
A TIME DIVISION MULTIPLEXER/DEMULTIPLEXER FOR AN
EXPERIMENTAL MULTIPLE ACCESS LIGHTWAVE SYSTEM

by

LOUIS ANDREW NAGODE

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREES OF
BACHELOR OF SCIENCE

and
MASTER OF SCIENCE

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1981

O Louis Andrew Nagode, 1981

The author hereby grants to MIT and Bell Telephone
Laboratories, Incorporated permission to reproduce and to
distribute copies of this thesis document in whole or in part.

Signature of Author
Department of Electriol Engineering and

Computer Science, May 8, 1981

Certified by
Robert S. Keinedy, Thesis Advisor

Certified by
-banese ,_ipany Prect Supervisor
/ /_t-A Cooeralg Company)

Accepted b_
Ch-itrmf , Deairal Committee on

Graduate Students

Archives
MASSACHUSETTS INSTI UTEOF TECHNOLOGY

MAY 27983

LIBRARIES

A TIME DIVISION MULTIPLEXER/DEMULTIPLEXER FOR AN
EXPERIMENTAL MULTIPLE ACCESS LIGHTWAVE SYSTEM

Louis Andrew Nagode

ABSTRACT

A time division multiplexer/demultiplexer for use in

an experimental multiple access lightwave network is described.

The multiplexer circuit capable of handling data rates up to

100 Mb/sec was built using state of the art emitter coupled

logic. This multiplexer is able to absorb a continuous digital

data stream at rates between 768 Kb/sec and 100 Mb/sec while at

the same time retransmitting the data in 100 Mb/sec "bursts"

during assigned 960 ns time slots. This design has direct

applications for use in any multiple access networks using time

division multiplexing. A description of the design and related

components is included.

-2-

ACKNOWLEDGMENT

I would like to express my sincere appreciation to

Andres Albanese for giving me many of the basic ideas for this

project. He stimulated me to produce new ideas and he was

always there to shed new light on areas I had previously not

seen.

I would like to thank W. M. Hubbard, A. R. McCormick,

H. E. Kehlenbeck, and C. A. Caroli for allowing me to draw from

their previous experiences on many practical matters.

I would also like to express my appreciation to my

Department Head Detlef Gloge for his concern and interest in my

project.

The people at Bell Laboratories have truly made this

assignment, as well as the previous ones, a wonderful experi-

ence.

Finally I wish to thank my fiancee Jennifer Phillips

for all her loving support and aid in the preparation of this

thesis.

-3-

Bell Laboratories
S. E. Hollander 600 Mountain Avenue
General Legal and Patent Counsel Murray Hill, N J 07974

Phone (201) 582-5444

May 19, 1981

Department of Electrical Engineering
and Computer Science

Room 38-444
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Attention: Professor A. C. Smith

Gentlemen:
Master's Thesis of Louis A. Nagode

The accompanying thesis by Louis A. Nagode has been reviewed
and has been found to contain proprietary information that
is currently under patent study at the Bell Telephone
Laboratories, Incorporated. However, in order not to prevent
Mr. Nagode from graduating, the Bell Telephone Laboratories,
Incorporated has no objection to the limited release
of the material to the extent necessary for this purpose.
This limited release is granted with the understanding
that there is agreement that the thesis will not be placed
in the MIT library or otherwise made available to the
public until the necessary patent study has been completed
and a general release is granted, in writing, by the Bell
Telephone Laboratories, Incorporated.

Thank you for your cooperation in this matter.

Very truly yours,

Attached
As above

-4-

TABLE OF CONTENTS

ABSTRACT...

ACKNOWLEDGMENT ...

THESIS RELEASE LETTER

TABLE OF CONTENTS ..

SECTION ONE:

SECTION TWO:

INTRODUCTION............................... .

A FIFO TUTORIAL..............................

SECTION THREE: CHANNEL FORMAT

SECTION FOUR: DESIGN CONSIDERATIONS

SECTION FIVE: STRUCTURE OF A MULTIPLEXER

SECTION SIX: SPECIFIC DESIGN CONSIDERATIONS

SECTION SEVEN: STRUCTURE OF A DEMULTIPLEXER

SECTION EIGHT: RESULTS AND CONCLUSIONS

APPENDIX A: SCHEDULING ALGORITHM..........................

