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Integrated Modeling for Determining Launch Survival and
Limitations of Actuated, Lightweight Mirrors

Lucy E. Cohan and David W. Miller

Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA

ABSTRACT

The future of space telescopes lies in large, lightweight, segmented aperture systems. Segmented apertures elim-
inate manufacturability and launch vehicle fairing diameter as apertures size constraints. Low areal density,
actuated segments allow the systems to meet both launch mass restrictions and on-orbit wavefront error re-
quirements. These systems, with silicon carbide as a leading material, have great potential for increasing the
productivity, affordability, and manufacturability of future space-based optical systems.

Thus far, progress has been made on the manufacturing, sensing, actuation, and on-orbit control of such
systems. However, relatively little attention has been paid to the harsh environment of launch. The launch
environment may dominate aspects of the design of the mirror segments, with survivability requirements elim-
inating many potentially good designs. Integrated modeling of a mirror segment can help identify trends in
mirror geometries that maximize launch performance, ensuring survivability without drastically over designing
the mirror. A finite element model of a single, ribbed, actuated, silicon carbide mirror segment is created, and is
used to develop a dynamic, state-space model, with launch load spectra as disturbance inputs, and mirror stresses
as performance outputs. The parametric nature of this model allows analysis of many geometrically different
mirror segments, helping to identify key parameters for launch survival. The modeling method described herein
will enable identification of the design decisions that are dominated by launch, and will allow for development
of launch-load alleviation techniques to further push the areal density boundaries in support of the creation of
larger and lighter mirrors than previously possible.

Keywords: Space Telescope, Integrated Modeling, Launch Survival, Lightweight Mirrors

1. INTRODUCTION

In pursuit of further scientific advancement, future space telescopes are moving toward larger apertures.1,2

However, larger apertures come with many challenges, such as launch mass, volume, and cost. Therefore, there
is a push for new mirror technologies to overcome these difficulties. One such option is to use segmented apertures
with actuated silicon carbide mirror segments. Segmented apertures can be deployed, eliminating the launch
fairing diameter as the aperture size constraint. Also, segmented apertures are made of multiple smaller mirror
segments, many of which are identical. Therefore, a replication process can be used in the manufacturing,
decreasing the immense costs associated with manufacturing very large mirrors. Additionally, silicon carbide
mirrors can be manufactured to low areal densities, decreasing the large masses associated with the primary
mirror, while the actuation and active optics allows these systems with lower areal densities to meet the desired
on-orbit performance requirements. Therefore, actuated, silicon carbide mirrors provide a promising path for
future space telescopes.3,4

While they have a great potential for success, these mirrors are not without issues and concerns that need
attention. One such concern is in the reaction of the mirrors to the harsh launch environment. As areal densities
are lowered, one must be sure that the brittle silicon carbide mirror will still survive launch. If launch survival
materializes as a major issue, various active and passive techniques could be utilized to expand the range of design
possibilities that survive the launch. With this in mind, a parametric model of a mirror segment is developed
to create a dynamic model of the mirror exposed to the launch environment. This allows for analysis of various
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Figure 1. Parametric, integrated modeling environment

mirror designs during launch, and is also conducive to adding passive or active damping to expand the design
possibilities.

This paper focuses on a modeling methodology that can be utilized for design and optimization of mirrors
subjected to launch loads. This approach uses parametric, integrated modeling to analyze the stresses induced
by launch, and allows one to easily change the mirror geometry and design. First, the parametric modeling
philosophy is discussed. Then the different aspects of the model, and how they can be used for future design
and analysis are described.

2. PARAMETRIC MODELING

Because of the novelty of actuated, silicon carbide mirror segments, the design intuition that is available for
traditional glass mirrors is lacking. Therefore, general design “rules of thumb” are unavailable for such mirrors.
Hence, it is useful to explore a large trade space of mirror designs, since the optimal design is not known a
priori. One way to accomplish this task is to use parametric modeling techniques.5 Here, all design variables are
parameterized in a separate input file, and many different mirror designs can be generated by simply changing the
inputs. The parameterized inputs include, but are not limited to: segment size, areal density, radius of curvature,
rib structure, rib aspect ratio, damping coefficient, and material properties. The parameterized inputs are used
to automatically create the necessary grid points and elements for a finite element model (FEM). A finite element
normal modes analysis is run, and the results are used to create a state-space model. Launch load models are
also imported and combined with the state-space model into a dynamic disturbance analysis, with element stress
as a performance output. An overview of the parametric, integrated modeling scheme considered in this paper
can be seen in Figure 1.

