-·---._ ^·-_I- -11�1111 s� I�-·-�i�I 111^·14 ___1 �I�-----____�

,.

-5-

be scanned more than once (precisely because of the triangle inequality).

For Series A, we generated ten networks of NN nodes where each node had

fixed out-degree R for NN=50,100,150,250,350,750,1000 and R=3,4,5,6, and

applied Bellman's and Dijkstra's algorithms to determine shortest paths. For

Series B, we generated and tested ten networks of NN nodes where the out-degree

for each node varied from 2 to 6. The mean running times for Series A and Series

B are shown in Table I and Table II respectively. In addition, the average

length of the list of nodes to be scanned and the maximum length are displayed.

For a given R (Series A) our results indicate that the relationship be-

tween NN and running time is nearly linear for both algorithms. Series B experi-

ments indicate likewise. Bellman's algorithm clearly outperforms Dijkstra's

algorithm; running times from Dijkstra's algorithm are about twice the running

times from Bellman's. Interestingly, as the number of nodes increases, Bellman's

algorithm becomes more and more attractive relative to Dijkstra's.

Our computational experience suggests that the variable length list does

not become a great deal longer than NN. In fact, for NN<1000, we can be confi-

dent that the list length will not exceed 2-NN for the class of networks dis-

cussed in this paper. Key properties in this class include network sparsity

and euclidean distances.

ACKNOWLEDGMENTS

The author would like to thank Aaron Kershenbaum of Network Analysis

Corporation and Professor Gabriel Handler of M.I.T, for the opportunity to

perform this computational comparison. Helpful comments by Professor Thomas

Magnanti of M.I.T. are appreciated. In addition, the author is grateful to

NAC for the use of their modified Dijkstra code.

-7-

TABLE II. Computational Experience:

(average running times

Bellman vs. Dijkstra (Series B)

given in seconds).

AVERAGE LIST
LENGTH

MAXIMUM LIST
LENGTH

DIJKSTRA
TIMENN

BELLMAN
TIME

50 .028 .015 58.7 64

100 .055 .030 117.2 132

150 .091 .052 193.3 211

250 .165 .088 323.6 358

350 .238 .133 497.5 574

500 .365 .184 695.9 886

750 .574 .275 1050.9 1305

1000 .808 .382 1422.7 1501