REFERENCE ...

- 5 -

21

22

23

28

SECTION ONE: INTRODUCTION

As modern organizations grow into the world of data

processing, the need for faster and more efficient data commun-

ication services will also grow. Due to inherent bandwidth

limitations of conventional wire-pair lines, use of optical

transmission media has been suggested for future data net-

works.[11] Data rates of 100 million bits per second (Mb/s) are

readily achievable using available hardware. As the market-

driven price of digital hardware declines, a digital optical

fiber network will become increasingly more cost effective.

The following is part of a communication experiment

designed at Bell Laboratories to transmit high-bit-rate signals

over a local-area network for such services as facsimile,

video, and high quality audio. Baud rates between 768 Kb/s and

98 Mb/s for virtual channels between two points on the network

could be specified for the user, allowing him to tailor the

network to his particular data communication needs. This

thesis concentrates on the method of gathering data from the

user and formatting this data such that it is possible to

transmit the information over a distributed network in a

circuit-switched mode. The following pages outline the format

of this experiment and explain the digital hardware necessary

to multiplex and demultiplex the data from a 100 Mb/s optical

fiber channel.

-6-

SECTION TWO: A FIFO TUTORIAL

In the most general sense, both the multiplexer and

the demultiplexer function as first-in, first-out (FIFO)

buffers between the user and the network. In order to effec-

tively introduce this topic, a brief tutorial will be provided

on the structure of FIFO buffers.

The purpose of such a buffer is to absorb a particu-

lar sequence of information, then at some later time, releasing

this information in the same order in which it was received.

This sort of operation is generally achieved by using an

addressable memory, an input register (to keep track of where

the freshest piece of data is), and an output register (to keep

track of where the oldest piece of data is). It is generally

simplest to set up the device such that new data fills the

memory sequentially, requiring only that the registers be

incremented for each READ or WRITE operation. Due to memory

limitations, however, it is necessary to reuse the memory loca-

tions, thereby changing the linear model of the FIFO device

into a circular one. Thus when either register is incremented

beyond the last location in memory, it will automatically jump

to the first location. As data is pushed through the device,

the output "pointer" consistently follows the input "pointer",

and the two are always separated by the amount of data

currently stored in memory (see Figure 1).

-7-

In section four, the implications and consequences of

these limitation are reviewed in terms of what must be done to

actually implement a FIFO model.

-8-

SECTION THREE: CHANNEL FORMAT

The data was formatted into 125 ps blocks in order to

achieve compatibility with the experimental work currently in

progress at Bell Laboratories Crawford Hill Laboratory. These

125 Ps "frames" of data are further subdivided into 128 words,

each of which is 96 bits long (see Figure 2). Multiplexers and

demultiplexers are assigned 2 n word slots per frame (n=0,...,7)

depending on the bandwidth requirements of the user. In this

way, the user has a menu of bandwidths (8 kHz X 96 bits/word X

2n words = 768 X 2n bits/s) from which he can choose an

appropriate value for n. As the user's bandwidth requirement

increases, the memory capacity of the multiplexer would neces-

sarily have to increase in order to insure that the

multiplexer/demultiplexer would not overflow with data that it

is waiting to retransmit (either onto the optical fiber line or

to the user). This is generally true unless careful decisions

are made about word slot assignments.

A general scheduling algorithm for word assignments

which would limit the maximum required memory size to be 2

words (192 bits) would be as follows. Supposing that the user

has need for 2 words/frame, the frame is then uniformly

divided into 2 (7-n "groups" of words and one word from each

"group" would be assigned to each multiplexer/demultiplexer

pair (see Figure 3). In this way, the multiplexer is assured

-9-

that it will be able to retransmit a complete word of data (96

bits) by the time it has to completely absorb the next word of

data. Keeping the memory size of the multiplexer/demultiplexer

low is important because large memories for a distributed net-

work would be both costly and too slow. An interesting

scheduling algorithm that minimizes "blocking" in the network

is presented in Appendix A.