This modeling method helps to determine the stresses across the mirror during the launch process. The
benefit of this technique is that it allows one to very quickly analyze a variety of mirror designs and compare
the resulting performance. Also, the dynamic, state-space, MATLAB-based modeling allows for the easy future
addition of control and damping. The remainder of this paper describes each of the model components in greater
detail, and the process by which results can be obtained from such a model.

3. STRUCTURAL FINITE ELEMENT MODEL

The finite element model considered in this paper is of a single mirror segment, an example of which can be seen
in Figure 2. It is rib-stiffened with silicon carbide material properties. There are surface-parallel electrostrictive
actuators embedded in the ribs, allowing for actuation of the mirror. These actuators can also be seen in Figure 2,
represented as bars. The curvature, areal density, number of ribs, rib aspect ratio, and percent of the mass in
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the facesheet are all variable. The mirror is made up of 2-dimensional shell elements; the surface is triangular
elements and the ribs are quadrilateral elements.

Figure 2. Mirror FEM Model

The mirror constraint configuration can be seen in Figure 3. In
this configuration, the mirror is connected to three bipod mounts. The
connection between the rigid triangle and the mirror mimics that of
a kinematic bipod flexure that helps to mitigate the transference of
disturbance energy from the structure to the aperture. They constrain
motion in the vertical (z) and circumferential (θ) directions. There is a
soft spring connecting the radial (r) and rotational degrees of freedom
which connect, but do not rigidly constrain, the motion in these degrees
of freedom. Specifically, the soft degrees of freedom of the bipods have
very low stiffness, so deformation of the structure creates rigid body
motion of the mirror segment, but still constrains all six degrees of

freedom. The bipod connections to the mirror are created with a load-spreading technique to eliminate a large
stress concentration resulting from a single node connection. This method connects the bipod to seven points on
the mirror (the center point at the rib intersection, and the first node outwards on each rib), as seen in Figure 4,
eliminating the stress concentration caused by connecting at a single node.

The three bipods are connected to a rigid backstructure element, and the central point of the backstructure
is then connected through a soft spring to a point that is constrained to space in all six degrees of freedom. This
eliminates the six rigid body modes. The vibrational launch loads are then applied to the central point of the
backstructure. The spring between the backstructure and the constraint point has a frequency that is below the
frequency range of the disturbance, so it eliminates the rigid body modes without affecting the performance.

A number of simplifying assumptions were made for the finite element model. The first is that this is an
on-axis segment. The real mirrors would be off-axis since they are part of a larger aperture. However, symmetry
can be exploited in an on-axis segment, and this assumption can easily be lifted for the final designs. Second,
the flexible backstructure is eliminated, and the bipods are connected to a rigid element. This method preserves
the same modal frequencies as if the system was constrained in the z and θ directions at the three bipod points
directly. However, it eliminates the additional modeling complexity associated with the structure. Finally, there
is a plane stress assumption because the FEM is made up of two-dimensional shell elements. These simplifications
should not have a significant effect on the final results. However, they help to keep the model simple enough
to use for trade space exploration and rapid design generation. The FEM described above is defined within
MATLAB, and the resulting FEA is solved using NASTRAN. The results are then brought into MATLAB,
where the model process continues.

Figure 3. Mirror FEM constraint configuration Figure 4. Load spreading configuration
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4. STATE-SPACE MODEL

The finite element solver combines the defined grid points, elements, and material properties into mass and
stiffness matrices as follows:

Mη̈ + Kη = 0 (1)

where M is the mass matrix, K is the stiffness matrix, and η are the nodal degrees of freedom. NASTRAN then
solves this eigenvalue problem for the natural frequencies and mode shapes of the system.

