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ABSTRACT

A two-layer linear analytic model is used to study the

response of the mid-latitude ocean to the seasonal variation

of the windstress. The most important component of the re-

sponse is a barotropic quasi-steady Sverdrup balance.

A meridional ridge such as the Antilles Arc is modeled

as an infinitely thin meridional barrier that blocks the lower

layer but does not protrude into the upper layer. It is found

that such a barrier has little effect on the upper layer flow

across the barrier. This result is obtained provided the fre-

quency of the motion is low enough so that free short Rossby

waves are essentially nondivergent. In this case there is

little coupling between the layers for energy propagating to

the east away from the barrier.

A study of the dynamics of flow over a sloping bottom

is made and the results are used to determine the effect on

seasonal oscillations of eastern boundary slopes and triangular



ridges. It is found that the presence of a slope at the

eastern boundary has little effect. A meridional ridge that

does not reach the interface may cause substantial scatter-

ing of free Rossby waves, but unless the ridge is steep its

effect on the quasi-steady Sverdrup balance is minimal.

However, if the ridge height is a substantial fraction of the

lower layer depth and the width is comparable to the scale

of free short Rossby waves, the ridge will tend to block flow

in the lower layer, acting like the infinitely thin barrier.

The theory suggests that the Antilles Arc should have the

effect of a thin barrier, while the Mid-Atlantic Ridge should

have little effect on the response of the ocean to seasonal

wind variations.

Thesis Supervisor: Henry M. Stommel, Professor
Department of Meteorology
Massachusetts Institute of Technology
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Chapter I

Introduction

The seasonal variation of the wind over the mid-latitude

oceans is comparable in magnitude to the mean wind, which is

the primary driving force of the mean ocean circulation.

What seasonal variations in the ocean circulation are driven

by the seasonal variations in the wind? This is the central

question that motivates this thesis.

Lighthill (1971) discusses time-dependent ocean response

in general, including the reasons why it is of interest.

There are several reasons why the annual cycle is of particu-

lar importance. It occupies a point on the frequency spectrum

that may be thought of as intermediate, between "climate" with

its timescales of years to thousands of years, and "weather"

with its timescales of days to weeks. The concentration of

seasonal forcing at a few discrete frequencies affords a

valuable opportunity to discover the connection between forc-

ing and response. Like tidal motion but unlike most other

time-varying motions, the regularity of the seasonal cycle

means that historical data taken at irregular intervals can

be used to accurately determine amplitude and phase of both

the forcing and the response.

As a practical matter, it is important to know the annual

cycle of ocean currents and properties in order to interpret

historical data and design monitoring programs. For example,



oceanographic cruises may tend to be concentrated in the

milder seasons. How much bias does this introduce when es-

timating time averages of properties? Understanding the

ocean response to annual forcing is also a necessary step

in understanding the seasonal cycle of the coupled ocean-

atmosphere system, and in understanding the fluctuations of

that cycle from year to year. In addition, there is the

possibility that the annual cycle may lead directly to mean

transports of mass and/or other quantities.

An early study of the response of the ocean to periodic

forcing was made by Veronis and Stommel (1956). Using an un-

bounded two-layer beta-plane model with forcing independent

of latitude and periodic in longitude they explored the wide

range of motions from fast inertial waves to slow Rossby

waves. Their main finding relevant to the present study was

that in mid-latitudes the barotropic response predominates at

higher frequencies while the baroclinic response becomes im-

portant at low frequencies. Motions of annual period are

near the crossover between barotropic and baroclinic domin-

ance. In the limit of low frequency the two modes occur in

combination such that the response is limited to the upper

layer.

Phillips (1966) developed bounded beta-plane models,

both homogeneous and two-layer, driven by forcing periodic

in time and in the meridional direction. Bottom friction



was included so the response was in the form of damped basin

modes. At annual frequencies the barotropic response in

terms of meridional velocity was small except very close to

the western boundary. In the two-layer model the upper layer

meridional velocity dropped much less rapidly with distance

from the western boundary, since the bottom friction was in-

efficient in damping low frequency upper layer motion. At

periods shorter than 250 days, for which there were no prop-

agating baroclinic waves, there was little difference between

the homogeneous and the two-layer results. The phase of the

response was not discussed, since Phillips was interested

in explaining the observed power spectrum of currents near

Bermuda. Recently Leetmaa (1978) has re-evaluated both the

observations and the (barotropic) model to conclude that a

regular cycle of forcing at harmonics of the annual frequency

may indeed account for much of the observed energy at those

frequencies.

Other studies of the response of a homogeneous beta-

plane model to periodic forcing include the analytic work of

Pedlosky (1965) and the numerical work of Veronis (1970).

Both calculated nonlinear effects and found significant mean

flow generation by periodic forcing.

Longuet-Higgins (1965) studied the effect of periodic

and localized forcing patterns on a stratified unbounded

beta-plane model. His main concern was the generation of

Rossby waves by stationary or moving wind systems, so he



emphasized smaller spatial and shorter time scales than

those of interest here.

Another approach to the study of time-dependent re-

sponse is the use of forcing with a step function time

dependence. All frequencies are present so the results are

not immediately applicable to the case of periodic forcing,

but useful insights may be obtained. In some cases the

annual cycle of forcing may be so rich in higher harmonics

that a spin-up model is superior to a periodic one. This

idea is implicit in Lighthill's (19691 application of a

spin-up model to the generation of the Somali Current by

the Southwest Monsoon. Since the region is equatorial, the

barotropic and baroclinic responses have comparable time

scales, in constrast to the mid-latitude situation. Spin-

up at mid-latitudes due to both wind stress curl and to long-

shore stress is treated by Anderson and Gill (1975).

There are two papers that are explicitly concerned with

mid-latitude annual response. That of Gill and Niiler (1973)

emphasizes the factors involved in sea level variations.

Scaling arguments are used to show that the barotropic re-

sponse of the ocean interior should be in accord with the

Sverdrup balance. White (1977) uses a reduced gravity model

to show that the baroclinic response to annual wind curl

variations consists of two parts: a displacement of the

thermocline by Ekman pumping, and a free baroclinic wave

generated at the eastern boundary.



All of the previous work mentioned so far (with the

partial exception of Gill and Niiler, 1973) involves models

with flat bottoms; but the ocean bottom is far from flat.

Hence our central question of the response of the ocean to

annual wind variations leads to a second question: How do

the characteristic major topographic features of the oceans -

the continental slopes, the mid-ocean ridges, the island

arcs - affect the dynamics of the annual circulation?

The effect of topography on steady homogeneous flow on

a beta-plane is fairly well understood. See, for example,

Welander (1969) for calculations of the deep North Atlantic

flow that might be driven by a uniform vertical velocity in

the thermocline. The essential idea is that geostrophic flow

may occur freely along geostrophic contours (constant f/H),

but forcing in the form of a vertical velocity or torque is

required to allow flow to cross contours. In a model with

two immiscible layers there can be no steady vertical veloc-

ity of the interface, so motion in the lower layer can be in-

duced only through interfacial friction. A model of this

type is considered by Welander (1968).

Waves in a homogeneous fluid on a beta-plane over topog-

raphy have been studied by, among others, Rhines (1969). He

calculated the effect of simple step and ridge topographies

on incident Rossby waves. He found that a step reflects waves

if its fractional height is large compared to the (nondimension-

alized) frequency. A wide ridge will also cause reflection,



but a ridge that is narrow relative to the length scale of

the wave has little effect. Each slope generates vorticity

of the opposite sign, so cancellation occurs.

Waves in a stratified fluid on a beta plane over a

slope have also been studied by Rhines (1970). In a two-

layer system with a north-south slope he found that the usual

barotropic and baroclinic vertical modes are replaced by one

mode concentrated in the upper layer and a second concentrated

in the lower layer. With continuous stratification, Rhines

finds that a slope brings forth a bottom intensified mode

and a set of baroclinic modes that are influenced but little

by the slope. These waves are investigated further by Suarez

(1971). The scattering of incident barotropic and first mode

baroclinic waves by low topography in both continuous and two

layer systems has been studied by Hall (1976). He concludes

that scattering is strongest when a ridge is a few internal

Rossby radii across and when the group velocity of the inci-

dent wave. is at a shallow angle to the ridge axis.

The present investigation begins with the development in

Chapter II of scaled linear equations for periodic flow on a

beta-plane over topography. Two-layer stratification is

used. The scaling is tailored to the problem at hand: oscil-

lations due to annual wind varations. The north-south scale

is assumed fixed by the forcing pattern, while the east-

west scale is left free to be selected by the forcing or the



dynamics as required. With the slope terms set to zero, a

unified theory of annual oscillations without topography is

developed. The model is bounded in the east and west but

is open to the north and south. Emphasis is placed on forc-

ing that is zonally uniform, but more general forcing is also

considered.

In Chapter III we examine the effects of some simple

topographic features in the annual circulation. We start

with a model inspired by the Antilles Arc in the Atlantic and

the Ryukyu Arc in the Pacific. The model has an infinitely

thin meridional barrier that blocks the lower layer without

impeding the upper layer. In section B of Chapter III we

consider the properties of flow over an east-west slope.

Two types of analysis are made. The first analysis uses

constant-coefficient approximations of the vorticity equa-

tions to find plane wave descriptions of all the various

types of motion. The second analysis uses scaling arguments

to find approximate vorticity equations that are appropriate

to each different type of motion. This gives a better under-

standing of the dynamics, but the solutions are too compli-

cated to be used in calculating the effects of isolated

features. Accordingly, in section C we use the plane wave

solutions to calculate the effects of three topographic

features: a sloping region at the eastern boundary; a tri-

angular meridional ridge; and the same ridge combined with

a lower layer barrier. Last, in section D we extend the thin
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barrier model of section A to a multi-layer fluid. Examples

with eight layers and barriers of various heights are

presented.

Chapter IV is a survey of observations of the annual

cycle of both winds and currents in the North Atlantic.

The relation of these observations to the theory is

discussed.

In Chapter V we summarize and discuss the results of the

investigation and suggest areas in need of further study.



Chapter II

THE TWO-LAYER MODEL

A. Primary model equations

We are interested in low frequency, large scale motions

in the ocean, and in particular, in the effects of topog-

raphy in these motions. Suspecting that homogeneous models

may be inadequate to display even some of the simplest

physics, we are led to a two-layer model as a first step in

discovering the role of stratification. The model will be

limited from the outset to small amplitude oscillations in

the absence of mean motion; quadratic terms in the dynamic

variables will be omitted.

1. Scaled momentum equations

Consider a fluid of two imiscible layers with a small

density difference Do and mean density . With the

traditional Boussinesq and hydrostatic approximations, the

linearized momentum and continuity equations for the ith

layer are

(4 - - FI (2.A.la)

AJ'7 A F'a (2.A.lb)

pz -1' PI (2.Aa/lc(2.A. 1ic)



ir = O (2 .A. !d)

where (LiA') is the horizontal velocity vector in a

Cartesian coordinate system with i positive northward

and i positive eastward. The interface is perturbed

by the motion to lie a distance t from its equili-

brium position at = - IJ, . The velocity components

are functions of , , y, and . The vector

F(-- /i( ')) represents the dissipative forces, due primar-

ily to turbulent motions. There is no adequate theory of

such dissipation, so we will use the traditional device of

introducing different eddy viscosities, 7I4 and )v ,

in the horizontal and vertical directions:

() Z))( U -),1.) (2.A.2)

where V2 here and elsewhere refers to the horizontal

Laplacian.

For simplicity, a rigid lid boundary condition will

be used at the upper surface:

(2.A. 3)et



This rigid lid approximation is good so long as there is

a scale of the motion, L , such that L << A X where

S . ) // is the external Rossby radius of de-

formation. A typical mid-latitude value of Aa is

3500 km. At the lower boundary, the condition of no flow

through the boundary is

(2.A. 4)

The lower boundary may come arbitrarily close to the inter-

face, but must not pierce it. At the interface between

layers, the linearized boundary condition is

(2.A.5)

Interfacial friction will be neglected; we let V,

go to zero except near the top and bottom boundaries. At

the top boundary, we will specify the wind stress,

( . At the bottom boundary a no-slip condi-

tion will produce an Ekman layer. For most motions we

will consider, this bottom Ekman layer is negligible.

Likewise, the lateral friction term will be significant

only in special instances.
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All variables will now be non-dimensionalized by

dividing them by appropriate scales. The meridional

length scale, L , will be externally imposed, while the

zonal scale, Wv, will be selected by the dynamics. The

ratio A /L will be 0(I) or smaller. Since we are

interested in periodic motion, all forcing terms and de-

pendent variables can be expressed in the form

7G E ,y,)e i twhere is a complex amplitude.

The operator y then becomes -~) , and the e

factors out of each equation. The Coriolis parameter will

be approximated by a linear function of 7 : /-1 .

Temporarily denoting non-dimensionalized variables with

primes, we set

t -Ly'

H,

tsSC1
^ -iws

t/i "- L tI~r eA -i,

i p, e

n r ,iwt14 1~JIcL (

Hz- ~l '~' Nz a /r a H,~

(2.A. 6)
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In terms of these new variables, (2.A.la-c), (2.A.3),

(2.A.4), and (2.A.5) become (dropping the primes)

- ip d i - /L. = -.] / F(ci)

u/ cU(T1 - A 7 P)

J'zP ft

(2.A. 7a)

(2 .A. 7b)

(2.A. 7c)

cu = 0 O

with the following definitions of parameters:

(2. A. 7d)

(2. A. 7e)

(2.A. 7f)

(2.A. 7g)

LA, i~t A # TI /1 t/O
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The friction terms are now expressed in terms of the

operator

F 4 E1 (A-7F + 1 ' - (2.A.9)

where EV and Ep are Ekman numbers

v- , a,  (2.A.10)

Both Ekman numbers are very small. For example, if

7/ = / ;- 7- S C , 0 5X Sec-/ and //S 5)tSO

then E v, , /o /; and with V/H = /0 /7 Sec' , the range

of L from 0 Y to 10 gives E, = x2to- 3 to

2x /o . Hence lateral friction is of no importance in

(2.A.7a,b) except possibly in thin boundary layers where a

large value of q-3 (meaning a small zonal scale) can make

the product , - = (I) . For small A , the dominant

balance in (2.A.7a) is geostrophic, so the only potentially



significant lateral friction term, found in (2.A.7b), may

be written 4 -3E -/ '-iAX

The smallness of Ev ensures that the Ekman boundary

layers are thin, so the bulk of the flow in each layer is

independent of depth. Let this depth-independent velocity

be denoted (DI A~t), and let the Ekman layer correction

be (t,P) . Then, provided 4<</ , E < , and

/O I << , a standard Ekman layer calculation (e.g.,

Greenspan, 1969) yields the bottom stress, (t f), r (7)

SEV (u, ), in terms of (t4 ~ /)

/ / (2.A.lla)

('t )Y 4 (2 .A. llb)

The depth-independent velocity is governed by (2.A.7a,b)

with Ev = P . since we restrict 4 : O() , -<</

and E,<< , deviations from geostrophic balance in

(2.A.7a) are small, and /V 'f P . If A is small,

there may be significant ageostrophy in (2.A.7b); but L4A*-

in (2.A.12a,b) is multiplied by 1 , so the ageostrophic

contribution to the bottom stress from 4* is also small,

and we may substitute (L4= - Pa in (2.A.lla,b) to

get expressions for the bottom stress in terms of the

pressure:



-- r- A F AX) (2 .A. 12a)

(2.A. 12b)

Although the bottom boundary layer flux is of order

v , the flux in the surface Ekman layer is de-

termined by the imposed wind stress, ( Z 1) , and

may therefore be as large as () regardless of the

value of Ev . Since the wind stress is externally im-

posed, both components, unlike the velocity, have been

scaled by the same factor: ' Ao / " e' 4 . This

scale is chosen to balance the divergence of the Ekman

flux by vortex stretching in the upper layer, as will be

seen.

Now that the friction terms have been simplified, we

may vertically integrate (2.A.7a,b,d) over the depth of

each layer to get

*hf- I I-f~-, r-Ai' ZIL

-iA'6 t-f M d ''2

(2.A. 13a)

(2. A. 13b)

t- A - /7

(rfr5

_ _L;__ ______I~I~^1_IX I_~C~_C___I_~

tally~ Ai ia) 3Y~1

(2.A. 13c)U, /X 4- V I
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(2.A. 13d)

-1if K -A - A- E,"1fr

-i-i, S- 'A /2.#X4

/* A -1cra

(2.A. 13e)

(2.A. 13f)

where

o" V,
C)M

( 2)W~) EI (2.A. 14)

( Ui) /t)

Before proceeding to the derivation of vorticity equa-

tions, let us review some of the features of (2.A.13a-f),

which govern the depth-integrated velocity in each of two

fluid layers on a beta plane over topography.

First, the scales have been chosen in anticipation of

a strong geostrophic balance. The frequency, 0- , is small:

-9 X lO- for motions of annual period at 200 N, for

example. The frequency and the meridional scale are ex-

ternally imposed, for example by a seasonal variation of

wind stress. The zonal scales (there may be more than one

zonal scale in a single region) must be determined by the

dynamics, and may be different in different regions, due,

-E,"~~'-i , - - ( - - ~ -'2

U7, // 4- V, ly

, /L-,)"Wl



for example, to changes in topography. We will be consider-

ing topography that is primarily a function of 1Y , and

therefore does not introduce its own meridional scale.

Anisotropic length scaling requires anisotropic velocity

scaling if the geostrophic balance is to have O(i) coef-

ficients. Hence, the scales of Mrc and V; are inversely

proportional to the zonal length scale.

Second, we specify that the eddy viscosities are

small, so friction will be important only where there are

especially large velocity gradients. The meridional scales

chosen will be too large to create such gradients, so

friction appears only as a result of locally small zonal

scales, and therefore only in the meridional momentum

equation.

Finally, note that the coefficient on the right hand

sides of (2.A.13c,f) may be written as o

Thus the horizontal divergence of the flow diminishes as

the frequency or either of the length scales is reduced.

2. Vorticity equations

Through standard manipulations, (2.A.13a-f) with

(2.A.7c) can be reduced to two coupled equations for the

pressure in each layer. Define



(2.A. 15a)

-1 A 'V,, - ; (2 .A. 15b)

_, __

(2.A. 15c)

(2 .A. 15d)

/ ----
E4 2 (2.A. 15e)

= oA-61 QXV',

+ A E ;. f 
(2.A. 16a)

- ta O, - -F 2, t- hA 1I = -- s , a- as, -Z, (2 .A. 16b)

-( )"E -- pYl r-
R2-o - D, 46 .-k / -'.-& . ) j e

4- E,o',.

+A-2 E,,
r7

7
(2 .A. 16c)

(2. A. 16d)

Elimination of ?'
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t-/4 ( r fl 0 - 10.

(2.A. 17a)

JD a'~, -v ' rI4 U1. V2-

*l~'[( xr ) (2.A. 17b)

))77
-/-r L, '-s Zr -- Y@¢

Since o- is small, c can be neglected relative to - 1

and the friction and forcing terms on the right hand sides

can be neglected when multiplied by r . Assuming 6A 4 I

the first term multiplied by ) can be neglected relative

to the second, and from (2.A.13a,d) we approximate

S( - ) (2.A.18a)



f V 2 ' -1X A r (2.A. 18b)

In addition, the term (~ - ,x is small compared

to F V, , and will be dropped. With these approximations

and the use of (2.A.13c,f) and (2.A.7c), we find

- 10 ri, - a,2,;Ar '= ~~ l~

s E arN
st2.

In the special case of

reduces to

(2 .A. 19 a)

(2.A. 19b)

(flat bottom) , (2.A.19b)

(2.A. 20)

3. Parameters

To understand the dependence of a model on its param-

eters, it is helpful to have specific numerical examples.

The main focus of this thesis is on seasonal oscillations,

f / bs a p z E p ,,

Z&L~)~ a,, tA~?, rdE7,3



so for one numerical example we choose motions of annual

period and a meridional length scale of 1000 km. As a

second example, at the limits of validity of the theory,

we choose eddy scales: a length scale of 100 km and a

period of about three months.

The descriptive parameters of the model must also be

given numerical values. Let the basic layer depths be

H, = f0o r , z - 300 , so that E V - . A

convenient value of the reduced gravity is ) 6 X a O/ ec

which could result from a temperature difference of about

10 C. As a central latitude we choose 200 N, making

Sc - and / 2XX/om c' .

Now the essential non-dimensional dynamical param-

eters of the model are determined for the two examples. For

the annual oscillation, JY/=.lYlo 2a -= q , and

2-r= 2.rx/o' . For the eddy, 2r/-Xl. L "  , - O,

and 2 1 = 2. . In both examples, 6r is clearly a

small parameter. The beta parameter, b , is small for the

eddy but not so small for the annual oscillation. Never-

theless, we will sometimes be forced to treat I as a

small parameter in the latter example. The accuracy of the

theory will then suffer, but it will still be capable of

giving some qualitative information.



