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Abstract

Consider a finite positive Borel measure, w, with bounded support and a

set C of K points in Rd. The cost of serving a customer population
distributed according to w by facilities located at the points of C is
sometimes proportional to I minc Cllx - clldw(x). The K-median problem is the

problem of finding the lowest attainable cost for a given w and the correspond-
ing (optimal) C. We show that as K-, the optimal cost is asymptotically

proportional to K-l/d. Let V and m denote, respectively, Lebesgue's measure
and the density of the absolutely continuous part of w. We further show that the

proportionality constant is equal to Yd(l md/(d+l)d.)(d+l)/d, where Yd > is

a constant independent of w, and that the density of the optimal C points at

any given location is proportional to md/(d+l)

Our proofs are general enough to accomodate several versions of the K-median
problem. We also outline various extensions and modifications of the results to
problems with nonlinear costs, constrained facilities and certain classes of
measures w, that correspond to highly clustered customer populations.
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1. INTRODUCTION

Let x = (xl, x2, ..., xn) be a set of points in the plane corres-

ponding to the locations of customers ("sinks") requiring some service

(commodity). A well-known problem of spatial economics is to select

locations cl, c2, ..., cK for K facilities ("sources") so as to minimize

the cost min xi - cll, where Hxi - cj I denotes the Euclidean distance
i jK J J

between xi and c. This objective assumes that each customer is served

by the facility nearest to it and that the Euclidean distances measure

service costs. The problem is known as the Multi Source Weber Problem

([We], [KI]) and for K = 1 it dates back to Fermat and Steiner ([K2],

[Co]).

It is sometimes convenient, however, to consider an infinite number,

or even a continuum, of customers. This type of model arises when

approximating large customer populations or when modeling a random demand

by a non-discrete probability distribution. In general, then, let w be a

finite positive Borel measure on Rd. We refer to w as the demand or the

demand distribution and assume that it is defined on some bounded region

R. Let C be a finite non-empty set of points in Rd called centers that

are locations for the facilities. The cost associated with satisfying

the demand w by facilities located at centers in C is given by

D(w,C) = f min i(x - cll dw(x) . (1.1)
R cC
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Let IC} denote the cardinality of the set C. Then the problem of locat-

ing K centers so as to minimize cost becomes

Minimize D(w,C) (1.2)
subject to: ICI K

Let DK(w) denote the optimal objective value of this problem. Borrowing

terminology from graph location problems ([H2]), we refer to problem

(1.2) as the (free') K-median problem. In this paper, we study the

asymptotic Droperties of the value function and the solution of the

K-median problem (1.2) as K -+ . With m denoting the density of the

absolutely continuous part of the demand w, and with p denoting Lebesgue

(area) measure, we show in Sections 2 and 3 that

lim Kl/d DK(w) = Y ( md/(d+l) dp)(d+l)/d (1.3a)

for some constant yd > 0.

Furthermore, letting k(T) denote the number of centers, out of a

total of K, that are located in the region2 T, we show that

f md/(d+l) dp

kx(T) T
lim = T (1.3b)

K d/(d+l)
K+ K f m dp

lIn the usual K-median problem defined on a finite graph with nodes
modeling demand locations, the centers may be placed only at nodes. In
our setting, the analogous (restricted)K-median problem requires C to
lie in the support of w. Observe, however, that the restricted and free
versions of the problem coincide whenever the support of w is convex.
We also show in Appendix C that the asymptotic behavior of these two
versions is identical.

2 Generally, we use the term region, without qualification, to mean
a Lebesgue measurable set.
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For d = 2 and the special case where the demand w is uniform over some

bounded region, other papers (HM], [Pal, [F2] show that the optimal center

configuration induces, asymptotically, a partition of the region into K

congruent regular hexagons (as in a honeycomb) each served by a single

center. Consequently,y 2 = (6) where (6) = 12/(343) (1/3 + 1/4 n 3) is

the objective value of the 1-median problem when a unit of demand is

distributed uniformly over a regular hexagon of unit area.

The asymptotic formulas derived in this paper are useful for estab-

lishing preliminary designs of large-scale facility location systems. In

particular, they suggest an asymptotically optimal heuristic that first

allocates centers (facilities) according to formula (1.3b) and then (for

d = 2) utilizes the hexagonal partitioning property to solve in small

subregions where the demand is approximately uniform. A stochastic counter-

part of this oaper [Ha] gives a rigorous justification to the approximation

of large customer populations by essentially smooth (absolutely continuous)

demand distributions. Assuming that there are N customers, independently

located at random, according to some probability measure p, that papershows

that if N/K -+ , then the cost and the solution of the K-median problem

coincide (asymptotically) with the cost and the solution of an underlying

deterministic K-median problem with the probability measure as

demand.

Since the validity of some of the asymptotic properties of the

Euclidean K-median problem, and the techniques employed in their proof,

extend to a seemingly wide spectrum of problems, we strive for generality

in many of our proofs. Abstracting from the problem just the structure

that is essential to each particular property, leads, we believe, to



-4-

greater insight into the nature of results and has the advantage that

various extensions become more transparent.

In Section 2 we outline the central idea for our proof and then go on

in Section 3 to formally establish the convergence result (1.3a, b). By

abstracting the properties of the K-median problem that are essential to

these results, we are able later, in Sections 5 and 6, to point out

immediate extensions and modifications of the results to a variety of

location problems, namely problems (i) with costs that are not neces-

sarily linear in the customer to facility distances, or that are not

necessarily linear in the demand (i.e. in the number of customers),

(ii) with distances that are non-Euclidean, (iii) with capacitated

facilities or with facility set-up costs, or (iv) where the demand

distribution is clustered in a hierarchical fashion, as in the

so-called "Fractal" (see [Ma]) model.

