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4Institut de Physique Théorique, CEA–Saclay, F–91191 Gif-sur-Yvette cedex, France

5Department of Physics, University of Durham, DH1 3LE, United Kingdom
(Received 24 July 2009; published 29 October 2009)

We present next-to-leading order QCD predictions for a variety of distributions inW þ 3-jet production

at both the Tevatron and the Large Hadron Collider. We include all subprocesses and incorporate the decay

of the W boson into leptons. Our results are in excellent agreement with existing Tevatron data and

provide the first quantitatively precise next-to-leading order predictions for the LHC. We include all terms

in an expansion in the number of colors, confirming that the specific leading-color approximation used in

our previous study is accurate to within 3%. The dependence of the cross section on renormalization and

factorization scales is reduced significantly with respect to a leading-order calculation. We study different

dynamical scale choices, and find that the total transverse energy is significantly better than choices used

in previous phenomenological studies. We compute the one-loop matrix elements using on-shell methods,

as numerically implemented in the BLACKHAT code. The remaining parts of the calculation, including

generation of the real-emission contributions and integration over phase space, are handled by the SHERPA

package.

DOI: 10.1103/PhysRevD.80.074036 PACS numbers: 12.38.�t, 12.38.Bx, 13.87.�a, 14.70.�e

I. INTRODUCTION

The upcoming start of physics runs at the LHC has
added impetus to the long-standing quest to improve theo-
retical control over standard model backgrounds to new
physics searches at hadron colliders. Some backgrounds
can be understood without much theoretical input. For
example, a light Higgs boson decaying into two photons
produces a narrow bump in the diphoton invariant mass,
from which the large but smooth QCD background can be
subtracted experimentally using sideband information.
However, for many searches the signals are excesses in
broader distributions of jets, along with missing energy and
charged leptons or photons; such searches require a much
more detailed theoretical understanding of the QCD back-
grounds. A classic example is the production of a Higgs
boson in association with a W boson at the Tevatron, with
the Higgs decaying to a b �b pair, and the W decaying to a
charged lepton and a neutrino. The peak in the b �b invariant
mass is much broader than in the diphoton one; therefore
variations in the backgrounds, including QCD production
of Wb �b, across the signal region are more difficult to
assess.

In this paper, we focus on a related important class of
backgrounds, production of multiple (untagged) jets in
association with a W boson. Such events, with a leptoni-
cally decaying W, form a background to supersymmetry
searches at the LHC that require a lepton, missing trans-
verse energy, and jets [1]. If the lepton is missed, they also
contribute to the background for similar searches not re-
quiring a lepton. The rate of events containing a W along
with multiple jets can be used to calibrate the correspond-

ing rate for Z production with multiple jets, which form
another important source of missing transverse energy
when the Z decays to a pair of neutrinos. Analysis of W
plus multi-jet production will also assist in separating these
events from the production of top-quark pairs, so that more
detailed studies of the latter can be performed.
The first step toward a theoretical understanding of QCD

backgrounds is the evaluation of the cross section at lead-
ing order (LO) in the strong coupling �S. Our particular
focus is on high jet multiplicity in association with vector
boson production. Many computer codes [2–4] are avail-
able to generate predictions at leading order. Some of the
codes incorporate higher-multiplicity leading-order matrix
elements into parton showering programs [5,6], using
matching (or merging) procedures [7,8]. LO predictions
suffer from large renormalization- and factorization-scale
dependence, growing with increasing jet multiplicity, and
already up to a factor of 2 in the processes we shall study.
Next-to-leading order (NLO) corrections are necessary to
obtain quantitatively reliable predictions. They typically
display a greatly reduced scale dependence [9]. Fixed-
order results at NLO can also be matched to parton show-
ers. This has been done for a growing list of processes
within the MC@NLO program and the POWHEG method [10].
It would be desirable to extend this matching to higher-
multiplicity processes such as those we discuss in the
present paper.
The production of massive vector bosons in association

with jets at hadron colliders has been the subject of theo-
retical studies for over three decades. Early studies were of
large transverse-momentum muon-pair production at lead-
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ing order [11], followed by the leading-order matrix ele-
ments for W þ 2-jet production [12] and corresponding
phenomenological studies [13,14]. The early leading-order
studies were followed by NLO predictions for vector boson
production in association with a single jet [15,16].
Leading-order results for vector-boson production accom-
panied by three or four jets appeared soon thereafter [17].
These theoretical studies played an important role in the
discovery of the top quark [18]. Modern matrix element
generators [2–4] allow for even larger numbers of final-
state jets at LO. The one-loop matrix elements for W þ
2-jet and Zþ 2-jet production were determined [19] via
the unitarity method [20] (see also Ref. [21]), and incorpo-
rated into the parton-level MCFM [22] code.

Studies of W production in association with heavy
quarks have also been performed. NLO results for hadronic
production of a W and a charm quark first appeared in
Ref. [23]. More recently, NLO results have been presented
for W þ bþ jet production [24], as well as for Wb �b
production with full b quark mass effects [25]. The last
two computations were combined to produce a full de-
scription ofW production in association with a single b-jet
in Ref. [26].

NLO studies of W production in association with more
jets have long been desirable. However, a bottleneck to
these studies was posed by one-loop amplitudes involving
six or more partons [9]. On-shell methods [27], which
exploit unitarity and recursion relations, have successfully
broken this bottleneck, by avoiding gauge-noninvariant
intermediate steps, and reducing the problem to much
smaller elements analogous to tree-level amplitudes.
Approaches based on Feynman diagrams have also led to
new results with six external partons, exemplified by the
NLO cross section for producing t�tb �b at hadron colliders
[28]. We expect that on-shell methods will be particularly
advantageous for processes involving many external glu-
ons, which often dominate multijet final states. Various
results [29–33] already indicate the suitability of these
methods for a general-purpose numerical approach to
high-multiplicity one-loop amplitudes.

We recently presented the first NLO results for W þ
3-jet production including all subprocesses [34], using one-
loop amplitudes obtained by on-shell methods. This study
used a specific type of leading-color approximation de-
signed to have small corrections—under 3%, as verified in
Wþ1, 2-jet production—while reducing the required com-
puter time. The study was performed for the Tevatron, with
the same cuts employed by the CDF collaboration in their
measurement of W þ n-jet production [35]. The NLO
corrections show a much-reduced dependence on the re-
normalization and factorization scales, and excellent
agreement with the CDF data for the distribution in the
transverse energy ET of the third-most energetic jet.

In the present paper, we continue our study ofW þ 3-jet
production. We present results forW þ 3-jet production at

the LHC as well as at the Tevatron. As before, we include
all subprocesses and take all quarks to be massless. (We do
not include top-quark contributions, but expect them to be
very small for the distributions we shall present.) We
extend the previous results by including specific virtual
contributions that are subleading in the number of colors,
which we had previously neglected. We shall demonstrate
that, as expected, these subleading-color corrections to
cross sections and distributions are uniformly small, gen-
erally under 3%. We present three sets of distributions at
the Tevatron: the ET of the third most energetic jet, the total
transverse energy HT [36], and the dijet invariant masses.
These distributions are again computed with the same cuts
used by CDF. (As discussed further in Sec. III, we used the
infrared-safe SISCONE jet algorithm [37] in place of
JETCLU, the cone algorithm used by CDF.) The code we

use is general-purpose, permitting the analysis at NLO of
any infrared-safe observable in W þ 3-jet events. We also
present a wide variety of distributions for the ultimate LHC
energy of 14 TeV. We find that all the NLO cross sections
and distributions display the expected reduction in renor-
malization- and factorization-scale dependence compared
to the same quantities calculated at leading order.
The shapes of distributions at leading order are quite

sensitive to the functional form of the scale choice. As
expected, the change in shape between LO and NLO dis-
tributions can be reduced by choosing typical energy scales
event-by-event for the renormalization and factorization
scales, as noted by many authors over the years [14,16,38].
The vector boson transverse energy EW

T , employed as an

event-by-event scale in previous predictions and compari-
sons with data [14,34,35,39], turns out to be a poor char-
acterization of the typical energy scale for events with
large jet transverse energies, as at the LHC. We find that
the total partonic transverse energy is a much better choice.
Recently, similar deficiencies in the scale choice of EW

T at

LO have been observed independently, and another vari-
able, related to the invariant mass of the final-state jets, has
been proposed as a replacement [40]. Here we go further
and demonstrate that for LHC energies, EW

T is a poor scale

choice not only at LO but also at NLO, yielding negative
differential cross sections in the tails of some distributions.
This pathology arises from large residual logarithms in-
duced by disparities between momentum-transfer scales in
multijet processes and the value of EW

T .
For W þ 3-jet production, choosing the total partonic

transverse energy as the scale gives rise to shapes of
distributions at LO that are typically similar to those at
NLO. For a few W þ 3-jet distributions genuine NLO
effects are present, and significant shape changes remain
between LO and NLO. These differences are usually less
pronounced than in W þ 1, 2-jet production. In the latter
cases, the LO kinematics are more constrained, leading to
significantly larger NLO corrections. In any event, an
accurate description of the shape of any distribution re-
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quires an NLO computation, either to confirm that its shape
is unmodified compared to LO, or to quantitatively deter-
mine the shape change.

Ellis et al. have recently presented partial NLO results
for W þ 3-jet production. Their first calculation [41] was
restricted to leading-color contributions to two-quark
subprocesses, rendering it unsuitable for phenomenologi-
cal studies. Their version of the leading-color approxima-
tion drops subleading-color terms in both the virtual and
real-emission contributions. Quite recently [42] the same
authors have added the leading-color contributions from
four-quark processes, folding in the decay of the W in
the zero-width approximation. They extended their
leading-color approximation to include nf-dependent

terms, and estimated the full-color result based on the
leading-order ratio of the full-color (FC) and leading-color
(LC) cross sections. The value of the double ratio
ð�NLO;FC=�NLO;LCÞ=ð�LO;FC=�LO;LCÞ they use implicitly
is quite sensitive to the inclusion of nf terms, and as noted

by the authors, sensitive to cancellations between the two-
quark and four-quark contributions. It is nonetheless inter-
esting that their estimate for the total cross section is within
a few percent of both our earlier result [34] and the full-
color one presented in this paper. It would be interesting to
test their estimates for various distributions against the
complete results presented here; we leave such a compari-
son to future work.

Next-to-leading order cross sections are built from sev-
eral ingredients: virtual corrections, computed from the
interference of tree-level and one-loop amplitudes; real-
emission corrections; and a mechanism for isolating and
integrating the infrared singularities in the latter. We evalu-
ate the one-loop amplitudes needed for W þ 3-jet produc-
tion at NLO using the BLACKHAT library [30]. This library
implements on-shell methods for one-loop amplitudes nu-
merically. Related methods have been implemented in
several other programs [29,31–33,43,44]. A numerical ap-
proach to amplitudes requires attention to numerical insta-
bilities induced by round-off error. We have previously
verified BLACKHAT’s stability for one-loop six-, seven-,
and eight-gluon amplitudes [30], and for leading-color
amplitudes for a vector boson with up to five partons
[45], using a flat distribution of phase-space points. In
the present work, we confirm the stability of BLACKHAT-
computed matrix elements for an ensemble of points
chosen in the same way as in the actual numerical integra-
tion of the cross section.

The real-emission corrections to the LO process arise
from tree-level amplitudes with one additional parton: an
additional gluon, or a quark–antiquark pair replacing a
gluon. To isolate and cancel the infrared divergences that
arise in the integration of these terms, we use the Catani–
Seymour dipole subtraction method [46], as implemented
[47] in the program AMEGIC++ [4], itself part of the SHERPA

framework [6]. (We also use AMEGIC++ for the required

tree-level matrix elements.) Other automated implementa-
tions of the dipole subtraction method have been presented
recently [48].
The smallness of the subleading-color corrections to the

specific leading-color approximation employed in
Ref. [34] allows us to use a ‘‘color-expansion sampling’’
approach [49]. In this approach the subleading-color terms,
while more time-consuming per phase-space point, are
sampled with lower statistics than the leading-color ones,
and therefore do not impose an undue burden on the
computer time required.
This paper is organized as follows. In Sec. II we sum-

marize our calculational setup, and demonstrate the nu-
merical stability of the one-loop matrix elements. In
Sec. III we present results for the Tevatron, using the
same experimental cuts as CDF. In Sec. IV we discuss
scale choices, showing that the choice of W transverse
energy typically used for Tevatron studies can lead to
significant distortions in the shapes of distributions over
the broader range of kinematics accessible at the LHC. We
advocate instead the use of scale choices that more accu-
rately reflect typical energy scales in the process, such as
the total partonic transverse energy, or a fixed fraction of it.
In Sec. V, we present a wide variety of distributions for the
LHC. We highlight two particular topics in subsequent
sections. Section VI examines properties of the leptons
produced by W decay in W þ 3 jet events. The different
pseudorapidity distributions for electrons and positrons are
presented. Then we show the ratios, betweenWþ andW�,
of the transverse energy distributions for both the charged
leptons and neutrinos. These two ratios have strikingly
different behavior at large ET , presumably due to the
effects of W polarization. In Sec. VII we present results
for the jet-emission probability, as a function of the pseu-
dorapidity separation of the leading two jets. These results
are relevant for searches for the Higgs boson in vector-
boson fusion production. In Sec. VIII, we discuss the
specific leading-color approximation used in our previous
study, and our approach to computing the subleading-color
terms. We give our conclusions in Sec. IX. Finally, in an
appendix we give values of squared matrix elements at a
selected point in phase space.