B. Behavior of the model without topography

In the remainder of this chapter, we will review the

theory of two-layer flow over a flat bottom, and apply the

theory to the problem of the oceanic response to seasonal

wind variations. This will provide a frame of reference

in which to develop a theory of flow over topography.

The flat-bottom problem is greatly simplified by the

ease with which the inviscid versions of (2.A.19a) and

(2.A.20) can be combined to give a pair of decoupled equa-

tions for the two vertical normal modes of the system.

Using subscripts T and c to denote barotropic and baro-

clinic modes, and defining

(2.B.1)

linear combinations of (2.A.19a) and (2.A.20) yield

-- with& (2.B.2a)

-ithA - Yc- "Y/,X/ (2.B.2b)

with



In the limit Ev,> O , these equations are uncoupled.

1. Free waves

Now, with &=0 , and Ev =
4 

= , consider the

possible free barotropic wave motions governed by the

left hand side of (2.B.2a):

/V'frxv) +

This can be solved exactly, setting / I/ , by plane

waves

(2.B. 5)

where A and Y satisfy the dispersion relation

A +2 (2.B. 6)

The two roots of the dispersion relation give the zonal

wavenumbers of the long and short Rossby waves:

(2. B. 4)

i (A'-Y /V



" (2.B. 7a)

Z (2.B. 7b)

Subscripts W and E denote westward and eastward group

velocities of the long and short waves, respectively.

The group velocity components are

The factor of -- in the definition is included to make
A L

the scale factor , =L , consistent with the

use of WA) rather than as the basic time scale.

Given that 0 (= 0 P), the only parameter controlling

nondivergent barotropic Rossby waves is the ratio 1b .

When ) , all the terms in (2.B.4) are impor-

tant. The zonal scale is the same order as the meridional

scale, and the short and long waves have comparable zonal

scales and group velocities. At 4-- - , the zonal

component of the group velocity goes to zero, and for

> I,/ only zonally decaying solutions exist. These

solutions are trapped to a meridional boundary. In the



opposite limit, / < I, the zonal scales of the long

and short waves become increasingly disparate. Equations

(2.B.7a,b) become approximately

4 _ - (2.B.9a)

S--4- (2 B. 9b)

The first term in each of these expressions is an excellent

approximation for seasonal oscillations, since 4 = 6(0-2

For long waves, the zonal scale is Ak--, /, while for

short waves it is r 5 ' . In dimensional terms, for

annual oscillations the short wave scale is a mere 10 km

while the long wave scale is 10 5 km, or Ar, =to . How-

ever, this is much larger than the zonal extent of any

ocean basin, so in fact A is limited to, say, 10. This

means that the long wave balance in (2.B.4) is approxi-

mately PTX - O . The annual large scale barotropic

long wave is so fast that there is negligible phase change

from one side of an ocean to the other.

Baroclinic Rossby waves are slowed by the need to

move the thermocline. With v = " =E O , (2.B.2b)

becomes

-4-, 4- ( -' >(2.B.10)



This equation, unlike (2.B.4) , has non-constant coefficients,

so it does not admit pure plane wave solutions. However, in

the parameter range with which we are concerned, (2.B.10)

may be replaced by approximations in which the non-constant

coefficient occurs at worst parametrically.

First, consider the case A << . Then we may treat

b as a small expansion parameter, with z1 4 a 7 41.

To lowest order, F ~/ , so all coefficients are constant.

Setting / 1 and substituting plane wave solutions

Pc = ' yields the dispersion relation

, k -I--z

A t-" ~( (2.B. 11)

The roots corresponding to the long and short waves are

/kcW L (2.B. 12a)

(2.B. 12b)