This type of an overall format allows multiplexers

and demultiplexers to communicate in assigned time slot chan-

nels, giving the user a continuous virtual communication path

over the network. Communication systems providing a dedicated

channel are known as "circuit-switched" networks. By using

time division multiple access the need for a central hardware

switch is effectively eliminated. The only central processing

to be done on such a network is word slot assignments.

-10-

SECTION FOUR: DESIGN CONSIDERATIONS

The previous sections have outlined the overall

structure and function of the experimental network's multi-

plexers and demultiplexers. This section will outline the

specific requirements placed on these devices.

As previously mentioned, each multiplexer and demul-

tiplexer must be capable of providing first-in/first-out

buffering and be able to store 192 bits of data (one 96 bit

word ready for retransmission, the other 96-bit word for

current data collection). Ideally, data input and data output

would occur simultaneously. Unfortunately, the current state

of the art has not yet progressed to the point where this is

possible. The compromise is to interleave the READ and WRITE

operations. The consequence of this, however, is that the rate

at which information is written to or read from the buffer must

be double that of the fastest input or output speed. Since

each of the input and output speeds of these devices must be

capable of handling bit rates up to 100 Mb/s, the buffer itself

must be capable of handling data at 200 Mb/s. The result is a

192-bit first-in/first-out memory that can run at 200 million

bits per second.

The fastest available FIFOs are TTL and operate one

order of magnitude slowlier than the speed required. To meet

the requirements it was necessary to use a faster family of

-11-

logic. The fastest commercially available memories are emitter

coupled logic (ECL) random access memories (RAMs). Since the

ECL family does not have FIFOs, it was necessary to create one

using these RAMs and various other ECL components.

The available ECL RAMs are limited to 30 Mb/s. Thus

it was still necessary to slow down the effective bit rate

through the memory without sacrificing performance of the

overall multiplexer/demultiplexer. By converting the serial

input data stream into 8-bit bytes that can be processed in

parallel, it is possible to slow the data stream from 100 Mb/s

to 12 megabytes/s. The memory unit configured as a FIFO would

then only be required to run at 25 megabytes/s, which is within

the range of the ECL memories.

Creating this very fast FIFO device was not a trivial

matter. Serial to parallel conversions have to be performed in

less than 10 nanoseconds (ns). After each serial to parallel

conversion, data would have 80 ns to be absorbed into the

memory (WRITE operation) before the next conversion occurred.

The absorption process takes at least 30 ns. At the other end

of the multiplexer/demultiplexer, the stored bytes of data are

converted into a serial bit stream. After each parallel to

serial conversion, data would also have 80 ns to be released

from the memory (READ operation) before the next conversion

occurred. This release process takes 30 ns as well. Thus

careful synchronization is required to assure that during each

-12-

80 ns period both a complete WRITE and a complete READ opera-

tion can occur. Since each operation takes 30 ns, this leaves

only a 20 ns margin. Most of this margin must be used for

memory management overhead (incrementing registers, applying

correct register contents to the RAM, etc.). Most of this pro-

ject was involved in optimizing the hardware design such that

it would meet the requirements listed above. In the following

sections the resulting design is described.

-13-

SECTION FIVE: STRUCTURE OF A MULTIPLEXER

As previously outlined, the multiplexer performs the

function of gathering digital information from the user at

speeds less than or equal to 100 Mb/s and retransmitting the

data in 100 Mb/s bursts. Figure 4 shows, in general, how the

multiplexer and demultiplexer interact with the rest of the

network. Each multiplexer receives a transmit clock signal

used to synchronize data transmissions. This same clock signal

is used to drive the rest of the multiplexer. For simplicity

in this experimental network, the user clock signal was derived

from the transmit clock signal by using a binary counter. Thus

the frequencies available for the user clock would be equal to

the transmit clock frequencies divided by 2n (n=0,...,7).

Using information provided by the controller, the multiplexer

can be programmed for user frequency selection as well as word

slot assignments. The word slot assignments are used to deter-

mine when to transmit the 96-bit burst of data onto the

"transmit data" line.

Figure 5 shows an overall diagram of the multiplexer.