2. PRELIMINARY DISCUSSION

In this section, we informally motivate the main results that are

fully established in Section 3. This preliminary discussion introduces

several of the ideas that are central to the proofs, which are by necessity

somewhat technically involved in places.

First, consider situations in which the demand is distributed

uniformly on a (d-) cube, Q. That is, w = mQ where m is constant and

PQ(T) = p(Q n T) for all measurable T. Suppose,for the moment,that when

K is large, the K single facility service regions are all approximately

similar (congruous) to a given set S and have (approximately) equal

measure (d-volume) (Q) This property applies trivially for d = 1 and,
K
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as shown in [H], [Pa], for d = 2, but it may be false in general and

will not be used in the formal proof. Assume now, without loss of

generality, that p(S) = 1 and set d = D1(pS) = min f x - cll dps. Our
c

supposition implies that the cost contributed by any single facility

service region is approximately ydP(Q (p(Q))ld The terms Q)
-K K K

and (p(Q))1/ d are scaling factors corresponding to the level of the

demand within each service region and the size of the region (i.e., how

Euclidean distances vary with size scaling). Summing over the K facili-

ties yields

DK(mP) = YdmP(Q) = (Q)(/d + o(K /d) (2.1)

-l/d -l/d
The term o(K /d ) tends to 0 faster than K- 1 /d as K + .

Next, consider the case where the demand is piecewise uniform, i.e.

w = mijQ on a finite collection, Q1, Q2, ..., Q of d-cubes that are
1

slightly removed from each other (i.e.,Inf{lIx - YlI: xQi, ycQj} > 0 for

all i,j). Then (see Lemma A7 in Appendix A for a demonstration) for

large values of K no facility will serve demand in more than one of the

cubes. Hence for large K, DK(Z miQ) = Z DK (mi )Q for some constants
i i Q

K. that denote the number of facilities, out of K, serving Qi for

3 K.
i = 1, 2, ..., . A simple argument shows that lim inf > 0 for all

K-~o
i = 1, 2, ..., Q and, consequently,

Note that DK (mPQ ) c DK(I mQ) D (mjQ ) where by (2.1)
1 i . j j j

-l/d
the left-most expression tends to 0 as fast as K. while the right-

-l/d
most expression tends to 0 as fast as K and thus K. must grow as

fast as K.
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K(Qi ))/d (K /dDK (I m P ) = Dm Q) = (ydmP(Q)( K.)/d + o(K/d))
iQi i Ki Qi i

= Y Kl/d (md/(d+l)Yd i i im
P(Qi))(d+l)/d + o(K-l/d )

i~~+ ( 

Now consider the following result:

LEMMA 1: [H3, Proposition 13]4 Suppose a. > O, b.
1 1

> 0 for i = 1,

..., I and a < O or a > 1, then 2 ab - > ( ai) ( I b i)la
i=l1 1= i=l 1

equality if and only if ai/b. is constant over i.

a. b.
Note: ai/bi is constant for all i if and only if I a. b.

i i

for all i = 1, 2, ... , .

with

a 1-a

a.b.
j J

J

d/(d+l)
Setting ai Ki, bi = m.i (Qi) and a = -l/d in lemma 1, we have

K (/d d/(d+l) (d+l)/d -1/d d/(d+l ) (d+l)/d
K (m P(Qi) ) Y d( K i) m P(Q )

Yd i i i
(2.3a)

with equality if and only if

K.
1

K d/(d+l)

j

d/(d+l) (Q )
i i

K-l/d (d+l)/d
Ki mi (Qi)

-1/d (d+l)/d
j mJ 1 (Qi)

j

4Note that if p 1/a, q 1/(a-1), then 1/p + /q = 1.

(2.3b)

Setting
a 1-a

fi ai' gibi , we have for a < 0 or a > 1 (i.e., p < 1 or q < 1) that

Y fgi - ( fPi)/P(7 giq)l/q which is an inversion of the usual Holder's
i i i i
inequality.

(2.2)

2,
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Since this ratio is asymptotically attainable (take K =

where Ix] is the greatest integer less than or

equal to x, we conclude from (2.2) and (2.3a) that

DK(Z ) = Yd K-1/d(i md/(dl) (d+l)/d+ -(K-l/d(I ~p '~ = p(Q.)+ o(K ) . (2.4)
K Q di i i

which is a special case of the desired result (2.1).

3. MAIN CONVERGENCE RESULTS

Before proceeding to the formal statement of a generalized version

of (2.4) and (2.3b), we introduce the following conventions:

d
-- For any Borel set T c R, let wT denote the restriction of w to

T (i.e.,wT(R) = w(T n R))

-- An integer sequence {kK}K 2 is (asymptotically) a T-allocation

Dk (WT) + DKkK(WRd-T)
if 1 kK < K for all K, and lim ( w = 1.

K->w DK(w)

-- Let m denote the density of the absolutely continuous part of

the demand w (i.e. m is the Radon-Nikodym derivative dwa/dp of

the absolutely continuous part wa of w). Although m depends on

the particular w, in order to keep the notation simple, we do

not introduce an explicit index w for m.

We are ready now to state our main result:

THEOREM 1: There is a constant yd > 0, so that for all w,

lim K/d DK(w) = yd( md/(d+l) dp)(d+l)/d (3.1a)
K-
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Moreover, if T is any Borel set satisfying 0 < f mdp < f mdp, then
T

{kK}K>2 is a T-allocation if and only if,

D (wT) f md /(d+l) dp
kK T

im lim DK(W) d/(dl) (3.1b)
K-xW K-+oo f m dp

(That is, the densities both of centers and of costs are proportional to

md/(d+l))

To close the gap between the preliminary arguments and a formal

proof of Theorem 1, we will (i) prove (3.la) for demand that is uniform

on a cube (i.e., prove (2.1)), without using the assumption that all the

single facility regions have some fixed shape asymptotically, and (ii)

justify the extension of (2.4) and (2.3b) with w = miPQ to general

distributions as in (3.la, b).