and the group velocity components are

CL I- -

~~~,~2 b b ZA jLd
9 It ,-z '4

- kA/ -

(2.B.13)

Ik - q ( J_ I--2-



The critical value of 4f at which C -, - is now

C . Hence for a given b and ,

the critical frequency for baroclinic waves is lower than
- 2

for barotropic waves, often much lower, since ?s can

be O(/'). From (2.B.10) we see that 2 determines

the relative importance of vortex stretching compared to

the U t part of the vorticity change. In the long wave,

one or both of these is primarily balanced by beta. In the

short wave, the A/-t term is the largest counterbalance

to beta.

It is important to note that the above approximation

making use of the smallness of L is valid only when

= O ) . Neglect of the variation of the radius of

deformation is valid only so long as that variation is small

over the whole area of interest.

If the meridional length scale of the motion, L , is

large so that b approaches I , then, for reasonable values

of layer thickness and stratification, A >> I This

means the term A '., can be neglected relative to
I-> fi} , leaving

A,' f-'-fI-C ; rC4 , -0 C2.B.14)

which has no derivatives. Hence the variation of f may

be taken into account parametrically. Solutions of



(2.B.14) have the form

(2.B.15)

The function

that /

is subject only to the restrictions

o,C) and d & . With A /

the dispersion relation for 4 is

4- b -f Or. (2.B.16)

The long and short wave roots are

7 c- s 7 -

/4 d -~ (2.B.17a)

6c 2
(2.B.17b)

If ( 1

A44172 r

, the roots are approximately

(2.B.18)

AC

For annual oscillations, the first term in each of these ex-

pressions is a good approximation, since Ac 2.5

PC, = (7 Ci (7)/

- A- - [ ( 
crbc Y

0-/61
-2 A ~~II4,

;ZI~ F- ,,



The long waves result from a balance between vortex stretch-

ing and beta, with the wavelength increasing as the latitude

is decreased. Therefore a line of constant phase that

starts out oriented north-south will gradually be refracted

as it travels west, taking on a northeast-southwest slant.

The short baroclinic waves are almost identical in scale to

the short barotropic waves, both resulting from a balance

between beta and the Ait' part of the vorticity change.

Because of the small zonal scale, /: /b , the radius of

deformation is not an important parameter. From (2.A.13c,f)

we see that the annual short wave motion is almost non-

divergent. Hence the layers are only weakly coupled. This

fact will be seen in the next chapter to have important

implications.

2. Forced motion

Now we will look for particular solutions of (2.B.2a,b)

with E, = F O but with G V . Since the equations

are linear, we restrict our attention to simple forcing

patterns, = C i C . In the absence of boundaries,

the scales of the forced response are exactly those of the

forcing. Then e and A can be restricted to the values

+1 and -1 depending on the direction of phase propagation

of the forcing. The parameter A becomes the ratio of

zonal to meridional scales of forcing. If the forcing is



independent of A , then there is no zonal scale, and the

response in the absence of boundaries is also zonally

uniform. It is found by setting the /X-derivative terms in

(2.B.2a,b) equal to zero, in which case the parameter A

is common to all remaining terms and drops out of the

equation. This is the same result as can be obtained by

taking the limit of (2.B.2a,b) as A -> .

a. Zonally uniform forcing

Since the patterns of seasonally varying wind

stress and stress curl are much stronger functions of lati-

tude than of longitude, they may, as a first approximation,

be taken to be independent of C. Therefore we consider

first the case L-e

The barotropic response obeys

errp a e (2.B.19)

which can immediately be integrated to give

-- e (2.B.20)

Without loss of generality, we may set A- . For

scales L )) )0 km, F " )) I , so the barotropic response



is large. All of the torque supplied by the wind must go

into changing (f .

Now, suppose there is a boundary at Y= o and

we are interested in the flow to the west, at negative .

The boundary condition 4~'= at X= 0 can be approximated

r= 0 at 4'0 , since the only important

departure from geostrophy is due to the wind stress. Free

waves with group velocity away from the boundary are added

to (2.B.20) to meet the boundary condition. In this case,

the barotropic long waves with wavenumber given by (2.B.7a)

are appropriate. A complete solution is then

t ~ (2.B.21)

For convenience, it is assumed that ( )  e C 7  . Note

that there is an ambiguity in ( 2.B.21 ); the constant of

integration is undetermined in the present model.

As we have seen, the zonal scale of the baro-

tropic long waves is A7w which is large compared to the

width of an ocean basin. Hence (2.B.21) is approximately

l A / e .- , . r.[.,- (2.B.22)



and the complete response is )0(' ) ( for IX = 00)

This means the Sverdrup balance holds. The torque applied

by the wind is balanced by the beta effect. This result can

be seen directly from (2.B.2a) without going through the

formal procedure of adding a free wave to a directly forced

solution. The smallest zonal scale in the problem is set

by the width of the basin, so let that scale determine A .

Then, so long as 14 b , the relative vorticity

term is small compared to the beta term, giving the pri-

mary balance

1,r r-WA C2 .B. 23)

which can be integrated to give (2.B.22), remembering that

, -_ /b . The condition for the validity of this

approximation, 4c-<< , is, in dimensional terms,

L >> ( } - Z o0 o A for annual period with Lo 000 /

as the width of the basin. In the Sverdrup balance, the

response is in phase with the forcing, in the sense that the

maximum northward velocity coincides in time and space with

the maximum wind stress curl. As L decreases and the -'oAp

term gains importance, the response begins to lag behind

the forcing. At L , this phase lag is half

a radian.



Calculation of the baroclinic component of the

response to a forcing & C proceeds along the same

lines as the barotropic analysis above. However, there is

a major difference in the results, due to the additional

physical process, vortex stretching described by the

idrA c term. For L~. rO km, this term domi-

nates -i P79, ; vortex stretching due to thermocline

displacement is more important than relative vorticity

change. Vortex stretching also establishes a free wave

scale shorter than an ocean's width, so the Sverdrup-type

balance can hold for the baroclinic mode only near the

eastern boundary.

As in our earlier discussion of baroclinic free

waves, there are two cases to consider, depending on

whether L is small enough to allow the approximation

f ' / . First, consider the limit 1 & , or

L<< d~ Z = -00 km. From (2.B.2b) we extract

PCb (2.B.24)

which has the solution

p+T 1TVI e

fAct%. (2.B.25)

,i /~~ -;W



satisfying the boundary condition P-= cA,'z f- I/ at

= ' . The scale factor /1 has been set to one, and ~Ac

is determined from (2.B.12b). Similarly, in the case where

bQ(') , (2.B.2b) becomes

(2.B. 26)

which has the solution

= -.e
PCc- 1

iA(Y) Y) 1CL/7

2. f (rWl iA, ) (2.B.27)

with /&v here determined from (2.B.18a):

k" - (2.B.28)

Near the boundary, where /Ac/l <<1, (2.B.27) is

approximately

a- ,
,Or C- b k ~xe~

Z 4" 4a A
(2.B.29)

In the same region, the barotropic flow, from (2.B.22), is

identical, since b - - :

-- I A



/,;-1)0 (2.B. 30)

But (2.B.1) implies

(2. B. 31)

so near the eastern boundary there is no flow in the lower

layer. In the upper layer, 0, . This means that

the upper layer alone carries the total transport required

by the Sverdrup balance. Further from the boundary the

total transport still satisfies the Sverdrup balance, but

it is no longer confined to the upper layer.

The baroclinic response, (2.B.27), can be re-

written (with ) )

4X, ~
i x

1pz $(1 4A4- (2.B.32)

so the phase lag is -Aw tyl/4 . For annual oscillations,

this means a lag of one week at about 100 km from the

eastern boundary at 200 N. At 100 N, a one-week lag occurs

about 400 km from the coast. Equation (2.B.32) shows that

_~_ .^ I_~j~__il_~ll )_Y___~)_^;1IDL______-1_L~IIII~-_ ~--U

i~=( ~7I ?



the baroclinic response takes the form of a wave propagat-

ing at twice the free wave speed, modulated by a sinusoidal

amplitude with the same wavelength. This behavior is shown

in Figure (2.B.1). As one goes west from I ~ , ampli-

tude and phase lag increase until cW Y i , where the

phase lag is /2 and the amplitude is a maximum. Then the

phase lag continues to increase while the amplitude de-

creases, going to zero at Ac X =27, where the phase lag

is i' . Further west, the amplitude increases again, and

the phase lag increases from zero. Hence the phase lag is

always between zero and 17 , and the motion is greatest where

the lag is / . There the free wave from the eastern

boundary is in phase with the directly forced response.

This behavior of the baroclinic response to

seasonal wind variations has been described by White (1977),

who has found observational evidence of its existence in

the Pacific. Data from a grid of hydrographic stations

occupied monthly for 15 months near Hawaii show westward

phase propagation and a phase lag that increases from south

to north due to the decrease in baroclinic phase speed with

increasing Coriolis parameter. Earlier Meyers (1975), using

the same data, had shown that the average thermocline dis-

placement from its mean value lagged the wind stress curl by

about T/'z . He concluded that this demonstrated that the

thermocline was simply moving up and down with the vertical

velocity induced by surface Ekman pumping. While this is
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Figure 2.B-1. Variation with distance from the
eastern boundary of the baroclinic
response to forcing (2.B.32).



true if one considers an average over an integral number of

baroclinic free wavelengths, it is not true locally. As

demonstrated by White, the free wave from the eastern bound-

ary plays an important part in the complete response.

b. General forcing

When the forcing function takes the more general

form 6 C _ the response is a bit more complicated

but is governed by the same principles as in the case of

zonally uniform forcing. Here we will briefly sketch the

theory.

As previously, the barotropic response is simplest.

The equation to be solved is

An exact solution with A = / and Pr = O

--P -  eOPe (e
)OT. S ~ t. +~

- e

(2.B. 33)

at 0- O is

i A,, zn)
(2.B.3 4)

Alternatively, we can examine the scales in (2.B.33) by

setting I and , equal to I . Then, so long as b>

and ) b /1 , the relative vorticity term is small
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compared to the beta term. The same is true for the baro-

tropic long wave on ocean-wide scales. What is left is just

the Sverdrup balance, which can be directly integrated to

give

-1r j7V TA-' (c-/c. (2.1B. 35)

Baroclinic behavior is complicated slightly by the

presence of the vortex stretching term, which is generally

important and may have a variable coefficient. However,

as was shown earlier, the variability of fz does not

really present a great difficulty, since whenever the vari-

ation of F is significant, the V-derivative term is small,

and P becomes merely a varying parameter. Using this

fact, a general approximate solution to

P ' .pIt A V ix i )

( - A

(2.B. 36)

(2.B. 37)

is



The response is larger for westward propagating forcing,

since it more nearly matches the free long wave solutions.

At resonance, A c or ce, (2.B.37) is no longer

valid and must be replaced by

If the resonance is at the short wavelength / -/C

free short waves must be added to meet the Pc, = boundary

condition at the western, not the eastern, boundary. This

is done by making l4 the longitude of the western rather

than the eastern boundary. Resonant response is stronger

at the short wavelength; the group velocity is smaller,

so a wave has more time to gather energy while traveling

a given distance.

The dependence of the baroclinic forced response

on the direction of propagation has an interesting conse-

quence if the forcing is a standing wave in the zonal direc-

tion: & = e cos / . The response analogous to the

directly forced part of (2.B.37) is (assuming c>> I )

--A I

O C - (2.B.39)

( + 7V /x



The first part of (2.B.39) is in phase with the forcing in

time, but 900 out of phase in c ; while the second part is

900 out of phase in time, but in phase in space. The first

term dominates as the frequency and length scales are de-

creased, and vise versa for the second term. The two terms

are the same size at resonance. When the first term domi-

nates, the zonal scale is small enough to allow a Sverdrup

balance, between blp. and the forcing. Although ) in

this case is spatially out of phase with &, /A , is in

phase with &. When the second term dominates, beta is in-

effective, and the wind stress curl produces local vortex

stretching.

3. The western boundary

So far, little has been said about the western boundary.

The response of the ocean interior has been calculated as

the sum of local effects and waves generated at the eastern

boundary. The justification for this asymmetric development

of the theory is the anisotropic nature of Rossby waves. As

pointed out by Pedlosky (1965), the Rossby waves generated

at the western boundary at a given frequency have shorter

wavelengths and slower group velocities than those generated

at the eastern boundary. The short waves tend to be rapidly

dissipated, and so their effects are confined to a western

boundary layer.
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In the present model, the damping can be provided by

horizontal or bottom friction, or both. We are not inter-

ested here in the details of the oscillating .western bound-

ary layer, but in its general characteristics, primarily

its width and transport. Let us very briefly consider,

then, how each type of friction modifies short wave dynam-

ics at the western boundary. Of interest are large scale

motions with periods of three months and longer.

a. Bottom friction

Since bottom friction acts directly only on the

lower layer, the normal modes in the vertical are no longer

the simple barotropic and baroclinic modes. If the fric-

tion is small and the layers are closely coupled, the short

wave solutions will differ only slightly from inviscid

short waves; but if friction is larger and coupling is weak,

the short wave solutions will consist of an essentially un-

damped wave concentrated in the upper layer, and an inde-

pendent damped wave in the lower layer. These types of

behavior can be demonstrated by a couple of simple perturba-

tion expansions.

From (2.B.2a,b) with EH = 0 and A b chosen

as the scale appropriate to short waves, we have

approximately



(2.B. 40a)

- 1 ; ,X y -tP i (o2 - Fz) FO
-is,, Pf, +r~ (pI -, )t F, fee

where PE ( = 1p'.1 an

sider first the case = N(I)

d F, 4 .
, F.

(2. B. 40b)

. Con-

Then solu-

tions of (2.B.40) can be sought in the form

C2. B. 41)

with + -. For the modified baro-

tropic mode, we find

p ,= I- r(,ts , ;)

i FvPzr~ 4-
/Z~ 4/ -

(2.B. 42)

0 (Q )

and for the modified baroclinic mode

,, vo.

AC 0(F+

(2.B. 43)

_I ~L~__;~__ ~_I~

z 0 V 2- 7.Fv p~lF P1

+ (F, '4



To lowest order, the solutions are just damped barotropic

and baroclinic short waves, decaying to the west. The

barotropic decay scale is O(F) while the baroclinic

scale is 0 (Fv ) ; not surprisingly, the damping is weaker

for the baroclinic mode, with its smaller bottom velocity.

The first order frictional correction to the lower layer

velocity is in each case 90' out of phase with the zero-

order velocity. Note that the correction varies as r-I

and so the expansion is valid only for Fl/ 4 /I .

Now, suppose </ and F 0(I) . Then we

find that there are two solutions, one with no zero-order

flow in the lower layer, the other with no zero-order flow

in the upper layer. These can be expressed in the forms

a,=e

F + (2.B.44)

and

r~'rl-z~ i- Fv)7+ o(rtj &AiA
r ne (2.B-045)

p2 e

- ,_- r



The first solution is a short wave that is heavily concen-

trated in the upper layer and is damped only at (r-) .

The lower layer velocity is 901 out of phase with the upper

layer. The second solution is a heavily damped wave con-

centrated in the lower layer. Bottom friction has detuned

the two layers so that they act almost independently. Be-

cause of the small scale of the motion, the coupling between

layers via interface deformation is weak, and energy in the

upper layer is lost to bottom friction only very slowly. In

fact, this energy loss decreases as the friction parameter

1v is increased, since 4 . (AI ) ' /F .

For oscillations of annual period, with Ev '/O-y

we find Fv - .* and P , while at a period of

three months Fv - -0 and ( ' - 6- . Thus the three-

month oscillations can have a western boundary layer governed

by (2.B.42) and (2.B.43), whereas the annual oscillations

are in the parameter range for which (2.B.44) and (2.B.45)

are appropriate. For the annual oscillations, then, the

upper and lower layers are only weakly coupled at the

western boundary, and the short waves in the upper layer are

free to propagate energy eastward with minimal damping. In

order to damp these waves, we may invoke lateral friction.

b. Lateral friction

Lateral friction does not cause any direct coupling

between barotropic and baroclinic modes, so the appropriate

_I I~ I/_____L__l__ll__~_iI ( III~-.~---PI*L



equations, taken from (2.B.2a,b) with Iq and E l=-v
are

-lr + / , Fre x,

(2.B. 46)

-'' ~rn~ - cr-2/j% r- F ~Crll g~,

with c f and F E . For small F, theH 14 6-

effect of the friction term is to introduce a damping of

order R in the short waves, and to introduce a new and

smaller scale motion that decays rapidly. Substituting

Pc = e in (2.B.46b) gives

(2.B. 47)

The damped short wave solution is

SA; -I
-- c~o O(F°

(2.B.48)

and the other solution that decays to the east is

F 4 + (F, #

= O

(2.B. 49)

-- 6



The solutions for the barotropic mode are obtained from

those above by setting c 20

When lateral friction is present, an additional

boundary condition is needed. The no-slip condition im-

plies 0,g =0 at the boundary, since the flow along the

western boundary is very nearly geostrophic. Furthermore,

since the zonal scales of the boundary layer flows are much

smaller than those of the interior solution for 4 ;k

the no-slip condition can be applied to the boundary layer

solution alone with little loss of accuracy. This de-

termines the ratio of the two solutions (2.B.48) and

(2.B.49), so the lateral friction layer becomes

iA
1 X),, E, /~ j

(2.B.50)Ae

with only the constant p, to be determined by the in-

terior solution to satisfy the condition of no normal

flow at the boundary.

If P( / but F, >> j , the two solutions of

(2.B.47) that decay to the east will have 0,

so the zonal scale increases slowly as the horizontal

friction increases. For annual oscillations with

/O o vc, F' , .L . With this value of F, ,

the boundary layer is not very accurately described by the

small F expansion, but the main physical processes are



indicated: The short waves that are added to the interior

solution to satisfy the condition of no flow through the

boundary are damped by friction, and a rapidly decaying

frictional layer is added at the boundary to satisfy the

no-slip condition.

If both lateral and bottom friction are important

in the boundary layer, the structure becomes more compli-

cated but the essential features remain. The layer is al-

ways barotropically non-divergent, and as the frequency is

decreased it becomes baroclinically non-divergent as well. a

c. Matching the interior solution

The conditions A- 0 at the boundary are, from a

(2.A. 13a,b,d,f)

(2.B.51)

The tilde denotes boundary layer variables, the subscript I

interior solutions. Use has been made of the condition

1 . If is taken as a small parameter,

then the boundary condition to lowest order is a balance

between geostrophic and Ekman interior flow into the bound-

ary and geostrophic boundary layer flow in the opposite
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direction. The friction and acceleration terms enter as

0(b) departures of the boundary layer flow from geo-

strophy. These terms can be simplified with the help of

the boundary vorticity equations, similar to (2.B.40)

but with lateral friction included:

- / -+r,,r #i ( -r) - F4 ,"x - 0

(2.B. 52)

Integrating once from = oo, where p and its derivatives

are zero, to /X= C

(./ wof P/ ) I/Xno

, the western boundary, gives

rif P

rs2 -
Substituting these in (2.B.51) gives, at = O

o
£FK)4#~$

L1- y)W

-0.

(2.B. 54a)

(2.B.54b)

(2.B.53)

/__iX~_ L-I~X^-~-~--- C.- YY~CII~~

/L (c. F11-
-(pn 4- ?-&fr /O r~S - ~R~yC

t JPT- I I

-Pt -
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Since the meridional transport in the boundary layer is

geostrophic, flji is just the total boundary layer

volume flux. Also, PI7 /-f is the geostrophic interior

flux into the boundary layer. Hence, (2.B.54a,b) merely

state that the geostrophic and Ekman influxes into the

boundary layer go to change the transport and the volume

of the layer. To the extent that r is small, the layer

is baroclinically non-divergent, and the change in trans-

port in each vertical layer can be computed from the

influx into the layer. Equations (2.B.54a,b) can also be

derived by integrating the continuity equations

(2.A.13c,f) and substituting geostrophic approximations

for ( vi, V ).

For the barotropic mode, (2.B.54a,b) become

w T (2.B.55)

This implies that, with , the point of maximum

boundary current transport is displaced to the north of

the point of maximum interior geostrophic transport.

However, if the interior transport is governed by the

Sverdrup balance and driven by some (tJ6, ,

then

C-) i( s X
loTi~l3:w 

( o?7ra J:? aD-10 1v



Substituting this in (2.B.55) yields, after minor

manipulations,

w o (2.B. 57)

where we have kept A - , and the integration is from

one side of the basin to the other. Thus, to within a

constant of integration, the barotropic western boundary

current transport is determined solely by the curl of the

wind stress integrated across the ocean. The component

of wind stress along the boundary does not affect the

transport except insofar as it contributes to the curl of

the stress. In other words, local forcing does not pro-

duce significant barotropic western boundary current

transports at low frequencies. The meridional wind stress

is balanced by a pressure gradient at each coast. The fast

barotropic long wave causes this pressure gradient to

propagate rapidly across the ocean, so there is everywhere

a geostrophic barotropic transport equal and opposite to

the zonal Ekman drift, resulting in zero net barotropic

transport.

Calculation of the baroclinic response of the

western boundary current is much more difficult than cal-

culation of the barotropic part. In the first place,

the divergence terms in (2.B.54a,b) depend on the

_i~YI~ ~_II _~_L~~_I i~iX I-I III~L-C -^ ~---LI-_I~-~C~(-LI



detailed dynamics of the boundary region. In the second *

place, even if the divergence terms are negligible (which

they may often be), it is difficult to determine f

the interior geostrophic flow into the boundary. Due to

the slowness of the baroclinic long waves, information

from the eastern boundary may take years to reach the

west. The phase of a wave then depends critically on

details of the geometry and hydrography of the basin.

Subtracting (2.B.54b) from (2.B.54a) gives

(2.B.58)

If c and I, then ; zonal

Ekman flux at the coast supplies the baroclinic boundary

current. As in the barotropic case there is a balance

at the coast between wind stress and pressure gradient,

but in the baroclinic case this balance does not exist

uniformly across the ocean. At the eastern boundary it

generates a baroclinic long wave, and at the western

boundary it generates a boundary current. The baroclinic

long wave upon arriving in the west will itself generate

a boundary current, but the phase of this contribution is

uncertain.



The part of the baroclinic western boundary trans-

port due to the wind stress curl in the interior, ignoring

the wave from the eastern boundary, can also be calculated

in the limit r <( I . For example, if OV X ) is

a function of latitude only, then from (2.B.2b), (2.B.3),

and (2.B.27) the directly forced part of r'c is approxi-

mately -ij - ) o M I w/F . Use of (2.B. 58) then

gives the result

This reiterates the increasing importance of the baroclinic

mode as one goes towards the equator; the response in

terms of transport goes as , while the barotropic

transport is independent of -.

In the calculation of both baroclinic and baro-

tropic western boundary responses, we find that there is

a constant of integration that is not constrained by the

model. The model is valid only over a restricted range

of latitudes, but it has not been closed off by zonal

boundaries. The undetermined constants of integration

represent boundary current transports through the region

of validity of the model due to processes outside that

region, or of a scale for which the model is invalid.



Another shortcoming of this model is its neglect

of mean currents and dynamic topography. Qualitatively,

a mean flow toward the western boundary will aid boundary

layer formation by slowing the short wave radiation of

energy away from the boundary. Similarly, a mean flow

away from the boundary will widen the boundary layer or

prevent its formation entirely. This may limit the ap-

plicability of our simple model to regions where the zonal

component of mean flow is small or to the west, say from

the southern edge of the North Equatorial Current to Cape

Hatteras, for example.



Chapter III

FLOW OVER TOPOGRAPHY

A. The two-layer barrier problem

In the last chapter we saw how short Rossby waves, or

their counterparts modified by friction, are generated at the

western boundary to satisfy the condition of no normal flow

into the boundary. Now we ask, what happens if the condition

of no zonal flow is applied only in the lower layer? If the