II. CALCULATIONAL SETUP

At NLO, theW þ 3-jet computation can be divided into
four distinct contributions:
(i) the leading-order contribution, requiring the tree-

level W þ 5-parton matrix elements;
(ii) the virtual contribution, requiring the one-loop W þ

5-parton matrix elements (built from the interference
of one-loop and tree amplitudes);

(iii) the subtracted real-emission contribution, requiring
the tree-level W þ 6-parton matrix elements, an ap-
proximation capturing their singular behavior, and
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integration of the difference over the additional-
emission phase space;

(iv) the integrated approximation (real-subtraction term),
whose infrared-singular terms must cancel the infra-
red singularities in the virtual contribution.

Each of these contributions must be integrated over the
final-state phase space, after imposing appropriate cuts,
and convoluted with the initial-state parton distribution
functions.

We evaluate these different contributions using a num-
ber of tools. We compute the virtual corrections using on-
shell methods, implemented numerically in BLACKHAT, as
outlined below. The subtraction term is built using Catani–
Seymour dipoles [46] as implemented [47] in AMEGIC++

[4]. This matrix-element generator is part of the SHERPA

package [6]. AMEGIC++ also provides our tree-level matrix
elements. The phase-space integration is handled by
SHERPA, using a multichannel approach [50]. The SHERPA

framework makes it simple to include various experimental
cuts on phase space, and to construct and analyze a wide
variety of distributions. With this setup, it is straightfor-
ward to make NLO predictions for any infrared-safe physi-
cal observable. We refer the reader to Refs. [4,6,47] for
descriptions of AMEGIC++, SHERPA, and the implementation
of the Catani–Seymour dipole subtraction method.

A. Subprocesses

The W þ 3-jet process, followed by leptonic W decay,

Tevatron: p �p
LHC: pp

�
! W� þ 3 jets ! e� �

ð�Þ
e þ 3 jets; (2.1)

receives contributions from several partonic subprocesses.
At leading order, and in the virtual NLO contributions,
these subprocesses are all obtained from

q �q0Q �Qg ! W� ! e� �
ð�Þ
e; (2.2)

q �q0ggg ! W� ! e� �
ð�Þ
e; (2.3)

by crossing three of the partons into the final state. The W
couples to the q-q0 line. We include the decay of the vector
boson (W�) into a lepton pair at the amplitude level. The
W can be off shell; the lepton-pair invariant mass is drawn
from a relativistic Breit-Wigner distribution whose width is
determined by the W decay rate �W . For definiteness we
present results forW bosons decaying to either electrons or
positrons (plus neutrinos). We take the leptonic decay
products to be massless; in this approximation the corre-
sponding results for � (and �) final states are of course
identical. Amplitudes containing identical quarks are gen-
erated by antisymmetrizing in the exchange of appropriate
q andQ labels. The light quarks, u, d, c, s, b, are all treated
as massless. We do not include contributions to the ampli-
tudes from a real or virtual top quark; its omission should
have a very small effect on the overall result. Except as

noted below, we use the same setup for the results we
report for W þ 1, 2-jet production.

B. Color organization of virtual matrix elements

To compute the production of W þ 3 jets at NLO, we
need the one-loop amplitudes for the processes listed in
Eqs. (2.2) and (2.3). Amplitudes in gauge theories are
naturally decomposed into a sum over permutations of
terms; each term is the product of a color factor and a
color-independent kinematic factor called a partial or
color-ordered amplitude. It is convenient to decompose
the one-loop amplitudes further, into a set of primitive
amplitudes [19,51]. These are the basic gauge-invariant
building blocks of the amplitude, in which the ordering
of all colored external legs is fixed, the direction of fermion
lines within the loop is fixed, and nf terms arising from

fermion loops are separated out. In BLACKHAT, the primi-
tive amplitudes are computed directly using the on-shell
methods reviewed in the next subsection. The primitive
amplitudes are then combined to obtain the partial ampli-
tudes. The virtual contributions are assembled by summing
over interferences of the one-loop partial amplitudes with
their tree-level counterparts.
In organizing the amplitude, it is useful to keep the

numbers of colors Nc and of flavors nf as parameters,

setting them to their standard model values only upon
evaluation. Matrix elements, whether at tree level or at
one loop, can be organized in an expansion dictated by
the Nc ! 1 limit. In this expansion, the standard
‘‘leading-color’’ contribution is the coefficient of the lead-
ing power of Nc, and ‘‘subleading-color’’ refers to terms
that are suppressed by at least one power of either 1=N2

c , or
nf=Nc from virtual quark loops. (The expansion in either

quantity terminates at finite order, so if all terms are kept,
the result is exact in 1=Nc.)
Only one primitive amplitude contributes at leading

order in 1=Nc to each leading-color partial amplitude.
Figure 1 shows sample ‘‘parent’’ color-ordered Feynman
diagrams for the leading-color primitive amplitudes
needed for W þ 3-jet production. Other diagrams contrib-
uting to a given primitive amplitude have fewer propaga-
tors in the loop. They can be obtained from the diagrams
shown by moving vertices off of the loop onto trees at-
tached to the loop, or by using four-gluon vertices, while

FIG. 1. Representative diagrams contributing at leading order
in an expansion in the number of colors to the qg ! e�q0gg and
q �Q ! e�q0g �Q one-loop amplitudes. The e� pair couples to the
quarks via a W boson.

C. F. BERGER et al. PHYSICAL REVIEW D 80, 074036 (2009)

074036-4



preserving the cyclic (color) ordering of the external legs
and the planar topology of the diagram. In the leading-
color primitive amplitudes, the W boson is between the q
and q0 external legs, with no other partons in between.

In subleading-color terms, a greater number and variety
of primitive amplitudes appear, and some primitive ampli-
tudes contribute to more than one subleading-color partial
amplitude. A few of the parent diagrams for subleading-
color primitive amplitudes are shown in Fig. 2. In such
diagrams, either another parton appears between the W
boson and either q or q0, or a gluon is emitted between Q
and �Q in process (2.2), or the diagram contains a closed
fermion loop. In the present paper, we include all
subleading-color contributions. In Sec. VIII, we discuss
in greater detail how to evaluate the full virtual cross
section efficiently by taking advantage of the smallness
of the subleading-color contributions.

C. On-shell methods

The computation of one-loop partonic amplitudes has
presented until recently a bottleneck to NLO predictions
for hadronic production of four or more final-state objects
( jets included). The on-shell method has broken this bottle-
neck. This approach is based on the unitarity method [20],
including its newer refinements, together with on-shell
recursion relations [52] at one loop [53]. The refinements
[54–57] rely on the use of complex momenta, generalized
unitarity and the analytic structure of integrands, as well as
subtractions to make efficient use of the known basis of
one-loop integrals. The one-loop matrix elements [19] used
by the MCFM program [22] for NLO predictions of W þ
2-jet production were computed analytically using an early
version of this approach, and indeed served to introduce the
use of generalized unitarity [58] as an efficient technique
for loop computations. As applied to hadron colliders,
these matrix elements have three final-state objects.
Feynman-diagram calculations have also reached into
this domain [9]. Beyond this, improved integral reduction
techniques [59] have even made possible the computation
of matrix elements for four final-state objects [28,60] and
NLO predictions using them.

Nonetheless, textbook Feynman-diagrammatic ap-
proaches suffer from a factorial increase in complexity
(or exponential if color ordered) and increasing degree of

tensor integrals, with increasing number of external legs.
The unitarity method for one-loop amplitudes, in contrast,
can be cast in a form with only a polynomial increase in
complexity per color-ordered helicity configuration
[30,31,61]. This suggests that it will have an increasing
advantage with increasing jet multiplicity. At fixed multi-
plicity, on-shell methods gain their improved efficiency by
removing ab initio the cancellation of gauge-variant terms,
and eliminating the need for tensor-integral (or higher-
point integral) reductions. The problem is reduced to the
computation of certain rational functions of the kinematic
variables, to which efficient treelike techniques can be
applied. On-shell methods have also led to a host of
analytic results, including one-loop amplitudes in QCD
with an arbitrary number of external legs, for particular
helicity assignments [53,61]. The reader may find reviews
and further references in Refs. [9,27,62].
The BLACKHAT library implements on-shell methods for

one-loop amplitudes numerically. We have described the
computation of amplitudes using BLACKHAT elsewhere
[30,45]. We limit ourselves here to an overview, along
with a discussion of new features that arise when we
include subleading-color contributions to the cross section.
Any one-loop amplitude can be written as a sum of terms

containing branch cuts in kinematic invariants, Cn, and
terms free of branch cuts, Rn,

An ¼ Cn þ Rn: (2.4)

The cut part Cn can in turn be written as a sum over a basis
of scalar integrals [63],

Cn ¼ X
i

diI
i
4 þ

X
i

ciI
i
3 þ

X
i

biI
i
2: (2.5)

The scalar integrals Ii2;3;4—bubbles, triangles, and boxes—

are known functions [64]. They contain all the amplitude’s
branch cuts, packaged inside logarithms and dilogarithms.
(Massive particles propagating in the loop would require
the addition of tadpole contributions.) We take all external
momenta to be four dimensional. Following the spinor-
helicity method [12,65], we can then reexpress all external
momenta in terms of spinors. The coefficients of these
integrals, bi, ci, and di, as well as the rational remainder
Rn, are then all rational functions of spinor variables, and
more specifically of spinor products. The problem of cal-

FIG. 2. Representative diagrams contributing only at subleading order in an expansion in the number of colors to the qg ! e�q0gg
and q �Q ! e�q0g �Q one-loop amplitudes. In such contributions, either an external gluon, or a gluon splitting to a �QQ pair, is emitted
from the q-q0 line, between the W boson and one of the external quarks, q or q0, in the cyclic ordering of the external legs.
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culating a one-loop amplitude then reduces to the problem
of determining these rational functions.

Generalized unitarity improves upon the original unitar-
ity approach by isolating smaller sets of terms, hence
making use of simpler on-shell amplitudes as basic build-
ing blocks. Furthermore, by isolating different integrals, it
removes the need for integral reductions; and by comput-
ing the coefficients of scalar integrals directly, it removes
the need for tensor reductions. Britto, Cachazo and Feng
[54] showed how to combine generalized unitarity with a
twistor-inspired [66] use of complex momenta to express
all box coefficients as a simple sum of products of tree
amplitudes. Forde [57] showed how to extend the tech-
nique to triangle and bubble coefficients. His method uses a
complex parametrization and isolates the coefficients at
specific universal poles in the complex plane. It is well
suited to analytic calculation. Upon trading series expan-
sion at infinity for exact contour integration via discrete
Fourier summation [30], the method can be applied to
numerical calculation as well, where it is intrinsically
stable. Generalized unitarity also meshes well with the
subtraction approach to integral reduction introduced by
Ossola, Papadopoulos, and Pittau (OPP) [55]. As described
in Ref. [30], in BLACKHATwe use Forde’s analytic method,
adapted to a numerical approach. We evaluate the boxes
first, then the triangles, followed by the bubbles; the ra-
tional terms are computed separately. For each term com-
puted by cuts, we enhance the numerical stability of
Forde’s method by subtracting prior cuts. This is similar
in spirit to, though different in details from, one aspect of
the OPP approach, in which all prior integral coefficients
are subtracted at each stage.

The terms Rn, which are purely rational in the spinor
variables, cannot be computed using four-dimensional uni-
tarity methods. At present, there are two main choices for
computing these contributions within a process-
nonspecific numerical program: on-shell recursion and
D-dimensional unitarity. Loop level on-shell recursion
[53,61] is based on the tree-level on-shell recursion of
Britto, Cachazo, Feng and Witten [52]. The utility of
D-dimensional unitarity [43,44,62,67–69] grows out of
the original observation [70] by van Neerven that disper-
sion integrals in dimensional regularization have no sub-
traction ambiguities. Accordingly the unitarity method in
D dimensions retains all rational contributions to ampli-
tudes [67]. This version of unitarity, in which tree ampli-
tudes are evaluated in D dimensions, has been used in
various analytic [68] and numerical [29,31–
33,43,44,69,71] studies. We have implemented on-shell
recursion in BLACKHAT, along with a ‘‘massive continu-
ation’’ approach—related to D-dimensional unitarity—
along the lines of Badger’s method [72]. We speed up the
on-shell recursion by explicitly evaluating some spurious
poles analytically. Both approaches are used for our evalu-
ation of theW þ 3-jet virtual matrix elements. For produc-

ing the plots in this paper, we use on-shell recursion for the
computation of primitive amplitudes with all negative
helicities adjacent. These amplitudes have a simple pattern
of spurious poles [61] (poles which cancel between the cut
part Cn and rational part Rn). For them, on-shell recursion
is faster than massive continuation in the present
implementation.

BLACKHAT’s use of four-dimensional momenta allows it

to rely on powerful four-dimensional spinor techniques
[12,65,73] to express the solutions for the loop momenta
in generalized unitarity cuts in a numerically stable form
[30]. In the computation of the rational terms using on-
shell recursion, it also allows convenient choices for the
complex momentum shifts. In four dimensions one can
also employ simple forms of the tree amplitudes that serve
as basic building blocks. While spinor methods arise most
naturally in amplitudes with massless momenta, it is
straightforward to include uncolored massive external
states such as the W boson [12]. The methods are in fact
quite general, and can also be applied usefully to one-loop
amplitudes with internal massive particles, or external
massive ones such as top quarks (treated in the narrow-
width approximation) [43,74].
With the current version of BLACKHAT, the evaluation of

a complete helicity-summed leading-color virtual interfer-
ence term for a two-quark partonic subprocess (2.3), built
out of all the primitive amplitudes, takes 530 ms on aver-
age for each phase-space point, on a 2.33 GHz Xeon
processor. The evaluation of a complete four-quark par-
tonic subprocess (2.2) with distinct quarks takes 185 ms
(identical quarks take twice as long). The mix of subpro-
cesses leads to an evaluation time of 470 ms on average for
each phase-space point. (As described in Sec. II F, in
performing the phase-space integration we sample a single
subprocess at each point.) Using the ‘‘color-expansion
sampling’’ approach we shall discuss in Sec. VIII, evaluat-
ing the subleading-color contributions would multiply this
time by about 2.4, giving an average evaluation time of
1.1 s for the full color calculation.