To illustrate the ideas underlying the completion of task (i),

consider Figure 1. The square on the left represents the optimal con-

figuration of K = 2 centers in some sauare with a uniform demand,
o

while the figure to the right represents the partition of that square

into 9 scaled down replications of itself (the demand density is un-

changed) each with an optimal 2-center configuration.

FIGURE 1: Increasing the number of centers 9-fold decreases
the cost at least 3-fold.

·



-9-

The cost for each scaled down replication is 1/27 of the original cost due

to the 3-fold decrease in scale (linear distances) and the 9-fold decrease

in area (demand). The cost for a uniform demand on a square with 2-9 = 18

centers is, then, at most (1/27)-9 = 1/3 of the cost for such demand with

2 centers. In general, the same argument shows that a p -fold increase

in the number of centers, K, induces at least a p-fold decrease of the

value function DK (in our example d = 2, p = 3). Consequently, the

value function is monotonically decreasing and thus convergent on subse-

lid l/d dqquences of {K/ DK of the form {K D } where K = K p for
K q K q o

q = 0, 1, 2, .... The extension, however, of this convergence property

to the complete sequence is much more technical and will be pursued only

in the proof of Lemma 3 below.

Task (ii) above is carried out in the proof of Lemma 4 which uses

some continuity properties of both sides of equation (3.1a). The deriva-

tion of these properties is rather technical and deferred to Appendix A.

Reviewing these preliminary arguments suggests that the results of

Theorem 1 might be independent of many of the particular features of the

Euclidean K-median problem, and depend instead on rather general proper-

ties, like the self similarity of the cube (i.e., a cube is a finite

disjoint union of scaled down copies of itself) and the subadditivity,

scaling and translation invariance of DK (see (P1)-(P4) in Lemma 2

below). These properties are shared by a wide variety of geometrical loca-

tion problems (e.g., problems with non-Euclidean distances) or even problems

involving spatial distribution (allocation) of resources other than static

facilities (e.g., salespeople, maintenance/repair personnel, communication

(transportation) networking resources like the length of lines (roads)).
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In order to facilitate the extension of the results to this broader

setting, we abstract from the K-median problem the structure that is

essential in establishing Theorem 1.

Lemma 2 below lists those properties of the K-median problem that

are relevant to our generalization. Lemmas 3 and 4 apply to any

sequence {DK}KŽ1, of non-negative functionals on the set of finite

positive Borel measures with bounded support, which satisfies some or

all of these properties.

Before stating Lemma 2, let us introduce (or reinforce) some

notational conventions:

Notation:

-- Iwl = w(Rd) denotes the total mass of the demand w, i.e., Iwl = I dw.

-- S(w) denotes the support of w, that is the intersection of all

closed sets F so that w(F) = Iwl.

-- W p(S(W))

-- d denotes the diameter of S(w); the diameter of a set R is
w

sup {lx - yll: xR, yR}.

-- XOw ( > O0) denotes the measure defined (w)(R) w(IR) where

-R {Ax: xR} for all R.

-- Xw is defined, as usual, by (w)(R) _ w(R) for all R.

-- w (ysR d) is defined for all (Borel) R, by w w(R - y) where
+y +y

R - y {x - y: xR}.

-- w1 + w2 is defined by (w1 + w2)(R) wl(R) + w2(R) for all R.

-- w1 < w2 if w2 - w1 is a positive measure.

Definitions

-- R1 and R2 are separated if Inf{jjx - j: xR 1, yR 2} > 0.
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-- A d-cell is a cartezian product of d (one-dimensional)

intervals in R .

LEMMA 2: DK(w) satisfies the following properties:

DKl+K 2(w 1 + W2 ) DK (wl) + DK(W2)

(P2) DK( °w) = DK(w)

(P3) DK(kw) = DK(W)

(P4) DK(w+y) = DK(W)

(P5) DK (W) DK2(w) if K. K2

(P6) Sup{DI(w): Iwl • 1, d 1} <( 

(P7) DK(w1) DK(w2) if w1 < w2

(subadditivity)

(scale linearity)

(demand linearity)

(translation invariance)

(monotonicity in
resource)

(boundedness)

(monotonicity in
demand)

(P8) If R1 and R2 are bounded and separated,5 then there is an

integer M with the property that whenever S(wl) c R1,

S(w2) c R2 and K 1, there are integers K1 and K2 such that

K1 + K2 K + M and DK (wl) + DK2(W2) DK(w + w2 )

(induced separability)

(P9) For the unit d-cube S, DK(pS) > 0 for all K

(non-triviality)

a. It is enough for all later purposes to have (P8) just for
separated d-cells (or cubes).

b. While (P8) is stated in terms of a pair of separated sets, it
clearly implies by repeated application that for any finite collection
of mutually separated sets {Ri} there is a constant M such that if

S(wi) c Ri for all i and K 1, then there are integers Ki so that

K. K + M and DK.w DK( wi).
1
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LEMMA 3: For any sequence {DK}KŽ1 that satisfies (P1)-(P5), there is a

constant yd (possibly -) so that lim K / d DK(mPR) = ydm p(R)(d+l)/d for

any d-cube R and constant m > 0.

Extending this result to general demand distributions w requires

the additional properties (P6)-(P8), of which (P8) seems quite strong

(and thus potentially restrictive in other applications). It is instruc-

tive, therefore, to show that even without (P8), Lemma 3 extends to

demand distributions that are uniform on sets other than cubes. (This

extension is not necessary, however, for the derivation of Lemma 4

which involves general demand distributions.)