Using the "User Clock" line, the user synchronously enters his

data into the multiplexer.

As previously mentioned, this data can be at speeds

up to 100 Mb/s, requiring serial to parallel conversion. After

every 8 bits are shifted in, the serial to parallel converter

-14-

latches onto this byte for transfer to the memory unit.

Meanwhile, more serial data can be entered in. The same signal

that caused the byte to be latched is also used to alert the

memory control unit of a "request to load" data into the RAM.

This activates a 40 ns WRITE sequence during which the "input

pointer" is applied to the RAM address lines and a "load-data"

signal is sent to the RAM. This process is repeated until at

least 12 bytes of data (a complete word) are stored.

Data is then clocked out to the network via a shift

register in the parallel to serial converter. When the last

bit of a byte is shifted out, the next byte of data is quickly

loaded into the shift register from a nearby latch. The signal

used to load the shift register is sent to the memory control

unit over the "data request" line. This begins a 40 ns MEMORY

READ sequence to provide the parallel to serial converter with

a fresh byte of data. This sequence must 1) increment the

"output pointer", 2) apply it to the address lines of the RAM,

and 3) alert the parallel to serial converter (over the "latch

data" line) that output of the RAM is the next byte of data.

This process would repeat itself 12 times for every word slot

being transmitted into.

This section provided an overall look at the data

flow and structure of the multiplexer. In the next section,

specific design considerations will be reviewed.

-15-

SECTION SIX: SPECIFIC DESIGN CONSIDERATIONS

This multiplexer was designed to function as a com-

ponent in a lightwave communication experiment currently in

progress at Bell Laboratories Crawford Hill Laboratory. This

particular network operates at a speed of 16 Mb/s instead of

100 Mb/s. This experimental network already has

microprocessor-controlled station units that can communicate

with a central processor that keeps track of word slot assign-

ments. Since the station microprocessor controllers are

mounted in INTEL card cages, it was decided that it would be

best to mount the multiplexer/demultiplexer on a card compati-

ble with this system. Through the INTEL multibus, it is possi-

ble for control signals to be sent from the microprocessor sta-

tion unit to the multiplexer/demultiplexer card. In this way,

the multiplexer's word control unit and user clock generator

can be programmed (see Figures 5 and 6). Namely, the micropro-

cessor sends 3 bits to the user clock generator to specify

which of the 7 frequencies the user has requested. 128 bits

are sent to the word control unit, each bit representing

whether or not permission has been granted for use of one of

the 128 time slots. This programming is done synchronously

with the microprocessor, and asynchronously with the 100 Mb/s

network. Since the INTEL data bus transmitted TTL levels, it

was necessary to provide a buffering and translation layer

between my ECL circuit and the bus.

-16-

For ease of design, I decided to construct the cir-

cuit entirely out of ECL components. Although this was perhaps

not the most efficient way, it did seem reasonable for such a

high speed experiment.

To test the multiplexer, clock and data signals were

provided from a Hewlett-Packard bit rate generator with ECL

output levels. Figure 6 provides a more detailed view of the

multiplexer structure. The clock from the bit generator

entered the circuit on the "transmit clock" line to provide

synchronization information for the entire circuit. The user

clock is generated by applying the transmit clock as input to a

7 bit counter. The outputs of the counter, along with the

transmit clock, are presented to an 8-to-l multiplexer. The

3-bit number previously sent to the user clock generator is

used to select the appropriate user clock frequency. The

chosen user clock frequency is provided to the user to synchro-

nously enter his data into the multiplexer. The same signal is

then used to shift in the user's data through an 8-bit shift

register. A divide-by-8 counter keeps track of how many bits

have been shifted in such that after every 8 bits, the "carry-

out" signal is sent to latch the current 8 bits from the shift

register.

The timing of this step is especially important since

the latch will have as little as 10 ns to load the data in the

shift register. The divide-by-8 "carry-out" provides the

-17-

"load-request" signal shown in Figure 5. In the memory control

portion, this signal is used to increment the counter contain-

ing the input pointer and set an RS flip-flop. This pulse con-

tinues down a 30 ns synchronous delay line while the output of

the RS flip-flop causes the input pointer to be applied to the

RAM address leads via a multiplexer. The RS flip-flop also

enables the output of the delay line to be fed to the

WRITE/ENABLE lead of the RAM. This entire process takes 40 ns,

which is the maximum allowable time as described in Section 4.

