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ABSTRACT

Wavelength beam combining was used to co-propagate beams from 28 elements in a linear array of distributed-
feedback quantum cascade lasers (DFB-QCLs). The overlap of the beams in the far-field is improved using
wavelength beam combining; the beams from all of the lasers were pointing over an angular range of only 2
milliradians which is a factor of 40 better than without wavelength beam combining. We measured the absorption
spectrum of isopropanol at a distance of 6 m from the laser arrays, demonstrating the efficacy of wavelength
beam combined DFB-QCL arrays for remote sensing.
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1. INTRODUCTION

Quantum cascade lasers (QCLs) are semiconductor lasers that emit in the mid-infrared from 3 to 24 μm,1

which includes the “fingerprint region” of molecular absorption. Thus, QCLs may be particularly advantageous
for spectroscopic applications,2 including pollution monitoring, breath analysis, industrial process control, and
remote detection of toxic chemicals and explosives. QCLs can achieve watt-level output power in continuous-
wave operation at room temperature3,4 and can be designed to emit over a broad spectral range of ∼ 300 cm−1,
enabling wide wavelength tunability.5

Arrays of distributed-feedback quantum cascade lasers (DFB-QCLs) can be made as single-mode sources
covering a wide range of mid-infrared frequencies.6,7 For a number of applications envisioned for QCL arrays, it
is important to have the beams from the individual lasers in the array co-propagate so that the beams overlap
in the far-field. For example, for remote-sensing applications, if the beams can be collimated and propagated
a long distance where they all overlap, then only a single detector is required at the end of the beam path to
measure the resulting signal. However, when using a lens of focal length f to collimate the emission from the
lasers in the array, each laser will point at a different angle given by Δθ = tan−1(Δx/f) where Δθ is measured
with respect to the axis of the lens and Δx is the transverse position of each laser relative to the focal point of
the lens. In this case, each of the laser beams will be spatially separated in the far-field.

Here we use wavelength beam combining (WBC) to overlap the beams from an array of DFB-QCL lasers in
the far-field. We then perform absorption spectroscopy at a range of 6 m from the laser source to demonstrate a
proof-of-principle application to remote sensing. We discuss improvements to the WBC system for better beam
overlap.

2. WAVELENGTH BEAM COMBINING

The general principle of wavelength beam combining is to take spatially separated beams with distinct optical
spectra, and combine them using a wavelength-sensitive beam combiner.8 Examples of wavelength-sensitive beam
combiners are prisms and diffraction gratings, which can deflect incident beams according to their wavelength so
that they propagate in the same direction after the combiner. WBC can be considered the reverse of a grating
spectrometer in which a single beam of white light, containing many wavelengths, is split into angularly resolved
monochromatic beams.
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Wavelength beam combining of laser sources has been demonstrated for diode laser arrays9,10 and fiber
lasers.11 In one form of WBC, the laser array elements are incorporated in an external cavity containing a
diffraction grating and transform lens. An output coupler in the cavity provides optical feedback to each of the
laser elements to select their emission wavelengths and automatically causes all of the laser beams to propagate
collinearly.9 This form of WBC is termed “closed-loop.”

In another form of WBC, the laser array elements have their emission wavelengths selected independent of
the grating that combines the beams. For example, a volume Bragg grating12 or distributed feedback grating in
the laser can be used for wavelength selection. Beam combining is then achieved through the use of a diffraction
grating in combination with a transform lens, but without the need for an output coupler. This second form of
WBC, termed “open-loop,” is used for the work presented here. Fig. 1 shows the WBC setup for combining the
beams from an array of distributed-feedback quantum cascade lasers (DFB-QCLs).

grating 

lens 

QCL array 

Figure 1. (a) Schematic diagram of wavelength beam combining with an array of distributed-feedback quantum cascade
lasers (DFB-QCLs). The emission wavelengths of the lasers are selected by the individual DFBs on each laser ridge in
the array. Beam combining is accomplished by a suitably placed grating and transform lens that overlap the beams from
each laser in both the near-field and far-field. (b) Photograph of the actual wavelength beam combining setup with the
DFB-QCL array.