lower layer is blocked by a meridional ridge, but the upper

layer is unimpeded, does a boundary layer form in the upper

layer as well as in the lower?

These questions are motivated in part by consideration of

the topography of the North Atlantic. The Antilles Arc, sep-

arating the Caribbean from the Atlantic, has a maximum sill

depth of less than 2000 m, and an average depth of far less

than that. The Mid-Atlantic Ridge is less extreme, but still

represents a sizeable barrier to deep zonal flow. Instead of

modeling the Antilles and the Mid-Atlantic Ridge as infinites-

imal perturbations to an otherwise flat bottom, one may go to

the other extreme; suppose a meridional ridge extends close

enough to the interface in the two-layer model to completely

block flow in the lower layer. If realism in modeling the

horizontal direction is sacrificed by making the barrier an

infinitely thin wall, the problem can be simplified to the

point where a closed form analytic solution is possible.

I~~~--Y~-----_IY--~--IIIIXI . 1. -_~~.



Since the value of this model lies in its simplicity

rather than its realism, let us keep it stripped to its

essentials. Explicit lateral and bottom friction will be

ignored, so free waves will be used to meet matching and

boundary conditions at the barrier. This allows the vertical

structure of the solution to be represented by normal modes.

Furthermore, in order to have equations with constant coef-

ficients, we will consider only the lowest order solution in

an implicit expansion in the beta parameter, b. This yields

the usual beta-plane approximation in which the Coriolis

parameter is considered constant except where differentiated.

Since we also restrict attention to low frequencies, the lowest

order momentum equations contain only the geostrophic balance.

The vorticity equations under these conditions are

(2.B.4) and (2.B.10) with F and 1 4 . The geostrophic

balance in terms of velocity (not transport per unit width) is

(3.A.1)

This with (2.B.31) gives the relation between layer velocities

and mode amplitudes:

(3.A.2)
t~l
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Let there be an infinite meridional barrier in the lower

layer at /4T O , dividing the plane into two regions (Fig.

3.A-1). In both regions there is an initial flow, denoted by

subscript I, that could exist alone if the barrier were ab-

sent. The initial flow might be any combination of free or

forced solutions of the barotropic and baroclinic vorticity

equations, and is continuous at a: = O . If the barrier is

present, then free wave solutions of the vorticity equations

(2.B.4) and (2.B.10), denoted by the subscript B, must be

added to the initial flow in order to bring the lower layer

zonal velocity to zero at the barrier. The appropriate free

wave solutions are those that either have a zonal component of

group velocity away from the barrier, or decay away from the

barrier. To the east of the barrier these are the short

waves, P0 re €  and ;ce e and to the west, the
i -rw 'le - i fy

long waves, Pa rwe and Y'c, e . The common factor

e e is omitted. The wavenumbers are determined by

(2.B.7) and (2.B.12).

There are four matching conditions at the barrier that

determine the amplitudes of the four free waves:

2 o 0 (3.A.3a)

64, C, 0 -- (3.A.3b)

4 ' I, -: (3.A. 3c)



S/o - /,= /, (3. A. 3d)

The first two conditions are the obvious requirements of no

flow through the barrier, and the third condition is the

equally obvious condition of flux continuity over the barrier.

The fourth condition is equivalent to saying that there is no

singular source of vorticity in the upper layer. The barrier

does not penetrate into the upper layer, so it cannot cause

a vortex sheet there. Note that the third and fourth condi-

tions are satisfied independently by the initial flow, since

it is assumed continuous at the barrier. Therefore only the

initial zonal velocity at IX= O enters the matching

conditions.

If the initial lower layer pressure is ePre2 ) it

then the matching conditions become

(Pa r2 - M3 c /" ) '- P ,  ( 0) " (3.A.4a)

PR - J91)('iS ) X9 2 (o) (3.A.4b)

SPS CFP(3.A.4c)

/kre Ps-roc+ Y -" C Per r, ( A.4d

X~ _XXIICIY~-IXI~ ~I-~Cll-~ ~. ii~i1llli-.i^r~-~-11Il-----~L-
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The first three conditions say that the pressure is the same

on either side of the barrier in both layers, so the ampli-

tude of each mode must be the same on either side. The solu-

tion for the amplitudes is

P1376 T I;-

where

cic -. j -L+" i
The upper layer pressure at / is therefore

The upper layer pressure at IX- is therefore

(3.A. 5a)

(3.A. 5b)

(3.A. 6)

B I r, 6 (3.A.7)

which goes to zero as 1 goes to 1. This means that if

k - / , the waves induced by the barrier sum to zero in

the upper layer at X- =0 . The barrier in this limit has

no effect on the flux of upper layer water across the barrier.

The limit k -J occurs when c, -- ArE , which means that



the baroclinic and barotropic modes to the east of the bar-

rier will change their relative phases only very slowly. If

Pi -0 'at the barrier, then /0, O for many short wave-

lengths east of the barrier. If the short waves are dis-

sipated within a few wavelengths, then for /dX> 62 the effect

of the barrier is entirely confined to the lower layer.

This limiting case kC / occurs when 2C >

and ) <' / so that 2k - 2 . Physically,

these conditions mean that the short wave scale, %a , is

small compared to the radius of deformation. The stretching

term in the short wave vorticity equation is then small com-

pared to the vorticity change term, and the layers become

decoupled. Since the barrier is in the lower layer alone, it

can affect the upper layer only to the extent that the layers

are dynamically coupled by the waves that radiate away from

the barrier. Although the short waves may involve little

coupling between the layers, in long waves the layers are

strongly coupled, so the barrier has a substantial effect on

both layers to the west. The barotropic and baroclinic long

waves from the barrier sum to zero at "~O0 in the limit

1< " / , but they soon get out of phase to the west.

As the frequency of the oscillations increases, k de-

creases to zero and then becomes imaginary. As k< decreases,

the baroclinic waves become more important and the baro-

tropic waves diminish. This has the effect of shifting the

initial lower layer zonal transport to the upper layer.



When I< =O , the total zonal transport at the barrier is

exactly what it would be if only the initial flow were

present, but it is all carried in the upper layer. When k

is imaginary, phase shifts occur between the initial flow and

the waves.

The group velocities of the free waves are predominantly

zonal when k / , but become increasingly meridional as

< decreases. At k = O the baroclinic group velocity is

purely meridional, and when k is imaginary the baroclinic

waves are trapped in the zonal direction. These factors limit

the usefulness of the model as k< aecreases. The model has

assumed periodic solutions in , but is valid only for

= O , or for Jop / . The model should therefore

depend only on conditions local in ,, and not on energy that

propagates in along the barrier from A = : :t . However, since

the solutions depend in no way on the sign of Y, zonal bound-

aries could easily be added to the model, say at 1 =  I ,

with the initial flow and all solutions proportional to

Sin /Afry . Then the trapped baroclinic waves would be able

to reflect back and forth between the zonal boundaries with-

out adding or removing energy from the system.

As was seen in the previous chapter, the condition

<< is satisfied by annual oscillations, so the

SI limit is applicable. Values of k as a function of 6r

and 2 are shown in Fig. 3.A-2. Since the radius of de-

formation decreases with increasing latitude, 6- is restricted

to smaller values at higher latitudes if the limit k / is
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required. For annual oscillations k / is a fair approxima-

tion as far as 400 N, but for semiannual oscillations the ap-

proximation breaks down around 200 N. With a doubling in

frequency, k changes from about .87 to zero; hence for most

of the frequency range over which propagating barotropic

and baroclinic waves exist, k is near its limiting value

of one. At the eddy scales of L /o *n, there is no

baroclinic zonal propagation at periods of 3 months at 20 0 N,

so < is imaginary.

If the initial flow consists of a free wave, then it is

instructive to recast the solution (3.A.5) in terms of inci-

dent, transmitted, and reflected waves. Suppose, for example,

that the initial flow is a barotropic long wave. Then the

incident wave is the initial flow east of the barrier. The

transmitted wave is the sum of the initial flow and the

barotropic long wave induced by the barrier to the west of the

barrier. The reflected wave is the barotropic short wave in-

duced by the barrier. The baroclinic waves contain energy

scattered from the incident barotropic wave. The energy

flux of the baroclinic short wave can be added to that of the

barotropic short wave to give the total reflected energy flux,

and similarly for the long waves and the total transmitted

energy flux.

The average energy densities of barotropic and baro-

clinic waves are proportional to r T I-X and

j0C'c ('AC4 , respectively. The factor of



in the baroclinic energy density is due to the way in

which the vertical modes are normalized. The energy fluxes

are defined as the energy densities times the group velocities.

Using the expressions (2.B.8a) and (2.B.13a) for the group

velocities, along with the dispersion relations (2.B.7) and

(2.B.12), it follows that the magnitudes of the zonal energy

fluxes are proportional to p - ) and c c

for both long and short waves.

Table 3A-1 gives the energy flux ratios for incident baro-

tropic and baroclinic long waves, computed from (3.A.5). When

K'- , all ratios are primarily dependent on the value of

, the ratio of the upper to lower layer depths. If this

is small, then barotropic energy will be mostly blocked and

baroclinic energy transmitted. Of the total energy trans-

mitted, most will be baroclinic, and of the total reflected,

most will be barotropic. When k is small, the opposite is

true; baroclinic energy is blocked and barotropic energy is

transmitted.

Away from the limiting case of a - , the behavior of

the barrier model depends on the details of parameters and

dynamics, so the specific predictions of the model may be mis-

leading if applied to a physical situation. The main accom-

plishment of the barrier model is its illumination of the

limiting case of low frequency motion, in which the scale dif-

ference between long and short Rossby waves leads to model

behavior that is not sensitive to details. In this limit,

i___i__jql6W__III ll_ --.--X (rr_-L-~-XCI~IC-U~----sl
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Table 3.A-1

Energy flux ratios for Rossby waves incident on
lower layer barrier.

total transmitted
incident

total reflected
incident

Incident
Barotropic
Wave

K -1(1 + )

K K -1
T(i T)

Incident
Baroclinic
Wave

K K -1
-(1 + )

K -1
(1 +)

transmitted baroclinic
transmitted barotropic

reflected baroclinic
reflected barotropic
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the weak coupling of the layers with respect to short waves

implies that the upper layer does not feel the presence of

the ridge to the east of the ridge. In the previous chapter

we saw that lateral friction of reasonable magnitudes does

not substantially increase the coupling between layers,

while bottom friction tends to decouple the layers. Hence,

the omission of explicit friction in the barrier model seems

unlikely to have seriously affected the low frequency limit.



B. Theory of flow over a sloping bottom

In this section we will consider the dynamic effects of a

sloping botton on the sorts of motion discussed in Chapter 2.

Scale analysis will be used to identify the main dynamic bal-

ances and limiting cases. Explicit analytic solutions will

usually be found only after making the approximation -/ and

-/ except where differentiated. To simplify the analysis

we will restrict attention to topography that varies in the

zonal direction only. We are interested in large simple shapes,

such as mid-ocean ridges and continental rises and slopes, that

can be approximated as a series of a few regions of constant

slope.

Consider a region of constant slope so that

11 -- / A- 3 x
L 14.I '~ h. /
C1.//Z (3.B.1)

where A/z and ey'are dimensional. A very steep slope in the

ocean might be /Id/J,'/-=. /, a rise of 1 km in 10 km. A

-3
rather small value might be 10 , a rise of 1 km in 1000 km.

For L 10 /-h, (annual scale) and f- 3~ fO0 In, this range of

slopes means a range of K from 30 to .3. The same slopes with

L /o0 (eddy scale) produce a range of Y from 3 to

--2
3 x 10-2 . The parameter 5 takes the value +1 if the slope is

down to the east and -1 if down to the west.



With h defined as in (3.B.1), the lower layer vorticity

equation (2.A.19b), becomes

A ( a)f/' Z.

i or- A -7 1 4 f -1:9.,
(3.B.2)

We will assume that the friction terms are small except possibly

when A approaches the short wave scale.

The two terms in (3.B.2) involving Y are - rYbS p

and ( Y A P& . The second term is the product of the geo-

strophic zonal velocity component and the slope, while the first

term is approximately the ageostrophic zonal velocity times the

slope. The second term is always the most important for low

frequency motion, and will usually be referred to simply as

the slope term. The first term, referred to henceforth as the

ageostrophic slope term, is 0 ( A) relative to the second

term. Hence at low frequencies it will be negligible unless

the zonal scale is very small.

1. Onset of slope effects

The first questions to ask are, what is the smallest slope

that significantly perturbs each of the free and forced motions

__



of interest, and what is the nature of the perturbations?

Let us begin with barotropic long waves.

The barotropic long wave balance is characterized by

P, and A b/. The ratio of slope to beta terms

is then I/ , so slope will become important as this ap-

proaches 0(1). At the annual scales, this occurs with a

bottom slope of only /O- . At eddy scales, =/

for a slope of about .6,/0 , so again even the smallest

slopes are important.

The baroclinic long wave balance is characterized by

, - Y , and q -- b/iA -i . This gives a ratio of

slope term to beta term of 7/6 -  which equals one at a

slope of about )"/V for annual scales and about /-o

for eddy scales. Hence baroclinic long waves are less sensi-

tive to slopes than are barotropic long waves, but still only

a small slope is sufficient to alter the lower layer vorticity

balance.

Short waves at low frequencies have a scale , ,

for which the ratio of slope to beta terms becomes unity at

slopes of about -1 for annual scales and about .05 for eddy

scales. Hence, short waves are quite insensitive to slopes.

As we will see, however, this conclusion is not quite correct.

Although a moderate slope has little effect on the scale of

short wave motion, it has a considerable effect on the verti-

cal mode structure of the waves. Indeed, a given slope



produces exactly the same vertical mode structure for both

long and short waves, as will be seen.

2. Plane wave solutions

Equations (2.A.19a) and (3.B.2) cannot be solved directly

as they are. The main obstacles are the nonconstant coef-

ficients I and . If L and YA are small, then for l/

and 7 of (I) the approximations I' / and 0 / are

appropriate; that is, the coefficients are locally constant.

This permits plane wave solutions and the coupled differen-

tial equations are reduced to algebraic equations. The solu-

tions obtained by this method are useful even when the

approximation of constant coefficients is poor. Although

quantitative accuracy is lost, qualitative information of the

scales and dynamical balances is still present. In fact, the

procedure of approximating constant coefficients, substituting

plane wave solutions, and then solving the algebraic dis-

persion relations, is equivalent to performing a scale

analysis.

With -F I , C-' , E, E, = O , and the

ageostrophic slope term neglected, the vorticity equations

(2.A.19a) and (3.B.2) can be written

2 I- ( r-- /l ) _= " i & (3.B.3a)

Z 4 S (r,- 5,) - Ok S f o 3.B.3b)



where

(3.B.4)

A meridional dependence e with A t/ has been

assumed for P, , I , and the forcing, &.
Now we can find the vertical structures of the modes of

oscillation by setting P = ~ (W, where R is a constant for

each mode, so that both layers have the same zonal as well as

meridional and temporal variations. The operator X can

then be eliminated from (3.B.3a,b). With - 0 a quadratic

equation for k results:

R ?_- + / /4-l, S ' ) - g = (3.B.5)

Hence R depends only on o , which is the ratio of the steep-

ness of the slope to the strength of the coupling between

layers, and on the product of the sign of the slope and the

meridional wavenumber. These are externally imposed param-

eters in our problem, so the vertical mode structure expressed

by R is independent of the zonal wavenumber. This convenient

simplification results from our alignment of the 7 coordinate,

for which the wavenumber is specified, parallel to the slope.



Neglect of the ageostrophic slope term is also required. How-

ever, the restriction of the slope to east-west is not essen-

tial. If the coordinate axes were rotated along with the

slope so that north were at an angle 9 to the I axis, the

only difference in (3.B.3) and (3.B.4) would be the replace-

ment in the latter of b r by t co 3 aA sih 0 M .

Since (3.B.5) does not involve , the values of k would

be unaffected.

In the limit of no slope, = e , we recover the baro-

tropic and baroclinic modes of (2.B.1): kg / ,

For small slopes the perturbed values of k are

(3.B.6)

4-9

Note the dependence on the product 5~ , which is typical of

the slope term. A wave with northward phase propagation on

a slope down to the east is affected by slope in the same

way as a wave with southward phase propagation on a slope

down to the west: lower layer flow is induced in the oppo-

site direction to the upper layer flow. Thus if SI )O

then the barotropic mode is enhanced in the upper layer while

the baroclinic mode is enhanced in the lower layer. The

situation is reversed for SY Z O .

__1_1_111_1___11___/I__Y.-. .~

K r



Equation (3.B.5) can, of course, be solved in general:

k 1 -I 7' - -LI

kR f -- 4z il--s- (3.B.7)

The variations of k- and kc with o( for both cases S/> o

and SA< O are plotted in Figure (3.B-1). The most im-

portant feature of (3.B.7) is that each l depends mono-

tomically on o . Thus in the limit of large ao , the baro-

tropic mode becomes confined to the upper layer for S O>0

and the lower layer for S/ < O . The baroclinic mode be-

comes confined to the lower layer for 5/> o and the upper

layer for 31< O . Of course, the designations "barotropic"

and "baroclinic" are no longer entirely appropriate but are

used as a convenient means of specifying the modes in which

upper and lower layer motions are in phase, and ft radians

out of phase, respectively. As we shall see, for large ot

the barotropic wave with 3/ O is dynamically similar to the

baroclinic wave with S jO , and both will be identified as

"upper layer waves." The same is true for "lower layer waves."

Having found k we can now set p,= e ,

Pz = re e . Substitution in either of (3.B.3a) or

(3.B.3b) with &=() will yield a quadratic dispersion rela-

tion for A for each value of X . Since we are not using
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scale analysis here to eliminate terms, we set / /

The two equivalent dispersion relations are

A - + (3.B.8a)

4- (/lA73.B. 8b

The roots of these equations as functions of 0( are shown

in Figure (3.B-2). The vorticity balances leading to these

waves will be considered shortly, but first let us find the

response of (3.B.3) to forcing.

We will consider only zonally uniform forcing. Since

the coefficients of (3.B.3) are constant, the response is

also zonally uniform. Substituting -= e '', r -te

ie = Fl in (3.B.3) gives simultaneous equations for

.21F and :

- / "..+ 0  p) F - O (3.B.9)

Solutions are shown in Figure (3.B-3). The main feature is

the enormous reduction in response as the slope increases.

Only a small zonal velocity perpendicular to a slope is
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sufficient to produce a vertical velocity at the bottom equal

to the Ekman velocity imposed by C . Very little of the

torque of the wind stress and curl goes into accelerating

the fluid, unlike the barotropic forced response (2.B.20).

Now let us consider the vorticity balances that control

the various free and forced motions.

3. Vorticity balance

a. Long upper layer wave

We saw in the plane wave analysis (Fig. 3.B-2) that regard-

less of the slope there is a wave with scale t4 -- /-

Since this scale results from a balance between beta and vortex

stretching in the upper layer, we will refer to it as the upper

layer scale. The vorticity equations (2.A.19a) and (3.B.2)

with : =A4 , -- E. 2= &= 0 , and the ageostrophic

slope term omitted since ur- << , are

-i( 2
-/2*, P "77 *(3.b.10b)

All the terms involving the slope parameter ot are in the

second equation. If )07 < 91 , then these terms are



unimportant for the system as a whole and the zonal scale

of the motion is insensitive to the magnitude of the slope.

The first two terms in each equation, the relative

vorticity terms, are both about .4 for eddy scales. Although

they do not invalidate the I /A1 scaling, they do dominate

the dynamics by preventing the upper layer wave from propa-

gating zonally. At annual scales, on the other hand, these

terms are very small ( (b-) ) and can be neglected

leaving

/ (3.B.lla)

Although this system with its nonconstant coefficients is

too difficult to solve in general, it is possible to final ap-

proximate solutions by expanding the dependent variables in

powers of L if VL<< or in I if 01 ) I . In the

first case we find modifications of the baroclinic long wave

by small slopes, and in the second case we find the structure

of the upper layer wave over steep slopes. In the second case

the variation of b= i oc ' may be 0(1); there is only

a weak restriction that 1 must not get too small.

If A- (4 we may assume a solution of (3.B.11) of the

form



(3.B. 12)
Se F L: O(A. / ) -t-a < ( /Yb - . 7l- i

Substitution in (3.B.11) yields to :

L o

(3.B.13a)

(3.B.13b)

L , / (3.B.13c)

(3.B.13d)
A- [ 1P + ( ,15/ 0 + O 0/

L . I o

The lowest order solution is

(3.B.14)

0 -~_

This is just the ordinary baroclinic mode with the local value

of the lower layer thickness determining the local ratio of

upper to lower layer pressure. Explicit effects of slope are

found in the O(oL) terms:

0010')

0 (d) -

L, /~ 3(
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iIX
(3.B.15)

These D/) corrections contain three parts.

First, if one sets Pft) = / (so that the lowest

order meridional dependence is C ) and takes the lowest

order terms in an expansion in , the result is

Z l -- ", ' " t " + "

(3.B.16a)

(3.B.16b)

These are the O() corrections to the baroclinic plane wave.

Equation (3.B.16a), which matches (3.B.6), gives the lower

layer enhancement for S,> O0 and the reverse for S.(< O.

Along with lower layer enhancement (diminution) goes an increase

(decrease) in zonal wavenumber.

Second, there is a contribution to 02 from the integral

in ~

Ie
(3.B.17)

This is due to the refraction of the wave by the variation in

S. Refraction tilts the lines of constant phase relative

00

S
C\ ) d~ t-...



to the slope, adding a positive meridional component to the

local wavenumber as the wave propagates west. The contribu-

tion of (3.B.17) is then just a correction to (3.B.16) due

to the altered meridional wavenumber. It is the secularity

of this term that limits the range of 4X and therefore of k

over which the expansion is valid. The (3.B.17) correction

and the variation of k are both O(o~ r).

Third, there is an imaginary term in (3.B.15):

. /w  (3.B.18)

This term describes the upslope decay of the upper layer

pressure as the upper layer does work on the lower layer to

increase the relative velocity of the latter, as required

by (3.B.14). For a wave propagating downslope the process

is reversed. The lower layer decelerates downslope as the

upper layer accelerates.

If the slope is large, o t ) , a solution of the

form

(3.B.19)

_I~ __I/_Z~~_ ~I_ ~_~___ I~ II ~~ll___i_^_~l^~___ ____( j_ ~
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is appropriate. Substitution in (3.B.11) gives, to

( -- p; -00

- -s ( ~ Z5,

(3.B.20)

The lowest order solution is a wave confined to the upper

layer with phase

(3.B.21)

The 0(d-) corrections are

W ? (3.B.22a)

(3.B. 22b)

The integrals are difficult to evaluate exactly so we will let

/ ) , expand in , and neglect 0(b to get

4 Ircc -I- (3.B23a

~~5C>f4:~:
i/

a'' s T J92 j ~y

S / 4 IC

0 S-XIC/X 'r )(3.B.23b)

- pt ) -o

0 IL- /

(3.B.23a)



101

The first term in (3.B.23a) is, except for the factor of

, the same as the lower layer pressure found in the plane

wave analysis for large o . Note the usual dependence on

the sign of SI ; upper and lower layers are in phase if

5/ > 0 , opposed if 5 < O . The second term is the cor-

rection to the first due to the alteration of the local merid-

ional wavenumber by diffraction. The third term is imaginary,

hence /. out of phase with the other terms, and comes from

the factor of inside the integral in (3.B.22a). It pro-

duces an imaginary contribution to 0 which gives growing be-

havior upslope and decaying behavior downslope. This is the

opposite of the behavior in the small OL expansion. Here, k

is independent of ; instead of a decrease in IP and an in-

crease in Pt as I decreases, 0t stays the same and 1t increases.

Energy is transferred from the lower to the upper layer.

b. Long lower layer waves

The upper layer waves we have been considering are so

called because their zonal scale is determined by the upper