The process described above continues repetitively, filling up

the RAM with data.

Meanwhile, the transmit clock is applied to a

divide-by-96 counter that keeps track of the current bit number

in any given word. At the end of each word, a "carry-out" is

generated (called "word clock"), and applied to the word con-

trol unit. This word clock causes the word control unit to

send the next WORD/ENABLE signal to an AND gate. If the

WORD/ENABLE is true (that is, the upcoming word is to be used

by the multiplexer), the transmit clock (attached to the other

input of the AND gate) will be passed through to the output

shift register.

Due to the fact that the word control unit must

quickly generate a fresh WORD/ENABLE, the word control unit

uses an internal look-ahead feature (see Figure 7). As a

consequence, when the word clock enters the unit, it causes the

-18-

already waiting WORD/ENABLE signal to pass through a flip-

flop. Once this is complete, the next WORD/ENABLE is extracted

from the memory in the following manner: the 7-bit counter

that keeps track of the next word number is incremented. The

four most significant bits select the appropriate 8 bits from a

16 X 8 bit RAM containing all WORD/ENABLEs. These 8 bits are

applied to the input of an 8-to-l multiplexer, which then

selects the next WORD/ENABLE using the three last significant

bits of the counter. This sort of architecture was chosen to

minimize the time required to program the word control unit

with WORD/ENABLEs. This way, the microprocessor station unit

can completely program this unit using 16 (8-bit) data

transfers instead of 128 (1-bit) data transfers.

Now, back to the shift register that is transmitting

serial data into the network. Once the data in the 8-bit shift

register has been emptied, the associated divide-by-8 counter

will quickly reload the shift register from the associated

latch. This operation is critical because it must be performed

within 10 ns. The "carry-out" of the divide-by-8 counter

(referred to in Figure 5 as "data request") is used to incre-

ment the register containing the output pointer and resetting

an RS flip-flop. As with the "load request" signal, this pulse

continues down a 30 ns synchronous delay line while the output

of the RS flip-flop directs the output pointer to be applied to

the address leads of the RAM through the multiplexer. When the

-19-

"data request" signal emerges from the synchronous delay line,

the output of the RS flip-flop causes this pulse to return to

the latch to load the next byte of data. This entire process

takes 40 ns, which again is the maximum allowable time as

described in Section 4. This process of transferring data out

of the multiplexer continues as long as an assigned word slot

is in progress.

The processes of entering and retrieving data from

the multiplexer have now been described. In order for these

processes not to collide, careful synchronization of the

request signals to the memory controller is required. This is

achieved by initializing the state of all the counters in the

circuit on a common "frame pulse" at the beginning of the frame

(see Figures 6 and 7). Since the entire circuit is synchronous

with the "transmit clock" (or a phased derivative of it) it is

possible to assure that the "load-" and "data-requests" from

either divide-by-8 counter will be separated by at least 40 ns.

In this way we were able to implement all the design criteria

outlined in Section 4.

-20-

SECTION SEVEN: STRUCTURE OF A DEMULTIPLEXER

The design criteria outlined in Section 4 applies as

well to the demultiplexer. For this reason the topology of the

demultiplexing circuit is very similar to that of the multi-

plexer (see Figure 8). One major difference between them, how-

ever, is that the input data will now be coming from the net-

work, requiring that the serial to parallel converter be con-

trolled by the word control unit instead of the user clock gen-

erator. The other major difference is analogous: the output

data provided to the user through the parallel to serial con-

verter must be controlled by the user clock generator. The

rest of the demultiplexer circuit remains intact.

Thus, the word control unit keeps track of the

current word in progress, and, during the proper word slot,

causes the serial to parallel converter to shift in the 96-bit

burst of data currently on the network. Memory "load-requests"

are handled exactly as they were in the multiplexer. The user

data is shifted out through the parallel to serial converter at

the frequency provided by the user clock generator. Similarly,

parallel to serial converter requests to memory are handled as

in Section 5. Synchronization issues are just as important,

and are handled in exactly the same manner. Therefore, it is

possible to create a demultiplexer by using the same functional

blocks as for the multiplexer, with only minor rearrangements.