(
K − Ω2M

)
Φ = 0 (2)

where Ω are the modal frequencies and Φ are the mode shapes of the system. The frequencies and mode shapes
are then combined to form the dynamics (A matrix) of a state-space model of the system.

[
q̇
q̈

]
=

[
0 I

−Ω2 −2ζΩ

] [
q
q̇

]
+ Bww

z = Cz

[
q
q̇

] (3)

where q are the modal degrees of freedom, w is the disturbance input, Bw defines the way in which the distur-
bances are input into the system, z are the performance outputs, and Cz relates the performance outputs to the
states. The FEM defines the dynamics of the system (Ω), leaving the input and output matrices (Bw and Cz) to
be defined. In this particular problem, the desired performance output is stress, and the desired input is launch
load disturbance power spectral densities (PSDs). The following two sections describe the method by which the
desired input and output matrices are obtained.

4.1 Mirror Model Outputs

In analyzing the mirror’s response to launch, stress is the relevant output of the integrated, state-space model.
The typical outputs from a model such as the one in Equation 3 are linear combinations of displacements, rates,
or accelerations of nodes in the FEM. For this problem, those types of outputs need to be transformed into
stress. In order to accomplish this, finite element theory will be used. The overarching strategy is as follows:

1. Start with the nodal displacements from each node in the desired element.

2. Transform the three-dimensional nodal displacements into two-dimensional displacements in the plane of
the element (projection).

3. Multiply by a strain transformation matrix.

4. Use Hooke’s law to obtain stress.

The key steps in this method are subsequently described.
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4.1.1 Projection Transformation

For each element analyzed, there are either three (triangular elements in the facesheet) or four (quadrilateral
elements in the ribs) grid points. The objective of this step is to find a transformation matrix to project
displacements into the plane of the element, and to find the two-dimensional grid points (with a constant third
degree of freedom across the element). For each element, three grid points are used. These grid points can be
defined as points a, b, and c. Next, the vectors between the points, ab and bc, can be easily computed. Then:

u = ab

w = ab × bc

v = w × u

(4)

The u, v, and w vectors are then normalized. The three vectors (1 x 3) are then combined:

Mfull =

⎡
⎣u

v
w

⎤
⎦ (5)

Finally, to eliminate the (now equal) out-of-plane degree of freedom, the projection matrix in equation 5 is
premultiplied as follows:

M =
[
1 0 0
0 1 0

]
Mfull (6)

The resulting matrix, M , is now a 2 by 3 matrix that will transform displacements from general three
dimensional space into two-dimensional displacements in the plane of the relevant element. Each element has its
own projection matrix. Therefore, they must be combined with the displacement outputs to obtain the desired
displacements for each element.

4.1.2 Strain Transformation Matrix

The strain transformation matrix is taken from finite element theory.6 It uses interpolation functions to deter-
mine the strains over an element. There are two different formations: one for triangular elements and one for
quadrilateral elements. The triangular element formulation gives a constant strain over the element, while the
quadrilateral element case computes strain as a function of internal coordinates, resulting in a strain (and stress)
distribution over the element. The two formulations are very similar, thus, only the slightly more complex case
of the quadrilateral elements is presented below. The overarching goal is to find a matrix (B) which relates the
strain in an element to the nodal displacements of the corner grid points:

ε =

⎡
⎣ εxx

εyy

2εxy

⎤
⎦ =

⎡
⎢⎣

∂ux

∂x
∂uy

∂y
∂ux

∂y + ∂uy

∂x

⎤
⎥⎦ = Bû (7)

where ε is strain, u is displacement, B is the strain transformation matrix, and x and y are the in-plane degrees
of freedom for each element.