layer vorticity balance and is independent of the slope. In

contrast, there is a set of motions for which the zonal scale

is determined by the lower layer vorticity balance and for

which the slope is critical. For small slopes these motions

are essentially barotropic and for large slopes they are highly

concentrated in the lower layer. For convenience they may all

be referred to as lower layer waves.
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For very small slopes, , the barotropic long wave

scale >An -c b/01 is appropriate and the effect of slope is

small and uninteresting. However, when Y > 0-, a new and

important scale becomes dominant. This scale is c-- b/r

and results from a balance between beta and slope terms. In

the low frequency limit, lower layer flow in quasi-steady along

geostrophic contours (hence the subscript G- ) defined by

constant F/t if the slope is large or f/i A ) if the slope

is small. As slope increases, / decreases until

, IPa e , the short wave scale. For still larger

slopes, both the long waves and the short waves are replaced by

motions with a characteristic scale / ~ 

For our present investigation the most important part of

this progression of scales is that of the geostrophic contour

scale, A, . With /-A and --/ = - = )O (2.A.19a) and

(3.B.2) become

O (3.B.24a)

(3.B.24b)

This scale is appropriate so long as both of the relative vor-

ticity terms are less than unity. For eddy scales this re-

quires slopes between 3X/O- 3 and - k /' - Y , so the
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A/~, scale prevails only over a narrow range of small slopes.
Even there it is evident that the relative vorticity terms

are not generally negligible. For annual scales on the other

hand, the range of slopes for which A, prevails is wide:

from /0 to over /O)

Over most of this range both relative vorticity terms

are small. Since < I/ , the ageostrophic slope term is

smaller than the /'3 vorticity term and will therefore be

neglected. Then (3.B.24a,b) reduce to

-- 'O- -p) -kiP/. - O (3.B.25a)

0 (3.B.25b)

These are the same, except for the scaling, as the upper layer

wave equations (3.B.lla,b). The difference in scaling empha-

sizes the dynamical differences between the two types of

motion so long as dO is either large or small. When DL 2: I

the two sets of equations are identical and the distinction

between upper layer waves and lower layer waves is lost.

As in the case of the upper layer waves, (3.B.25a,b) are

not easily solvable as they stand. If the coefficients

A /+ 4s and 7 /  are approximated by constants,

the results are essentially those of the earlier plane wave

analysis. Note that the variation of both coefficients is
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0() , so if the finite variation of one is taken into

account, that of the other must be included as well. The

effects of the variable coefficients can be calculated in

the limiting cases of small and large oe by using al and

ot / , respectively, as expansion parameters.

When 6o 4- / (the slope is small), solutions to

(3.B.25) can be sought in the form

rr er i~~ralamiq1--

(3 .B.26)

Substitution in (3.B.25) gives the immediate result

'P - / (3.B.27)

and the sequence of equations

-C (3.B. 28a)

(3.B.28b)

(E- )07-F S 0
i+,'g)zQ .-° c

The lowest order equations, (3.B.27) and (3.B.28), specify that

the lowest order pressure is independent of depth and constant

f L1IP -

A) 

(3 n 08
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along geostrophic contours based on the total depth, that is

contours of constant /(E+A) . Since this barotropic

motion has a component perpendicular to the slope, there is

a vertical velocity at the bottom which decreases linearly to

zero at the surface. The vertical velocity moves the inter-

face, producing slopes and therefore thermal wind. This 0d)

shear produced by the 0() barotropic flow is specified in

(3.B.28b). As we have seen, the shear can augment flow in

either the upper layer or the lower, depending on the product

of the signs of the slope and the meridional phase propagation.

If upper layer flow is enhanced, lower layer flow is reduced,

and therefore the effect of the slope on the vertically in-

tegrated vorticity balance is also reduced. Then, instead of

adhering strictly to geostrophic contours, the flow is along

lines a bit closer to latitude lines. If it is the lower

layer flow that is enhanced, the integrated effect of the slope

is strengthened. Then the flow must follow lines more nearly

parallel to the geostrophic contours of the lower layer alone,

lines of constant F/A . These effects are described by

(3.B.28c)

Equations (3.B.28a-c) can be solved exactly. It is help-

ful to replace the coordinates (xt, ) by new coordinates

( , ,3) defined by

(3.B.29a)

=z b(Sc)j (3.B.29b)
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Let o and I

pressure goes as e

dition the solutions of

at / O , so the lowest order

at / = O . With this initial con-

(3.B.30a,b) and (3.B.28b) are

O=:/[ (gp,)
S -

(3.B.31a)

-i

(3.B.31b)

(3.B. 31c)is-4:.

The solution can more easily be visualized if the phases are

expressed locally as linear functions

solution takes a local e
t1Y I iAf4x

of IC and

form:

Y ( . )
'ii- ( -

( t I)
(si-/~ "

(3.B.32a)

(4 -4~

0 --

2. V

Sf S ( S

3 Se o -f (X -/XO ,7 -

t ) 7 ) ,/Y -, (3.B. 32b)

)7

/ s -f (s.+1)7

0

P so the

0

Vo)

(Y-f 1) (E -i-k) -
-A)- 2(54-1 (9

- a~'(~
( g 4 )- 41

/) ( Y A - Al I

go) ( S -A) -Y2
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where A and f are to be evaluated at ( /'Y, ~ a ). The re-

sults of our earlier plane wave analysis can be obtained from

these expressions by setting b = 0 so that k / 

Note that this eliminates the imaginary part of , which is

( ) . This term is required only when the finite varia-

tions of - and P cause finite variations in the ratio of

19 to 1Z . The primary effect of the finite variation of

: and P is geometric rather than dynamic. That is, the

flow is quasi-steady in either case, but the streamlines are

parallel if h =  / , and have slopes that decrease towards

the equator if 4 and vary. This variation of slope of the

geostrophic contours produces a convergence of contours in

the upslope direction and a consequent alteration of meridional

scale.

When o)) > (the slope is large) all 0(I) flow in the

lower layer wave mode is in the lower layer, and solutions to

(3.B.25) can be found in the form

(3.B.33)

Substitution in (3.B.25) gives

S_ + s (3.B.34a)
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(3.B.34b)

A - ~ + (3.B.34c)

The first equation states that the lowest order flow is along

the geostrophic contours of the lower layer, contours of

constant -FI . In the second equation, an upper layer

meridional flow of O (-') is needed to balance the upper

layer stretching due to the 0() lower layer flow. In the

third equation, the stretching term in the lower layer due

to the ~() lower layer flow produces cY/- flow across

geostrophic contours.

Equations (3.B.34) are similar to (3.B.28) and can also

be simplified by a change of coordinates. Here, however,

define

(3.B.35)

so that now labels geostrophic contours of the lower layer.

Then (3.B.34a,c) become

0(3.B.36a)

i3 - (3.B.36b)
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Again requiring

the results

S ' and I / at O leads to

~ O~g-dr' (3.B.37a)

2-
'z$

2.~C

IC (fe lRf~r

(3.B.37b)

(3.B.37c)

For small b the leading behavior of this last expression is

r+ (3.B.38)

The effects of finite variation of -F and 4 here are

essentially the same as in the solution for small cK . Again

the major effect is to make the geostrophic contours converge

upslope. A minor difference between the small and large

cases is that for large OL the phase correction, 01, is real

and /3' is complex, while the reverse is true for small CX .

As the slope increases and the scale of lower layer motion

decreases, the relative vorticity term grows until it can no

longer be neglected. Simultaneously the layers become
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increasingly decoupled, so let us consider the case

0 -I < r/ - /" . In this limit the coupling be-

tween layers is negligible, so we need work only with an equa-

tion for the lower layer pressure. Deviations from simple

flow along geostrophic contours are caused by the *0e rela-

tive vorticity term which is of order ZEE Y01/ , a small

parameter in powers of which the solution can be expanded.

Since we are now concerned with rather small zonal scales,

bottom friction may be significant and will be included in

the dynamics. Likewise, the ageostrophic slope term must

now be included.

Under these conditions and with / /~/7 and =  0,

(3.B.2) becomes approximately

A-S

where 0 (I is a bottom friction parameter. If a

solution of the form

0 4- , . . (3.B.40)

is substituted we see that to lowest order the pressure is con-

stant along geostrophic contours. As in the expansion in

eOL , the coordinate change (3.B.35) is helpful and leads to

(3.B.36a) for . If we again pick (3.B.37) as the lowest
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order solution and substitute it in the D(Z) balance of

(3.B.39), we find

c,7i / c 1" i % Y ~ ( 2;(3.B.41)

The effect of the ageostrophic slope term in this equation

is solely to reduce by half the first of the four terms on the

right hand side. This imaginary part of 5 leads to growth

of , to the west along geostrophic contours if '> o and

to the east if < . The function of this term is to

produce a contribution to 641 that cancels the ageostrophic

O() contribution from 0. The result is that in spite

of the substantial ageostrophy of (C4 , in the absence of

friction ,L and Lz are exactly T/2- radians out of phase

to O() , so energy flux must arise from higher order correc-

tions. The imaginary term in (3.B,41) due to friction always

leads to decay of P to the west, consistent with the west-

ward component of group velocity of the wave.

Integration of (3.B.41) gives

Z -3 { 1e'(2-(3.B.42)
t7- 4-
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Differentiating to find the 0i) correction to the local

zonal wavenumber gives

(3.13.43)

The first real term, due to the , vorticity term, is always

positive, so the zonal scale is decreased if /S > 0 and

increased if IS < O . Lines of constant phase are ro-

tated counterclockwise from geostrophic contours if > ,

clockwise if 0< ( O

c. Large slopes and short waves

As the slope increases, we have seen that the 9 rela-

tive vorticity term gains importance; but it is this term

that is also crucial in short wave dynamics. Therefore, it is

appropriate to consider short waves and steep topography

together.

Until the topography gets very steep, that is, until A6

approaches T , the only effect of slope on annual short

wave dynamics is to change the vertical mode structure. As

we have seen in the plane wave analysis, the vertical mode

structure depends only on the slope, and not on whether the

motion consists of short or of long waves. The reason slopes

have little effect on short wave scales and dynamics is that
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the flow in short waves is predominantly meridional, along

the slope; it is only the component of flow normal to the

slope that produces vorticity changes.

With 6- O and /=A k, , (3.B.2) becomes approximately

(3.B.44)

where I - b Eu/r3 is the horizontal friction parameter

and 'i .bs5. Let us immediately take the limit of

large oL so that the lower layer can be considered independent

of the upper. With this simplification the equation is still

too complicated to solve. In particular, the variation of

bottom friction with latitude due to the factor of f P adds

greatly to the difficulty. To make the problem tractable,

let us neglect lateral friction entirely and restrict bottom

friction to be of . We are left with

(+Fi Fe-, (3.B.45)

+~~ <<, =.
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A solution of the form

6 :: ' i (0 0 - if- f 0/ ) (3.B.46)

can be found with

0 * y (3.B.47a)

5(' ,F J 4 (3.B.47b)

To lowest order we find, of course, a plane short Rossby

wave unaffected by slope. At ) there are three correc-

tions to the local zonal wavenumber. The first term in

(3.B.47b) is due to the slope term and shortens the zonal

wavelength if JSA O , lengthens it if S,< ( . The

second term comes from the ageostrophic slope term and pro-

duces an upslope growth in amplitude such that the product

of A and the amplitude is constant to O( . The third

term represents the decay to the east produced by bottom

friction.

When the slope is so large that E > / , a new scale

dominates for both long and short waves. A balance between

the Pvx vorticity term and the slope term leads to the

scale As V ) . With this scale and with w O ,
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(3.B.2) is approximately

I-I

- d (,-?,) (3.B.48)

with 1 I-(OrY) . If all but the two principle

terms are small then the lowest order balance is

with / and f / this has plane wave solutions

1<e e& . Note that there are two values of A. for

each ( ; long and short waves concentrated in the lower layer

now have the same lowest order balance. Both zonal wave-

numbers are imaginary if s > - , one root giving decay to

the west, one decay to the east. If /S C6 , both roots

are real and the behavior is oscillatory. The other terms in

(3.B.48) will of course modify the behavior but the sign of

IS remains the most important qualitative factor. Its effect

is clearly seen in the plane wave analysis in Figure 3.B-2.

At the large, slow scale of the annual oscillation the

As scale does not enter until the slope reaches about .13.

Since the As scale is so small, we may expect lateral fric-

tion to be important. Neither the ageostrophic slope term

nor the beta term can be neglected, and the scale of variation
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of A is comparable to As . Under these conditions the plane

wave analysis is highly inaccurate and a more complete analysis

would be difficult. Fortunately, the major topographic fea-

tures of the oceans have average slopes smaller than .1, so

the 1S scale is not relevant to the large scale aspects of

annual oscillations in the oceans.

For smaller meridional scales of motion a smaller slope

is required to bring in the A5 scale. The minimum slope

occurs at FT / ; at eddy scales this implies a slope of about

Sx / D  , or = /D . In this case the plane wave

analysis is quite good, since ('-- . Oq . As the

slope increases, the importance of the beta term diminishes

while that of the ageostrophic slope term increases. When

the slope is .1 both are of 0(.2).

d. Forced motion over a slope

We will restrict our attention to zonally uniform forc-

ing and to large scale annual motions. Then the only zonal

scale is that of the topography, so if the relative change

in lower layer depth, 6k , is O(1) then it is appropriate

to set : " - I . In the plane wave analysis, with CI= l

and - , the absence of a zonal scale in the forcing im-

mediately implied that the response was also zonally inde-

pendent and the value of A arbitrary. Here, however, we must

consider the possibility that the zonal variation of the coef-

ficient = / 5+ S may result in zonal variations in the

response.
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With friction and the ageostrophic slope term neglected

and with 7 E (2.A.19a) and (3.B.2) become

(3.B.50a)
-c 7i(Y2 'V 1 7p 7) +jIr /-I -p , ?1 L)

-ibll(Y' A - sy j -~l~~bP I~L

-b rA 2 /, +' y0 P,7=C
(3. B. 50b)

Unless P, lt , the vortex stretching terms are much larger

than the r vorticity terms so the latter can be neglected.

Then the only term with coefficients varying in IX involve

differentiation with respect to , so zonally independent

solutions may be found:

4;Re

r2 +-

(3.B.51a)

(3.B.51b)

In the upper layer, the torque applied by the forcing is

balanced by vortex stretching. In the lower layer, stretch-

ing is balanced by zonal motion up or down the slope. In

other words, fluid columns in the lower layer do not change

their length but just slide up and down the slope as the
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interface is moved up and down. The steeper the slope,

the less the columns have to move to conserve their

length. As we see in Fig. 2.B.3a for o)> I the lower

layer flow is relatively small, so the geostrophic shear

associated with the interface displacement results in

an upper layer flow that is insensitive to the slope.

For £t < I , the lower layer flow becomes comparable to

the upper layer flow, and the same geostrophic shear may

result in any of a range of upper layer responses depend-

ing on the magnitude of the slope and the sign of S .

If S/K C and o(= z , the upper layer pres-

sure response vanishes entirely, although there is still

an Ekman transport in the upper layer, of course. For

very small values of oC, say o( <. !5 , the response be-

comes largely barotropic, with pi . Then the I-

term can no longer be neglected and (3.B.51) is invalid.

However, the slope is so small that 6A is small for any

reasonable topographic feature, and the limit h- I used

in computing Fig. 2.B.3 is valid.

4. Summary

The vorticity equations in terms of pressure for two-

layer flow over a bottom with constant slope in the zonal

direction are too complicated to solve in general, In par-

ticular, they have coefficients \ and - that vary in the
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zonal and meridional directions. If the ranges of varia-

tion of these coefficients are not too large, the approx-

imation (I is appropriate. The simplified

equations then have free plane wave solutions regardless

of the magnitude of the slope. The vertical modal struc-

ture and wavenumbers of these solutions are easily found,

especially if friction is neglected. They are shown in

Figures 2.B.1,2. Similarly, the response to zonally uni-

form forcing can be found in a simple form, shown in

Figure 3.B.3.

Although the vorticity equations with nonconstant

coefficients cannot be solved in general, it is possible

to find approximate solutions over substantial parts of

the parameter range of interest by expanding the solutions

and equations in powers of various small parameters. These

solutions illuminate the dynamics of the flow by showing

which terms in the vorticity equations control the response.

They also indicate the quantity and quality of error in-

volved in the simpler plane wave theory,

The conclusion reached by comparing the plane wave

theory with the perturbation expansion solutions is that

the former accurately determines the scales and general

characteristics of the motion even when the actual varia-

tions of A and f are 0@() . Some significant qualitative

features, such as the refraction of baroclinic or upper
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layer waves, are lost in the plane wave description.

However, this is a small price to pay for the simplicity

of the description. It is this simplicity that will

allow us in the next section to calculate analytically

some effects of topographic features on annual

oscillations.

It is perhaps worth noting that the approximation

i ] corresponds to a physically consistent, if un-

realizable, model. The model has a flat bottom, so layer

depths are constant, but the bottom is porous and acts as

a source or sink of lower layer fluid. The strength of

the source is proportional to the zonal component of lower

layer velocity.

Before proceeding to the calculation of flows over

complete topographic features, let us briefly review the

characteristics of flow over a constant zonal slope.

The vertical modal structure depends only on the

parameters o( , 9, and Si , and is the same for short

and long waves. As o/ increases, the barotropic mode be-

comes enhanced in the upper (lower) layer if 3f C O

( o) < ) , and the baroclinic mode does the opposite.

For oC)> I one mode is almost entirely confined to the

upper layer and the second is nearly confined to the lower

layer.
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The baroclinic long wave for small 6- and the upper

layer long wave for large O- are characterized by a bal-

ance between upper layer vortex stretching and beta. The

slope has little influence other than determining the

ratio of the pressures in the two layers.

The barotropic long wave for small &_ and the lower

layer long wave for large 0- are characterized by a bal-

ance between beta and slope terms. The flow is not

really wavelike in its dynamics, but is quasi-steady along

the appropriate geostrophic contours.

Short waves are characterized by a balance between

beta and )0, vorticity change terms. Except for the

determination of the vertical structure, slope has little

effect until it is so large that the lower layer wave

scale approaches the short wave scale. Then the two types

of wave become increasingly similar, eventually being

distinguished only by the direction of the group veloc-

ity if S < 0 or by the direction of decay if S > O

The directly forced response to zonally independent

forcing is itself independent of longitude. As long as

there is a reasonable slope, larger than about one part

in ten thousand, the vertical velocity is constant below

the Ekman layer. The response then consists of a lower

layer zonal motion sufficient to make the bottom vertical

velocity equal to the Ekman pumping, and a vertical motion
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of the interface that is also the same as the Ekman

pumping. The known lower layer motion and interface

slope allow calculation of the geostrophic upper layer

motion.
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C. Two-dimensional topography

In this section we will use the results of the last

section and of Chapter II to improve our model of the re-

sponse of the mid-latitude ocean to seasonal wind varia-

tions. We are concerned not so much with the details of

the response as with the major integrated features that

determine the western boundary transport. Some questions

of interest are: (1) What effect does a slope at the

eastern boundary have on the quasi-steady Sverdrup response

and on the baroclinic wave generated at the eastern bound-

ary? (2) Is the highly idealized barrier model of Section

III-A useful in predicting the effect of a more realistic

ridge? (3) What is the effect of a lower, broader ridge

such as the Mid-Atlantic Ridge?

1. Method

Topography that varies only in the zonal direction can

be modeled as a series of segments each with constant

slope. In the region over each segment the flow consists

of a directly forced part plus four free waves, as discussed

in the previous section. The amplitude of each of the four

waves in each region is determined so as to satisfy match-

ing conditions at each junction between regions. There

are four matching conditions at each junction; both velocity

components must be continuous in each layer. In addition

there may be either rigid wall or radiation boundary

-r -----_~--;n~i ._u-.r-lcr~.~rrr.~ .~---n---UI -r~^~ -
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conditions to the east and west of the topographic

feature.

The procedure of matching solutions at the junctions

requires that all the solutions have the same meridional

dependence. Therefore we are restricted to use of the

plane wave theory obtained by approximating h = f = 1.

Determination of the complete flow over the topography

then requires only the solution of a system of linear

algebraic equations in the free wave amplitudes. The

solution is easily found for any numerical example with

the aid of a computer.

The geostrophic approximation for the velocities is

consistent with the plane wave theory, so matching the

velocities is equivalent to matching the pressure and its

zonal derivative. For any component of the motion, the

amplitude of the zonal derivative goes inversely as the

zonal scale. The phase of the zonal derivative depends on

whether the motion is a propagating wave, a damped wave,

or a purely decaying motion. As was shown in the previous

section, the plane wave model yields the correct scales

and general character of motion even when the actual

changes in h and f are substantial. Therefore this model

can be expected to give a reasonable indication of the

effect of rather large topography eventhough it is inade-

quate in its details.
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The plane wave analysis as given here neglects fric-

tion entirely. However, we know that friction is important

for the short waves. Their group velocity is so slow that

a small amount of friction will dissipate them within a few

wavelengths. A model that depends critically on informa-

tion carried many short wavelengths by the short waves is

therefore unrealistic. The inclusion of either bottom or

lateral friction in the plane wave model would result in

a considerable increase in complexity, so instead we may

introduce a simple, if unrealistic, Rayleigh friction pro-

portional to velocity. This form of dissipation has little

effect other than to make all the free waves decay. If d

is the friction parameter, then (3.B.4) becomes

and the dirsn r is (3. ) b4m(3.C.l)

and the dispersion relations (3.B.8) become

0 A /+- 4,R= -(3.C.2a)

where
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Note that d is a barotropic spindown time nondimensional-

ized by the time scale of the wave.

Calculations of flow over topography were made with

d = 0, .1, and .5. Differences among the three cases

were at most a few percent in all of the eastern boundary

slope calculations, so only the results with d = 0 will

be presented. In a few of the ridge calculations dissipa-

tion had a moderate but significant effect, so some calcu-

lations with d = .5 will be presented for comparison with

those with d = 0.

The unimportance of dissipation in most of the calcu-

lations is due to the decrease in amplitude of the short

waves with increasing width of topography. When the slopes

are gentle, the long waves in adjacent regions have compar-