LEMMA 3*: (i) Lemma 3 extends without additional assumptions to any region

R that is a finite union of d-cells with rational (or commensurate) end-

points. (ii) If (P6) applies as well, then the validity extends to any

bounded Lebesgue measurable region R with a boundary of zero Lesbesgue

measure. (iii) If, in addition, (P7) applies, then the validity extends

to any bounded Lebesgue measurable region R.

LEMMA 4: For any sequence of functions {DK}K>1 that satisfies (P1)-(P9),

there is a constant d > 0 so that (3.la) holds for all w. Furthermore,

if T is a Borel set with 0 < mdp < f mdp, then {kK}K 2 is a
T

T-allocation if and only if (3.lb) holds.

(Remark: If f mdp = 0 or f mdp, then (3.lb) is necessary, but not suf-
T

ficient, for a T-allocation.)

Proof of LEMMA 2: (P1)-(P7), (P9) are easy to establish from the definition

of DK(). To see (PE), note that one can always choose M as the number

of balls of diameter '½ inf{ llIl- 2 11: XlR 1, x2cR2 } needed to cover

_ _ � __� .._
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R1 U R2 . Adding any one point of each ball to the optimal center

(K-median) set associated with DK(w1 + w2) does not increase the cost

and induces a partition of the (at most K + M) centers serving demand

in R1 U R2 into two disjoint sets: those, say K1 in number, serving

demand in R1 and those, say K2, serving demand in R2. Consequently,

DK (w1 ) + DK2(W2) DK(wl + w2). (Note also that in most cases one can

use a constant M that is significantly lower than the one obtained from

the ball cover.) O

Proof of LEMMA 3: Let w = pS where S is the unit d-cube [0,1)d We

first prove the convergence of a subsequence of {Kl/d DK(pS)}K 1. As

outlined in the preliminary discussion, we use the idea of self-

similarity together with the subadditivity, scaling and translation

invariance properties.

By properties (P1) and (P4):

2dK(P S) 2dD K(pS )

1
Noting that SNoting that Hs =d( °pS ) we have by (P2) and (P3):

DK(~PS) = -'DK(pS).

Consequently,

D d (pS) 2 d 1 . DK(DS) = ½DK(PS)2dK 2d 

and

_ ---·--·-C��-�IIIIY-C-·-·l--C.�_I
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(2dK) /D 2dK(pS) - Kl/d D(S)

Hence the subsequence {K/d DK(PS)} d 2d 3d is monotonically
K=,2 ,2 ,2

decreasing and therefore convergent to some constant d (possibly -).

We now extend the convergence to the rest of the sequence.

d2Let be any positive integer. For every K 2 there are integers

q 0 and p, 2 < p 2 1 satisfying 2 q+ < p2q < K / < q 

q+P2+l d
2q . Consider now the partitioning of S into p identical subcubes.

We have by (P1)-(P5)

DK(Pi) D d dq(HS) pdD (q(1/p)S) = D (d(S)
p 2d q 2dq

and thus

1/d K(P p D
Kd DK(PS) D2dq(S ) <p + 1 dq(PS) - (1 + 2- )2D dq(pS)

p 2 p 22) 2q

Since 2qDdq (PS) Y d as k (and therefore q) approaches , we have
2d-

lim sup K / d DK(PS) < (1 + 2 )Yd. Since can be arbitrarily large, we

have

lim sup K1/d DK(PS) ¥d ' (L3.1)

On the other hand, suppose that we imbed S in the larger cube

(2 l)/(p + 1)S, as shown (for d = 2) in Figure 2.

__�__1LI_1 *LIIIII-..l--l_..
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2+1

1

FIGURE 2:

S I
1 2t+1

p+l

Imbedding S in a larger square (cube).

The set difference between the cubes can be partitioned into

2d
(+ l ) - (p + 1)d cubes, all congruent to 1/(p + 1)S. Again by proper-

ties (P1) and (P4),

D2d(q++1) (2 +1/(p+l))S
) <- D + (2d(2+l)+ (2

(p+l)d2dq (S)

- (p + 1) )Ddq(l/(p+l)S)

and invoking (P5) and (P2), (P3) we obtain:

DK(P) D (p+) 2dqS(p+l)d~d 

2 d(2+l) - (p + )d

(p + 1)

Recalling that K/d -> p2 q , we con(

(2+1)d+1

(p + 1) d+ D2d(q+2+l)(PS)

D 2dq(P S
)

:lude

lI -lI CP
. . . . . .1 ............. - 6. I - I I-
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Kl/d D ) > 2d(+1K /DK(PS ) > +l
(p + 1)

( 2 d(£+1) 

(p + 

But since both 2 D2d(q++l)(DS) and

(and q) approach , we have

d(£+l)
lim inf K/d DK(pS) d+1 Yd

=p P 1 d > (1

-16-

(2 q + 9+ l D
D d(q+Q+l) (S))

)d1 S2
[) d+l 2dq(PS)

2q D dq(PS) converge to d as K

(2d(+1) - (p + 1)d)p
d+l Yd

(p + 1)

2- )

And, since may be arbitrarily large,

lim inf K1/d DK(PS) > Yd' (L3.2)

Combining (L3.1) and (L3.2) gives

l/d
lim K DK(PS) Yd'

Using (P2)-(P4), we conclude for any cube R and constant m > 0

lim K /d DK(mpR) = dm(R)(d + l ) /

K->00
(L3.3)

which is equivalent to (3.la) with w = mR.

Proof of LEMMA 3*:

(i) We note first that every set R, that is a finite union of

d-cells with rational endpoints can on one hand be partitioned into

o

-

--·
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finitely many, say Q, congruent cubes, and, on the other hand, can be

imbedded in a large cube, T, with rational endpoints so that the set

difference between cube T and R can also be partitioned into finitely

many, say , congruent cubes. Properties (P1)-(P5) imply that

DK(mPR) -D[K/£](mpas), where a = ( ))l/d

and

D [K(T)/p(R)i(mPT) < DK(mPR) + qDt(1/q)K(p(T)/p(R)l) (mPOS)

where -= (p(T) - (R))1/d
q

Using these two inequalities and the proven convergence for cubic sets

one may deduce that (L3.3) is valid in the present case as well.