To calculate the displacements and strains, displacement and strain interpolation matrices are defined re-
spectively as follows:
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H =
[
h1 0 h2 0 h3 0 h4 0
0 h1 0 h2 0 h3 0 h4

]
(8a)

B =

⎡
⎣h1,x 0 h2,x 0 h3,x 0 h4,x 0

0 h1,y 0 h2,y 0 h3,y 0 h4,y

h1,y h1,x h2,y h2,x h3,y h3,x h4,y h4,x

⎤
⎦ (8b)

where hi,x is the x-derivative of the interpolation function, hi. The interpolation functions for the quadrilateral
elements are defined as:

h1 = 0.25(1 + r)(1 + s)
h2 = 0.25(1 − r)(1 + s)
h3 = 0.25(1 − r)(1 − s)
h4 = 0.25(1 + r)(1 − s)

(9)

where r and s are internal coordinates. These interpolation functions sum to one, as required. They are also equal
to 1 at the given node, and 0 at the other nodes, where node 1 is at (r, s) = (1, 1), node 2 is at (r, s) = (−1, 1),
node 3 is at (r, s) = (−1,−1), and node 4 is at (r, s) = (1,−1).

These interpolation functions define the H matrix. To determine the B matrix, the derivatives with respect
to x and y must be computed. By the chain rule, one can obtain:

[ ∂h1
∂x

∂h2
∂x

∂h3
∂x

∂h4
∂x

∂h1
∂y

∂h2
∂y

∂h3
∂y

∂h4
∂y

]
=

[ ∂r
∂x

∂s
∂x

∂r
∂y

∂s
∂y

] [
∂h1
∂r

∂h2
∂r

∂h3
∂r

∂h4
∂r

∂h1
∂s

∂h2
∂s

∂h3
∂s

∂h4
∂s

]
(10)

and the Jacobian is defined as:

J =
[

∂x
∂r

∂x
∂s

∂y
∂r

∂y
∂s

]

= 0.25
[
(1 + s) −(1 + s) −(1 − s) (1 − s)
(1 + r) (1 − r) −(1 − r) −(1 + r)

]⎡
⎢⎢⎣

x1 y1

x2 y2

x3 y3

x4 y4

⎤
⎥⎥⎦

= 0.25
[
(x1 − x2)(1 + s) + (x4 − x3)(1 − s) (y1 − y2)(1 + s) + (y4 − y3)(1 − s)
(x1 − x4)(1 + r) + (x2 − x3)(1 − r) (y1 − y4)(1 + r) + (y2 − y3)(1 − r)

]
(11)

J−1 can then be calculated as:

J−1 =
0.25

det(J)

[
(y1 − y4)(1 + r) + (y2 − y3)(1 − r) (y2 − y1)(1 + s) + (y3 − y4)(1 − s)
(x4 − x1)(1 + r) + (x3 − x2)(1 − r) (x1 − x2)(1 + s) + (x4 − x3)(1 − s)

]
(12)

Finally, the matrix of derivatives can be calculated from:

[
h1,x h2,x h3,x h4,x

h1,y h2,y h3,y h4,y

]
= 0.25J−1

[
(1 + s) −(1 + s) −(1 − s) (1 − s)
(1 + r) (1 − r) −(1 − r) −(1 + r)

]
(13)

Equation 12 can be substituted into Equation 13, and the values from the matrix in Equation 13 can be substi-
tuted into their appropriate places in Equation 8 to obtain the strain interpolation matrix for the quadrilateral
elements. This can be multiplied by the nodal displacements to obtain the strain across the element. This
methodology provides a way to transform the displacements of the nodes of an element, which are easy to
compute, into a strain distribution across the element (in terms of the internal coordinates, r and s).
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4.2 Stress Transformation

Figure 5. Stress distribution as a function of in-
ternal coordinates, r and s

Once the strain matrices are constructed, Hooke’s law can be used
to relate the desired stress to the strain. Hooke’s law for plane
stress is:7

⎡
⎣ σx

σy

σxy

⎤
⎦ =

E

1 − ν2

⎡
⎣1 ν 0

ν 1 0
0 0 1−ν

2

⎤
⎦

⎡
⎣ εx

εy

2εxy

⎤
⎦ (14)

The Hooke’s law matrix can be multiplied by the strain trans-
formation matrix to get the stress in elemental x− y coordinates
from nodal displacements.

These steps combine to allow for stress distribution outputs
from a state-space model constructed using normal modes anal-
ysis. The nodal displacement outputs of the element are trans-
formed to obtain a stress distribution in the mirror that can be
used for launch load analysis. An example of the types of stress
distributions over an element that are computed can be found in
Figure 5.