3. DFB-QCL ARRAY

Our DFB-QCL array is composed of 32 single-mode ridge lasers emitting at frequencies from 1061 to 1148 cm−1

with the emission frequency of adjacent lasers separated by ∼ 2.74 cm−1. The spectra of all 32 lasers is shown
in Fig. 2. Later, some of the lasers were electrically shorted from being over-driven, leaving 28 operational
lasers, with lasers #1, 21, 22 and 32 not emitting. The laser ridges are each 15-μm wide and separated by a
center-to-center distance of 75 μm. The QCL active region for this array is a bound-to-continuum design for
emission around 9-μm wavelength, as reported in Maulini et al.,13 and the fabrication and performance of the
array is detailed in Lee et al.6 The polarization of the optical output is perpendicular to the array dimension as
is usual for QCLs. The DFB-QCL array was connected to a custom-built electronics controller, which allows us
to individually address and power each of the laser devices in the array. The DFB-QCL array is oriented so that
the plane of the lasers is horizontal and parallel to the plane of the optical table. This array was not fabricated
in a way to allow CW operation. The array was operated pulsed with 50-ns-long pulses at a repetition rate of
20 kHz. The maximum output power for individual lasers in the array ranged from 20 to 250 mW; the causes of
this large variability are discussed in depth in Lee et al.7

A 2.5-cm-diameter ZnSe lens (f = 2.5 cm) was placed one focal distance away from the front facets of the DFB-
QCL array. The lens acts to transform the position of the laser element in the array into an angle of incidence
on the grating. The lens position was adjusted to ensure that the individual laser beams were collimated and
that beams near the center of the array propagate on-axis; this was verified using a thermal IR camera to image
the beam spots.

Proc. of SPIE Vol. 7460  746004-2

Downloaded from SPIE Digital Library on 17 Mar 2010 to 18.51.1.125. Terms of Use:  http://spiedl.org/terms



Figure 2. Spectra from the 32 lasers of a DFB-QCL array operating from 1061 to 1148 cm−1 where adjacent lasers have
emission frequencies separated by ∼ 2.74 cm−1. (Inset) Representative spectrum of a single laser, plotted on a log scale
to show side-mode suppression of >20 dB.

An aluminum-coated reflection grating with 750 lines/cm (blaze wavelength = 12 μm) was inserted in the
beam path after the transform lens at a distance of about 3 cm away from the lens. The grating is attached to
a rotation stage, allowing it to be rotated in a plane parallel to the laser array. The grating is approximately
located one focal distance away from the lens so that the beams overlap at the grating. However, the size of
the components and the need to ensure that the beam path remain unobstructed constrained the placement of
the grating. The required angle for the grating to co-propagate all the beams can be deduced from the grating
equation:

d(sinθm + sinθn) = mλn. (1)

Here d is the groove spacing of the grating, θm is the output angle of the m-th diffraction order, θn is the
incident angle of the n-th laser beam on the grating, and λn is the wavelength of that laser. We have m = 1, as
our grating is blazed for high efficiency in first diffraction order. The incident angles θn of the lasers in the array
are all different, with θn = θgrating + tan−1(xn/f), where xn is the position of the n-th laser in the array and f
is the focal length of the transform lens. For all the beams to co-propagate, we require that all the lasers in the
array have the same output angle θm from the grating. From equation 1 we see that this entails that the angle
of the grating θgrating should be ∼ 55 degrees. We set the grating at this angle and then made fine adjustments
until the beams from the extreme ends of the array (lasers 2 and 31, since 1 and 32 were not working) were
overlapped.
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4. NEAR AND FAR-FIELD BEAM PROFILES

We used a thermal IR camera to get images of the beams coming off the grating. A flat mirror was placed in
the beam path, just after the grating, to direct the beams to a convenient location for measurements. We placed
the IR camera in the path of the laser beams, and imaged the mirror surface to view the beam profile at that
location which was taken to be the near-field of the system. A representative near-field image of one of the laser
beams is shown in Fig. 3(a). The beam is clipped by the edges of the ZnSe transform lens, which is 2.5 cm in
diameter. This occurs because of the large beam divergence of the light emitted from each QCL — not all of the
light can be collected by the lens. The circular beam transmitted through the lens becomes elliptical after the
grating because of geometric magnification due to diffraction; the major axis is ∼ 3.5 cm and the minor axis is
still 2.5 cm.

The horizontal fringes in the near-field are due to interference between the direct emission from the laser
facet and light which is reflected from the laser submount. A portion of the emitted laser beam intercepts the
submount because the chip is slightly recessed from the edge of the submount. The fringe spacing is consistent
with the ∼ 200 μm thickness of the laser-chip substrate.

(a) (b) 

Figure 3. (a) Image of the beam of a representative laser, just after it has been reflected from the grating. The white bar
is 1 cm. (b) Image of the far-field spot of a representative laser. The white bar is 1 milliradian.