D. Numerical stability of virtual contributions

BLACKHAT computes matrix elements numerically using

on-shell methods. In certain regions of phase space, par-
ticularly near the vanishing loci of Gram determinants
associated with the scalar integrals Ii2;3;4, there can be large

cancellations between different terms in the expansion
(2.5) of the cut part Cn, or between the cut part and the
rational part Rn in Eq. (2.4). There can also be numerical
instabilities in individual terms. For example, the recursive
evaluation of Rn includes a contribution from residues at
spurious poles in the complex plane. These residues are
computed by sampling points near the pole, in an approxi-
mation to a contour integral which can be spoiled if another
pole is nearby.
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In normal operation, BLACKHAT performs a series of
tests to detect any unacceptable loss of precision.
Whenever BLACKHAT detects such a loss, it reevaluates
the problematic contributions to the amplitude (and only
those terms) at that phase-space point using higher-
precision arithmetic (performed by the QD package
[75]). This approach avoids the need to analyze in detail
the precise origin of instabilities and to devise work-
arounds for each case. It does of course require that results
be sufficiently stable, so that the use of higher precision is
infrequent enough to incur only a modest increase in the
overall evaluation time; this is indeed the case.

The simplest test of stability is checking whether the
known infrared singularity of a given matrix element has
been reproduced correctly. As explained in Ref. [30], this
check can be extended naturally to check individual
spurious-pole residues. Another test checks the accuracy
of the vanishing of certain higher-rank tensor coefficients.
From the interaction terms in the (renormalizable) QCD
Lagrangian we know on general grounds which high-rank
tensor coefficients have to vanish. All tensors with rank
greater than m must vanish, for the m-point integrals with
m ¼ 2, 3, 4. If the integral corresponds to a cut line that is
fermionic, then the maximum rank is reduced by one. In
our approach the values of the higher-rank tensor coeffi-
cients may be computed without much extra cost in com-
putation time. For a given generalized unitarity cut, when
using complex loop-momentum parametrizations along the
lines of Ref. [30], these tensor coefficients appear as co-
efficients of specific monomials in the complex parame-
ters. Their values may be extracted as a by-product of
evaluating the scalar integral coefficients. Similarly, in
the massive continuation approach to computing the ra-
tional terms, particular tensor coefficients can be associ-
ated with specific monomials in the complex parameters
and in an auxiliary complex mass parameter entering the
loop-momentum parametrization.

We apply the latter check when computing coefficients
of scalar bubble integrals, as well as bubble contributions
to the rational terms in the massive continuation approach.
The value of this check is twofold. First, it focuses on a
small part of the computation, namely, single bubble co-
efficients. This allows BLACKHAT to recompute at higher
precision just the numerically-unstable contributions, in-
stead of the entire amplitude. By contrast, the above-
mentioned check of the infrared singularity assesses the
precision of the entire cut part Cn of the given primitive
amplitude, and so it requires more recomputation if it fails.
Second, the check applied to the bubble contributions in
the massive continuation approach assesses the precision
of the rational part Rn, which is inaccessible to the
infrared-singularity check.

Finally, a further class of tests of numerical precision
looks for large cancellations between different parts of An,
in particular, between Cn and Rn in Eq. (2.4).

We have previously assessed the numerical stability of
BLACKHAT for six-, seven-, and eight-gluon one-loop am-

plitudes [30], as well as for the leading-color amplitudes
for a vector boson with up to five partons [45] used in the
present study. These earlier studies used a flat phase-space
distribution. Here we show the stability of BLACKHAT over
phase-space points selected in the same way as in the
computation of cross sections and distributions. As will
be discussed in Sec. II F, the phase-space points are se-
lected using an integration grid that has been adapted to the
leading-order cross section.
In Fig. 3, we illustrate the numerical stability of the

leading-color virtual interference term (or squared matrix
element), d�V , summed over colors and over all helicity
configurations for two subprocesses, gd ! e� ��d �du and
gd ! e� ��ggu. (The grid here has been adapted to each of
the subprocesses individually, instead of to the sum over
subprocesses.) We have checked that the other subpro-
cesses are similarly stable. The horizontal axis of Fig. 3
shows the logarithmic error,

log10

�jd�num
V � d�

target
V j

jd�target
V j

�
; (2.6)

for each of the three components: 1=�2, 1=�1 and �0, where
� ¼ ð4�DÞ=2 is the dimensional regularization parame-
ter. The targets have been computed by BLACKHAT using
multiprecision arithmetic with at least 32 decimal digits,
and 64 if the point is deemed unstable. The overwhelming
majority (99.9%) of events are computed to better than one
part in 104—that is, to the left of the ‘‘�4’’ mark on the
horizontal axis.
We have also examined distributions in which each bin

is weighted by the requisite squared matrix element and
Jacobian factors. We find that they have quite similar
shapes to the unweighted distributions shown in Fig. 3.
This implies that the few events with a relative error larger
than 10�4 make only a small contribution to the total cross
section. We have verified that the difference between nor-
mal and high-precision evaluation in the total cross section,
as well as bin-by-bin for all distributions studied, is at least
3 orders of magnitude smaller than the corresponding
numerical integration error.

E. Real-emission corrections

In addition to the virtual corrections to the cross section
provided by BLACKHAT, a NLO calculation also requires
the real-emission corrections to the LO process. These
terms arise from tree-level amplitudes with one additional
parton: an additional gluon, or a quark–antiquark pair
replacing a gluon. Representative real-emission diagrams
are shown in Fig. 4. Infrared singularities develop when the
extra parton momentum is integrated over phase-space
regions unresolved by the jet algorithm or jet cuts. The
resulting singular integrals cancel against singular terms in
the virtual corrections, and against counter-terms associ-
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ated with the evolution of parton distributions. As men-
tioned above, to carry out these cancellations, we use the
Catani–Seymour dipole subtraction method [46] as imple-
mented [47] in the program AMEGIC++ [4], which is part of
the SHERPA framework [6]. This implementation of dipole
subtraction has already been tested [47] in explicit com-
parisons against the DISENT program [76].

The implementation introduces two free parameters,
�cut and �dipole. The first, �cut, parametrizes the volume

of phase space to be cut out around the soft or collinear
singularity. From an analytic point of view, �cut could be
taken to zero, as the cancellation of counterterms against
the matrix element’s singularities is exact. In numerical
implementations, however, round-off error can spoil this
cancellation. Previous studies have shown that the final
result is independent of this cut-off parameter once it is
sufficiently small [47]. We use �cut ¼ 10�8.

The second parameter, �dipole, characterizes a common

modification of subtraction terms in phase space away
from the singularity [77], restricting the support of a given
subtraction term to the vicinity of its singularity. This
allows the program to compute only a subset of dipole
terms, as many will now be identically zero at a given

phase-space point. Because the number of dipole terms is
large (scaling as m3 for processes containing m partons),
this reduces the computational burden considerably. We
run our code with several different values of �dipole, and

check the independence of the final result on the value of
�dipole (0<�dipole � 1). For example, the LHCW� results

for �dipole ¼ 0:03 agree with those for �dipole ¼ 0:01 to

better than half a percent, within the integration errors. We
have also run a large number of other lower-statistics
checks demonstrating that cross sections are independent
of the choice of �dipole. Our default choice for the LHC is

�dipole ¼ 0:03, while for the Tevatron it is �dipole ¼ 0:01.

F. Phase-space integration

Along with the automated generation of matrix elements
and dipole terms, SHERPA also provides Monte Carlo in-
tegration methods. The phase-space generator combines
a priori knowledge about the behavior of the integrands in
phase space with self-adaptive integration methods. It em-
ploys a multichannel method in the spirit of Ref. [50].
Single channels (phase-space parametrizations) are gener-
ated by AMEGIC++ together with the tree-level matrix ele-

FIG. 4. Representative diagrams for the eight-point tree-level amplitudes, qg ! e�q0ggg, qg ! e�q0gQ �Q, and q �q0 !
e�Q1

�Q1Q2
�Q2. The e� pair couples to the quarks via a W boson.
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FIG. 3 (color online). The distribution of the relative error in the leading-color virtual cross section for two subprocesses, gd !
e� ��d �du and gd ! e� ��ggu. The phase-space points are selected in the same way as those used to compute cross sections at the LHC.
The horizontal axis is the logarithm of the relative error (2.6) between an evaluation by BLACKHAT, running in production mode, and a
target expression evaluated using higher precision with at least 32 decimal digits (or up to 64 decimal digits for unstable points). The
vertical axis shows the number of events out of 100 000 with the corresponding error. The dashed (black) line shows the 1=�2 term; the
solid (red) curve, the 1=� term; and the shaded (blue) curve, the finite (�0) term.
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ments. Each parametrization reflects the structure of a
Feynman amplitude, roughly reproducing its resonances,
decay kinematics, and its soft and collinear structure. The
most important phase-space parametrizations, determined
by the adapted relative weight within the multichannel
setup, are further refined using VEGAS [78].

The phase-space optimization (adaptation of channel
weights and VEGAS grids) is performed in independent
runs before the actual computation starts. The optimization
is done on the sum of all contributing parton-level pro-
cesses. We refer collectively to all the parameters of the
optimization as the integration grid. Separate integration
grids are constructed for the LO terms and for the real-
emission contributions. To integrate the virtual contribu-
tions, we reuse the grid constructed for the LO terms. This
procedure avoids the computational expense of evaluating
the virtual terms merely for grid construction. The virtual
to LO ratio is sufficiently flat across phase space that this
results in only a slight inefficiency when evaluating
distributions.

Following the initialization phase, the integration grids
are frozen. In the ensuing production phase, we sample
over subprocesses so that only a single parton-level sub-
process is evaluated per phase-space point, selected with a
probability proportional to its contribution to the total cross
section. We choose to integrate the real-emission terms
over about 108 phase-space points, the leading-color vir-
tual parts over 2� 106 phase-space points and the
subleading-color virtual parts over 105 phase-space points.
The LO and real-subtraction pieces are run separately with
107 points each. These numbers are chosen to achieve a
total integration error of half a percent or less. For a given
choice of scale �, they give comparable running times for
the real-emission and virtual contributions. Running times
for leading- and subleading-color virtual contributions are
also comparable.

G. Couplings and parton distributions

We work to leading order in the electroweak coupling
and approximate the Cabibbo-Kobayashi-Maskawa
(CKM) matrix by the unit matrix. This approximation
causes a rather small change in total cross sections for
the cuts we impose, as estimated by LO evaluations using
the full CKMmatrix. At the Tevatron, the full CKM results
are about 1% smaller than with the unit CKM matrix; the

difference is even smaller at the LHC. We express the
W-boson couplings to fermions using the standard model
input parameters shown in Table I. The parameter g2w is
derived from the others via,

g2w ¼ 4��QEDðMZÞ
sin2�W

: (2.7)

We use the CTEQ6M [79] parton distribution functions
(PDFs) at NLO and the CTEQ6L1 set at LO. The value of
the strong coupling is fixed accordingly, such that
�SðMZÞ ¼ 0:118 and �SðMZÞ ¼ 0:130 at NLO and LO,
respectively. We evolve �Sð�Þ using the QCD beta func-
tion for five massless quark flavors for �<mt, and six
flavors for �>mt. (The CTEQ6 PDFs use a five-flavor
scheme for all �>mb, but we use the SHERPA default of
six-flavor running above top-quark mass; the effect on the
cross section is very small, on the order of 1% at larger
scales.) At NLO we use two-loop running, and at LO, one-
loop running.

H. Kinematics and observables

As our calculation is a parton-level one, we do not apply
corrections due to nonperturbative effects such as those
induced by the underlying event or hadronization. CDF has
studied [35] these corrections at the Tevatron, and found
they are under 10% when the nth jet ET is below 50 GeV,
and under 5% at higher ET .
For completeness we state the definitions of standard

kinematic variables used to characterize scattering events.
We denote the angular separation of two objects (partons,
jets or leptons) by

�R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�	Þ2 þ ð�
Þ2

q
; (2.8)

with�	 the difference in the azimuthal angles, and�
 the
difference in the pseudorapidities. The pseudorapidity 
 is
given by


 ¼ � ln

�
tan

�

2

�
; (2.9)

where � is the polar angle with respect to the beam axis.
The transverse energies of massless outgoing partons

and leptons, ET ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
, can be summed to give the

total partonic transverse energy, ĤT , of the scattering
process,

Ĥ T ¼ X
p

Ep
T þ Ee

T þ E�
T: (2.10)

All partons p and leptons are included in ĤT , whether or
not they are inside jets that pass the cuts. We shall see in

later sections that the variable ĤT represents a good choice
for the renormalization and factorization scale of a given
event. Although the partonic version is not directly mea-
surable, for practical purposes as a scale choice, it is

TABLE I. Electroweak parameters used in this work.

parameter value

�QEDðMZÞ 1=128:802
MW 80.419 GeV

sin2�W 0.230

�W 2.06 GeV

g2w 0.4242 (calculated)
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essentially equivalent (and identical at LO) to the more
usual jet-based total transverse energy,

HT ¼ X
j

E
jet
T;j þ Ee

T þ E�
T: (2.11)

The partonic version ĤT has the advantage that it is inde-
pendent of the cuts; thus, loosening the cuts will not affect
the value of the matrix element, because a renormalization

scale of ĤT will be unaffected. On the other hand, we use
the jet-based quantity HT , which is defined to include only
jets passing all cuts, to compute observable distributions.
Note that for W þ n-jet production at LO, exactly n jets
contribute to Eq. (2.11); at NLO either n or nþ 1 jets may
contribute.