(ii) Let R be a bounded Lebesgue measurable set whose boundary has

zero Lebesgue measure. As shown by Lemma A6 in Appendix A,for any > 0,

there are sets, P and Q, both finite unions of "rational" d-cells, so

that P c R c Q and p(Q - P) < . Let K1 = [KE], K2 = K - K1 and K3 =

K + K1 then, by (P1)

DK(mPQ) - DK (mPQ-R) 5 DK(mPR) < DK (mp) + DK(mPRp)

By Lemma Al of Appendix A (which is based on (P1)-(P6)), we know that

the upper limits of both K/d DK(mPR) and K /d D(mpQR) as K (and
1 DK DKK1R-P 2 K,

thus also K1) tends to , are bounded by (me).£l/ d for some . Noting

that K1/K - £, and using the already proven convergence of Kl/d
and DK (P) we have

and K/d DK(), we have

- - ^ �
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1 /d d mp(Q) (d+l)/d -am < lim inf K/d DK(mpR)
1 + ) Yd mK-* K)

< lim sup K /d DK(mpR) < ( 1 Yl/d (d+l)/d + mE
K+>

and letting e + 0 establishes convergence for K1/ d DK(PR)

(iii) Let R be any bounded Lebesgue measurable set. For any > 0,

there is a set P which is a finite union of "rational" d-cells, so that

the symmetric set difference PAR - (P - R) (R - P) satisfies p(PAR)

< , and thus if ml(x) = m for x R and ml(x) = for x ~ R and if

m2(x) = m for x P and m2(x) = 0 for x P, then f1ml(x) - m 2(x)ldp =

mp(PAR) < . Now in Lemma A2 of Appendix A we prove, using (P1)-(P7),

the L1 continuity in m of the lower and upper limits of K /d DK(w).

Thus using the proven convergences of K/d DK(mp ) we may conclude the

validity of (L3.3) in the general case. O

Proof of LEMMA 4:

Consider first the case w = mQ where {Qj} is a finite collec-

J J )7
tion of separated cubes: By (P1) and (P8) we have an M such that for

all {Kj} satisfying K = K, K. > 1 and for some {Kj} satisfying
j j j J

2 K. = K - K + M, K. > 1

(K/)l/d Rl/d 2 D (m ) K/d DK( ' m ) < K1 /d 2 DK (m )

J 3 j J J j J Q
(L4.1)

6This follows from the fact that the Boolean ring of finite unions
of "rational" d-cells, generates the Borel a-algebra (of which Lebesgue
a-algebra is a p-completion and thus can be used to approximate it.
([HI], p. 56.)

7See footnote 5.

II�_
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Now by Lemma 3 K/d DK (mQ) dm(Q )(d+l)/d as K. and
Kj ·

by Lemma 1 (following the preliminary discussion preceding the statement

of Theorem 1) we know the minimum of the upper as well as lower bounds in

d/(d+l) (d+l)/d
(L4.1) converge to yd(I m/(d+) (dl)/d K (Note:

K/K 1 as K + c.) And thus this must be the limit of K1/d DK(I mjpQ )

itself. Finally that yd > 0 is a straightforward corollary of (P7),

(P8) and (P9). [

To extend the result to arbitrary finite Borel measures with bounded

support, consider the following lemmas (proven in Appendix A) which

facilitate the approximation of any such measure w by measures of the

type ( mQ ) treated above.
j Qj

LEMMA A2: Let {DK}K 1l be any sequence that satisfies (P1)-(P7). Then

(i) The lower and upper limits of K / d DK(w) do not depend on the singu-

lar part of w. (ii) Let Q be any bounded set containing the support of

m. Then the lower and upper limits of K1/d DK(w) are continuous in m

over L(Q) (the space of integrable functions with support in Q).

LEMMA A3: For any bounded and measurable set Q c Rd and any 0 q 1

(in particular q = d/(d+l) f mqdp is continuous in m over L(Q).

LEMMA A4: The set of functions of the form milA , where 1Q, 1Q2
i=1 fi i Q

1 are indicator functions of separated cubes, is dense in L(Rd).* aQ(R )

These lemmas imply that the validity of (3.la) extends to arbitrary w.

----L----l-�----
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Now to prove the second part of the assertion of Lemma 4, assume

kK AT d/(d+l) d/(d+l)
first that lim - = - where AT - m (d+l) dp and A = f md / ( d ) dp.

K-*w A T0 T
By (3.1a) we have, as K + o:

Dk (wT) + DKkK(WRd_T)
kK -/d /d (T +

(K ) kK D (wT) 
kK -1/dO1 - K DK-kK (WRd_T )

DK(W) K1 /d DK(W)

AT ) /d Ad+l)/d + (A AT)-l/d
(A) d A dY(A - AT)(d+l)/dd TA` T

Y A(d+l)/d

That is, {kK}K 2 is a T-allocation.

Conversely, assume that {k}K 2 is a T-allocation.

We first prove:

kK kK
Claim: 0 < lim inf < lim sup 1

K K

Proof:

(i) If lim inf kK = M < , then there is a subsequence of

{K /d Dk(wT)}KŽ2 that converges (diverges)

DM(wT) being 0, positive or negative.

kK
(ii) If lim kK = but lim K- = 0 then by

K K 
diverges to +.

to 0, + or - according to

(3.la) {K/d D (wT)}K>2
kK K22

( B l/d ( kK=t(d+l)/dhen(iii) By (3.1la) lim K/d DK(w) =- yd A and if lim - = 0, then
K K

lim K 1/ DK (WRdT)
K kx-RdT

= lim(K /K kK /d DK (WRdT)

= Yd(A - AT)(d+l)/d

= 1.