In order to image the far-field beam profiles, we placed a spherical mirror with radius of curvature equal
to 2.88 m in the path of the beams. The spherical mirror was angled slightly so that the reflected beam could
be focused onto the imaging plane of the IR camera (the camera’s lens was removed) which was placed in the
focal plane (f = 1.44 m) of the mirror. By individually imaging all of the beams from the laser array, we can
determine the spot size of the beams (in angular units) and we can also quantify the relative pointing between
the beams in the far-field.

The far-field beam profile of a representative laser is shown in Fig. 3(b), and has an Airy ring pattern. Taking
a linescan of the far-field beam profile, we can quantify the angular extent of the main lobe of the Airy pattern,
from null to null, as 0.93 milliradians in the horizontal direction and 1.3 milliradians in the vertical direction. For
comparison, the diffraction-limited spot size at 9-μm wavelength for a beam collimated with a 2.5-cm-diameter
lens is θ ∼ 2.44λ/D and is calculated to be 0.86 milliradians. The beam divergence of an individual laser is
therefore ∼ 1.5× the diffraction-limit in both dimensions. Although we do not know why the beam quality is
not closer to the diffraction-limit, it is not due to finite spectral width of the QCLs of <0.1 cm−1 which would
result in a smearing of the far-field in the beam-combining dimension of <0.06 mrad.

5. BEAM OVERLAP

The overlap of the beams in the far-field can be determined by individually imaging all the beams and overlaying
those images to measure any shifts in beam pointing. Fig. 4(a) shows a composite image of the beam spots
from 4 different laser elements in the array (#18, 24, 28, 31). All of the beams lie on a horizontal line. The
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Figure 4. (a) Image of several lasers showing the extent of the residual pointing error of the beams. From the left, we
have laser elements #18, 24, 28, and 31 in the array. Lasers 18 and 31 have the largest relative pointing error in the
entire array. The bar is 1 milliradian. (b) A plot of the angular deviation of the laser beams, as a function of the laser
frequency. Squares represent the pointing of laser beams from the entire array as measured relative to the pointing of
laser 31 (rightmost point in the plot). The line is a calculation of the beam pointing using the grating equation (Eq. 1)
given the wavelengths of the DFB-QCL array and a grating angle of 54.65 degrees.
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center-to-center distance between the beam spots corresponds to a difference in beam pointing. Lasers 18 and
31 have the largest difference in beam pointing for any two lasers in the array — 2 milliradians.

Fig. 4(b) plots the pointing of laser beams from the entire array. The pointing error is measured along the
beam-combining dimension relative to laser 31. The Fig. compares the experimental results to a calculation of
the pointing error using the grating equation (Eq. 1) where we input the wavelengths of the DFB-QCL array and
a grating angle of 54.65 degrees. There is good agreement between the results and the calculation. The residual
pointing error is due to the fact that the grating’s angular dispersion is not a linear function of frequency while
the laser frequency varies linearly with position in the array.

We achieved beam combining with a residual pointing error of 2 milliradians in the worst case for the beams.
Without wavelength beam combining, the pointing error would have been 86 milliradians, so we have better
than a factor of 40 improvement in beam pointing. In order to reduce the residual pointing error even further,
we could use a laser array where either the spacing of frequencies in the array or the physical spacing of the
laser elements is not linear. In particular, the required spacing of the laser frequencies or laser element positions
can be calculated using Eq. 1. Alternatively, it is possible to reduce the pointing error through the choice of
diffraction grating and transform lens, including designing a system using more than one diffraction grating.

Figure 5. Setup with two gratings to reduce the beam pointing error due to the non-linear grating dispersion. The second
grating provides a dispersion of the opposite sign to optimally overlap all the laser beams.

Indeed, we calculate that by using two gratings we can correct the pointing error that is due to the non-linear
dispersion. Numerical calculations were performed to determine the conditions under which the pointing error
can be minimized. It was found that there is a family of solutions to this problem and that by using a second
grating, the pointing error can be reduced by more than factor of 1000. An example is shown in Fig. 5 in
which the emission from the QCL array is collimated using a transform lens of focal length f = 10 cm. The
first grating (100 lines/mm) is oriented such that it provides greater dispersion than is required to overlap the
beams from the lasers at either end of the array. The second grating (50 lines/mm) then imparts a dispersion
of the opposite sign to optimally overlap all of the laser beams. By using gratings with two different groove
densities, the non-linear component of the dispersion can be nearly cancelled. For the particular case shown in
Fig. 5, the pointing error is calculated to be only 0.5 μrad which is 4000x less than when using a single grating
(75 lines/mm) as described in this paper. Note that in order to overlap all the beams at the second grating,
the placement of the first grating is flexible. It is only required that it be placed more than one focal length
away from the transform lens. The distance between the two gratings is then adjusted to overlap the beams. In
fact, placing the first grating far away from the transform lens allows more clearance for the beam to propagate
through the system without clipping.