The jet four-momenta are computed by summing the
four-momenta of all partons that are clustered into them,

pjet
� ¼ X

i2jet

pi�: (2.12)

The transverse energy is then defined in the usual way, as
the energy multiplied by the momentum unit vector pro-
jected onto the transverse plane,

Ejet
T ¼ Ejet sin�jet: (2.13)

The total transverse energy as defined in Eq. (2.11) is
intended to match the experimental quantity, given by the
sum,

H
exp
T ¼ X

j

E
jet
T;j þ Ee

T þ E6 T; (2.14)

where E6 T is the missing transverse energy. Jet invariant
masses are defined by

M2
ij ¼ ðpjet

i þ pjet
j Þ2; (2.15)

and the jets are always labeled i; j ¼ 1; 2; 3; . . . in order of
decreasing transverse energy ET , with 1 being the leading
(hardest) jet. The transverse mass of the W-boson is com-
puted from the kinematics of its decay products,W ! e�e,

MW
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ee

TE
�
Tð1� cosð�	e�ÞÞ

q
: (2.16)

I. Checks

We have carried out numerous checks on our code,
ranging from checks of the basic primitive amplitudes in
specific regions of phase space to overall checks of total
and differential distributions against existing codes. We
have compared our results for the total cross section for
W þ 1,2-jet production (at a fixed scale� ¼ MW) with the
results obtained from running MCFM [22]. Because the
publicly available version of MCFM does not allow a cut
in MW

T we eliminated this cut in the comparison. (We had
previously compared the matrix elements used in the latter
code obtained from Ref. [19], to the results produced

purely numerically in BLACKHAT.) Agreement at LO and
NLO forW þ 1-jet production at the LHC is good to a per
mille level. For W þ 2-jet production, at LO we find
agreement with MCFM within a tenth of a percent, while
at NLO, where the numerical integration is more difficult,
we find agreement to better than half a percent.1 We find
the same level of agreement at NLO at the Tevatron, using
a different set of cuts.2

We have carried out extensive validations of our code at
a finer-grained level. We have confirmed that the code
reproduces the expected infrared singularities (poles in �)
for the primitive amplitudes and the full color-dressed one-
loop amplitudes [46,80]. We have also confirmed that the
poles in � in the full virtual cross section cancel against
those found in the integrated real-subtraction terms [47].
We checked various factorization limits, both two-

particle (collinear) and multiparticle poles. These factori-
zation checks are natural in the context of on-shell recur-
sion. This method constructs the rational terms using a
subset of the collinear and multiparticle factorization
poles; the behavior in other channels constitutes an inde-
pendent cross check. For the leading-color primitive am-
plitudes, we verified that all factorization limits of the
amplitudes are correct. (We also checked that all spurious
poles cancel.) For the subleading-color primitive ampli-
tudes, we verified the correct behavior as any two parton
momenta become collinear. We also checked at least one
collinear limit for each partial amplitude.
We had previously computed the leading-color ampli-

tudes for the subprocess (2.3) in Ref. [45]. Ellis et al. [71]
confirmed these values, and also computed the subleading-
color primitive amplitudes. This evaluation used
D-dimensional generalized unitarity [44,67,68], a decom-
position of the processes in Eqs. (2.2) and (2.3) into primi-
tive amplitudes [19,51], and the OPP formalism for
obtaining coefficients of basis integrals [55]. We have
compared the subleading-color primitive amplitudes at a
selected phase-space point to the numerical values reported
in Ref. [71], and find agreement, up to convention-
dependent overall phases. Van Hameren, Papadopoulos,
and Pittau (HPP) recently computed [33] the full helicity-
and color-summed virtual cross section for the subprocess
u �d ! Wþggg at another phase-space point, for an unde-
cayed on-shell W boson and including (small) virtual top-
quark contributions. They used the OPP formalism and the
CUTTOOLS [29] and HELAC-1L [3,33] codes. We have com-

1This level of agreement holds only for the most recent MCFM

code, version 5.5. We thank John Campbell and Keith Ellis for
assistance with this comparison. Here we matched MCFM by
including approximate top-quark loop contributions, as given in
Ref. [19], and we adopted MCFM’s electroweak parameter
conventions.

2In performing this comparison, we used a previous version of
MCFM. The differences between the two versions at the Tevatron
should be minor.
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pared the full squared matrix element to the result pro-
duced by the HPP code, with the top-quark contributions
removed.3 We find agreement with their value of the ratio
of this quantity to the LO cross section.4 We have also
found agreement with matrix-element results from the
same code, allowing the W boson to decay to leptons, as
in our setup. We give numerical values of the squared
matrix elements for an independent set of subprocesses,
evaluated at a different phase-space point, in an appendix.

As mentioned earlier, we verified that the computed
values of the virtual terms are numerically stable when
integrated over grids similar to those used for computing
the cross section and distributions. We also checked that
our integrated results do not depend on �dipole, the unphys-

ical parameter controlling the dipole subtraction [77],
within integration uncertainties.

III. TEVATRON RESULTS

In this section we present next-to-leading order results
for W þ 3-jet production in p �p collisions at

ffiffiffi
s

p ¼
1:96 TeV, the experimental configuration at the Tevatron.
We decay the W bosons into electrons or positrons (plus
neutrinos) in order to match the CDF study [35]. In our
earlier paper [34], we presented results for the third jet’s
transverse energy (ET) distribution as well as the total
transverse energy (HT) distribution. Those calculations
employed a particular leading-color approximation for
the virtual terms [34]. As discussed in Sec. VIII, this
approximation is an excellent one, accurate to within 3%.
In the present paper, we give complete NLO results for a
larger selection of distributions, including all subleading-
color terms. It would be interesting to compare the new
distributions with experimental results from both CDF and
D0, as they become available.

We use the same jet cuts as in the CDF analysis [35],

E
jet
T > 20 GeV; j
jetj< 2: (3.1)

Following Ref. [35], we quote total cross sections using a

tighter jet cut, E
jet
T > 25 GeV. We order jets by ET . Both

electron and positron final states are counted, using the
same lepton cuts as CDF,

Ee
T > 20 GeV; j
ej< 1:1;

E6 T > 30 GeV; MW
T > 20 GeV:

(3.2)

(We replace the E6 T cut by one on the neutrino E�
T .) CDF

also imposes a minimum �R between the charged decay
lepton and any jet; the effect of this cut, however, is undone

by a specific acceptance correction [81]. Accordingly, we
do not impose it.
For the LO and NLO results for the Tevatron we use an

event-by-event common renormalization and factorization
scale, set equal to the W boson transverse energy,

� ¼ EW
T �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

W þ p2
TðWÞ

q
: (3.3)

To estimate the scale dependence we choose five values:

�=2, �=
ffiffiffi
2

p
, �,

ffiffiffi
2

p
�, 2�.

The CDF analysis used the JETCLU cone algorithm [82]
with cone radius R ¼ 0:4. This algorithm is not generally
infrared safe at NLO, so we use the seedless cone algo-
rithm SISCONE [37] instead. Like other cone-type algo-
rithms, SISCONE gives rise to jet-production cross
sections that can depend on an overlap threshold or merg-
ing parameter, here called f. No dependence on f can
develop at LO, because such dependence would require
the presence of partons in the overlap of two cones. The
W þ 1-jet production cross section likewise cannot depend
on f at NLO. We set this parameter to 0.5. (Unless stated
otherwise we take this algorithm and parameter choice as
our default.)
We expect similar results at the partonic level from any

infrared-safe cone algorithm. For W þ 1, 2-jet production
we have confirmed that distributions using SISCONE are
within a few percent of those obtained with MCFM using
the midpoint cone algorithm [83]. (The midpoint algorithm
is infrared-safe at NLO forW þ 1, 2-jet production, but not
forW þ 3-jet production [37].) The algorithm dependence
of W þ 3-jet production at the Tevatron at NLO has also
been discussed recently by Ellis et al. [42].
In Table II, we collect the results for the total cross

section, comparing CDF data to the LO and NLO theoreti-
cal predictions computed using BLACKHAT and SHERPA. In
both cases these are parton-level cross sections. Results
from more sophisticated (‘‘enhanced’’) LO analyses incor-
porating parton showering and matching schemes [7,8,84]
may be found in Ref. [35]; however, large scale depen-

TABLE II. Total inclusive cross sections, in pb, forW þ n jets

produced at the Tevatron with W ! e� and E
nth-jet
T > 25 GeV,

using the experimental cuts of Ref. [35]. The first column gives
the experimental results as measured by CDF. The experimental
statistical, systematic and luminosity uncertainties have been
combined in quadrature. The second column shows LO results,
and the third column the complete NLO results. In each case, the
scale dependence is quoted in super- and subscripts and the
numerical integration uncertainties in parentheses.

number

of jets

CDF LO NLO

1 53:5� 5:6 41:40ð0:02Þþ7:59
�5:94 57:83ð0:12Þþ4:36

�4:00

2 6:8� 1:1 6:159ð0:004Þþ2:41
�1:58 7:62ð0:04Þþ0:62

�0:86

3 0:84� 0:24 0:796ð0:001Þþ0:488
�0:276 0:882ð0:005Þþ0:057

�0:138

3We thank Costas Papadopoulos and Roberto Pittau for pro-
viding us with these numbers.

4We can recover an undecayed W by integrating over the
lepton phase space; that integral in turn can be done to high
precision by replacing it with a discrete sum over carefully
chosen points.
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dences still remain. (These calculations make different
choices for the scale variation and are not directly compa-
rable to the LO parton-level predictions given here.) As in
the experimental analysis, we sum the W� and Wþ cross
sections, which are identical at the Tevatron (for forward-
backward symmetric acceptance cuts).

We have also computed the W þ 2-jet and W þ 3-jet
total cross sections at NLO with a larger merging parame-
ter, f ¼ 0:75. (CDF uses a value of f ¼ 0:75 [35], but for a
different, infrared-unsafe algorithm, JETCLU.) The value of
the NLOW þ 3-jet production cross section of 0.882 pb in
Table II then increases to 0.917 pb (about 4%). The W þ
2-jet production cross section shows a more modest in-
crease from 7.62 pb to 7.69 pb (about 1%). Distributions,
as, for example, the ones shown in Fig. 5 (see also
Table III), follow a similar bin-by-bin dependence on f.

In Fig. 5, we compare the ET distribution of the second-
and third-most energetic jets in CDF data [35] to the NLO
predictions for W þ 2-jet and W þ 3-jet production, re-
spectively. For convenience, in Table III we collect the data
used to construct the third-jet ET plot in Fig. 5. We include
scale-dependence bands obtained as described above.5 The

experimental statistical and systematic uncertainties (ex-
cluding an overall luminosity uncertainty of 5.8%) have
been combined in quadrature. The upper panels of Fig. 5
show the distribution itself, while the lower panels show
the ratio of the LO value and of the data to the NLO result
for the central value of � ¼ EW

T . Note that we normalize
here to the NLO result, not to LO as done elsewhere. The
LO/NLO curve in the bottom panel represents the inverse
of the so-called K factor (NLO to LO ratio).
We do not include PDF uncertainties in our analysis. For

W þ 1, 2-jet production at the Tevatron these uncertainties
have been estimated in Ref. [35]. For these processes, they

20 40 60 80 100 120 140 160 180 200

10
-4

10
-3

10
-2

10
-1

10
0

dσ
 / 

dE
T
   

 [
 p

b 
/ G

eV
 ]

LO
NLO
CDF data

20 40 60 80 100 120 140 160 180 200

Second  Jet  E
T
   [ GeV ]

0.5

1

1.5

2 LO / NLO
CDF / NLO

NLO scale dependence

W + 2 jets + X

BlackHat+Sherpa

LO scale dependence

E
T

jet
  >  20 GeV,  | ηjet

 |  <  2 

E
T

e
  >  20 GeV,   | ηe

 |   <  1.1

E
T/     >  30 GeV, M

T

W
  > 20 GeV

R   =   0.4   [siscone]

√
⎯
s   =  1.96 TeV

µ
R
  = µ

F
  = E

T

W

20 30 40 50 60 70 80 90

10
-3

10
-2

10
-1

dσ
 / 

dE
T
   

 [
 p

b 
/ G

eV
 ]

LO
NLO
CDF data

20 30 40 50 60 70 80 90

Third  Jet  E
T
   [ GeV ]

0.5

1

1.5

2 LO / NLO
CDF / NLO

NLO scale dependence

W + 3 jets + X

BlackHat+Sherpa

LO scale dependence

E
T

jet
  >  20 GeV,  | ηjet

 |  <  2 

E
T

e
  >  20 GeV,   | ηe

 |   <  1.1

E
T/     >  30 GeV, M

T

W
  > 20 GeV

R   =   0.4   [siscone]

√
⎯
s   =  1.96 TeV

µ
R
  = µ

F
  = E

T

W

FIG. 5 (color online). The measured cross section, d�ðp �p ! e�þ � n-jetsÞ=dEnth-jet
T , for inclusive W þ n-jet production, com-

pared to full NLO predictions for n ¼ 2, 3. In the upper panels the NLO distribution is the solid (black) histogram, and CDF data points
are the (red) points, whose inner and outer error bars, respectively, denote the statistical and total uncertainties (excluding the
luminosity error) on the measurements added in quadrature. The LO predictions are shown as dashed (blue) lines. The thin vertical
lines in the center of each bin (where visible) give the numerical integration errors for that bin. Each lower panel shows the distribution
normalized to the full NLO prediction, using the CDF experimental bins (that is, averaging over bins in the upper panel). The scale-
dependence bands are shaded (gray) for NLO and crosshatched (brown) for LO.