4.3 Mirror Model Launch Disturbance Input

With the dynamics and the output matrices defined, the remaining component of the model in Equation 3 is the
input matrix (Bw). The desired analysis is a dynamic disturbance analysis, described in Section 6. Therefore,
the inputs to the model will be in terms of power spectral densities. The two sources of launch disturbances
currently under consideration are vibrations and acoustics. Other disturbances such as shock events will be
considered at a later time. The inputs to the mirror model for each of the two considered disturbances will be
described in the following section.

4.3.1 Vibration Input

Figure 6. Diagram of base acceleration

In the case of launch vibrations, the disturbance input is typically provided
in terms of an acceleration spectral density. The most natural type of input
to the model is a force or moment spectral density. Thus, these typical
inputs must be modified to account for the alternate input type. This
is treated as a base acceleration problem, similar to the types of analysis
done for earthquakes.8,9 A simple derivation of ground acceleration, based
on Figure 6, is presented below.

Mẍ + C (ẋ − ẋg) + K (x − xg) = 0 (15a)
y = x − xg (15b)
ẏ = ẋ − ẋg (15c)
ÿ = ẍ − ẍg (15d)
M (ÿ + ẍg) + Cẏ + Ky = 0 (15e)
Mÿ + Cẏ + Ky = −Mẍg (15f)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, y is a relative coordinate, and
xg is the base acceleration. The typical normal modes analysis can follow:
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per node

e

ΦT MΦq̈ + ΦT CΦq̇ + ΦtKΦq = −ΦT Mẍg (16a)

q̈ + 2ζΩq̇ + Ω2q = −ΦT Mẍg (16b)

where Φ is the matrix of mass-normalized mode shapes, Ω is the matrix of modal frequencies, ζ is the damping
coefficient, and q are the modal degrees of freedom. When put into the familiar state-space matrix form, the
equations in 16 become:

[
q̇
q̈

]
=

[
0 I

−Ω2 −2ζΩ

] [
q
q̇

]
+

[
0

−ΦT MF

]
ẍg (17)

Noting that the mode shape matrix, Φ, is mass normalized:

ΦT M = ΦT
(
Φ−T Φ−1

)
= Φ−1 (18)

where Φ−1 is a pseudo inverse. This simplifies equation 17 to include only the mode shape matrix, which is
much easier to obtain than the very large mass matrix. Additionally, that term is post-multiplied by another
matrix (F ) that points to the specific degrees of freedom into which the launch loads are applied, since the actual
system has many more degrees of freedom than the simple system in pictured Figure 6.

This method transforms the appropriate portions of the Bw matrix in the model to accept an acceleration
PSD as an equivalent force PSD. Then, typical state-space techniques can be applied.

4.3.2 Acoustic Load Input

Figure 7. Force application of a pressure input

The second source of disturbances presently considered is
acoustic loading. Acoustic loads are generally applied as
pressures. In this type of model, a pressure is difficult to
apply directly. Therefore, a pressure approximation is used.
An equivalent force is applied to every node on the mirror
surface. The pressure input is then scaled by the approx-
imate area per node, where the surface area is divided up
into small segments centered around the nodes, as seen in
the diagram in Figure 7.

The force application direction is normal to the mirror
surface. This has been found to be the worst case angle.
The critical angle for acoustic pressure waves is that where

the wave number of the acoustic wave projected on the mirror surface equals that of the structural bending
mode.

kstr = kacsin (θcr) (19)

where kstr is the structural wave number, kac is the acoustic wave number, and θcr is the critical angle. The
structural and acoustic wave numbers can be described in terms of basic quantities as follows:

k2
ac = α2ω2 α2 =

1
γRT

(20a)

k4
str = β4ω2 β4 =

ρA

EI
(20b)
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where ω is frequency, 1
α is the speed of sound, γ is the adiabatic index, R is the gas constant, T is temperature,

ρ is density, A is area, E is Young’s modulus, and I is the area moment of inertia. Equations 19 and 20 can be
combined to yield:

β
√

ω = αωsin (θcr) (21a)

sin (θcr) =
β

α
√

ω
(21b)

The maximum of sin (θcr) is 1, so the cut-off frequency for critical angles (ωc) is:

1 =
β

α
√

ω
(22a)

ωc =
(

β

α

)2

(22b)

For simplicity, the mirror is approximated as a circular plate, and the speed of sound is calculated at sea-level.
The numerical values for a typical mirror can be seen in Table 1. This yields a frequency cut-off of 211.6 rad/s,
or approximately 33 Hz. The critical angle for all frequencies above ωc is surface normal.