able scales so only small amplitudes of short waves are

needed to match v at the junction. For most of the calcu-

lations to be presented, the short wave amplitudes are

one to two orders of magnitude smaller than the long

wave amplitudes. On the other hand, when slopes are short

and steep so that short wave amplitudes are comparable to

long wave amplitudes, then the waves are not greatly dis-

sipated within the width of the slope.
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2. Eastern boundary

It was shown in Chapter II that the response of the

ocean interior to zonally uniform forcing can be calcu-

lated as the sum of a directly forced solution and two

waves generated at the eastern boundary. Furthermore, we

have seen that the presence of a sloping bottom profoundly

alters both the directly forced solution and the free waves.

The question naturally arises, then, whether the presence

of a sloping region at the eastern boundary might signifi-

cantly affect the response of the ocean interior to large

scale annual forcing.

To address this question, consider an ocean basin

divided into two regions; a semi-infinite flat bottom region

to the west, and a strip with constant bottom slope at the

eastern boundary (Figure 3.C.1). The height of the topog-

raphy as a fraction of the lower layer thickness in the flat

region is aA , and the nondimensional width of the topog-

raphy is X . Then Y 6/X and C( is determined by

(3.B.4). For the annual scale motion in which we are inter-

ested, CA = / so O i . Since the slope at the

eastern boundary is up to the east, the parameter S takes the

value -1.

Let superscript S denote variables in the slope region.

Absence of a superscript denotes variables in the flat

region. Both regions experience the same zo:ally uniform

~C~_IY j__ _~_1__^_1I1_~1_Li ~_ -^
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forcing, &= " , so the response will also be propor-

tional to 6 . The motion in the slope region consists

of the directly forced motion in each layer with ampli-

tudes P12F and z p determined by (3.B.9), and four

free waves with complex amplitudes • , 1r , F I  ,

and rc . In the flat region the directly forced motion

has amplitudes /i and PzF from (3.B.9) with okO .

There are two free waves, with amplitudes f"r; and J4Cw

since the radiation condition in the west eliminates the

two waves with eastward group velocity. The vertical struc-

tures and zonal wavenumbers of all the waves are determined

by (3.B.5) and (3.B.8) with O O for the flat region.

The conditions of no flow into the boundary and con-

tinuity of velocity at the junction lead to six simultan-

eous linear equations for the six unknown complex wave

amplitudes. In matrix form these become

A i P~j -_ (3.C.4)

The elements of these matrices are given in Table 3.C-1.

The solution of (3.C.4) in terms of the six pressure

amplitudes in i is not immediately informative, so we

will use it to calculate two indices of the overall effect

of the topography. Let the solution of (3.C.4) for the

case of zero slope in both regions be denoted by the

_~~_ ~ ~I __)~^ 1 \1__ I~ ~UI_____ L__~~__~I.~.I^~ X-LLL -XL~
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Table 3.C-la

Elements of the matrix A. .where XM D  exp (ik X)
SMD MD3 4 5 6

1 2 3 4 5 6

1 1

S
2 RT

S3 kTw
TW

4 RTkTw

S
XTW

S S
6 RTXTW

1

S
RT

Sk
TE

T TES S

S
XTE

$S
RTX TE

1

S
RC

Sk
CW

S S
Rk

S
X CW

SS
C CW

1

S
RC

S
k CE

S SRk
C CE

S
XCR

S S

RCX CR

-1

-RT

-kTw

TW
-RTkTw

O

-1

-RC

-kcw

-kCkCW-kCk CW
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Table 3.C-lb

Elements of the column vectors P. and F.
I I

F.

S-P + PF
1F 1F

S
-P2F

2F
+ P2F2F

S-P
1F

S
-P2F

2F

S
TW

S
TE

pS
CW

S
CE

pTW

P cCW
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superscript H. Then the ratio of the interior baroclinic

wave amplitude with a slope at the eastern boundary to

that in the absence of a slope is

The ratio of the total barotropic response with a slope

to the approximate Sverdrup balance that occurs without

topography is

*

F -
T r (3.C.6)

where 14X is the distance from the eastern boundary at

which the ratio is evaluated. We will take 'zr = 9 ,

so as to measure the effect of the eastern boundary slope

4000 km west of the boundary.

Equation (3.C.4) was solved, and the indices ISC

and IST were calculated, for numerical examples with

= .1, .5, and 1.0 ; with slope widths X = .05,

.1, .2, .4, .8, and 1.6; and with meridional wave

number f = 1 and -1. The results are given in Table 3.C-2.
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Table 3.C-2a

Effect of eastern boundary slope with Ah = .1. For
each value of X, the first row is for Z = 1 and the
second is for k = -1. The indices IST and ISC are
given in complex polar form reiO with 0 in radians.

ST

1.000

SC

0

.00

1.000 -.00

1.000 .00

1.000 -.00

.999 -.00

r

1.000

0

.00

1.000 -.00

1.000

1.000

1.000

.00

-.00

.00

1.001 .00

.996 -.00

1.004 .00

.988 -.01

1.012 .01

.976 -.03

1.000 -.00

1.003

.997

1.019

.00

-.01

.01

.982 -.01

1.044 -.03

.04 .951 .03

.05

dH,
dx'I

x 102

2.0

1.0.35

.175

1.6

.0875

.0438

.0219

.25

.125

.0625

1.021
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Table 3.C-2b

Effect of eastern boundary slope with Ah = .5.

IST

r

1.000

0

.00

1.000 -.00

.999

1.001

.995

1.005

.984

1.015

.00

.00

.00

.00

.00

.01

r

1.000

0

.00

1.000 -.00

1.001 .00

dH 2

x 102

3.5

1.75

1.000 -.00

1.004 .01

.997 -. 01

1.019 .02

.875 2.5

.4375 1.25

.994 -.02

.938 -.01

1.046 .05

.856 -.15

1.091 .01

.919 -.08

1.172 -.16

.19 .713 .13

.05

1.6

.022

.011

.625

.312

1.080
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Table 3.C-2c

Effect of eastern boundary slope with Ah = 1.0.

IST

.05 1.000

1.000

.1 .999

1.002

.2 .994

1.007

.970

1.026

.888

1.063

ISC

0

.00

.00

.00

.00

.00

.01

.01

.02

.00

.11

r

1.000

1.001

1.002

I dH
dx' 10 2

x 102

.00

-.00

.00 3.5

20

10

1.003 -.00

1.009 .01 1.75

1.006 -.01

1.043 .02

.995 -.06

1.162 -.01

.912 -.22

.875 2.5

.4375 1.25

.693 -.19 1.234 -.29

.39 .362 -.03

1.6 .2188 .625

1.070
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The most obvious conclusion to be drawn from these

results is that a slope at the eastern boundary has little

effect on the response of the ocean basin to annual forc-

ing. A slope of 400 km width or less has no appreciable

effect in this model. The effect of the 800 km slope is

under 10% with D~ = .5 and under 20% with 6k = I. The

widest slope has a major effect on both the barotropic

and the baroclinic modes with .k = 1, but its effect is

under 20% when 6 = .5. The maximum phase change of the

barotropic response is .4 radians, or less than one month.

There are two reasons for the unimportance of the

eastern boundary slope. First, near the eastern boundary

the ocean's response to annual forcing is a Sverdrup bal-

ance confined to the upper layer. With no flow in the

lower layer, the topography has no effect. Second, a slope

at the eastern boundary bends the geostrophic contours to

the south but does not close them. Any zonal flow in the

interior implies a flow across geostrophic contours some-

where in order to complete the gyre. This requires a supply

of vorticity, which in the case of the Sverdrup balance is

the windstress curl. There is no additional net source of

vorticity in the eastern boundary slope. The vorticity sup-

plied by downslope flow in one place must be removed by

equal upslope flow somewhere else. This means, however, that

there can be a transfer of potential vorticity from one



137

latitude to another, and it is this that produces what

small deviations from Sverdrup balance there are.

The barotropic flow is increased (I i i>,) and

the baroclinic wave is decreased (I T jI) when 0 .

The reverse is true for >0 . This is consistent with the

character of the directly forced motion over the slope.

Since 5< O for the eastern boundary slope, the case

/<O involves a directly forced motion (Figure 2.B.3a)

that is'barotropic'in the sense that the upper and lower

layers move in phase. Similarly, in the case of >O ,

the directly forced motion is 'baroclinic' in the sense

that the layers are Ph radians out of phase.

The phase of the index IST is generally negative for

Y )O) and positive for /<( , so the barotropic re-

sponse is shifted to the north in both cases. The reason is

simple. The barotropic response is largely due to the in-

tegral of the forcing along each geostrophic contour.

Since the slope bends the contours to the south, the flow

at a given latitude in the interior responds to an average

of the forcing at that latitude and at latitudes to the

south. In a barotropic model this phase shift (and slight

reduction of amplitude) due to the crossing of latitude

lines by geostrophic contours would be the only effect of

the slope and would be exactly the same for /=1 as for

=)1I . Baroclinicity disrupts the symmetry and adds new

effects but the essential mechanism remains.
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3. Ridge

The thin barrier model developed in the first section

of this chapter represents topography that is extreme in at

least two senses; it is infinitely steep, and it completely

blocks the lower layer. The first condition can be relaxed

by putting a region of constant slope on each side of the

barrier, which then rises from the crest of a triangular

ridge. The second condition can be relaxed by removing the

barrier and leaving the triangular ridge. These configura-

tions, shown in Figure 3.C-2, will be called the ridge-

barrier and ridge models, respectively.

There are four regions of constant slope in each model,

and four free wave amplitudes to be determined in each region.

Application of the radiation condition in each of the two

flat regions removes four of the waves from consideration,

leaving twelve amplitudes still to be computed. There are

two conditions on the velocity in each layer at each of the

three junctions, for a total of twelve conditions. On both

models both components of the velocity are continuous in

each layer at /=X and in the upper layer at =O .

In the ridge model the lower layer velocity is also continuous

at 4~O . In the ridge-barrier model the zonal component

of velocity is zero at ;=0O+ and at / = 0- . The merid-

ional component is unconstrained.
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Figure 3.C-2. Ridge and ridge-barrier models.
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In order to determine the effect of the ridge and the

ridge-barrier on annual oscillations, three sets of calcu-

lations are made. First, zonally uniform forcing (&= ~)

is applied and there are no free waves incident on the

topography. Second, forcing is zero but there is a long

barotropic wave of unit amplitude incident from the east,

Third, forcing is again zero but there is a long baroclinic

wave of unit amplitude incident from the east. As usual,

all motions have e £/ meridional dependence and / takes

the values 1 and -1. The effect of topography in a basin

with an eastern boundary will be found by combining the re-

sults of the first two sets of calculations: the response

to direct forcing and to an incident barotropic wave.

The amplitudes of the free waves are determined by the

same linear equation (3.C.4) as in the eastern boundary slope

calculation with the elements of for the ridge model given

in Tables 3.C-3a. For the ridge-barrier model all but two

of the rows of /Mj are the same as in the ridge model. The

two rows that differ are given in Table 3.C-3.B. The right

hand side of (3.C.4) for each of the three sets of calcula-

tions is given in Table 3.C-3c. The elements of If along

with the notation used in these tables are given in Table 3.C-3d.

Solutions of (3.C.4) were calculated for ridge half-

widths X = .05, .1, .2, .4, .8, and 1.6, with topographic

heights O = .1, .5, and 1. Tables 3.C-4 through 3.C -9
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give the results in terms of the wave energy fluxes, radiat-

ing away from the topography. The energy fluxes are defined

so as to make the flux of a barotropic wave of unit ampli-

tude equal to one:

(3.C.7)

where K is defined by (3.A.6). (The difference between Je

as defined here and in the barrier calculation is due to a

difference in the normalization of the mode amplitude.) In

the first set of calculations, where the motion is due to

forcing, the wave amplitudes have been normalized by the

amplitude of the barotropic directly forced motion over the

flat regions. For the second and third sets of calculations,

with incident barotropic and baroclinic waves of unit ampli-

tude, the amplitudes and phases of the transmitted waves are

given in Tables 3.C-10,11; an incident barotropic wave

re will produce a transmitted barotropic wave

Tr i to the west of the topography, and similary for

the baroclinic wave. The values of 7r and are independent

of the sign of X , whereas all the other reflected and

scattered wave amplitudes (and energy fluxes) depend on the

sign of / .
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Table 3.C-3a

Elements of the matrix Aij for the ridge model. Each
term has the subscript j equal to its column number;
the subscripts are omitted for compactness. For ex-
ample, A4 5 = -R5k5X 5 . The subscript identifies the
region, mode, and type of wave, as given in Table
3.C-3d.

-X

RX RX -RX -RX

kX kX -kX

RkX

0

O

0

O

O

O

RkX

0

0OOO

0

0O

-RkX

1

R

k

Rk

O

O

O

-RkX

1

R

k

-RX

-kX

-RkX

1

R

k

Rk

0

O

O

-X

-RX

-RkX

1

R

k

Rk

O

O

O

0 O O

__ __

12 O O O
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Table 3.C-3a

8 9

(Contd)

10 11

O O

O 0

O O

O O

5 -1 -1 -1 -1 O

6 -R -R -R -R 0

7 -k -k -k -k O

8 -Rk -Rk

X

-Rk

X

-Rk

X

10 RX RX RX RX -RX

11 kX kX kX kX -kX

-RkX -RkX

12

O

X

-RX

-kX

~ _ *)_ r~ijl___l_ ~~~ I)--Y L -YLWL I~*-I~L~ Pslll(llllY3 *LL

RkX RkX12 Rk X RkX
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Table 3.C-3b

Elements of rows 6 and 8 of Aij for the ridge-
barrier model. All other rows are the same as
in Table 3.C-3a.

N 1 2 3 4 5 6

6 O O R R R R

8 0 0 O 0 O O

iN 7 8 9 10 11 12

O 0 O O

R R R R O O
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Table 3.C-3c

Right hand sides of 3.C.4 for ridge and ridge-
barrier models: elements of FF FT. FC corres-3' .J 1
ponding to direct forcing, incoming barotropic
wave, and incoming baroclinic wave, respectively.

F
F
j

I II
-P I+P

Fl Fl

I II
-P +P

F2 F2

O

T
F

XTW

C
F.
Te

-XCW

-RTXTW

-kTwXTW

-RCXCW

-kcwXcw

-RT kTWXTW -RCkCWXCW

-II+III
Fl Fl

II III
-P +P

F2 F2

III IV-P +P
Fl Fl

III IV
-P +PF2 F2

0

12 0

11

_
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Table 3.C-3d

Elements of Pj for ridge and ridge-barrier
models, along with interpretation of Rj,
kj, and X.j in previous tables. For example,
k3 = kTI refers to the wavenumber of the
'barotropic' long wave in region II.

j P. R. k. X.

1 IP
TE

2 P
CE

II
PTW

II
4 P

TE

II5 P
CW

II6 PCECE

III7 P
TW

III8 PTE
TE

III
9 PWCW

III10 PCE
CE

IV
PTW

IV12 PCWCW

RT

RC

IIIRT

R I
I

T

II
RCC

IIRC

IIIRT

RIIIRT

III
Rc

III
Rc

RT

kTE

kCE

I I

TW

II
TE

II
kw
CW

II
kCE

III
TW

IIIkCWTE

III
kCW

kIII
CE

kTW

exp(ikTE X)

exp(ikCE X)

exp(ikI X)

II

exp(ik X)

exp(ik X)CE

II
exp(ikC X)CW

II

exp(-ikII X)

exp(-ik X)
TWexp(-ikTEI X)

CE

exp(-ikTW X)

kCW exp(-ikCw X)RC
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Table 3.C-4a

Ridge model, wave energy
direct forcing, Ah = .1.

.05

ETE

.002

.002

.002

.002

.001

.001

.000

.000

.000

.000

.000

.000

1.6

ECE

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

fluxes due to

ETW

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

ECW

.000

.000

.000

.000

.002

.002

.006

.006

.013

.013

.003

.000 .003

__ILII___~ULLYI___~
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Table 3,C-4b

Ridge model, wave energy fluxes due to
direct forcing,

ETE

.396

.424

.033

.037

.003

.004

.005

.005

.000

.000

.000

.000

Ah = .5.

ECE

.062

.051

.005

.003

.001

.001

.000

.000

.000

.000

.000

.000

ETW

.171

.171

.056

.056

.027

.027

.020

.020

.026

.022

.009

ECW

.030

.015

.013

.011

.035

.034

.125

.125

.275

.279

.065

.007 .067

.05

1.6
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Table 3.C-4c

Ridge model, wave energy
direct forcing,

X

.05

1.6

ETE

.719

.780

.516

.606

.064

.087

.002

.008

.000

.005

.000

.000

Ah = 1.

ECE

.114

.089

.096

.058

.012

.002

.003

.002

.002

.000

.000

fluxes due to

ETW

.560

.559

1.045

1.044

.375

.374

.259

.254

.267

.249

.086

ECW

.091

.058

.128

.077

.071

.059

.300

.300

.718

.732

.283

.073 .296.000
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Table 3.C-5a

Ridge-barrier model, wave energy fluxes
due to forcing,

X E

.05

.1

.2

.4

.8

1.6

TE

.741

.757

.736

.765

.728

.774

.702

.796

.681

.815

.713

.777

Ah = .1.

CE

.117

.110

.119

.107

.122

.103

.133

.093

.141

.085

.127

.103

E
TW

.749

.749

.751

.751

.752

.752

.754

.753

.758

.755

.750

.743

E
CW

.118

.109

.121

.105

.126

.100

.141

.088

.154

.078

.132

.099
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Table 3.C-5b

Ridge-barrier model, wave energy
due to forcing,

X E
TE

.728

.767

.1 .701

.795

.624

.857

.4 .540

.923

.400

.975

.459

.799

Ah = .5.

E
CE

.122

.106

.133

.094

.162

.066

.190

.036

.226

.012

.213

.098

E
TW

.749

.749

.754

.753

.772

.769

.818

.812

.885

.871

.679

fluxes

E
CW

.126

.103

.142

.088

.190

.056

.250

.027

.360

.008

.273

.652 .076

.05

1.6
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Table 3.C-5c

Ridge-barrier model, wave energy fluxes
due to forcing, Ah = 1.

X E E E E
TE CE TW CW

.05 .738

.789

.706

.819

.601

.873

.4 .387

.968

.8 .146

.949

1.6 .118

.770

.117

.096

.131

.083

.170

.059

.233

.015

.239

.026

.224

.113

.767

.766

.783

.781

.826

.823

.998

.988

1.172

1.149

.549

.515

.122

.093

.141

.077

.205

.049

.363

.009

.579

.011

.552

.045
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Table 3.C-6a

Ridge model, wave energy
incident barotropic wave,

X ETE

.05 .002

.002

1.6

.002

.002

.001

.001

.000

.000

.000

.000

.000

.000

ECE

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

fluxes due to
Ah =

ETW

.997

.997

.997

.997

.997

.997

.994

.994

.987

.987

.997

.1.

ECW

.000

.000

.000

.000

.002

.002

.006

.006

.013

.013

.003

.997 .003
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Table 3.C-6b

Ridge model, wave energy fluxes due to
incident barotropic wave, Ah = .5.

X ETE ECE ETW ECW

.05 .399 .063 .508 .030

.426 .051 .508 .015

.1 .033 .005 .949 .013

.037 .003 .949 .011

.2 .003 .001 .961 .035

.004 .000 .961 .034

.4 .004

.005

.8 .000

.000

1.6 .000

.000

.000

.000

.000

.000

.000

.000

.870

.870

.721

.721

.933

.125

.125

.278

.278

.067

.933 .067
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Table 3.C-6c

Ridge model, wave energy fluxes due to
incident barotropic wave, Ah = 1.

X ETE

.05 .725

.784

.1 .520

.609

.2 .065

.088

.4 .002

.008

.8 .000

.005

1.6 .000

.000

ECE

.115

.089

.097

.059

.012

.002

.003

.002

.002

.000

.000

.000 .713 .287

ETW

.068

.068

.254

.254

.852

.852

.690

.690

.267

.267

.713

ECW

.092

.058

.129

.078

.071

.059

.303

.299

.731

.728

.287
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Table 3.C-7a

Ridge-barrier model, wave energy fluxes
due to incident barotropic wave, Ah = .1.

X ETE ECE ETW ECW

.05 .746 .118 .017 .119

.762 .111 .017 .110

.1 .741 .120 .017 .122

.770 .107 .017 .105

.2 .733 .123 .017 .127

.779 .103 .017 .100

.4 .708 .134 .017 .142

.801 .094 .017 .088

.8 .686 .142 .016 .155

.820 .086 .016 .078

1.6 .720 .129 .018 .134

.780 .103 .018 .099
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Table 3.C-7b

Ridge-barrier model, wave energy fluxes
due to incident barotropic wave, Ah= .5.

X ETE ECE ETW ECW

.05 .733 .123 .017 .126

.772 .106 .017 .104

.1 .706 .134 .017 .143

.800 .094 .017 .089

.2 .630 .163 .015 .192

.861 .067 .015 .057

.4 .546 .192 .010 .252

.927 .036 .010 .027

.8 .406 .229 .004 .361

.976 .012 .004 .008

1.6 .469 .217 .034 .280

.034 .075.794 .097
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Table 3.C-7c

Ridge-barrier model wave energy fluxes
due to incident barotropic wave, Ah= 1.

X ETE ECE ETW ECW

.05 .743 .119 .015 .123

.794 .097 .015 .094

.1 .711 .132 .014 .142

.824 .084 .014 .078

.2 .607 .172 .014 .207

.877 .060 .014 .050

.4 .392 .235 .006 .337

.970 .015 .006 .010

.8 .150 .244 .017 .590

.946 .026 .017 .011

1.6 .122 .232 .084 .562

.759 .111 .084 .046
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Table 3.C-8a

Ridge model, wave energy
incident baroclinic wave,

X ETE

.05 .000

.000

.1 .000

.000

.2 .000

.000

.4 .000

.000

.8 .000

.000

1.6 .000

.000

ECE

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

fluxes due to
Ah = .1.

ETW

.000

.000

.000

.000

.002

.002

.006

.006

.013

.013

.003

.003

ECW

.999

.999

.999

.999

.998

.998

.994

.994

.987

.987

.997

.997



160

Table 3.C-8b

Ridge model, wave energy fluxes due to
incident baroclinic wave, Ah = .5.

X E
TE

.05 .063

.051

.1 .005

.003

.2 .001

.001

.4 .000

.000

1.6

.000

.000

.000

.000

E
CE

.010

.006

.001

.000

.001

.000

.000

.000

.000

.000

.000

.000

ETW

.015

.003

.011

.013

.034

.035

.125

.125

.278

.278

.067

.067

ECW

.912

.912

.984

.984

.964

.964

.875

.875

.722

.722

.933

.933
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Table 3.C-8c

Ridge model, wave energy fluxes due to
incident baroclinic wave, Ah = 1.

X ETE

.115

.089

.1 .097

.059

.012

.002

.003

.002

.002

.000

.000

.000

ECE

.018

.010

.019

.006

.002

.000

.003

.000

.002

.000

.000

.000

.05

.287 .713

ETW

.058

.092

.078

.129

.059

.071

.299

.304

.728

.731

.287

ECW

.808

.808

.807

.807

.927

.927

.694

.694

.269

.269

.7131.6

~C ;llI_~____ ~LI1_
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Table 3.C-9a

Ridge-barrier model, wave energy fluxes
due to incident baroclinic wave, Ah= .1.

X ETE ECE ETW ECW

.05 .118 .019 .110 .754

.111 .016 .119 .754

.1 .120 .019 .105 .756

.107 .015 .122 .756

.2 .123 .021 .100 .756

.103 .014 .127 .756

.4 .134 .025 .088 .753

.094 .011 .142 .753

.8 .142 .029 .078 .750

.086 .009 .155 .750

1.6 .129 .023 .099 .749

.103 .014 .134 .749
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Table 3.C-9b

Ridge-barrier model, wave energy fluxes
due to incident baroclinic wave, Ah= .5.

X ETE ECE ETW ECW

.05 .123 .021 .104 .753

.106 .015 .126 .753

.1 .134 .026 .089 .752

.094 .011 .143 .752

.2 .162 .043 .057 .737

.067 .005 .192 .737

.4 .192

.036

.8 .229

.012

.217

.097 .280 .610

.069

.001

.136

.000

.097

.013

1.6

.027

.252

.008

.361

.075

.711

.711

.627

.627

.610
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Table 3.C-9c

Ridge-barrier model, wave energy fluxes
due to incident baroclinic wave, Ah= 1.

X E
TE

.05 .119

.097

.1 .132

.084

.2 .172

.060

.4 .236

.015

.8 .244

.026

1.6 .232

.ill

CE

.019

.012

.025

.009

.047

.004

.136

.000

.363

.001

.415

.019

E
TW

.094

.123

.078

.142

.050

.207

.010

.367

.011

.590

.046

.562

ECW

.768

.768

.765

.765

.730

.730

.618

.618

.382

.382

.307

.307
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Table 3.C-10a

Ridge model, transmitted wave amplitudes TT and

TC in complex polar form re i 8 , with d = 0.

TT 
TC

X r e r 0 Ah

.05 .999 .02 1.000 .00 .1

.712 .36 .955 .03 .5

.261 .26 .899 -.02 1

.1 .998 .01 .999 .00 .1

.974 .24 .992 .01 .5

.504 1.37 .898 .01 1

.2 .998 .01 .999 -.00 .1

.951 .16 .982 -.03 .5

.923 .64 .963 -.10 1

.4 .997 .01 .997 -.00 .1

.933 .13 .935 -.07 .5

.831 .53 .833 -.26 1

.8 .994 .00 .994 .00 .1

.849 .03 .849 -.00 .5

.517 .22 .518 -.09 1

1.6 .999 -.00 .999 .00 .1

.967 -.09 .966 .10 .5

.844 -.27 .844 .34 1
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Table 3.C-10b

Ridge model transmitted wave amplitude with d= .5.

TT 
Tc

X r 6 r 6 Ah

.05 .986 .01 .998 .00 .1

.706 .21 .955 .01 .5

.353 .27 .909 -.01 1

.1 .994 .01 .999 .00 .1

.853 .21 .975 -.00 .5

.476 .62 .924 -.03 1

.2 .997 .01 .999 -. 00 .1
.919 .15 .975 -.03 .5

.718 .58 .942 -.11 1

.4 .996 .00 .997 -.00 .1

.905 .12 .934 -.07 .5

.721 .51 .839 -.26 1
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Table 3.C-lla

Ridge barrier
with d = 0.

model transmitted wave amplitude

TT

.05 .131

.132

.122

.130

.130

.120

.130

.122

.119

.129

.099

.075

.127

.066

.1.29

.133

.186

.290

1.6

.01

.08

.11

.01

.11

.34

.00

.19

.68

.01

.30

1.53

-.01

-.45

-2.21

-.01

-. 20

-.35

Tc

.868

.868

.877

.869

.867

.875

.869

.858

.854

.868

.843

.786

.866

.792

.618

.869

.781

.554

-.00

-.01

-. 02

-.00

-.02

-.06

-.00

-.03

-.11

-.00

-.05

-.17

-. 00

-.04

-.23

.00

.08

.29

Ah
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Table 3.C-llb

Ridge-barrier model, transmitted wave
with d = .5.

X

.05

.1

.2

.4

r

.131

.129

.126

.131

.129

.122

.130

.122

.114

.129

.096

.080

6

.03

.09

.16

.03

.14

.34

.03

.22

.68

.03

.31

1.52

r

.870

.871

.874

.869

.867

.873

.869

.861

.858

.868

.842

.805

amplitudes

0

-.00

-.01

-.02

-.00

-.02

-.05

-.00

-.03

-.10

-.01

-.06

-.19
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A general characteristic of all of the results is that

the lowest topography has almost no effect. The ridge model

produces little scattering while the ridge-barrier model acts

like the thin barrier model. By way of comparison, I- =./32

and T c 6- ? for the barrier model, virtually identical with

values for the ridge-barrier model with s5t -. -1.

Effects of the higher topography are significant. In

the ridge model the greatest effect comes from the narrow

ridges. In the most extreme case of I and X -O6 the

ridge behaves much like the barrier in spite of the fact that

the ridge model does not directly block flow in the lower