TABLE III. The differential cross sections, d�ðp �p ! e�þ �
3-jetsÞ=dE3rd-jet

T , for W þ 3-jet production at the Tevatron using

the experimental cuts (3.1) and (3.2) of Ref. [35]. This table
corresponds to the values plotted in Fig. 5.

E
3rd-jet
T d�=dE

3rd-jet
T (pb/GeV)

CDF LO NLO

20–25 0:184� 0:0394 0:131þ0:0769
�0:0443 0:160þ0:0205

�0:0277

25–30 0:087� 0:0268 0:066þ0:0393
�0:0224 0:077þ0:0075

�0:0126

30–35 0:037� 0:0153 0:036þ0:0216
�0:0123 0:041þ0:0036

�0:0068

35–45 0:020� 0:0125 0:017þ0:0103
�0:0058 0:018þ0:0009

�0:0027

45–80 0:0015� 0:001 77 0:0032þ0:002 07
�0:001 14 0:0031þ0:000 15

�0:000 41

5We emphasize that the scale-uncertainty bands are only rough
estimates of the theoretical error, which would properly be given
by the difference between an NLO result and one to higher order
(next-to-next-to-leading order).
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are smaller than uncertainties associated with NLO scale
dependence at low jet ET , but larger at high ET .

For reference, we also show the LO distributions and
corresponding scale-dependence bands. The NLO predic-

tions match the data very well, and uniformly (without any
difference in slope) in all but the highest ET experimental
bin. The central values of the LO predictions, in contrast,
have different shapes from the data. In the upper panels, we
have used 5 GeV bins to plot the predictions, and have
superposed the data points, although CDF used different
bins in their analysis. In the lower panel, which shows the
ratio of the LO prediction, and of the data, to the NLO
prediction, we have used the experimental bins, which are
wider at higher ET . A very similar plot was given previ-
ously [34], based on a particular leading-color approxima-
tion. As we discuss in Sec. VIII, those results differ only
slightly from the complete NLO results presented here.
In Fig. 6, we show the distribution for the total trans-

verse energy HT , given in Eq. (2.14). This quantity has
been used in top-quark studies, and will play an important
role in searches for decays of heavy new particles at the
LHC. The upper panel shows the LO and NLO predictions
for the distribution, and the lower panel their ratio. The
NLO scale-dependence band, as estimated using five
points, ranges from �20% around its central value at low
HT to�5% around 400 GeV, and back to around�10% at
800 GeV. The band is accidentally narrow at energies near
the middle of graph, because the curves associated with the
five � values converge as the HT value rises from lower
values towards the middle ones. (The fluctuations visible in
the tail of the distribution are a reflection of the limited
statistics for the Monte Carlo integration, as we show a
larger dynamical range than in the ET spectrum.) The
shape of the LO distribution is noticeably different, for
any of the � values, from that at NLO. At low HT , the
central LO prediction is 20% below the NLO central value,
whereas at the largest HT it is nearly 50% higher. Thus for
� ¼ EW

T the NLO correction cannot be characterized by a
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FIG. 6 (color online). Theoretical predictions for the HT dis-
tribution in W þ 3-jet production at the Tevatron. The LO
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while the lower panel shows the distributions and scale-
dependence bands, crosshatched (brown) for LO and solid
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EW
T . The numerical integration errors, indicated by thin vertical
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constant K factor (ratio of NLO to LO results). We will
address some of the reasons for the difference in shape in
the following section. We note that the NLO scale-
dependence band has a somewhat different appearance
from the corresponding figure in Ref. [34], because the
latter used wider bins at largeHT and had larger integration
errors.

In Fig. 7, we show the distributions for the three dijet
invariant masses we can form: hardest and middle jet M12,
hardest and softest jetM13, and middle and softest jetM23.
The NLO scale-dependence bands are somewhat broader
than for the ET or HT distributions. The distributions
become increasingly steep as we move from masses of
hardest to softer jets. That gross feature is unaltered in
passing from LO to NLO, although each distribution falls
off somewhat faster at NLO, as was the case for HT .

IV. CHOOSING SCALES

The renormalization and factorization scales are not
physical scales. As such, physical quantities should be
independent of them. They arise in theoretical calculations
as artifacts of defining �S and the parton distributions,
respectively. We will follow the usual practice and choose
the two to be equal, �R ¼ �F ¼ �. The sensitivity of a
perturbative result to the common scale is due to the
truncation of the perturbative expansion; this dependence
would be canceled by terms at higher orders. NLO calcu-
lations greatly reduce this dependence compared to LO
results, but of course do not eliminate it completely. In
practice, we must therefore choose this scale. Intuitively,
we would expect a good choice for � to be near a ‘‘char-
acteristic’’ momentum scale p for the observable we are
computing, in order to minimize logarithms in higher-
order terms of the form lnð�=pÞ. The problem is that
complicated processes such as W þ 2, 3-jet production
have many intrinsic scales, and it is not clear we can distill
them into a single number. For any given point in the fully-
differential cross section, there is a range of scales one
could plausibly choose. One could choose a fixed scale �,
the same for all events. However, because there can be a
large dynamic range in momentum scales (particularly at
the LHC, where jet transverse energies well aboveMW are
not uncommon), it is natural to pick the scale � dynami-
cally, on an event-by-event basis, as a function of the
observable or unobservable parameters of an event.

A particularly good choice of scale might minimize
changes in shape of distributions from LO to NLO, such
as those visible in Figs. 6 and 7. Such a choice might in turn
make it possible for LO programs incorporating parton
showering and hadronization [7,8,84] to be more easily
reweighted to reflect NLO results.

Before turning to dynamical scales and kinematic dis-
tributions, let us first examine how the total cross section
depends on a fixed scale. In Fig. 8 we display this depen-

dence for the Tevatron6 and the LHC (left and right,
respectively). We vary the scale between � ¼ MW=2 and
4MW for the Tevatron, and between MW=2 and 16MW for
the LHC. We must be careful to vary the scale in a
‘‘sensible’’ range. For the NLO calculation, in particular,
we do not wish to reintroduce large logarithms of scales.
The figure shows the characteristic increasing-and-
decreasing of the NLO prediction (see e.g. Refs. [85,86])
as well as the monotonicity of the LO one. It also shows a
substantial reduction in scale dependence going from LO
to NLO. The lower panels show the K factor. The large
sensitivity of the LO cross section to the choice of scale
implies a similar large dependence in this ratio.
We thus see that, as expected, the total cross sections at

NLO are much less sensitive to variations of the scale than
at LO. We now turn to the scale dependence of kinematic
distributions. In this case the K factor will not only be
sensitive to the scale chosen, but it will in general depend
on the kinematic variable. We will see that a poor choice of
scale can lead to problems not only at LO, but also at NLO,
especially in the tails of distributions.
The sensitivity to a poor scale choice is already notice-

able at the Tevatron, in the shape differences between LO
and NLO predictions visible in Figs. 6 and 7. However, it
becomes more pronounced at the LHC because of the
larger dynamical range of available jet transverse energies.
We can diagnose particularly pathological choices of scale
using the positivity of the NLO cross section: too low a
scale at NLOwill make the total cross section unphysically
negative.
This diagnostic can be applied bin by bin in distribu-

tions. For example, in Fig. 9 we show the ET distribution of
the second-most energetic jet of the three, at the LHC. In
the left plot we choose the scale to be the W transverse
energy EW

T [defined in Eq. (3.3)] used earlier in the

Tevatron analysis. Near an ET of 475 GeV, the NLO
prediction for the differential cross section turns negative!
This is a sign of a poor scale choice, which has reintro-
duced large enough logarithms of scale ratios to over-
whelm the LO terms at that jet ET . Its inadequacy is also
indicated by the large ratio of the LO to NLO distributions
at lower ET , and in the rapid growth of the NLO scale-
dependence band with ET . In contrast, the right panel of

Fig. 9 shows that ĤT [defined in Eq. (2.10)] provides a
sensible choice of scale: the NLO cross section stays
positive, and the ratio of the LO and NLO distributions,
though not completely flat, is much more stable.
Why is � ¼ EW

T such a poor choice of scale for the

second jet ET distribution, compared with � ¼ ĤT? (For
an independent, but related discussion of this question, see
Ref. [40].) Consider the two distinct types of W þ 3 jet
configurations shown in Fig. 10. If configuration (a) domi-

6Note that the Tevatron plot is for E
3rd-jet
T > 20 GeV, not the

cut E
3rd-jet
T > 25 GeV used in Table II.
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nated, then as the jet ET increased, EW
T would increase

along with it, by conservation of transverse momentum.
However, in configuration (b), the bulk of the transverse
momentum can be balanced between the first and second
jet, with theW and the third jet remaining soft. In the tail of
the second-jet ET distribution, configuration (b) is highly
favored kinematically, because it implies a much smaller
partonic center-of-mass energy. Because EW

T remains

small, the wrong scale is being chosen in the tail.
Evidence for the dominance of configuration (b) over (a)

in W þ 2-jet production can be found in Ref. [40], which
shows that the two jets become almost back to back as the
jet ET cut rises past MW . The negative NLO cross section
in the left panel of Fig. 9 provides evidence of the same
domination in W þ 3-jet production.
However, configuration (b) also tends to dominate in the

tails of generic multijet distributions, such as HT orMij, in

which large jet transverse energies are favored. The reason
is that for jet transverse energies well above MW , the W
behaves like a massless vector boson, and so there is a
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negative beyond ET ¼ 475 GeV.
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kinematic enhancement when it is soft, as in configuration
(b). Exceptions would be in distributions such as the trans-
verse energy of the W itself, or of its decay lepton, which
kinematically favor configuration (a) in their tails.

In contrast to� ¼ EW
T , the scale� ¼ ĤT becomes large

in the tails of generic multijet transverse-energy distribu-
tions. For the distribution of the second jet ET , this is
evident from the close agreement between LO and NLO
values, shown in the right panel of Fig. 9. The same
features are evident, though less pronounced, in the HT

distributions shown in Fig. 11. The left plot is again for

� ¼ EW
T , and the right plot for � ¼ ĤT . The shapes of the

LO and NLO distributions for � ¼ EW
T are quite different;

the ratio displayed varies from around 1 at HT of 200 GeV
to around 2 at HT near 1200 GeV. In contrast, the ratio for

� ¼ ĤT is nearly flat.

These features are not special to the HT distribution
itself. For example, Fig. 12 displays the ratio of LO to
NLO predictions for two other W þ 3-jet distributions for
the two scale choices. The left panel shows the ratios for
the leading dijet mass, while the right panel shows ratios
for the leading �R distribution. Once again the ratios for

� ¼ ĤT have a much milder dependence than those for
� ¼ EW

T .
As we shall see further in the next section, the roughly

flat ratio for the choice � ¼ ĤT holds for a wide variety of
distributions. It does not hold for all: some NLO correc-
tions cannot be absorbed into a simple redefinition of the
renormalization scale. The distribution of the second-most
energetic jet in Fig. 9 provides one example. A second
example, discussed below, is theHT distribution forWþ þ
2-jet production in the left plot of Fig. 15. A third example
(not shown) would be the HT distribution for W þ 1-jet
production; this case is easy to understand because only
configuration (a) (with the second and third jets erased) is
available at LO, while configuration (b) can dominate at
NLO, so effectively a new subprocess opens up at NLO.
Although the EW

T scale choice is a poor one as far as the
tails of many distributions are concerned, we note that it
does give reasonable results for the Tevatron and LHC total
cross sections with our standard jet cuts, which are domi-
nated by modest jet transverse energies. For � ¼ EW

T , the
NLO cross section for W� þ 3-jet production at the LHC
is 31:37ð0:20Þþ0:0

�2:47 pb, which has much smaller scale varia-

tion than the LO result 37:16ð0:07Þþ16:35
�10:35 pb. (The paren-

theses indicate the integration uncertainties, and subscripts
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FIG. 11 (color online). The HT distribution for W� þ 3-jet production at the LHC. The scale choices � ¼ EW
T and � ¼ ĤT are

shown, respectively, on the left and the right. The histograms and bands have the same meaning as in previous figures.
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and superscripts the scale variation.) For � ¼ ĤT , the
NLO value is 27:52ð0:14Þþ1:34

�2:81 pb; the two NLO results

are consistent within the scale variation band.
Accordingly, to have a proper description of distribu-

tions, we adopt ĤT as our default choice of scale for W þ
3-jet production at the LHC. In Fig. 13 we display the scale
variation of the total cross section, evaluating it at the five

scales �0=2, �0=
ffiffiffi
2

p
, �0,

ffiffiffi
2

p
�0, 2�0 with �0 ¼ ĤT . As

usual, the variation is much smaller at NLO than at LO.

Because ĤT includes a scalar sum, it is somewhat larger
than an ‘‘average’’ momentum transfer. One could choose

a scale lower by a fixed ratio, say ĤT=2. This would shift
the LO-to-NLO ratio curves in Figs. 11 and 12, for ex-
ample, up towards a ratio of 1. It would have only a modest
effect on the NLO predictions, however, because the scale-
dependence curve for the NLO cross section is relatively
flat.