The grating efficiency, defined as the ratio of the power in the first-order diffracted beam to the incident laser
power, was measured to be 55%. For the weakest laser in our array with 20 mW output power, this translates
to 11 mW coupled to the far-field beam neglecting atmospheric absorption; for stronger lasers in the array the
power coupled to the far-field ranges up to 140 mW. Based on the efficiency curves of commercially available
blazed gratings, it should be possible to achieve >90% diffraction efficiency with the proper choice of grating and

Proc. of SPIE Vol. 7460  746004-6

Downloaded from SPIE Digital Library on 17 Mar 2010 to 18.51.1.125. Terms of Use:  http://spiedl.org/terms



polarization of the incident beams. Typically, blazed gratings are more efficient for p-polarized light (electric-field
perpendicular to the grating grooves), whereas QCLs are TM polarized (s-polarized at the grating in a WBC
configuration). Therefore, it may be necessary to use a half-wave plate to access the highest possible diffraction
efficiency.

6. REMOTE SENSING DEMONSTRATION

To demonstrate the potential of WBC DFB-QCL arrays for remote sensing, we performed a simple absorption-
spectroscopy measurement at a distance of 6 m from the laser array. At a distance of 6 m, a BaF2 lens (f
= 19 cm and diameter = 5 cm) was placed in front of a thermoelectrically-cooled Vigo MCT detector (model
PCI-3TE-12 1x1) to collect the laser light from the array onto the detector. A BaF2 fluid cell (chamber thickness
27.2 μm) was placed in the path of the beams between the lens and the detector. The fluid cell was filled with
isopropanol for sample measurements or left empty to measure the background.
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Figure 6. Absorption spectrum of isopropanol measured using the WBC DFB-QCL array at a distance of 6 m (squares).
Fourier-transform infrared-spectrometer measurement of the same sample using a Bruker Vertex 80v FTIR instrument
(solid line).

To measure the spectrum, the lasers were fired sequentially, and the intensities of the transmitted beams
were recovered from the detector using a gated integrator. After taking the background and sample spectra, we
obtained the absorption spectrum using a frequency table with data for each laser in the array (Fig. 6). The
spectra took less than 10 s to obtain using the DFB-QCL array. The present limitations on speed are due to the
noise in the measurement system which requires the averaging of many laser pulses, the fastest repetition rate
(100 kHz) achievable using custom-built electronics, and the delay in transmitting both control instructions and
data over a slow serial connection between the electronics and our lab computer. The noise in the measurement
is dominated by electromagnetic pickup in our custom-built electronics rather than by any fundamental sources
of noise in the lasers or the amount of laser signal available. With lower-noise detection electronics and a higher
data-rate connection, the measurement time could be reduced to milliseconds or less. This is much faster than is
currently possible with single-element external-cavity QCLs which typically require ∼1 second to scan over the
full wavelength range.14

Our results compare favorably with spectra obtained using a conventional Fourier-transform infrared (FTIR)
spectrometer, which are also shown in Fig. 6. Without WBC this demonstration would not be possible with the
QCL array since the laser beams would be separated by as much as 0.5 meters at a range of 6 meters.
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In summary, we achieved wavelength beam combining for 28 elements of a DFB-QCL array, improving the
beam pointing by a factor of 40 as compared to without beam-combining. The efficiency of transferring the
optical power to the far-field was 55%, giving far-field intensities of lasers in the array ranging from 11 to 140
mW peak power. While we have used only a small array of lasers for our demonstration, the WBC approach can
be scaled to hundreds of lasers, limited only by the spacing of the individual lasers in the array and the array’s
total width. With laser ridge-to-ridge spacing of ∼10 microns and total array size of ∼1 cm, with a suitable
transform lens to collect the light from the entire width of the array, we can potentially beam-combine up to a
thousand elements.

In the future, we envision using WBC QCL arrays for remote sensing at distances of kilometers. To do so,
we plan to achieve more complete overlap of the beams in the far-field, through a combination of the optical
design and choosing appropriate laser frequencies, so that we eliminate the residual pointing error observed in
this paper. Also, we are also currently investigating the “closed-loop” approach to WBC as it may have benefits
in terms of beam overlap and simplified device fabrication. Finally, we hope to make laser arrays with higher
power output, for instance watt-level peak power from each laser in the array.
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