layer across the crest of the ridge. Note that as the ridge

width is decreased, more and more energy is found in short

waves and the flow is increasingly blocked. In the ridge-

barrier model, narrow slopes have little effect, indicating

that the essential behavior of a narrow, high ridge is ade-

quately modeled by the simple barrier model. As the slopes

widen, however, some new effects are found. Both the phases

and the amplitudes of Tr- , and to a lesser extent T C , are

altered in a somewhat irregular manner. Since the calculations

with dissipation show the same behavior, we may conclude that

it is due to the interaction of the topographic and long wave

scales and does not depend critically on the short waves.

The phase of Tr is generally positive; the barotropic wave

is delayed slightly by the ridge or ridge-barrier.
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For X>.2 the short wave fluxes are small. At each

junction between regions of different slope the long waves

available on either side of the junction have comparable

scales, so only small amounts of short waves are needed to

match both velocity components, The junction is then just

a place where a motion that is composed of one pair of ver-

tical modes on one side is translated into a different

linear combination of a different pair of vertical modes on

the other side. Each mode then propagates at its character-

istic speed to the next junction where the resulting motion

is again translated into still another pair of waves. It is

the difference in phase speeds of the various waves that

accounts for the scattering of energy by the topography. For

example, suppose a barotropic wave is incident on a ridge.

At the east side of the ridge the motion in the upper layer

will produce an upper layer wave traveling across the ridge

with the baroclinic long wave phase speed. The lower layer

motion will be a quasi-steady flow along geostrophic contours.

At the west side of the ridge, the upper layer motion will

arrive after some delay due to the finite phase speed of the

wave, but the lower layer will experience no significant net

phase change (so long as the basin has the same depth on

either side of the ridge). Hence the upper and lower layers

are out of phase at the west side of the ridge and will there-

fore produce both barotropic and baroclinic long waves in the

western flat part of the basin.
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A comparison of Tables 3.C-4,5 with 3.C-6,7 shows that

the energy fluxes due to forcing are, with the exception of

Erw , almost identical to those due to an incident baro-

tropic wave. This suggests that where both types of motion

are present, as in the quasi-steady Sverdrup balance, the

waves may tend to cancel each other. This is indeed the

case.

To measure the net effect of the topography on annual

oscillations in a basin with an eastern boundary we will

define two indices. Suppose the topography is centered a

distance LC/2. from the eastern boundary and we wish to

measure the effect of topography at a distance /XC! Y

from the eastern boundary. Let J'Tw be the amplitude

of the barotropic long wave due to forcing over the topog-

raphy. In the notation of Table 3.C.3, ~ (,, /Pr)

with (IP calculated using the first of the three vectors

(Fj . Then an index of the effect of the topography on

the barotropic motion in the basin is

I- Tr e P& Par e
-Tr I-e (3.C.8)

The denominator is the quasi-steady Sverdrup response that

would exist in the absence of topography. The numerator is

~_~__l~UI~~ ___LIIIIUII__JL_ i*X1^ -. ~--_i~* ---
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the sum of the directly forced response, the transmitted

portion of the barotropic wave from the eastern boundary,

and the barotropic long wave generated by forcing over the

topography. The barotropic wave due to scattering of the

baroclinic wave from the eastern boundary has been omitted

for simplicity.

In addition to measuring the effect of the topography

on the barotropic flow in the western part of the basin,

we wish to measure its effect on the upper layer zonal

velocity at the crest of the ridge or ridge-barrier. As in

the case of the index Tr-r we will consider the directly

forced flow and the barotropic wave from the eastern boundary

but will neglect the baroclinic wave from the eastern boundary.

The upper layer pressure pk(0o) at the crest of the ridge

or ridge-barrier is then

---- 0) A + ;- 4j

(3. C. 9)

j-- e

where superscripts F and T denote the amplitudes due to

forcing and to an incident barotropic wave, respectively. In

the absence of topography the upper layer pressure would be



173

(3.C.10)

The desired index of topographic effect is then

o (o)

r,0, (6)
(3.C.11)

Both indices can be computed for the barrier model as

well. The barotropic index is again defined by (3.C.8)

and has a numerical value of 1(6 . e'/

The barotropic response is delayed slightly and reduced al-

most by half. Using (3.A.2), (3.A.5a), and (3.A.7) we find

that the index corresponding to Trak is

I(p) (i-k)
(3 .C.12)

(3.C.13a)

- iA r4- X A/
(rP -( 1

P () -I

where

,(0) (O/ - i

H () =: -, + / - e

- i, r,..,r/lz/

(3. C. 13b)I e
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Substituting the numerical values for the usual example of

large scale annual oscillations yields -T" = /.o e

Upper layer flow over the barrier is very slightly increased

in amplitude and advanced in phase.

Amplitudes and phases of -Tg and -it for the ridge

and ridge-barrier models are given in Tables 3.C-12 through

15. Again we see that slopes with have no

appreciable effect.

With narrow slopes the ridge-barrier model acts like the

thin barrier, and with steep narrow slopes the ridge model

also has similar behavior, although it is unable to block

the lower layer completely and is therefore less effective

in reducing the barotropic flow. Both models tend to reduce

the Sverdrup flow and shift the phase to the north. The

reason for the phase shift is the same as in the case of the

eastern boundary slope. Geostrophic contours are bowed to

the south over the ridge, so the Sverdrup flow at a given

latitude is due in part to forcing at a more southerly lati-

tude with its consequent difference in phase. This averaging

of the forcing over a band of latitudes reduces the ampli-

tude of the response as well. Another process tha.t reduces

the amplitude is the scattering mechanism mentioned earlier.

The ridge-barrier model adds these processes to the lower

layer blockage so as to reduce the barotropic flow even more

than does the thin barrier.
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Table 3.C-12a

Ridge model, Ah = .1, d = 0.

IRT IRU

X r 6. r

.05 1.001 .01 .998 -.02

1.001 .01 1.004 .02

.1 1.000 .00 1.007 -. 02

1.000 .01 .996 .02

.2 .999 -. 01 1.019 -. 03

.999 .01 .988 .03

.4 .997 -.02 1.041 -.04

.998 .02 .967 .05

.8 .995 -.04 1.085 -. 04

.995 .04 .927 .05

1.6 .997 -.08 1.090 -. 01

.996 .08 .916 .02

ILYLI II--_II- -1 ... Li ~_- I-YL 1 .C^-~Y~~.~11~--LUIYn.i~-~X~
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Table 3.C-12b

Ridge model, Ah

IRT

r

.867

.865

.993

.993

.984

.986

.944

.950

.889

.895

.922

.909

0

.17

.19

.10

.15

.04

.13

-.03

.16

-.18

.23

-. 44

.37

= .5, d = 0.

IRU

r

1.041

1.012

1.070

.994

1.145

1.007

1.263

.936

1.465

.809

1.465

.685

.05 -.05

.08

-.08

.08

-.09

.12

-. 12

.27

-.06

.36

.07

.30

1.6
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Table 3.C-12c

Ridge model, Ah = 1, d = 0.

IRT IRU

X r r

.05 .631 .14 1,067 -.02

.632 .17 1.05 .07

.1 .662 .47 1.195 -.00

.655 .53 1.107 .08

.2 .910 .25 1.331 -.04

.916 .38 1.117 .21

.4 .815 .10 1.542 -.03

.847 .40 1.068 .40

.8 .618 -.27 1.855 .10

.663 .51 1.023 .67

1.6 .729 -.92 1.846 .27

.726 .76.665 .69
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Table 3.C-13a

Ridge model, Ah =

IRT

r

.994

.994

.998

.998

.998

.998

.997

.997

0

.01

.01

-.00

.01

-.01

.01

-.02

.02

.1, d = .5.

IRU

r

1.005

.998

1.009

.996

1.020

.987

1.044

.966

.05

0

-.01

.01

-.02

.02

-.03

.03

-.04

.05



179

Table 3.C-13b

Ridge model, Ah =

IRT

r

.862

.861

,932

.931

.953

.955

.931

.937

e

.11

.13

.09

.13

.03

.12

-. 03

.16

.5, d = .5.

IRU

r

1.051

1.008

1.085

1.015

1.151

1.000

1.281

.950

.05 -.04

.05

-.06

.09

-.09

.15

-. 10

.27
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Table 3.C-13c

Ridge model,

IRT

r

.681

.680

.727

.725

.819

.824

.767

.798

.14

.17

.23

.29

.20

.33

.09

.38

Ah = 1, d = .5.

IRU

r

1.080

1.035

1.164

1.068

1.314

1.094

1.552

1.105

.05

0

-.02

.06

-.02

.12

-.03

.23

-.00

.42
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Table 3.C-14a

Ridge-barrier model,

IRT

r

.571

.572

.570

.571

.570

.571

.567

.572

.563

.573

.563

.577

0

.14

.14

.13

.15

.13

.15

.12

.16

.10

.18

.05

.22

Ah = .1, d = 0.

IRU

r

1.019

1.011

1.026

1.004

1.034

.993

1.061

.975

1.101

.933

1.105

.01

-.04

.00

-.06

.02

-.06

.03

-.03

.924 -.01

.05 04

01

04

1.6
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Table 3.C-14b

Ridge-barrier model,

IRT

r

.571

.568

.566

.569

.555

.567

.533

.554

.485

.537

.509

.571

0

.14

.16

.14

.17

.12

.21

.10

.26

.04

.34

.33

.51

Ah = .5, d = 0.

IRU

r

1.063

1.013

1.079

1.011

1.156

.985

1.285

.936

1.471

.804

1.490

.667

.05

0

-.03

-.00

-.06

.04

-.11

.13

-.10

.23

-.06

.38

.05

.26

1.6
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Table 3.C-14c

Ridge-barrier model,

IRT

Ah = 1, d = 0.

IRU

1.069

.998

1.176

1.016

1.318

1.067

1.562

1.055

1.877

.992

1.868

-.01

.03

.01

.08

-. 02

.20

-.02

.43

r

.565

.561

.558

.548

.534

.538

.457

.499

.342

.422

.412

.486

0

.14

.16

.15

.20

.17

.28

.13

.40

-.21

.53

-.78

.79

.05

.11

.67

.27

.702 .76

1.6
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Table 3.C-15a

Ridge-barrier model,

IRT

r

.573

.573

.573

.578

.572

.574

.570

.574

.14

.14

.14

.15

.13

.15

.12

.16

Ah = .1, d = .5.

IRU

r

1.032

1.021

036

017

048

008

072

987

- .02

-.01

-.03

-.00

-.04

.01

-.05

.03

.05

.1

8
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Table 3.C-15b

Ridge-barrier model,

IRT

r

.571

.570

.569

.570

.559

.567

.533

.556

.14

.16

.14

.17

.13

.21

.10

.26

Ah = .5, d = .5.

IRU

r

1.064

1.021

1.104

1.013

1.173

.994

1.304

-. 03

.02

-. 05

.05

-. 08

.12

-. 09

.941 .24

.05
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Table 3.C-15c

Ridge-barrier model,

IRT

r

.567

.567

.558

.558

.533

.541

.461

.499

.15

.17

.15

.20

.16

.27

.14

.00

Ah = 1, d = .5.

RU

r

1.079

1.033

1.158

1.045

1.307

1.065

1.550

1.077

-. 01

.04

-. 01

.10

-.02

.21

.01

.42

.05

A
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The upper layer response as indicated by .4q is al-

most identical in the ridge and ridge-barrier models. In

general IxI is smaller for A=- than for / ,

and when the slope is moderate /r /< I for 1= -I .

This can be explained in terms of the scattering mechanism.

Since short waves are of little importance over the ridge

(unless the ridge is very narrow), the flow at the crest

of the ridge is controlled by conditions to the east. Since

5 / for the eastern slope, A= / implies that the upper

layer wave is 'barotropic' and the lower layer wave is

'baroclinic.' The barotropic part of the motion in the flat

region to the east excites these two waves such that their

upper layer motions are 1800 out of phase but their lower

layer motions are in phase (see Figure 3.C-3). West of the

junction the relative phases of the two modes will change due

to their differing phase speeds. Since the upper layer com-

ponents were initially opposite in phase, any change in rela-

tive phase must increase the net upper layer flow while re-

ducing the lower layer flow. When /=-l the reverse occurs:

upper layer flow is reduced and lower layer flow is increased.

The phase of shows two tendencies: the average

of the phases for R=/ and for /=-/ is positive, so

there is a general time lag introduced by the topography; and

the phase for / =-/ is greater than that for =/ . The

first tendency is due to the finite westward phase speed of the
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'Barotropic' 'Baroclinic' Barotropic

7IZ
H

-7 1-

Figure 3.C-3

Sketch of the translation of a barotropic flat-bottom
mode into a sum of 'barotropic' and 'baroclinic' slope
modes.

I

L-b

1 ,

WI1
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upper layer waves that carry much of the upper layer flow

over the slope. The second tendency is a bit more compli-

cated. The upper layer flow in region I is the sum of two

parts of comparable magnitude and a phase difference of

/2. . One part comes from the Sverdrup balance and the

second part comes from the baroclinic directly forced motion.

(We are neglecting the baroclinic wave from the eastern

boundary in these calculations.) The baroclinic part is

relatively unchanged over the slope, while the Sverdrup

part is increased in amplitude when /_/ and decreased

when =-/ as explained in the previous paragraph. The addi-

tion of a larger Sverdrup component at roughly zero relative

phase to a constant baroclinic component with phase 1T/2

gives a sum with an earlier phase than if the Sverdrup com-

ponent were smaller. Hence the phase of g" is earlier for

/=/ than for / -/ . This explanation neglects other

factors, such as the larger value of OlP for = / than

for --/, that may also affect , C•

Comparison of Tables 3.C.-12 with 13 and 14 with 15

shows that even the large amount of dissipation represented

by J= .5 has almost no effect on TRi and little effect on

Rtr . The phase of TRr for = / and X = .1 in the

ridge model is reduced by dissipation to be more in line with

the phases for other ridge widths. Elsewhere there are no

significant differences.
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4. Summary

The main points of this section can be given in the

form of answers to the three questions asked at the beginning

of the section.

The model of a slope at the eastern boundary indicates

that the slope plays little role in determining the overall

response of the basin to large scale annual forcing. The

only slopes that were found to have an appreciable effect

were those of X = .8 and 1.6, : = .5 and i. Even in

these examples the maximum phase change of the barotropic

response was .4 radians, or less than one month.

Comparison of the barrier model to the ridge and ridge-

barrier models shows that the simple barrier model is quite

good for ridges with a half-width of about 200 km or less.

The effects of the slopes become increasingly important for

wider ridges. A wide slope may nearly double the upper layer

flow at the crest of the ridge, but the phase change in the

most extreme case (for which flow over the ridge is decreased)

is less than a month and a half. For more realistic ridges

the changes are insignificant.

The ridge model with t = .5 and X = .8 is a reasonable

first approximation of the Mid-Atlantic Ridge. Its effect on

the barotropic response is under 15% in amplitude and under

two weeks in phase.
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D. The eight-layer barrier problem

The thin barrier model developed at the beginning of

this chapter is highly idealized. In the previous section

we saw that making the model more realistic by adding slopes

of moderate width has little effect on the behavior of the

model. In this section we will return to the thin barrier

but will consider the effect of more realistic stratifica-

tion. The mathematical structure of the two-layer problem

can immediately be generalized to treat any number of layers

with a barrier extending to any of the interfaces. Hence we

can use a multi-layer model to approximate a continuously

stratified fluid with a barrier of any height.

The multi-layer model used here is that of Lighthill

(1969). All variables in this section will be dimensional.

Superscripts will label layers, subscripts will label modes.

Suppose there are N layers with densities and thicknesses p/

and H respectively, with the layers numbered starting with

I ) at the top. Define the matrix

(3.D.1)

Then the eigenvalues A are the "equivalent depths" and the

eigenvectors, when arranged as the columns of the matrix 6J ,

specify the vertical normal modes of the system. Mode vari-

ables are related to layer variables by
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Sj (3.D.2)

j=o

For convenience the modes are ordered by decreasing value of

( , starting with the barotropic value a H

As in the two layer problem, the velocity is related

to the pressure by the geostrophic balance, all variables

are proportional to e , and the limit C is

taken. The lowest order beta plane model then gives the

familiar vorticity equation for each pressure mode,

-iu ('pp A i-'-Fi a(3.D.3)

with ; E f7 . Plane wave solutions ) = e

are governed by the dispersion relation

,,,,. - =X; + ii ; O ¢3.D.4)

Subscripts W and E will again distinguish long from short

waves.

The milti-layer barrier problem is solved in exactly

the same way as the two-layer problem. Suppose that at the

barrier at 4--- 0 there is some initial flow expressed as

a superposition of vertical normal modes joj . Let the
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barrier extend to the interface between layer A and layer

/ 4- , so there are tl layers that are above the

barrier. The matching conditions applied at /X O are

continuity of 4 and AV- above the barrier and &t= O on

both sides below the barrier. Hence there are 2 l condi-

tions determining the amplitudes of 2/Z free waves. How-

ever, as we saw in the two-layer problem, the pressure ampli-

tudes must be the same on both sides of the barrier, so we

are left with only N conditions on VA amplitudes:

where

Wj (3.D.6)

Note that A 0 if A is real, but A /4 4)>O if Aj
is imaginary. The linear algebraic equations (3.D.5) are

easily solved for any numerical example, and (3.D.2) can then

be used to determine the flow over the barrier in each layer.
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For all numerical examples we choose N\ F and a total

depth of 4000 m. There are four types of stratification con-

sidered (Figure 3.D-2): 1) linear stratification, with both

the layer thickness and the density difference constant; 2)

exponential stratification, with constant layer thickness

but larger density jumps toward the top; 3) exponential

stratification, with constant density differences but thicker

layers toward the bottom; 4) irregular stratification, with

constant layer thickness everywhere, but with a small constant

density difference at the lower five interfaces, a large dif-

ference at the sixth interface from the bottom, and an inter-

mediate difference at the top interface, just below the free

surface. The normal modes for each type of stratification

are shown in Figure 3.D-1 and the equivalent depths and values

of Z~^A are in Table 3.D-1. Not surprisingly, the details of

the stratification are most evident in the higher modes. In

particular, note that when exponential stratification is

achieved through variable density jumps, the higher modes are

bottom intensified, while the reverse is true when layer

thickness is varied.

The barrier problem was solved with each type of strati-

fication, with the barrier extending to each interface in turn.

In one case the initial flow had a first baroclinic mode struc-

ture; in all the others a barotropic initial flow was used.

All computations were made with a 1000 km meridional length
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Table 3.D-1

Hj in meters and Akj in 10-4m - 1 for each ex-

ample of stratification.

Linear Exponential-Density

Hj Akj Hj Akj

3998 -0.992 3398 -0.992

1.309 -0.906 1.347 -0.909

0.3404 -0.595 0.3476 -0.606

0.1615 0.586i 0.1675 0.544i

0.0996 1.081i 0.1049 1.029i

0.0722 1.409i 0.0722 1.409i

0.0587 1.633i 0.0488 1.846i

0.0519 1.773i 0.0307 2.449i

Exponential-depth

Hj Ak.

3997 -0.992

1.279 -0.904

0.3361 -0.589

0.1602 0.595i

0.0995 1.082i

0.0725 1.405i

0.0575 1.658i

0.450 1.944i

Irregular

Hj Ak

3997 -0.992

1.980 -0.936

0.3412 -0.597

0.2145 0.124i

0.0968 1.110i

0.0494 1.833i

0.0331 2.344i

0.0267 2.656i
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4

Figure 3.D-la. Normal modes of eight-layer
system with linear stratification.
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4

Figure 3.D-lb. Normal modes of eight-layer
system with exponential
stratification, equal layer
depths.

i



198

3
L

54
-u

6

Figure 3.D-lc. Normal modes of eight-layer
system with exponential strat-
ification, equal density
differences.
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Figure 3.D-ld. Normal modes of eight-layer
system with irregular
stratification.
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Figure 3.D-2a.
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DENSITY (P-/I)

Motion induced by barriers of various height
due to an incoming barotropic wave. Heavy
(light) horizontal lines are the pressure
amplitudes in each layer induced by the bar-
rier in phase (900 out of phase) with the in-
coming wave. A heavy line to the right augments
the incoming flow. The heavy (light) vertical
lines are averages of the in-phase (900 lead-
ing) 'flow over the barrier induced by the
barrier. The number to the side is the number
of layers above the barrier. Stratification
is linear.
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Figure 3.D-2b. Eight-layer barrier, exponential-
density stratification, barotropic
incident wave.
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Figure 3.D-2c. Eight-layer barrier, exponential-
density stratification, baro'linic
incident wave.
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Figure 3.D-2d. Eight-layer barrier, exponential-
depth stratification, barotropic
incident wave.
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Figure 3.D-2e. Eight-layer barrier, irregular
stratification, barotropic in-
cident wave.
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scale, annual period, and a central latitude of 200N. The

results of the computations expressed in terms of pressure in

each layer due to the barrier, P , are given in Figure

3.D-2. The average pressure induced by the barrier on the

layers over the barrier is also shown. This is a measure

of the overall effect of the barrier in the zonal flux over

its crest.

Figure 3.D-2 shows that although there is considerable

barrier induced flow above the barrier, its average is

rather small, usually less than a fifth of the initial flow.

In most cases the average in-phase component augments the

initial flow (if barotropic), while the out-of-phase component

produces a phase lag. In other words, the barrier increases

and delays the flow above the barrier. This is the same sort

of behavior as was found in the two-layer model. There the

flow was increased with no phase change so long as k was real,

while a phase lag was introduced when X was imaginary. In

the multilayer problem the solution is composed of low

modes with real -A and high modes with imaginary ZA , so

the net result is both a phase lag and increased flow. How-

ever, when the initial motion is baroclinic and the barrier is

lower than the zero crossing of the mode, a phase lag and de-

creased flow are found. This is to be expected, since the part

of the initial flow that can influence the solution is the part

below the barrier, which.is opposite to the shallow flow.
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Comparison of the results for different stratifications

shows that the barrier has the least effect when the strati-

fication is linear, and the most when it is irregular. This

seems reasonable in view of the larger maximum layer veloc-

ities in the higher modes with irregular stratification, but

the precise explanation is unclear.

In conclusion, the main result of the multi-layer bar-

rier model is a confirmation of the two-layer result. Except

when the barrier blocks all but the topmost layer, the flow

induced by the barrier tends to average out to a small frac-

tion of the initial flow. For the most part, the water column

is sheared off by the barrier; the lower part is blocked but

the upper part proceeds as if nothing had happened, at least

in the immediate vicinity of the barrier.
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Chapter IV

OBSERVATIONS

A. North Atlantic Winds

The theory presented in the preceding chapters re-

lates primarily to motions forced by annual wind variations.

We have assumed that these wind variations have a meri-

dional length scale much larger than the internal Rossby

radius of deformation, are fairly uniform in the zonal

direction, and are of sufficient amplitude to be worth

thinking about. To confirm the validity of these assump-

tions, let us briefly survey the characteristics of the

annual cycle of wind stress in the mid-latitude North

Atlantic. This will enable us to make specific predictions

of some of the annual current variations forced by the

winds.

The best currently available calculations of windstress

are the work of Bunker (1976). He used a drag coefficient

depending on wind speed and air-sea temperature difference

to compute wind stress. Wind speed data came from ship re-

ports collected by the National Climatic Center from 1941-

1972. Monthly means were computed for an irregular grid of

subdivisions of North Atlantic Marsden squares. The grid

was designed to maximize resolution in regions of high

gradient such as the Gulf Stream, and to reflect the varia-

tions in density of observations in different areas. Over
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most of the area from 100N to 400 N the grid consists of

rectangles 20 latitude by 50 or sometimes 100 longitude.

The errors involved in computing wind stress curl from

these data are discussed by Leetmaa and Bunker (1978).

The annual cycle of wind stress curl was computed