It is interesting to compare our default choice � ¼ ĤT

with the choice of scale advocated in Ref. [40] on the basis
of soft-collinear effective theory,

�2
had ¼ 1

4M
2
had þM2

W: (4.1)

In this equation Mhad is the invariant mass of the jets. (As
explained in Ref. [40], the factor of 1=4 is a choice, not
dictated by a principle.) With this choice, one can greatly
reduce the shift between LO and NLO in W þ 2-jet dis-
tributions, compared to more conventional choices such as
� ¼ EW

T . We have confirmed that forW þ 2-jet production
with a few exceptions, such as the decay lepton transverse
energy, the choice� ¼ �had does fare better than� ¼ EW

T

in bringing LO in line with NLO. How does this choice fare
in W þ 3-jet production? To answer this question, we
have compared several distributions. In Fig. 14, we con-
sider the ET distributions of the first, second and third jets
inWþ þ 3-jet production at the LHC. We compare the LO

results for � ¼ ĤT and � ¼ �had to the reference NLO

results for � ¼ ĤT . (Any sensible choice of scale at NLO
should give very similar results.) As can be seen from the

figure, the choice � ¼ ĤT leads to a somewhat flatter LO
to NLO ratio than does � ¼ �had for the first jet, and
performs about as well for the second and third leading
jets.
It is also instructive to compare the HT distributions for

W þ 2-jet and W þ 3-jet production. The left panel of
Fig. 15 shows the distribution in Wþ þ 2-jet production;
here the scale � ¼ �had gives an LO result closer to the
NLO one. On the other hand, in the right panel, which
shows the distribution in Wþ þ 3-jet production, the

choice � ¼ ĤT gives a LO to NLO ratio which is com-
parably flat to the � ¼ �had choice.
In contrast, examine the positron pT (or ET) distribution,

shown in Fig. 16 forWþ þ 2, 3-jet production at the LHC.
As can be seen in the lower panel of each plot, the choice

� ¼ ĤT performs better than � ¼ �had at LO, in match-
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ing the more accurate NLO result at large values of Ee
T . The

reason is that large Ee
T forces theW transverse energy to be

large, which in turn favors configuration (a) in Fig. 10, in
which a relatively low-mass cluster of jets recoils against
the W boson. Thus the scale � ¼ �had drops below the
typical momentum transfer in the process.

In summary, both � ¼ �had and � ¼ ĤT are a great
improvement over the scale choice � ¼ EW

T . For some
distributions � ¼ �had is a somewhat better choice at

LO than � ¼ ĤT while for other distributions � ¼ ĤT is
better. These attributes should not come as a surprise, given
the multiscale nature of jet production.
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V. PREDICTIONS FOR THE LHC

In this section we present the first complete NLO pre-
dictions for W þ 3-jet production at the LHC. The initial
run of the LHCwill almost certainly not be at its full design
energy of 14 TeV, but we choose this energy to simplify
comparisons to earlier studies. Most of the features visible
at 14 TeV would of course remain at the lower energy, such
as 10 TeV, of an initial run. The production ofW þ 3 jets at
the LHC was also studied at NLO in Ref. [41], however
with a set of subprocesses accounting for only 70% of the
cross section; for on-shell W bosons; and with a less
accurate leading-color approximation than that of
Ref. [34]. For our analysis of W þ 3-jet production at the
LHC, we use the following kinematical cuts,

j
jetj< 3; R ¼ 0:4; j
ej< 2:5;

Ee
T > 20 GeV; E�

T > 30 GeV; MW
T > 20 GeV:

(5.1)

We also quote total cross sections with both of the follow-
ing jet cuts

E
jet
T > 30 GeV and E

jet
T > 40 GeV: (5.2)

We show distributions only using the first of these two cuts.
We employ the SISCONE jet algorithm [37] everywhere
(with f parameter set to 0.5), except for Tables VI and
VII where we use the kT algorithm [87].

For the LHC we adopt the default factorization and
renormalization scale choices,

� ¼ ĤT; (5.3)

where ĤT is defined in Eq. (2.10). As discussed in the
previous section, this choice does not have the shortcom-
ings of � ¼ EW

T in describing the large transverse energy
tails of generic distributions.
At the LHC, a pp collider, the total rates and the shapes

of some distributions are quite different for W� and Wþ
production. At 14 TeV, the qg initial state accounts for over
half ofW þ n-jet production. There are considerably more
u quarks than d quarks in the proton in the relevant range of
the momentum fraction x, leading to greater production of
Wþ than W�. Accordingly, we quote separate results for
total cross sections in Tables IV, V, VI, and VII. In Table IV,
we show the W� þ 1, 2, 3-jet cross sections using the
SISCONE algorithm, for two different choices of jet ET

cut, 30 and 40 GeV. The corresponding results for Wþ þ
1, 2, 3-jet production are given in Table V. In Tables VI and
VII, we show the corresponding results for the kT jet
algorithm with a pseudocone radius of 0.4, for W� and
Wþ production, respectively. It is interesting to note that
while the NLO cross sections for W þ 1, 2-jet production
are larger for the SISCONE algorithm than for kT (with the
algorithm parameters we have chosen), the relative size is
reversed forW þ 3-jet production. (The entries for the LO
W þ 1-jet cross section are identical for the SISCONE and
kT algorithms because the same set of events was used to
compute them.)
We next describe NLO results for kinematic distribu-

tions. For distributions that do not differ appreciably for
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FIG. 16 (color online). The distribution in the positron transverse momentum for Wþ þ 2, 3-jet production at the LHC. LO results
for � ¼ �had are compared with LO and NLO results for � ¼ ĤT . The lines and bands have the same meaning as in Fig. 14.
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TABLE VI. Cross sections for W� production using the kT algorithm (R ¼ 0:4), with jet cut E
jet
T > 30 GeV or E

jet
T > 40 GeV. The

remaining cuts are as in Eq. (5.1).

Number of jets LO E
jet
T > 30 GeV NLO E

jet
T > 30 GeV LO E

jet
T > 40 GeV NLO E

jet
T > 40 GeV

1 343:29ð0:18Þþ15:65
�15:43 444:75ð1:44Þþ15:12

�8:85 215:68ð0:12Þþ12:19
�11:33 290:44ð0:77Þþ11:65

�7:55

2 102:88ð0:09Þþ21:40
�16:05 120:07ð0:86Þþ4:19

�6:33 59:99ð0:06Þþ12:78
�9:63 70:85ð0:42Þþ2:12�3:87

3 25:84ð0:05Þþ8:99
�6:17 29:29ð0:16Þþ0:65

�2:32 12:78ð0:02Þþ4:46
�3:09 14:89ð0:08Þþ0:59

�1:18

TABLE VII. Cross sections forWþ production using the kT algorithm, with jet cut E
jet
T > 30 GeV or E

jet
T > 40 GeV. The remaining

cuts are as in Eq. (5.1).

Number of jets LO E
jet
T > 30 GeV NLO E

jet
T > 30 GeV LO E

jet
T > 40 GeV NLO E

jet
T > 40 GeV

1 469:37ð0:32Þþ21:86
�21:26 600:66ð2:06Þþ21:83

�12:82 301:20ð0:22Þþ17:06
�15:83 405:27ð1:91Þþ17:91

�11:82

2 148:46ð0:19Þþ30:78
�23:08 171:45ð0:50Þþ3:81

�9:39 88:48ð0:12Þþ18:75
�14:14 103:77ð0:31Þþ3:46

�5:31

3 40:27ð0:05Þþ13:89
�9:59 44:55ð0:28Þþ1:59

�3:08 20:45ð0:03Þþ7:09
�4:93 23:20ð0:16Þþ0:94

�1:67

TABLE V. Cross sections forWþ production using SISCONE, with jet cut E
jet
T > 30 GeV or E

jet
T > 40 GeV. The remaining cuts are as

in Eq. (5.1).

Number of jets LO E
jet
T > 30 GeV NLO E

jet
T > 30 GeV LO E

jet
T > 40 GeV NLO E

jet
T > 40 GeV

1 469:37ð0:32Þþ21:86
�21:26 615:77ð2:04Þþ23:76

�14:39 301:20ð0:22Þþ17:06
�15:86 415:50ð1:90Þþ19:40

�12:86

2 143:91ð0:18Þþ29:92
�22:43 174:28ð0:48Þþ6:56

�10:37 86:32ð0:12Þþ18:33
�13:81 105:99ð0:31Þþ5:36

�5:82

3 34:75ð0:05Þþ12:06
�8:31 41:47ð0:27Þþ2:81

�3:50 17:64ð0:02Þþ6:14
�4:25 21:76ð0:15Þþ1:68

�1:86

50 100 150 200 250 300

10
-4

10
-3

10
-2

10
-1

10
0

dσ
 / 

dE
T
   

 [
 p

b 
/ G

eV
 ]

LO
NLO

50 100 150 200 250 300

Third  Jet  E
T
   [ GeV ]

0.5

1

1.5

LO / NLO NLO scale dependence

W
-
 + 3 jets + X

BlackHat+Sherpa

LO scale dependence

E
T

jet
  >  30 GeV,  | ηjet

 |  <  3 

E
T

e
  >  20 GeV,   | ηe

 |   <  2.5

E
T/     >  30 GeV, M

T

W
     >  20 GeV

R   =   0.4   [siscone]

√
⎯
s   =  14 TeV

µ
R
  = µ

F
  = H

T

^

50 100 150 200 250 300

10
-3

10
-2

10
-1

10
0

dσ
 / 

dE
T
   

 [
 p

b 
/ G

eV
 ]

LO
NLO

50 100 150 200 250 300

Third  Jet  E
T
   [ GeV ]

0.5

1

1.5

LO / NLO NLO scale dependence

W
+
 + 3 jets + X

BlackHat+Sherpa

LO scale dependence

E
T

jet
  >  30 GeV,  | ηjet

 |  <  3 

E
T

e
  >  20 GeV,   | ηe

 |   <  2.5

E
T/     >  30 GeV, M

T

W
     >  20 GeV

R   =   0.4   [siscone]

√
⎯
s   =  14 TeV

µ
R
  = µ

F
  = H

T

^

FIG. 17 (color online). The ET distributions of the third jet, d�ðW ! e�þ � 3-jetsÞ=dE3rd-jet
T , at the LHC. The left panel shows the

case of W� and the right of Wþ.

TABLE IV. Cross sections for W� production using the SISCONE jet algorithm, with jet cuts E
jet
T > 30 GeV or E

jet
T > 40 GeV. The

remaining cuts are as in Eq. (5.1).

Number of jets LO E
jet
T > 30 GeV NLO E

jet
T > 30 GeV LO E

jet
T > 40 GeV NLO E

jet
T > 40 GeV

1 343:29ð0:18Þþ15:65
�15:43 456:60ð1:43Þþ16:61

�10:10 215:68ð0:12Þþ12:19
�11:33 298:44ð0:77Þþ12:75

�8:43

2 99:78ð0:09Þþ20:81
�15:60 122:71ð0:92Þþ5:88

�7:41 58:52ð0:063Þþ12:49
�9:41 72:96ð0:54Þþ3:20

�4:54

3 22:28ð0:04Þþ7:80
�5:34 27:52ð0:14Þþ1:34

�2:81 11:012ð0:02Þþ3:87
�2:67 13:96ð0:07Þþ1:03

�1:31

C. F. BERGER et al. PHYSICAL REVIEW D 80, 074036 (2009)

074036-20



W� and Wþ production, except for overall normalization,
we generally show a single distribution.

For the inclusive production of W þ 3 jets, a basic
quantity to examine is the ET distribution for the third-
most leading jet in ET . This distribution is shown in
Fig. 17. As in the Tevatron results, the scale uncertainty
is considerably reduced at NLO compared to LO. With our

default choice of scale � ¼ ĤT , the ratio of LO to NLO
predictions displayed in the lower panels is rather flat over
the entire displayed region. (The upward spike in the NLO
band in the W� plot at 300 GeV is due to a statistical

fluctuation in the evaluation at � ¼ ĤT=2.) This plot may
be compared to the ET distribution of the second-most

energetic jet shown in the right panel of Fig. 9, which
undergoes significant shape change between LO and
NLO predictions, though less than for the scale choice� ¼
EW
T . The dynamic range we show here is larger than in the

corresponding plot for the Tevatron.
In order to examine shape differences between the ET

distributions in Wþ and W� production, in Fig. 18 we
show the ratio of the two distributions plotted in Fig. 17.
The ratio is greater than unity at low ET due to the larger
total cross section for Wþ production compared to W�, as
given in Tables IV and V. The ratio increases significantly
with ET , on the order of 25% over the range of the plot,
because larger ET forces larger partonic center-of-mass
energies, and hence larger values of x where the u quark
distribution is more dominant.
TheHT distribution also has slightly different shapes for

W� and Wþ production. The right panel of Fig. 11 shows

the HT distribution inW� production (with � ¼ ĤT). The
corresponding plot for Wþ is given in the right panel of
Fig. 15. Across the displayed range, the ratio of the NLO
Wþ toW� distributions (not shown) increases slightly. The
increase occurs for the same reason as the third jet ET

distribution.
Figure 19 shows the differential distributions with re-

spect to dijet separations �Rij. The two hardest jets,

labeled 1 and 2, are more likely to be produced in a
back-to-back fashion, leading to a more peaked distribu-
tion around �. As in other distributions, the NLO scale-
dependence band is much smaller than the LO one. The LO
and NLO distributions for the separation of the leading two
jets are somewhat different from each other in shape. This
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is presumably due to the effect of additional radiation
allowing kinematic configurations where the jets are closer
together, thereby pushing the weight of the distribution to
smaller �R values, although the position of the peak is
essentially unchanged. The shapes of the other two distri-
butions are similar at LO and NLO. All three distributions

show sizable shifts in their overall normalization, for � ¼
ĤT .

Figure 20 displays distributions for the dijet masses in
W� þ 3-jet production. The three plots in the figure give
the dijet mass of the first and second, first and third, and
second and third leading jets, denoted byMij where i and j

label the jets. Although our default choice of scale� ¼ ĤT

does significantly reduce the shape changes between LO
and NLO compared with the choice � ¼ EW

T made for the
Tevatron (see Fig. 7), significant shape changes remain for
the M12 distribution. For the other two cases the ratio
between LO and NLO is rather flat. These features have
parallels in the �Rij distributions in Fig. 19; the physics of

the two leading jets is not modeled especially well at LO.