Table 1. Numerical values used to calculate the frequency cut-off for critical angles

ρ 3200 kg
m2

A 0.866 m2

E 375 109 Pa
I 0.0871 m4

β 0.0171
√

s
m

α 0.0029 s
m

As will be seen in Section 5.2, the acoustic disturbance spectrum utilized begins at a frequency of approxi-
mately 20 Hz. Therefore, for the purposes of this analysis, the worst-case angle is assumed to be surface normal
for all frequencies, and the forces used to approximate the pressure waves are all applied normal to the mirror
surface.

The appropriate nodes are selected for the Bw matrix to account for the required normal force on each
node on the surface of the mirror. This portion of the matrix is then combined with the vibration inputs from
Section 4.3.1 to form the entire Bw matrix. Now, all values in Equation 3 are defined, and appropriate launch
disturbance spectra can be applied to the model.

5. LAUNCH LOAD MODEL
As described in Section 6, the analysis portion needs a spectral density function as a disturbance input. Therefore,
an acceleration spectral density is defined for the vibrational disturbances, and a pressure spectral density is
converted to a power spectral density for the acoustic input. These two disturbance spectra are described below.

5.1 Vibration Acceleration Spectral Density
There are many launch load vibration spectra available, but they differ by launch vehicle. The parametric nature
of the model makes it east to change the disturbance spectra for whatever launch vehicle is applicable. Currently,
the launch load spectrum being utilized can be seen in Figure 8. This is based on the qualification spectra for
the space shuttle.10,11

The loading configuration must also be specified. While this is again a parametric input that is easily changed,
the default configuration is shown in Figure 9. Here, the thrust axis is along the global x-axis, which indicates
that the mirror segment is in a stowed configuration. This is expected to be the most likely case, but is easily
alterable to see the effects of other configurations.

Proc. of SPIE Vol. 7010  70102I-9

Downloaded from SPIE Digital Library on 17 Mar 2010 to 18.51.1.125. Terms of Use:  http://spiedl.org/terms



xiS' I.. L 'tdtu,. — S D.iuIy

K
Launch Forcelo .

h Force ly
—•—•LaoochForcelz

N
\:
rE

lou

Frequency [Hz]

100

sw_s a LS ma.. frta Sz

Frequency [Hz] [1/3 Octave Band Oentern]

10
Du.Iy

Frequency [Hz]

Figure 8. Launch acceleration PSD Figure 9. Launch force input configuration

5.2 Acoustic Disturbance Spectrum

The pressure spectral density is obtained from a sound pressure level chart. These are readily available, and the
one currently in use can be seen in Figure 10.12 This can be converted to the desired form and units through
the following steps (for one-third octave bands):

P (f) = Pref10
SP L(f)

20 (23a)

∆f (f) =
(
21/6 − 2−1/6

)
= 0.2316f (23b)

PSD(f) =
P (f)2

∆f (f)
(23c)

where Pref is the reference pressure, SPL(f) is the given sound pressure level curve (Figure 10), ∆f (f) is
the frequency band size, and PSD(f) is the desired pressure spectral density (Figure 11). Using the force
approximation described in Section 4.3.2, this disturbance spectrum can be used with the force inputs to the
mirror model to determine stresses.