from Bunker's stress values through simple hand processing.

Interpolation and averaging was used where necessary (in-

terpolation being needed mostly east of 401W between 100

and 300 N) to obtain monthly stress values on a regular grid

of boxes 20 latitude by 100 longitude. Sine and cosine

transforms of the monthly values yielded annual and semi-

annual harmonics. These were then smoothed meridionally

using the filter Zji ( - >  4 ( 1 i+,) , I

where i is incremented for each 20 of latitude. A simple

two-point difference was then used to compute the -V

component of the curl, which accounts for most of the total.

The t" component of the curl was computed as an integral

across the width of the ocean and added to the sum of the

- components to get the total zonally averaged curl.

Some results of these calculations are shown in Fig-

ures 4.A-1 through 4. Comparison of Figure 4.A-lb with

4.A-3a,b shows that the amplitude of the annual harmonics

of stress curl is typically about half of the mean. The

semiannual harmonic is comparable to, but generally smaller

than, the annual. It tends to be of greatest importance

between about 280N and 1.40N. We see that although there is
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some zonal variation in the mean stress and the annual and

semiannual components, the general characteristics are in-

dependent of longitude. Note in particular the amplitude

minimum of both the annual and semiannual harmonics of

both C and Y at around 201N. The tradewinds are indeed

remarkably steady. This feature is increasingly prominent

toward the west, reaching its greatest intensity in the

Caribbean.

In spite of the changes in amplitude, the phase of the

annual component of t0 is nearly constant over the entire

North Atlantic from about 120 to at least 360 N. The annual

forcing has a standing wave meridional structure with two

main length scales: the larger scale of perhaps 1000 km

over which the phase is constant; and the smaller scale of

about 350 km over which the amplitude varies.

The results of Chapters II and III indicate that east

of the Antilles the barotropic response of the ocean should

be in accord with the Sverdrup balance. The annual cycle

of Sverdrup transport calculated from the averaged stress

curl (Figure 4.A-4) and the width of the North Atlantic is

shown in Figure 4.A-5. The maximum southward interior trans-

port occurs at roughly the same time, late February to mid-

March, over the entire range of latitude for which the

calculation was made. The amplitude varies from a maximum

of 16 Sverdrups at 320 N to a minimum of 4.6 Sverdrups at

200N. These are sizeable transports, but since they are
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barotropic they represent only small speeds. In the in-

terior, 16 Sverdrups distributed over 4000 km width and

-3 -1
4000 m depth implies a mere 10 m sec meridional speed.

At the western boundary, if the scale of the variable

boundary current were 10 km, the short wave scale, speeds

-i
of .4 m sec would be found. However, it must be em-

phasized that the linear theory considered in this thesis

cannot be expected to accurately predict the characteristics,

other than total transport, of the periodic western boundary

flow.

The predictable part of the baroclinic response to the

wind stress curl is the thermocline deformation due to Ekman

pumping. In Figure 4.A-6 we see the zonally averaged ampli-

tude and phase of the annual Ekman pumping. The phase of

thermocline displacement is three months later than the

phase of w. Hence the thermocline is deepest everywhere in

late May to early June. However, the amplitude increases

southward from 200 N, so the maximum predicted strength of

the North Equatorial Current down to 120N is in late Novem-

ber to early December. The amplitude of the current speed

-2 -1
predicted at 150 N is .8 x 10 m sec . This amplitude in-

creases rapidly to the south and quickly becomes negligible

to the north. Indeed, since the thermocline displacement

at 200 N is only about 2 m, it is clear that this baroclinic

response is of no importance there. South of 150, where the
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response becomes substantial, the baroclinic free wave

length becomes comparable to the ocean width, so the free

wave is an important part of the complete baroclinic re-

sponse to the wind variations.

The barrier model of Chapter III applied to the Antilles

Arc implies that the barotropic flow indicated in Figure

4.A-5 is not the transport one should expect to find in the

Florida Straits. The transport of the Florida Current must

equal the transport of primarily warm water over the Antilles

Arc. The barrier model predicts that this transport should

have the same phase as the Sverdrup transport but should be

reduced to a quarter or less of its original amplitude.

Furthermore, since the northernmost major passage into the

Caribbean is the Windward Passage at about 200 N, it is the

upper layer transport at this latitude that can be expected

to pass through the Florida Straits. Hence we expect the

annual cycle of North Atlantic windstress curl to result in

a Florida Current transport cycle with an amplitude of the

order of one Sverdrup and a maximum northward flow in early

March. In the deeper water outside the Antilles Arc we ex-

pect to find an annual western boundary transport of up to

ten Sverdrups below the thermocline with the same early

March phase. North of the Florida Straits we expect the

depth-integrated annual transport amplitude to reach as much

as 16 Sverdrups with essentially the same phase as elsewhere.
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This transport should be distributed uniformly with depth

but might occur in different places at different depths

due to topography, mean currents, and nonlinearity.

Having used wind observations and theory to predict

annual current cycles, let us survey the observations of

annual North Atlantic current variations.

B. North Atlantic Currents

The only direct observations of the annual cycle of

western boundary current transport are the work of Richard-

son, Schmitz, and Niiler (1969) and Niiler and Richardson

(1973), with additional more recent measurements by Brooks

(1977). Transport of the Florida Current was measured

directly by the free-drop method (Richardson and Schmitz,

1965) at 13 stations on a transect from Miami to Bimini.

Niiler and Richardson (referred to as NR) analyzed 75 such

transects made from 1964 to 1971 in which enough stations

were successfully completed to allow calculation of the

total transport of the Florida Current. The mean value was

29.5 Sverdrups. The least-squares fit to the annual harmonic

yielded an amplitude of 4.1 Sverdrups with a maximum north-

ward transport in early June. The transport variation was

largely barotropic, although the variability was somewhat

smaller in the thermocline than above or below it.

In Figure 4.B-1 we see the measurements of NR combined

with those of Brooks (detided, taken from Figure 18 in
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Wunsch and Wimbush, 1977). Monthly averages are also shown,

along with the mean, annual, and semiannual harmonics cal-

culated from the monthly means. The addition of the Brooks

data, which fill a summer gap in the NR measurements, makes

no significant difference in the calculated annual cycle.

Here the cycle has amplitude 4.35 Sverdrups and phase 2.76

radians from 1 January, compared with NR's stated phase of

2.7 radians.

During most of a 26 month period from late 1972 to

late 1974, a deep current meter mooring was maintained in

the Florida Current near the edge of the Miami Shelf, due

east of Miami. Diing, Mooers, and Lee (1977) computed a

least-squares fit to the annual component of variation of

meridional speed from this time series, and found an ampli-

tude of 4.5 cm/sec with a maximum in late April. This is

about 7 weeks earlier than NR's transport maximum, both for

the current as a whole and for NR's station 5, which is

near the current meter mooring. The phase difference might

be due to the shortness of the current meter records; the

time of maximum transport may vary widely from year to year.

Error may have been introduced by variations in the depth

and location of the mooring, which was reset 8 times during

the experiment. On the other hand, there might be real

phase differences within the current. The moored current

meters were in the main thermocline where the annual current
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speed variations are at a minimum, so a different phase

there might have little influence on the phase of the total

transport.

The work of Fuglister (1951) gives a valuable picture

of the annual cycle of surface currents in various parts

of the Gulf Stream System. Fuglister used ship drift re-

ports to calculate monthly average surface currents in each a

of ten regions. Table 4.B-1 gives the mean and the annual

and semiannual harmonics of the speed for each region.

Figure 4.B-2 shows the phases of the harmonics with 80% and

95% confidence limits (calculated using Student's t distribu-

tion with the total noise variance estimated from the sample

variance at periods shorter than semiannual). The location

of the regions are also indicated in Figure 4.B-2.

The surface current variations form a rather coherent

pattern. In most of the regions the annual amplitude is 4

about 10% of the mean, a bit less than the 14% ratio found

in the Florida Current transport. The exceptions are the

Guiana Current, with a 31% ratio, and the Antilles Current,

with a very small mean and a probably insignificant annual

variation. From theTradewind region outside the Caribbean

to the area south of Cape Hatteras the maximum occurs in

early summer. With the exception of the Tradewind region,

the phase becomes progressively later downstream from the

Guiana Current to south of Hatteras. Measuring distances
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Table 4.B-1

Mean, annual, and semiannual components of Fuglister's sur-
face currents, with phase measured in radians from Dec. 15.
Speed in miles/day (1 mile/day = 2.14 x 10-2 m sec-1) is
K + A1 cos(wt-6 1 ) + A2 cos(2wt-0 2 ) where w = 2T/1 year.

A 1

0.65 -3.0

2.04

6.51

A2 22 1 2 1 /

0.72 0.82

2.69 0.66 1.52

3.07 2.91 1.93

5.19 -3.02 1.82 1.26

1.56

0.97

0.30

6.86

0.17

0.39

2.57 0.57 0.36

2.21 0.63 2.35

1.57 0.13 0

1.95 2.27 -0.84

2.84 0.24 1.11

1.49 0.70 0.36

Region

7.6

16.6

59.0

43.2

22.2

12.1

3.8

22.2

4.4

4.2

0.9

1.2

2.2

2.9

2.7

1.5

2.3

3.0

0.6

0.6

0.09

0.12

0.11

0.12

0.07

0.08

0.08

0.31

0.04

0.09
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along the stream, we find phase speeds of about 40 km/day

from the Guiana Current to the eastern Caribbean, 120 km/day

from there to the Florida Straits, and 60 km/day to south

of Hatteras. The meridional phase speed between the Cari-

bbean and the Florida Straits is also 60 km/day. Progressing

from south of Hatteras to north and south of the Azores, the

phases become earlier again. These phase differences, to

the extent that they are real, could arise in any of a number

of ways: they could represent local response to a traveling

forcing pattern; local forcing in one region could produce

a wave-like disturbance propagating away from the source; or

two large-scale responses with different phases and varying

amplitudes could be summed to give a varying phase.

Since ship drift estimates are not ideal measures of

surface currents, one might question the significance of

Fuglister's results. As was pointed out by Fuglister, there

is some correlation between the downstream wind component

and the current speed in the Tradewind and Caribbean regions,

although not in most of the other areas. However, the

annual wind amplitude is about the same on either side of

the Antilles, while the surface current amplitude is larger

by a factor of three in the Caribbean, and the mean current

is larger by a factor of two. Hence the ship drifts cannot

easily be attributed to the windage of the ships or similar

errors, and must be supposed to represent the actual surface

currents.
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Another indication of a seasonal cycle in the Gulf

Stream System is the variation in path length of the Loop

Current reported by Maul (1977). Sometimes the Loop

bulges nearly 1000 km into the Gulf and at other times

it flows almost directly from Yucatan Strait to the Florida

Straits. Shortening of the path length is often accom-

plished through the detachment of a warm eddy that drifts

west into the Gulf. Eddy formation has been observed at

various times during the year. However, on the basis of

historical data and a one year series of measurements Maul

suggests that on the average the eddy formation is part of

an annual cycle that is in phase with the Florida Current

transport variation. The maximum growth rate of the area

enclosed by the Loop is concurrent with the maximum Florida

Current transport. Furthermore, Maul calculates that the

excess flow of warm water into the Gulf through the Yucatan

Strait required while the Loop is growing is about 4

Sverdrups. Since the sill depth of the Florida Straits is

800 m while that of Yucatan Strait is 2000 m, one would

expect the compensating cold water outflow to go primarily

into the Caribbean. However, part of it may go northeast

through the Florida Straits, accounting for NR's observation

of increased annual transport variability below the

thermocline.

The currently available observations of the Loop Current

are inadequate to establish the phase of the annual cycle
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with any certainty. It is important to note that the

growth and decay of the Loop Current can affect the tem-

perature distribution of the Florida Current outflow, but,

given some particular flow through the Antilles into the

Caribbean, the Loop cannot affect the total transport of

the Florida Current. In other words, at annual periods

the western boundary current system is barotropically non-

divergent; but features such as the Loop Current can lead

to divergence, and consequent phase changes, in the baro-

clinic boundary transport.

C. Relation of Observations to Theory

The general picture that emerges from the observations

discussed in the previous section is of an annual current

cycle that is fairly similar over a large portion of the

Gulf Stream System. The amplitude of the fluctuations as

a fraction of the mean is roughly constant, and the phase

varies slowly from place to place. The maximum anti-

cyclonic circulation occurs in late spring to early summer.

The fluctuations are observed in the surface currents and

must be largely confined to the warm water; at least in

the latitudes south of Cape Hatteras the surface currents

in deep water would imply enormous transports if they were

barotropic.

The theory that has been presented predicts a baro-

tropic western boundary transport varying from 4 to 16
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Sverdrups with maximum anticyclonic circulation in late

winter to early spring. The surface currents and Florida

Current transport implied by this barotropic flow are

modest. Hence, the observations neither confirm nor re-

fute the theory. Some fraction, perhaps 20%, of the ob-

served currents might be due to the predicted barotropic

transport. With the data now available there appears to

be no way to test this idea. It is consistent, however,

with the observation that the phases of Fuglister's surface

currents become earlier downstream of Hatteras as the pre-

dicted Sverdrup transport increases.

Although we discussed (in section 2.B) the physics

of baroclinic western boundary current generation by long-

shore windstress, we are unable to make a definite predic-

tion based on this theory. A crucial constant of integration

cannot be determined, and there is also an unknown contribu-

tion from a baroclinic free wave. However, the theory

suggests that western boundary transport generated by long-

shore windstress must eventually leave the coast as Ekman

transport. Now, the annual amplitude of meridional wind-

stress in the North Atlantic is about .05 Pascals, so

-4 -1with a mean f = .7 x 10 sec , a coastline of 5600 km would

be required to distribute the annual transport variation of

the Florida Current. Therefore, although meridional wind-

stress may play a role in forcing the observed seasonal
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variations, it seems unlikely that it can directly account

for all of the Florida Current transport cycle.
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Chapter V

Conclusion

In the introduction we stated that this thesis was con-

cerned with two related questions: the annual cycle of cur-

rents driven by the annual cycle of the winds, and the

influence of major topographic features on this annual cycle

of currents. Let us now review the progress we have made

toward answering these questions.

In Chapter II we developed a consistent set of scaled

equations for a linear two-layer model with topography.

These equations were then solved for the special case with-

out topography. The model reproduces the quasi-steady baro-

tropic Sverdrup response predicted by Gill and Niiler (1973)

and the forced and free baroclinic response found by White

(1977). It is shown that the western boundary current pro-

duced by frictional damping of short Rossby waves is of suf-

ficiently small zonal scale to be nearly nondivergent hori-

zontally in each layer. This implies that the transport in

each layer depends only on the interior zonal transport into

the boundary in that layer. However, as we noted in Chapter

IV, this may not always be true in the ocean; indeed the Loop

Current is a counterexample in which the complications of

geography, nonlinearity, and mean flow lead to behavior far

from the predictions of our simple theory.

In the first part of Chapter III we present a simple

model of a high steep ridge. We find a striking result in
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the limit of low frequency: the lower-layer barrier does

not affect the upper layer flux across the barrier. This

is due to the properties of short Rossby waves. At low fre-

quencies their zonal scale becomes so short that the vorti-

city equations are dominated by a balance between the beta

effect and the relative vorticity term. The coupling term

is relatively small, so the upper layer east of the barrier

does not "feel" the presence of the barrier.

Section B of Chapter III is devoted to the dynamics of

flow over a constant east-west slope. We find that the ver-

tical mode structure is the same for both long and short

waves of a given frequency and meridional scale. As slope

increases, the barotropic and baroclinic modes evolve into

upper layer and lower layer modes. When the slope is down to

the east, the barotropic mode becomes an upper (lower) layer

mode if phase propagation is to the north (south). The re-

verse is true if the slope is down to the west. The upper

layer mode acts much like a baroclinic mode over a flat

bottom. The lower layer mode acts like homogeneous flow

with total depth equal to the lower layer depth; in the lower

layer long wave the flow is quasi-steady along geostrophic

contours.

In Section C of Chapter III we model topographic fea-

tures as sequences of regions of constant slope. The appro-

priate free waves are used to meet matching conditions at the
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junctions. Unless the slope is very steep, so that the

lower layer undergoes an O(b) change in thickness in a

distance comparable to the short wave scale, the amplitudes

of the short waves are small. At each junction the long waves

are translated from one set of modes to another but continue

to travel as long waves. Scattering of barotropic energy

into baroclinic energy and vice versa can result from the

different phase speeds of the different types of long waves.

On the other hand, when the slope is steep and short waves

are excited, a junction reflects wave energy. A steep ridge

therefore can act as a lower layer barrier even if it does

not extend to the interface.

Section D of Chapter III consists of a straightforward

extension of the two-layer barrier model to a multilayer

fluid. It is found that a barrier extending to an intermed-

iate interface produces a small increase in amplitude and

lag in phase in the average flow over the barrier due to a

barotropic incident motion. Hence, the behavior found in

the two-layer model is also found with more general strati-

fication, with minor modifications.

The models of topography suggest that outside the

island arcs the predictions of the simplest flat bottom the-

ory are adequate. Neither the eastern boundary slope nor

the mid-ocean ridge model makes a significant difference.

The barrier model, on the other hand, implies that only a
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small fraction of the interior annual Sverdrup transport

should be returned through the Florida Straits. This pre-

diction serves to make the theory more nearly consistent

with the Florida Current observations; the predicted trans-

port variation of a Sverdrup or less, with maximum in March,

could be part of the observed four Sverdrups with maximum in

June. The overall conclusion to be drawn from a comparison

of theory and observations is that although the theory may

be correct as far as it goes, it does not go far enough. It

is inadequate to explain the observations. The inadequacy

may be of two sorts. It may be that a better model of the

circulation driven by the wind is needed; or it may be that

the observed current cycle is driven by something other than

the winds, presumably thermohaline forcing.

Let us survey the limitations of the theory that has

been presented:

Some of the calculations of topographic effects were

done by stretching the approximation of constant coefficients

beyond its validity. However, we argue that although the

calculations are inaccurate in detail they give useful quali-

tative information. Note also that in the case of the eastern

boundary and ridge-barrier models, the place where the approxi-

mation of constant h is worst is near the boundary and near

the barrier, respectively. But there the lower layer upslope

flow goes to zero anyway, so the error introduced by the

approximation is reduced.
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The model is linear. This simplification should not

hurt except where there are short waves. Realistic zonal

particle velocities in the western boundary region would

be comparable to the zonal phase speed of the short waves,

so nonlinearity would be important. However, the conclu-

sions reached depend more on the scale of the western

boundary region than on its details, so the neglect of

nonlinearity may be of minor importance.

There is no mean flow. A mean flow would not alter

the physics of the essential interior response. It might

be important at the barrier and at the western boundary.

Note, however, that a mean westward flow over the barrier

would help prevent short wave "information" from propagating

east in the upper layer, so the behavior of the barrier

model should remain about the same.

The model is periodic in the north-south direction.

It cannot take very large-scale phenomena into account, and

there is no equatorial region. The seriousness of this

limitation is unclear.

The effect of longshore winds cannot be calculated ex-

plicitly. There is some indication from numerical experi-

ments (Anderson, 1978; Bryan, 1978) that meridional winds

may account for the surface currents observed by Fuglister

(1951), although we have argued that they probably cannot

account for the Florida Current transport observations.
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The stratification is two-layer rather than continuous.

This limitation is probably not very important. Hall (1976)

has shown that scattering by topography is similar in con-

tinuous and two-layer systems; and the momentum and vor-

ticity equations for the barotropic and first baroclinic

modes without topography are identical in continuous and

two-layer systems.

Small scale topography is not included. The effect of

rough topography needs further investigation.

The geography is highly idealized. There may be impor-

tant effects of the actual configuration of the Antilles,

the Caribbean, and the Gulf of Mexico.

There is no thermal forcing. In view of the large

seasonal heat flux in the decay region of the Gulf Stream,

this may be the most important limitation of the theory.

The above list of limitations of the present theory

serves also to suggest areas where work might be done in

the future. Many areas will be accessible only through nu-

merical modeling. Examples are realistic geography and

topography, and probably nonlinearity. Some aspects of the

effects of mean flows and rough bottom topography may be

found analytically. Progress may also be possible in ana-

lytic modeling of the effect of thermohaline forcing in the

Gulf Stream decay region. Such work should include a theory

of the propagation of annual disturbances along the western

boundary in the presence of mean flow.

~ _____II_ _^_~~_I__~ __ ~III -OI~LII1UIPIU iIll*1II1C
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There is one prediction of the present theory that

may be subject to observational verification. The deep

oscillating western boundary transport, both outside the

Antilles and along the continental slope, could involve

-I
substantial velocities (over .1 m sec ) and might be de-

tected by a monitoring program lasting many years. The

velocities would be large only if this current were of

small lateral dimension (as it is in simple linear theory)

in which case the placement of current meters becomes

critical. Hence we cannot expect to see this observational

test of the theory in the near future.
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