VI. LEPTONS AT THE LHC

We now turn from hadronic observables to leptonic
ones. At the LHC, the latter distributions depend strongly
on whether a Wþ or a W� boson has been produced.

Figure 21 shows the pseudorapidity distributions of the
daughter charged leptons. Because of the large-x excess of
u quarks over d quarks, the qg initial state produces Wþ
preferentially, and tends to produce them more forward;
this fact accounts for the larger and more forward positron
distribution. The lower panels show that in this case, the
NLO corrections modify primarily the overall normaliza-

tion of these distributions, with only a slight change in
shape from LO to NLO.
In the right panel of Fig. 16 we showed the positron

transverse momentum distribution in Wþ þ 3-jet produc-
tion at the LHC. In order to contrast the distribution with
the corresponding distribution in W� þ 3-jet production,
Fig. 22 shows the ratio of the NLO transverse energy
distributions for the W� boson decay products, charged
leptons in the left panel and neutrinos in the right panel.
The plots show dramatic differences between the Wþ and
W� distributions, especially for the neutrino ET , or miss-
ing transverse energy. The left panel shows a large ratio for
Wþ to W� at small Ee

T which declines at larger Ee
T . In

contrast, the corresponding ratio for the neutrino ET , or
equivalently the missing transverse energy E6 T in the event,
starts with a somewhat smaller value but increases rapidly
with ET . This significant increase means that the Wþ þ
n-jet background to missing-energy-plus-jets signals,
when a charged lepton is lost, is more severe than the
W� þ n-jet background by a factor of 2 to 3.
This disparate behavior is presumably due to a net left-

handed polarization for high ET W
� bosons, which is then

analyzed by their leptonic decay via the parity-violating
charged-current interaction. Before discussing this situ-
ation further, it is useful to recall the dynamics underlying
the longitudinal (rapidity) charge asymmetry in W� pro-
duction at the Tevatron, and the corresponding asymmetry
for the charged lepton into which theW boson decays [88].
At a p �p collider, the dominance of u quarks over �d quarks
implies that in the process u �d!Wþ!eþ�e the W

þ typi-
cally moves in the u quark (proton) direction. Because the
charged current is left-handed, the u quark must be left-
handed, and the �d antiquark right-handed. In order to
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conserve angular momentum, the Wþ must be polarized
left-handed along its direction of motion, which in this case
(at low transverse energy) is preferentially along the beam
axis. In the decay Wþ ! eþ�e, angular-momentum con-
servation implies that the left-handedWþ tends to emit the
left-handed neutrino forward, and the right-handed posi-
tron backward, relative to its direction of motion. The same
arguments show that the W� typically moves in the anti-
proton direction, is polarized right-handed, and tends to
decay with the left-handed electron backward relative to its
direction of motion. Both signs of charged leptons are
typically more central than are their parent W bosons. In
other words, there is a large asymmetry in the rapidity
distribution of Wþ bosons at the Tevatron, and a strongly
diluted asymmetry in the rapidity distribution of the
charged decay lepton [88,89].

Now consider a pp collider (the LHC) and W� bosons
moving with large momentum primarily transverse to the
beam axis, as required to produce the large ET tails for the
decay lepton distributions shown in Fig. 22. Suppose that
both Wþ and W� bosons are polarized left-handed, with a
polarization that increases with EW

T . Then theW
þ will tend

to emit the left-handed neutrino forward relative to its
direction of motion (resulting in a larger transverse energy)
and the right-handed positron backward (smaller trans-
verse energy). In contrast, theW� will emit the left-handed
electron forward. Such decays will produce an enhance-
ment in the neutrino ET distribution and a depletion in the
charged lepton distribution, for Wþ relative to W�, con-
sistent with the ratios displayed in Fig. 22. We have
checked that the same distributions as shown in Fig. 22,
but for W þ 1, 2-jet production, are very similar. Also, the

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

0

1

2

3

4

5

6

7

8

dσ
 / 

dη
   

 [
 p

b 
/ ∆

 η
 ]

LO
NLO

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Electron η   [ GeV ]

0.5

1

1.5 LO / NLO NLO scale dependence

W
-
 + 3 jets + X

BlackHat+Sherpa

LO scale dependence

E
T

jet
  >  30 GeV,  | ηjet

 |  <  3 

E
T

e
  >  20 GeV,   | ηe

 |   <  2.5

E
T/     >  30 GeV, M

T

W
     >  20 GeV

R   =   0.4   [siscone]

√
⎯
s   =  14 TeV

µ
R
  = µ

F
  = H

T

^

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

0

2

4

6

8

10

12

dσ
 / 

dη
   

 [
 p

b 
/ ∆

 η
 ]

LO
NLO

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Positron η   [ GeV ]

0.5

1

1.5 LO / NLO NLO scale dependence

W
+
 + 3 jets + X

BlackHat+Sherpa

LO scale dependence

E
T

jet
  >  30 GeV,  | ηjet

 |  <  3 

E
T

e
  >  20 GeV,   | ηe

 |   <  2.5

E
T/     >  30 GeV, M

T

W
     >  20 GeV

R   =   0.4   [siscone]

√
⎯
s   =  14 TeV

µ
R
  = µ

F
  = H

T

^

FIG. 21 (color online). The charged-lepton pseudorapidity distribution at the LHC for W� and Wþ production.
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LO ratios in all cases are virtually indistinguishable from
the NLO ones. We examined the LO ratios, removing all
lepton acceptance cuts, and the same general trends persist
(in fact they are even stronger at moderate lepton ET). The
left-handed polarization of both Wþ and W� is also in-
dicated by the corresponding ratios of W transverse mo-
menta (not shown). These ratios grow monotonically with
the W’s pT , but at a lower rate than the ratio for the
neutrino ET . This growth reflects the fact that the larger
the W transverse momentum we require, the larger is the
required parton momentum fraction x, and thus the more
Wþ is favored over W� by the stiffer u quark distribution.

We do not have a complete understanding of why theW
bosons should be polarized left-handed at large transverse
momentum, in a manner that is apparently fairly indepen-
dent of the number of recoiling jets. For W þ 1-jet pro-
duction at LO, it is possible to examine the relevant helicity
amplitudes and make such an argument, based on kine-
matics and on the dominance of the qg initial state. It is
also the case that when a very high transverse-momentum
(left-handed) quark splits collinearly to another quark and
a W boson, with the W boson taking most of the momen-
tum, the W boson is predominantly left-handed. However,
these examples certainly do not exhaust all of the possible
polarization mechanisms, and a more thorough explanation
would require further study.

VII. JET-EMISSION PROBABILITYAT
INCREASED PSEUDORAPIDITY SEPARATION

One of the production mechanisms for the Higgs boson
at the LHC is via vector-boson fusion [90], which contains
partonic subprocesses such as qQ ! q0Q0H, mediated by
the fusion of twoW bosons. Because the Higgs is produced
via colorless electroweak vector-boson exchange, a rela-
tive absence of radiation is expected between the two
forward tagging quark jets, in comparison with QCD back-
ground processes with color exchange. A veto on central
jets may play an important role in such searches. For this
veto to be effective, the background processes should
retain a substantial probability of additional radiation, as
the pseudorapidity separation �
 between two of the jets
becomes large. The production of aW boson in association
with jets is a prime example of a background-type process
dominated by color exchange at LO. In Fig. 61 of Ref. [86],
a similar question was studied in W þ 2-jet and W þ 3-jet
production at the Tevatron, by looking at the probability of
finding a third jet in the acceptance as a function of the
pseudorapidity separation of the leading two jets, ordered
by transverse energy. In that figure, CDF data was com-
pared with a leading-order QCD prediction.

A more appropriate distribution for assessing the effec-
tiveness of a central jet veto would be to order the jets in
pseudorapidity, not ET , and place an additional constraint
that the third jet be between the two most widely separated
jets in pseudorapidity, but here we match the choice made

in Ref. [86]. In Fig. 23 we plot the ratio of the Wþ þ 3-jet
to Wþ þ 2-jet cross sections at the LHC, as a function of
the pseudorapidity separation of the leading two jets, or-
dered in ET . This ratio measures the emission probability
of a third jet. The solid line gives the NLO equivalent of the
LOTevatron results in Fig. 61 of Ref. [86]. As was found at
the Tevatron, the emission probability is substantial, over
20%, and remarkably independent of �
12. Although we
plot only the emission probability for jets accompanying a
Wþ, the corresponding plot for W� is essentially indistin-
guishable from it at NLO. (The difference between the LO
and NLO results for W� is smaller than the difference
shown in Fig. 23 for Wþ.)

VIII. SUBLEADING-COLOR TERMS

In this section, we turn our attention to the question of
simplifying a computation by taking advantage of the
structure of color sums. As explained in Sec. II, we can
organize the matrix elements—leading-order, real-
emission, or virtual—in an expansion in 1=Nc. We expect
higher-order terms in this expansion to give smaller con-
tributions numerically; but there are more of them, and
their structure is more intricate than that of lower-order
terms. In general they take significantly more computer
time per event to evaluate. Although one could simply drop
these contributions once they have been shown—prefera-
bly by direct computation—to be negligible or reliably
estimated, we shall describe how to reduce the computer
time their direct computation would entail.
In Ref. [34], we used a particular type of ‘‘leading-

color’’ approximation (LC NLO), in which a subset of
subleading-color terms were dropped. In the real-emission
contributions, as well as in the real-subtraction terms, we
retained all terms in the color expansion; the same was also
true for the singular terms in the virtual matrix elements.
The only approximation was within the finite virtual terms.
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the dashed (blue) line represents the LO result. The ratio for W�
is very similar, particularly at NLO.
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Here, by ‘‘finite’’ we mean the �0 term in the Laurent
expansion of the infrared-divergent one-loop amplitudes
in � ¼ ð4�DÞ=2, after extracting a multiplicative factor
of c�ð�Þ [defined in Eq. (A2)].

The approximation was defined by first dropping the
subleading-color terms, that is those suppressed either by
powers of 1=N2

c (including those coming from leading-
color partial amplitudes) or nf=Nc (the latter arising from

virtual quark loops), in the ratio of the finite virtual terms to
the tree-level cross section. In a second step, we multiply
this truncated ratio by the tree cross section, with its full
color dependence. The net effect of this approximation is
to drop quark loops and subleading-color terms in the finite
virtual terms that have a different kinematic structure than
those at tree level, while retaining the subleading-color
terms that have the same kinematic structure. This approxi-
mation turns out to be a much better estimate than a strict
leading-color approximation (dropping all subleading-

color terms in the real-emission terms as well), while still
simplifying the calculation considerably by eliminating the
need to compute primitive one-loop amplitudes that con-
tribute only to subleading-color terms, such as those shown
in Fig. 2.
Table VIII compares NLO results for the total cross

sections at the Tevatron with the experimental setup as in

Eqs. (3.1) and (3.2) except for the tighter jet cut, Ejet
T >

25 GeV. For reference, we also show the corresponding
CDF data. The column labeled ‘‘LC NLO’’ contains the
results computed using the specific leading-color approxi-
mation of Ref. [34]. The last column gives the full NLO
result, incorporating all subleading-color terms. Previously
[34], we showed explicitly that this approximation is very
good for W þ 1, 2-jet production at the Tevatron, leading
to errors of no more than 3%. The entry for W þ 3 jets is
new, and demonstrates that just as for Wþ1-jet and
Wþ2-jet production, the LC approximation is excellent,
shifting the total cross section by just under 3%. This shift
is much smaller than the NLO scale dependence. In all
cases, the LC NLO and complete NLO result are both in
excellent agreement with the data.
Table IX shows results for the total cross section of

W þ 3-jet production at an LHC energy of 14 TeV, using
the cuts given in Eqs. (5.1) and (5.2). In this case the
column labeled ‘‘LC NLO’’ refers to an LC approximation
that is slightly modified from the one used for the Tevatron.
We avoid rescaling the leading-color virtual contributions
by the ratio of the full-color to leading-color cross section;
this allows us to simply add together the ‘‘leading-color’’
and remaining ‘‘subleading-color’’ contributions to obtain

TABLE VIII. Comparison of LC NLO to full NLO for the total
inclusive cross sections in pb of W þ n-jet production at the

Tevatron using CDF’s cuts [35] (E
nth-jet
T > 25 GeV) and the

SISCONE algorithm. For reference (see also Table II), the first

column gives the CDF data. The second column shows the LC
NLO results and the third column the complete NLO results.

number

of jets

CDF LC NLO NLO

1 53:5� 5:6 58:3ð0:1Þþ4:6
�4:6 57:83ð0:12Þþ4:36

�4:00

2 6:8� 1:1 7:81ð0:04Þþ0:54
�0:91 7:62ð0:04Þþ0:62

�0:86

3 0:84� 0:24 0:908ð0:005Þþ0:044
�0:142 0:882ð0:005Þþ0:057

�0:138

TABLE IX. Comparison of the total cross sections, in pb, between LC NLO and full NLO results for W þ 3-jet prodiction at the
LHC with

ffiffiffi
s

p ¼ 14 TeV, using the SISCONE algorithm and the cuts of Eqs. (5.1) and (5.2).

cut W� LC NLO W� NLO Wþ LC NLO Wþ NLO

E
jet
T > 30 GeV 28:17ð0:13Þþ0:99

�2:18 27:52ð0:14Þþ1:34
�2:81 42:33ð0:27Þþ1:82

�2:68 41:47ð0:27Þþ2:81
�3:50

E
jet
T > 40 GeV 14:24ð0:07Þþ0:76

�1:09 13:96ð0:07Þþ1:03
�1:31 22:08ð0:15Þþ1:20

�1:44 21:76ð0:15Þþ1:68
�1:86
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the total cross section. This modification has only a small
effect on the corresponding total cross section. Indeed, for
Tevatron cross sections the shift is under 1.5% throughout
the scale-variation band. (To facilitate comparison to our
previously published results [34], for Tevatron cross sec-
tions we use the identical LC approximation as in that
reference.)