- w _ .,
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Thus if kK/K 0, then by (i)-(iii)

K1/d Dk(wT) + K/d DK- (wRd-T z + - (d+l)/d

K 1/d DK(w) A (d+l)/d
K K(W) yd

where z is 0, +, or , making the right hand side of the last expres-

sion, everything but 1, which contradicts the assumption that {kK} is a

T-allocation. We deduce then, that lim inf K > 0.
K K

Since we could reverse the roles of T and R - T, we have (recalling

kK
that AT < A) also lim sup K < 1 (QED claim). It follows, then, using

K
(3.la), that

K1/d DkK -l/d (d+l)/d + o(l)
K D(wT) = (K d AT + o)

K/DK (wd ( KK)/ Yd(A - AT)(d 1)/ + o(l).

And thus

D(WT +kK(WRd ) -1 /d A(d+l)/d + (1 k)-/ d AT) d+l)/d+ o(1)

DK(w) A(d+l)/d + o(1)

and by Lemma 1 (and the continuity of the numerator of the right hand

side in kK/K), the last expression is equal to 1 + o(l) if and only if

oT tK ATK = + ol). We skip the straightforward proof that KK A is

DkK(WT) A

equivalent to D(w) + .0

illlll�-�Y�·-l-rrrr�.�I�L1�-^)---�l-.�LI
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4. RESTRICTED MEDIANS

Consider a variation of the K-median problem in which the set of

facility locations is restricted to (the closure of) the set of customer

locations, i.e., C c S(w). We define:

DK(W) = Min {D(w,C): C c S(w), ICI K}

The restricted median problem reflects the fact that often a facility

must be located in or next to an urban or other inhabited area. It is

also the direct analog of the graph theoretic K-median problem in which

the centers (or medians) are a subset of the nodes (customer locations).

Observe that with the exception of the monotonicity (in demand)

property, (P7), DK(w) satisfies all of the properties listed in Lemma

2. Lemma 3* implies convergence of Kl/d DK(PR) when R has a boundary of

zero Lebesgue measure. And since for a square R DK(PR) = DK(PR), the

convergence is to the same limit. In fact, the results of Theorem 1, in

their full generality, apply to DK(w) with the same constant d used for

DK(w). The technicalities of proof are deferred to Appendix B.

5. EXTENSIONS AND MODIFICATIONS

The K-median problem is but one type of facility location problem.

A broad class of models are obtained by permitting costs to be nonlinear

in the customer-facility distances or in the demand, by imposing addi-

tional costs or constraints (e.g., set-up costs, capacitated facilities),

and by permitting non-isotropic (i.e., non-Euclidean) metrics.
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The facility location problem is a decision problem requiring the

allocation of scarce resources (the facilities) over space. Other

spatial allocation problems may be concerned with the distribution of

various resources like a bus fleet, police patrol cars, repair and

maintenance personnel, salespeople and so forth (that may be viewed as

mobile facilities) to serve some spatially distributed demand.

Sometimes the resources in question are continuous, as in the

following modification of Steiner's street network (spanning-tree)

problem: Find the connected network with total length no more than K

that minimizes the average distance between a demand point (i.e. a

customer) and the point on the network that is closest to it. (This

problem is relevant, for example, to the design of a public transporta-

tion system like a subway). The resource, K, here is the total length

allowed for the network.

5.1 Nonlinear (Homogeneous) Costs

In many facility location problems the cost of serving a customer

at x by a facility at c is not proportional to distance HIx - cll. Usually

the cost is some monotonically increasing function of Ijx - cl. The

simplest form of nonlinearity akin to our analysis is when the cost is

proportional to jIx - cIL with > 0. In such cases, the scaling property

(P2), DK(X°w) = DK(w) (scale linearity), becomes:

(P2a) DK( Xw) = aDK(w) (scale homogeneity).

Similarly, in some facility location problems the cost of serving

two customers at x by a facility in c is less (or more) than twice the
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cost of serving a single customer. That is, the cost is not necessarily

linear in the demand. Consider, for example, the problem of designing a

pipeline network to distribute some fluid, say natural gas, from a

central facility to customers with certain flow rate requirements.

Assume that the fluid is incompressible and that there are no viscosity

losses or pumping stations between the facility and the customers so

that the fluid velocity is fixed and identical throughout the system.

The flow rate in a pipe, then, is proportional to the area of its sec-

tion, that is to the square of its diameter. Suppose now that the pipes

are made of steel and the wall thickness is the same for all pipes. Then

the amount of steel per mile pipe length is proportional to the square

root of the flow rate in the pipe. If the design objective is to satisfy

demand while minimizing the amount of steel needed, then scaling the

demands, or flow rates, 2-fold results, for a fixed velocity, in only a

1.414 = 2-fold increase in the amount of steel required, which is the

cost here. (It is possible to show that the scaling of the demand does

not affect the configuration of the optimal distribution network.)

A similar example arises when wiring a population of customers to a

set of K exchanges (e.g. central processors). The wires are all of the

same kind. Each wire lies in a cable that carries one or more wires.

The protective coating of the cables has some fixed thickness. Three

possible objectives for minimization are (1) the total wire length,

which indicates the amount of copper required; (2) the total cable length

which indicates, say, the amount of labor in laying the cable; (3) the

surface area of the cables which indicates the amount of coating

required. Note that in all three cases the cost of a cable link is

proportional to -fr where is the length of the link, f ("the flow")
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is the number of wires in the link, and is 1, 0 or , respectively,

for the three objectives.

To illustrate the different geometries that result from each of the

above scenarios consider Figure 3, where we have one facility serving

five identical customers. Note that for i 1 (i.e., costs are linear

in link length and convex in flow) an optimal Euclidean network will use

the straight line segments connecting sources to sinks, while for = 0

(i.e. costs are linear in link length but independent of flow) an optimal

Euclidean network will consist of a Steiner (spanning) tree (or forest).