Figure 10. Sound Pressure Level Figure 11. Pressure Spectral Density

6. DISTURBANCE ANALYSIS

With the state space model of the plant and the launch load power spectral densities, a disturbance analysis can
be performed to determine the stresses in the mirror subject to the prescribed disturbances. The analysis used
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is frequency domain, steady state, dynamic disturbance analysis. To begin, the integrated state-space model
(Equation 3) is transformed into a frequency domain transfer function matrix as follows:

Gzw = Cz(sI − A)−1Bw (24)

The PSD of the output can then be found using:

Szz = Gzw · Sww · GH
zw (25)

where Szz is the PSD of the output, Sww is the PSD of the disturbance input (Figures 8 and 11), Gzw is the
system transfer function matrix (Equation 24), and H is the hermitian operator. The mean squared value of the
outputs can then be found:13

z̄2
i =

1
2π

∫ +∞

−∞
Szz(jω)i,idω =

1
π

∫ +∞

0

Szz(jω)i,idω (26)

The square root of z̄2
i yields the root-mean-square value of the output.

In this model, the outputs,
√

z̄2
i , are in plane stresses for the selected elements. Each element has three

associated stresses: σxx, σyy, and σxy. However, these stresses are in the local coordinate systems of the
elements, as defined by the projection transformation described in Section 4.1.1. Therefore, to compare stresses
across the mirror, the three local coordinate stresses are transformed to principle and von-mises stresses.7

σp1 =
σx + σy

2
+

√
σx − σy

2
+ σ2

xy (27a)

σp1 =
σx + σy

2
−

√
σx − σy

2
+ σ2

xy (27b)

σvm =

√
(σp1 − σp2)2

2
+

σ2
p1

2
+

σ2
p2

2
(27c)

The von-mises stresses can then be compared element by element to determine the maximum stress in the system.

This completes the modeling process for using dynamic, state-space techniques to analyze launch stresses in
mirrors. This process takes the mirror design parameters and desired disturbance spectrum and uses them to
compute the stresses in any chosen element.

7. CONCLUSIONS AND FUTURE WORK

This paper describes a process for evaluating the stresses in mirrors through the use of state-space and frequency
domain analysis techniques. All aspects of the model are parametrically defined, making it easy to analyze
varying designs. The first step is the finite element model. The model here includes a lightweight, rib-stiffened,
actuated, hexagonal mirror segment and kinematic bipod supports. The geometry, grid points, elements, and
material properties are all defined based on the parametric inputs. With the FEM definition, NASTRAN solves
the FEA to determine the frequencies and mode shapes, which are then used to define the system dynamics in
a state-space model. Subsequently, interpolation functions and FEM theory are used to transform the nodal
displacement outputs from the model into stresses for the given element, and the model is transformed to accept
an acceleration spectral density and a pressure spectral density. Next, the disturbance input PSDs are defined,
and combined with the plant model to perform a frequency domain dynamic disturbance analysis. Finally, the
stresses in local, elemental coordinates are transformed to principle stresses and von mises stresses that can be
compared across the mirror and analyzed for launch survival.
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The methodology presented above can be very useful for mirror design and analysis. It will allow for rapid
trade space generation of differing mirrors undergoing launch disturbances. This will allow for determination
of limitations on areal density, rib structure, and other basic design variables. This will be extremely useful in
the design of future mirrors, especially as the apertures continue to grow and the areal densities and masses
continue to decrease. Additionally, there will be a point at which the mirrors no longer survive the harsh launch
environment. The benefit of the dynamic analysis described above is that it allows for easy inclusion of both
passive and active damping techniques. Passive and/or active damping will presumably allow more mirrors to
survive the launch. However, the amount of additional damping necessary is design specific, and not all levels
of damping will cost the same amount. Therefore, the parameterized model will continue to be used to include
the various damping possibilities in order to get an accurate picture of the design landscape.

The design methodology described herein is a stepping stone to further design guidelines and mirror optimiza-
tion. Future work includes validating all aspects of the current model and determining the reaction of current
mirrors to launch. This will involve trade space exploration and optimization to find the best mirrors for launch
survival, and to establish design variable limitations without any additional control or damping. Additionally,
passive damping techniques will be examined, including isolation and shunted piezos. Finally, active damping
will be pursued if necessary. This could be accomplished using the embedded piezoelectric actuators in the
mirror, providing a damping solution with no additional hardware. In all cases, the goal is to determine the
best mirrors for a given mission, and to extend the state-of-the-art in mirror design. This work will progress to
hopefully eliminate launch survival as one of the major design drivers, and, instead, will present designs that are
robust to launch.
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