The modified LC approximation is again accurate to 3%
for central values, and to 5% for the upper or lower edges
of the scale-dependence bands. The good quality of the LC
approximation also holds for all distributions we have
examined. Examples are shown in Figs. 24 and 25; for
both the Tevatron and the LHC, the corrections due to the
subleading-color terms are less than 3%, uniformly across
the distributions.

The quality of this approximation has important impli-
cations for organizing the calculation of virtual contribu-
tions. As discussed in section II B, the primitive amplitudes
entering the leading-color approximation used in Ref. [34]
and discussed above are a small subset of the primitive
amplitudes required for the complete virtual correction.
The full result, including subleading-color terms, requires
the computation of a much larger number of primitive
amplitudes, 336 for two-quark processes and 80 for four-
quark processes7 as opposed to 48 for two-quark processes
and 8 for four-quark processes in the leading-color com-
putation. Furthermore, the subleading-color primitive am-
plitudes shown in Fig. 2 have a more complicated analytic
structure than the leading-color ones shown in Fig. 1,
because the W does not have to be ordered with respect
to parton(s) emitted between the W boson and the q or q0.
The partial lack of color-ordering implies cuts and poles in
more channels. As a result, it takes about 27 times longer
per phase-space point to evaluate the subleading-color
virtual terms than the leading-color ones.

This large factor may seem to be a cause for concern.
However, the smallness of the subleading-color contribu-
tions, discussed above, comes to our rescue. If we require

that the numerical integration errors due to the subleading-
color contributions be comparable to those coming from
the leading-color ones, we can allow for larger relative
errors in the evaluation of the subleading-color terms. We
can adopt a ‘‘color-expansion sampling’’ approach
wherein we can use far fewer phase-space points (typically
a factor of 20 fewer) to evaluate them [49] as compared to
the leading-color terms. (We must ensure that there are
sufficient statistics in each bin of every distribution of
interest, of course.) There is no need to know ahead of
time what the relative size of the two contributions is; we
simply stop the integration when the desired numerical
precision is reached for each contribution separately. This
approach requires only a bit more than a factor of 2 more
computer time for the full-color result than for the leading-
color approximation, with our present setup. It saves
roughly a factor of 30 in computer time, compared to the
naive approach of evaluating the subleading-color terms at
every phase-space point. We expect to obtain further im-
provements in the evaluation efficiency of subleading-
color contributions through improved reuse of primitive
amplitudes. Together with color-expansion sampling, this
should reduce the time required for computing the
subleading-color terms to a small fraction of the total
computer time. This color-expansion sampling approach
would naturally be implemented in a dynamical way by
treating the subleading-color contributions as another set
of ‘‘subprocesses’’ within the SHERPA multichannel
integration.
Were we seeking to optimize the computer time more

aggressively, we would let the total error be dominated by
the most time-consuming part of the calculation, namely,
the subleading-color terms. We have, however, opted for a
more conservative approach, keeping the integration error
from the subleading-color contributions in line with the
errors from the other contributions.

IX. CONCLUSIONS

In this paper, we presented the first complete NLO study
of W þ 3-jet production, incorporating all massless par-
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tonic contributions. We compared the total cross section
and the third-jet ET distribution to Tevatron data [35]. We
also presented NLO predictions for the HT and dijet mass
distributions. It will be interesting to compare these and
other distributions to Tevatron data sets with larger statis-
tics than those already published by CDF [35]. We pre-
sented a variety of distributions at the declared final
running energy of the LHC, including many relevant for
standard model backgrounds to events with large missing
energy and to Higgs boson production via vector-boson
fusion. As expected, we find a much smaller renormaliza-
tion- and factorization-scale dependence in all distribu-
tions at NLO, compared to LO results. Although the
LHC will start running at lower energy, our choice should
help facilitate comparisons to earlier studies based on
leading-order QCD and matching to parton showers [2–
4,7,8,84,91].

We have shown explicitly inW þ 3 jet distributions that
the scale dependence of LO predictions is not restricted to
overall normalizations. An infelicitous choice of scale can
change the shapes of distributions substantially between
LO and NLO. This effect is much more pronounced at the
LHC than at the Tevatron. One can reduce the change in
shape of distributions between LO and NLO by choosing a
scale dynamically, event by event, corresponding to a
typical scale for the event, as noted in, for example,
Refs. [14,16,38]. The problem with poor scale choices
can be much more severe than just changes in shape
between LO and NLO results. Indeed, for sufficiently
poor choices, such as the fixed scale � ¼ MW or the
transverse energy of the W boson, � ¼ EW

T , large loga-

rithms can appear in some distributions, invalidating even
an NLO prediction. We find that the total (partonic) trans-

verse energy ĤT is a more appropriate scale choice for
W þ 3-jet production than the W transverse energy or the
fixed scales used in previous Tevatron analyses. (A fixed
fraction of the total transverse energy would also be ap-
propriate.) We expect that this scale choice will be appro-
priate to a variety of higher-multiplicity processes,
and recommend its use in LO predictions (when an NLO
one is not available) as well as at NLO. A recent paper
[40] motivates a similar type of scale choice using soft-
collinear effective theory, and we have contrasted its prop-

erties with those of ĤT . Of course, a simple scale choice
is no substitute for a complete NLO prediction. In
some distributions, such as the transverse energy of the
second-most energetic jet and the �R separation between
the two leading jets, the NLO calculation incorporates
physics effects that are not captured by simple changes
of scale.

We also confirmed that our previous NLO analysis of
W þ 3-jet production [34], which used a specific leading-
color approximation, is valid to within 3%. This error is
quite a bit smaller than other uncertainties, such as that
implicit in the scale dependence, or that due to uncertain-

ties in the parton distribution functions. However, we can
draw this conclusion only after computing the subleading-
color terms, as we have done here. To evaluate the
subleading-color terms efficiently, we used ‘‘color-
expansion sampling.’’ The subleading-color terms require
much more computer time per phase space point. However,
because they are small, only a few percent of the leading-
color ones, we can tolerate a much larger relative error for
them from the Monte Carlo integration, thus sampling
themmuch less often. We expect that this general approach
will be an effective technique for reducing the computer-
time requirements for ever-more complicated processes
such as Zþ 3-jet, W þ 4-jet, or Zþ 4-jet production.
In our analyses we mainly used the SISCONE jet algo-

rithm; we also presented total cross sections using the kT
jet algorithm [87] at the LHC. These jet algorithms are
infrared-safe to all orders in perturbation theory. With our
setup it is a simple matter to replace one infrared-safe cone
algorithm with any other desired one. We defer a study of
the anti-kT algorithm [92], which has certain experimental
advantages such as uniform catchment areas for soft radia-
tion, to future work. From a perturbative viewpoint, infra-
red safety is essential; infrared-unsafe quantities are simply
logarithmically divergent. In the real world, perturbation
theory does not go on forever but is overtaken by non-
perturbative dynamics around the confinement scale.
Infrared-unsafe quantities are not infinite, but the infinities
are cut off and replaced by quantities determined by non-
perturbative physics. The logarithms translate [37,93] into
inverse powers of the strong coupling �S, thereby spoiling
the perturbative expansion. This is an important practical
problem because the jet algorithms traditionally used at the
Tevatron by the CDF and D0 collaborations are, in fact,
infrared-unsafe beyond the lowest orders [37]. Unknown
nonperturbative corrections for these algorithms would
undo many of the benefits of a higher-order prediction,
especially in the context of new, higher statistics data.
Accordingly, it is highly desirable that future experimental
analyses at both the Tevatron and the LHC use an infrared-
safe jet algorithm.
Our paper demonstrates the utility of on-shell methods

for computing one-loop matrix elements entering state-of-
the-art NLO QCD predictions for processes of phenome-
nological interest at the LHC. We used BLACKHAT, an
efficient new code library based on these methods. The
NLO W þ 3-jet results reported here also demonstrate the
functionality of our computational setup, which uses
BLACKHAT in conjunction with the SHERPA package.

Besides handling the real-emission contributions and
infrared-singular phase space via AMEGIC++, the SHERPA

framework offers a convenient set of tools for integrating
over phase space and analyzing the results.
There are many relevant processes with large numbers of

final-state objects such as jets that remain to be computed,
especially those involving vector bosons, jets, heavy
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quarks and Higgs bosons [9]. Such processes are back-
grounds to the production of new heavy particles with
multibody decays. Our setup is robust enough to deal
systematically with such processes. In the present paper,
we have demonstrated the new tools and on-shell methods
at work for the nontrivial case of W þ 3-jet production at
hadron colliders. We look forward to comparing our pre-
dictions against forthcoming LHC data.

ACKNOWLEDGMENTS

We thank Jeppe Andersen, Christian Bauer, John
Campbell, Keith Ellis, Beate Heinemann, Joey Huston,
Pavel Nadolsky, Michael Peskin, Gavin Salam, Rainer
Wallny, and Giulia Zanderighi for helpful discussions.
We especially thank Costas Papadopoulos and Roberto
Pittau for assistance in comparing results for the virtual
contributions to squared matrix elements. This research
was supported by the U.S. Department of Energy under
Contract Nos. DE-FG03-91ER40662, DE-AC02-
76SF00515, and DE-FC02-94ER40818. DAK’s research
is supported by the European Research Council under
Advanced Investigator Grant No. ERC-AdG-228301.
HI’s work is supported by the U.S. LHC Theory
Initiative through NSF Grant No. PHY-0705682. This re-
search used resources of Academic Technology Services at
UCLA, PhenoGrid using the GridPP infrastructure, and the
National Energy Research Scientific Computing Center,
which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-
05CH11231.

APPENDIX: SQUARED MATRIX ELEMENTS AT
ONE POINT IN PHASE SPACE

In order to aid future implementations of virtual correc-
tions for W þ 3-jet production in other numerical codes,
we present values of the one-loop virtual corrections to the

squared matrix elements, d�ð1Þ
V , at one point in phase

space. This comes from the interference between the tree
and one-loop amplitudes, summed over all colors and
helicities, for Nc ¼ 3 and nf ¼ 5 massless quark flavors.

In Table X we present numerical values for four repre-
sentative subprocesses. All other subprocesses are related

to these four by crossing symmetry. In the second and third
lines of Table X, the presence of two identical quarks (after
crossing all particles into the final state) means that ampli-
tudes are antisymmetrized under exchange of the two.
We quote numerical results for the ultraviolet-

renormalized virtual corrections in the ’t Hooft-Veltman
variant of dimensional regularization [94]. The remaining
singularities in the dimensional regularization parameter
� ¼ ð4�DÞ=2 arise from the virtual soft and collinear
singularities in the one-loop amplitudes.
The quoted values are for the ratio of the virtual correc-

tions to the tree-level squared matrix element d�ð0Þ.
Explicitly, we define the ratio,

cd� ð1Þ
V � 1

8��Sc�ð�Þ
d�ð1Þ

V

d�ð0Þ ; (A1)

where we have also separated out the dependence on the
strong coupling �S and the overall factor c�ð�Þ, defined by

c�ð�Þ ¼ 1

ð4�Þ2��

�ð1þ �Þ�2ð1� �Þ
�ð1� 2�Þ : (A2)

The coupling constants, mass and width of the W boson
are given in Sec. II G. However, the numerical values for
the ratio (A1), given in Table X, are independent of these
parameters; coupling constants as well as the W boson
Breit-Wigner factor cancel between the tree and virtual
correction terms.
We choose the phase-space point given in Eqs. (9.3) and

(9.4) of Ref. [61],

k1 ¼ �

2
ð1;� sin�;� cos� sin	;� cos� cos	Þ;

k2 ¼ �

2
ð1; sin�; cos� sin	; cos� cos	Þ;

k3 ¼ �

3
ð1; 1; 0; 0Þ; k4 ¼ �

8
ð1; cos�; sin�; 0Þ;

k5 ¼ �

10
ð1; cos� cos�; cos� sin�; sin�Þ;

k6 ¼ �

12
ð1; cos� cos�; cos� sin�; sin�Þ;

k7 ¼ k1 þ k2 � k3 � k4 � k5 � k6;

where

TABLE X. Numerical values of the normalized virtual correction to the squared matrix

elements, cd�ð1Þ
V , at the phase-space point given in the text, for the four basic partonic

subprocesses for W þ 3-jet production at a hadron collider. We give the finite parts along
with the coefficients of the poles in �.

cd�ð1Þ
V 1=�2 1=� �0

(1 �u2c ! 3c4 �d5g6e�7 ��) �8:333 333 333 �32:376 772 10 1.778 061 330

(1 �u2u ! 3u4 �d5g6e�7 ��) �8:333 333 333 �32:408 071 65 1.035 000 256

(1 �u2d ! 3d4 �d5g6e�7 ��) �8:333 333 333 �32:507 501 36 0.478 803 062 4

(1 �u2g ! 3g4g5 �d6e�7 ��) �11:666 666 67 �42:343 036 28 �13:979 912 25
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� ¼ �

4
; 	 ¼ �

6
; � ¼ �

3
;

� ¼ 2�

3
; cos� ¼ � 37

128
;

and the renormalization scale � is set to � ¼ 7 GeV. We

have flipped the signs of k1 and k2 compared to Ref. [61],
to correspond to 2 ! 5 kinematics, instead of 0 ! 7 kine-
matics. The labeling of the parton and lepton momenta is
indicated explicitly in the first column of Table X.
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