Optimal Euclidean networks for 0 < < 1, will have an intermediate

nature, with "forking" points in the network other than sources or sinks

as in a Steiner tree, but the angle between the two incoming (or out-

going) flows at such a "forking" point joining 3-links will be smaller

than 120° . When the two incoming flows are equal, the obtuse angle

between each of them and the outgoing flow has a cosine equal to 1/21-.

(See Appendix C for a calculation of forking angles in optimal Euclidean

flows.) It is possible to show that scaling the demands (supplies)

wire saving geometry cable saving geometry coating saving geometry

= E = o t = 

FIGURE 3: Economic geometries for the wiring problem.
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X-fold in a network where all the arcflow costs are homogenous in the

flow with some degree , will not change, beyond scaling, the optimal

flow, and will scale the cost -fold.

The only difficulty in adapting the analysis of Section 2 to this

type of problem is that, in contrast to the K-median problem (i.e.

= 1), there seems to be no simple intuitive cost definition for con-

tinuous, rather than finite discrete, demand distributions. One may,

of course, take sequences of successive discrete approximations that

converge to a given, say uniform, continuous demand. It is not clear,

however, that all such discrete approximations will converge to a unique

limit. We shall then, in the present discussion, bypass the fine points

of defining a cost for continuous demand distributions. (Note that if we

would have constrained customers to use the straight line segment con-

necting them to the facility we would have no difficulty in defining the

problem for (absolutely) continuous demand. Just substitute mdp instead

of dw in the definitions of D(w,C).) There are, then, location problems

were the linearity in the demand property (P3), DK(Aw) = DK(w), becomes:

(P3 DK(Xw) = AK() (demand homogeneity)

The case 0 c 5 < 1 will correspond as in the previous example to an

economy of scale, while ~ > 1 will correspond to congestion effects.

For example, if we have many customers concentrated in some vicinity,

who have to travel to the same facility, then busing or car-pooling

introduces economies of scale, while everyone using his own car adds

congestion as the customers interfere with each other on the presumably

capacitated transportation links to the facility.



-27-

Using the homogenous scaling rules (P2a) and (P3 ) rather than the

linear rules (P2) and (P3), the results of Lemma 4 (Theorem 1) become:

For + a/d > 1 and for all w,

lim K +a/d- 1 DK(w) = y(f m I/(P+a/d))P+a/d (5.1a)
K-+>

f ml/(P+a/d) dp
kK(T) T

lim /d) (provided y > 0) (5.lb)
K Iml/(+a/d)

The proof of these results follows closely that of Theorem 1. Note that

if + a/d < 1, and we assume that a non-vanishing fraction of the single

facility subregions has area of order , then the coefficient of K in

this asymptotic expression for DK(mpR) is positive thus DK(mpR) increases

as K X which is of course impossible, by property (P5). Consequently,

most of the facilities will not be used by the optimal solution. Or, in

other words, the economy of scale discourages the use of too many

facilities.

As we have seen in the wiring example, in some cases the cost will

be a linear combination of homogenous costs. Now assume that the asymp-

totic center configuration for uniform demand distributions is the same

for all the homogenous costs. This is indeed the case for d = 2 (see

[HM]). Assume, also, that the demand distribution is absolutely con-

tinuous with a density m, and that the centers are distributed according

to the (relative) density K (i.e., the number of centers out of a total

of K that are located in T is approximately K f Kdp). Assuming that the
T

asymptotic center configuration is at least locally optimal (i.e., is
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the same as for uniform demand), we may conclude that if we have several,

say homogenous costs, then (for a given K and a large value of K),

total cost-i i i m d (5.2)
total cost 3 ~ K m K d (5.2)

d -d-
i=l

where the y(i)s are "appropriate" constants.

It follows that as K , the cost component with the smallest

+ a/d becomes dominant, and if one, accordingly, neglects the other

components and minimizes the cost subject to the constraint S Kdp = 1

(K 0), then (5.2) reduces to (5.la). If, however, K is assumed large

enough for the validity of the asymptotic approximation (5.2), but not

large enough to neglect the terms with order higher than f + a/d, one

may still look for a relative center density, K that minimizes the right

hand side of (5.2), although, as opposed to the purely homogenous case,

the optimal density K will depend on K and its derivation is not so

simple.

5.2 Facility Set-up (Fixed Charge) Costs

In most facility location problems, one should account for costs

that do not depend on the distances between the facilities and their

customers (i.e., costs other than what we may call "geometrical" costs),

such costs are usually due to the cost of opening and operating a facil-

ity at a certain location to serve a certain volume of customers, without

regard to distances of these customers to this location. In the wiring

example, these are the costs of building (and operating) an exchange of a

certain capacity of lines at each given point. Usually such costs will

contain a fixed charge component, that is some cost that does not depend
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on the size of the switchboard of the exchange, and another component

depending on that size (that is, on the capacity of the exchange).

In general, then, we have (assuming that locally the demand is

evenly distributed among the facilities) a function g(x, m(x)) so that
KK(x)

the additional cost is:

K g(s, m )Kdp (5.3)

One may, of course, add this expression to the previously discussed

asymptotic approximation to the "geometrical" costs, and minimize over K

and K, provided of course the resulting K is large enough
8 to support

the asymptotic approximation.

In the simplest case of a fixed charge problem g(x, K) = F. Sup-

pose, in addition, that the geometrical cost is homogenous (with scale

factor + a/d > 1). The combined cost will be approximately

K- ( + a / d- 1) y(f m1l/ ( +a/d) dp)P+a/d + F K

and a short calculation yields:

k*(T) (( + /d - 1)y)l/(P+(a/d)) m1/(p+(a/d)) dp
F T

T

where k(T) is the number of centers to be allocated to the subset T.