-21-

SECTION EIGHT: RESULTS AND CONCLUSIONS

The total design of the multiplexer described in Sec-

tion 5 was implemented in hardware at the Crawford Hill Labora-

tory of Bell Laboratories in Holmdel, New Jersey. The chip

count was 40 ECL DIP and 6 TTL DIPs.

Mounted on a PC card compatible with the INTEL card

cages, this multiplexer was tested with a microprocessor driven

station card. It was found that control signals from the

microprocessor could successfully load information into both

the word control unit and the user clock generator. Using a

Hewlett-Packard bit rate generator Model 8081A, serial to

parallel conversion and storage could be fully achieved. Due

to lack of time, synchronization bugs were not able to be com-

pletely worked out. The board is currently undergoing further

testing and modification at Bell Laboratories.

Although time did not allow for the actual construc-

tion of a demultiplexer, the author feels that the design is

similar enough to the multiplexer that the successful results

from the multiplexer board test can be taken demonstration of

demultiplexer design feasibility.

From the success that was achieved in the laboratory

using commercially available hardware, the author concludes

that some of this ideas may be implemented in the future using

VLSI technology.

-22-

APPENDIX A: SCHEDULING ALGORITHM

The scheduling algorithm mentioned in Section 3 is

presented here. This algorithm will minimize "blocking" in the

network given that

1) once an assignment is made it will remain unchanged

until user no longer needs the channel, and

2) network has no a priori knowledge of holding times for

users.

The need for such an algorithm was to provide effi-

cient utilization of the available bandwidth given the memory

constraints of both the multiplexer and demultiplexer.

More specifically, since the multiplexer/-

demultiplexer can only store two 96 bit words of data, it was

necessary to assure that a time slot would be made available

after each 96 bit word was collected/distributed. Thus, the

maximum allowable wait between the conclusion of a 96-bit word

collection/distribution and the next assigned time slot is the

time required by the multiplexer/demultiplexer to

collect/distribute the next 96 bits.

For scheduling purposes, the frame is then uniformly

n n
divided into 128/2 o word groups where 2 0 is the number of

-23-

time slots per frame to be assigned to a

multiplexer/demultiplexer (n =0,1,...,7). By assigning one

time slot form each group, it is assured that the aforemen-

tioned requirements will be satisfied.

If all the users required the same bandwidth, it

would be possible to sequentially assign time slots in each

"group" until there were no more available, and no "blocking"

would occur. Unfortunately, this is not the case. Since the

higher bandwidth users have more smaller size "groups" to

choose from, it would be very easy to block a high bandwidth

user if the sequential word slot assignment method was used.

For example, if two 1536 Kb/sec users (call them A

and B) each requested two time slots per frame and then a

49 Mb/sec user (call him C) requested 64 times slots, the fol-

lowing scenario would occur.

User A presents his request for 2 time slots. The 128

word frame (words #0-127) would be divided up into two

groups, 64 words in each. Since no other words have been

assigned, user A would be assigned time slots #0 and #64.

Similarly user B would be assinged the NEXT available time

slots in each group (#1 and #65). Then user C presents

his request for 64 time slots. The frame would then be

divided up into sixty-four groups, 2 words in each (that

is, #0 and #1, #2+3,..., #64+65,..., #126+127). Since two

-24-

of these word groups have already been assigned (#0+1,

#64+65), user C will be "BLOCKED" from using the network,

in spite of the fact that there are 124 available time

slots.

The basic cause for this "blocking" was due to the fact that

sequential scheduling does NOT evenly distribute word slot

assignments throughout a frame.

For this reason, an extension of the previous idea of

uniform division is proposed. Instead of sequentially assign-

ing a time slot is a given "word group", assign the word to the

section of the group that currently has the lowest assignment

density. The procedure would work as follows:

1) divide the "word group" of interest in half.

2) examine each half to find the assignment density

assigned
in each half

3) The time slot will then be assigned to the half of the

word group with the lowest assignment density (if the

densities are equal, choice is arbitrary).

4) Repeat steps 1i, 2 and 3 until the chosen "half" is only

one word, at which time the assignment can be made.

In order to demonstrate this procedure, the previous

scenario will be re-enacted

-25-

User A presents a request for 2 time slots. The

frame is divided into two groups (WORDS #0-63 and #64-

127). the first group is now subdivided into equal parts

(#0-31 and #32-63) and the assignment densities are exam-

ined. Since we assume that there were no previous assign-

ments, the assignment densities are both zero. For this

example, the arbitrary choice will always be the lower

numbered word group. After this procedure is repeated

several times, time slot #0 is selected. This entire pro-

cess is repeated for the other word group (#64-127) until

slot #64 is selected. Note that up to this point, the

assignments made were identical to the "sequential" exam-

ple.

When user B requests 2 time slots, the same two

groups of 64 words are chosen (#0-63 and #64-127). After

the first subdivision of the #0-63 word group is made, it

is noted that the #0-31 subgroup has a higher assignment

density -i than the #32-63 subgroup density 32. This

means that the assignment will fall into the second sub-

group. Continuing the procedure, time slot #32 will be

chosen for the first word and time slot #96 will be chosen

for the second. Note at this point, that the total

assignment density is uniform over the entire frame

(#0,37,64,96).

-26-

When the 49 Mb/sec user (C) asks for 64 time

slots, the frame is divided into sixty-four groups of two

(#0+1, 2+3,..., 32+33,..., 64+65,..., 96+97,..., 126+127).

Note now that in each word group, there is at least one

unassigned time slot available. Following the algorithm

completely through, user will be assigned all the even

numbered time slots except for #0, 32, 64 and 96. These

four will be replaced by #1, 33, 65, and 97.

If the users cancel service in the same order it is

asked for, this algorithm will allow for 100% utilization of

the available bandwidth, since the assignment distribution will

always be uniform. If this is not the case, it will not be

possible to maintain a uniform assignment distribution, and

blockage can occur even if sufficient bandwidth is available.

The only solution to this problem is to dynamically re-schedule

all of the assignments after each user cancels his service.

This solution would be difficult to implement in hardware since

the entire network would need to be re-programmed at the same

instant in time (between 2 frames).

Given that such dynamic re-scheduling is not an

immediate possibility, the proposed algorithm will provide for

maximum utilization of the network bandwidth given no knowledge

a priori of future network requirements or conditions.

-27-

REFERENCE

1. E. G. Rawson, "Application of Fiber Optics to Local Net-

works," Proceeding of the LACN Symposium, 155-167, May,

1979.

-28-

FIGURE 1 MEMORY STACK

S40

FRAME RATE- 8 kHz

BIT RATE - 98.304 Mb/s

FIGURE 2

96 BITS

N

96 BITS
CONTINUOUS
USER DATA96 BITS

K
FRAME --

WORD GROUP

WORDS

EXAMPLE:

I
I

FIGURE 3 25 Mb/s USER

TRANSMIT DATA

TRANSMIT CLOCK

USER CLOCK
MUX

USER DATA

CONTROL
INFORMATION CONTROLLER

USER CLOCK

DEMUX
* * USER DATA

RECEIVE DATA

RECEIVE CLOCK

FIGURE 4

USER DATA FRAME

CONTROL
SIGNALS

CONTROL
SIGNALS

NETWORK

FRAME

TRANSMIT

FIGURE 5 MULTIPLEXER

SERIAL
TO

PARALLEL

32x8

RAM

PARALLEL
TO

SERIAL

USER
C LOCK

GENERATOR

MEMORY

CONTROL

WORD
CONTROL

FRAME

CONTROL SIGNALS
(MULTIBUS)

NETWORK

FRAME

FIGURE 6

DATA LINES ADDRESS
LINES

MULTI BUS

FIGURE 7 WORD CONTROL

WORD
CLOCK

(: FRAME

RECEIVE

CLOCK

FIGURE 8 DEMULTIPLEXER

FRAME FRAME

-37-