This expression makes sense, of course, only if the resulting total

number of centers, K = k*(Rd) is large enough to make the approximation

valid.

8And one should add "and the resulting K is 'smooth' enough."
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5.3 Capacitated Facilities

Suppose that any single facility is able to handle only some limited

number of customers, and/or, on the other hand, suppose that a facility

may be established only if some minimal number of customers is guaranteed

to use it.

Using the asymptotic approximation, this requirement can be written

in form of the constraint L - m(x) < U for all x (we assume an abso-
KK(x)

lutely continuous demand), where L and U are some positive constants.

Note that as K X the upper capacity constraint becomes nonbinding

whereas the lower capacity constraint becomes infeasible unless L = 0.

As before one may still use this approximation, assuming a finite though

large value of K. We shall, however, modify the capacity constraints as

follows.

Iw 1K(x) u for all xS(w) (5.4)

with 0 < £ 1 and u 1.

(Recall that Iwl = f mdp since we assumed that w is absolutely

continuous, and note that the average of (1/Iwl)(m/K) over the facilities

is f (1/wl)(m/K)Kdp = 1.)

Assume now, without loss of generality, that Iwl = f mdp = 1. Con-

sider the case of a homogenous cost with scale factor ~ + a/d > 1 and

with capacity constraints (5.4). To find the optimal relative center

distribution, K, we have to solve the problem:

Minimize f mP K 1- -(a/d) dp

Subject to: f Kdp = 1 (5.5)

1 m(x) < K(x) < m(x) for all xS(w)
u
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It may be shown that an optimal center density, K* exists. Consider

such optimal K* and let A {xES(w): K*(x) = 1/u m(x)},

1 1 1A {x£S(w): K*(x) = ~ m(x)} and B x {xS(w): - m(x) < K*(x) < i m(x)}
u

It could be argued that K* depends on x through m alone, and that it

should be continuous in m. (Suppose we take two small neighborhoods

with roughly the same, approximately constant, demand density and the

same area, then they should approximately have the same number of cen-

ters.) It is also clear that the restriction of K* to B should be

optimal (up to a constant factor) with respect to the incapacitated

problem for the restriction of m to B, i.e. there is a constant, , so

that K(x) = (x) to all x B, where - + a/d. Recalling that K*

should be continuous in m, we conclude that:

1
' m(x) if m(x) < m

K*(X) = Pm (x) if m m(x) < m (5.6)

- m(x) if m(x) > mu

where m and m are solutions of 1/g m = and 1/u m = m . (5.7)

Assume now that u < . Then m < X and by (5.7), we have:

I - 1-6 1-0; m = hm where ( /p)1 (5.8)

Making these substitutions in (5.7) and integrating, gives:

1 1 -1-80 1f K*dp - fx:mp} }m d+ f-{ -m m d p = 1
= .x:m1mAm}~ ii tx:kzm'm} u f (x:mm5.9)

(5.9)
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K

*

FIGURE 4: Center density as a function of demand density.

which determines the value of m and thus also the values of and m in

(5.6) above. To see that (5.9) has a unique solution for m, note that

the left hand side of (5.9) is monotonically increasing and continuous

in m. Moreover, for m = 0 the left hand side is 0 while for m X it

converges to f 1/£ mdp = 1/ > 1. Therefore by the mean value theorem

there exists an m so that (5.9) holds and by monotonicity this m is

unique. It is also quite simple to find m (by binary search for

example).

1-0
If u = x, but > 0 then m = , m > 0 and X = 1/ m and (5.9)

can be modified to

f K*dp = {x:m<I + f{x:m- }M m dp = 1 (5.10)

5.4 Non-isotropic (Euclidean) Metrics

In Sections 3, 4 and in this section (with the exception of the

explicit description of the economic geometries for the wiring example),
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we have not used the isotropy of the Euclidean distances and thus the

asymptotic results of Sections 3, 4 and their modification in the present

section are valid (up to the constant y) for other metrics such as the

£1 (rectilinear) metric, which may be more appropriate in urban areas.

6. FRACTAL MODELS FOR CLUSTERED DEMAND

Finally, we would like to make some comments on the case when the

customer population (the demand) is highly clustered, that is S(w), the

support of the demand is essentially singular. Note that (3.la) and

(5.la) will still hold, but with a mull right hand side, which does not

reflect any information beyond the fact that the cost DK tends to zero

at a rate faster than K 1/d (or K1-- a/d). What, then, is the asymptotic

behavior of the cost for such distributions? The question is, of course,

senseless in the case where the demand is concentrated on a finite number

of points since the cost can be nullified by a finite number of facili-

ties placed at these points. For the case where the support is infinite,

although singular, one may suggest "fractal" or fractional dimensional

models. In his book "Fractals", [M2], Mandelbrot advocates such models

for, among many other things, the distribution of stellar matter in the

universe. Though intergalactic facility location does not seem to be an

urgent concern, it is quite plausible that population habitation and

dispersion processes (and the resulting customer distributions) tend to

follow a hierarchical recurrent pattern which a fractal may model quite

better than a continuous distribution.

We shall not dwell here on the definition of fractal sets or frac-

tional (Housdorff-Besicovitch) dimension of sets or measures but,
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instead, refer the interested reader to references [Ma] and [F1]. We

shall, however, demonstrate by a simple example what kind of modified

results can be expected for this type of distributions.

Consider a unit demand, distributed (uniformly) on Cantor's triadic

(deleted middle thirds) set C (defined as the largest subset of [0,1]

satisfying the recursion C = (C u (C+2)), i.e. C = xe[O,1l]: 3xEC or

3x-2eC}). This demand is given by the distribution w, with total mass

Iwl = 1 on the interval [0,1], that is recursively defined by

w = i(31(w + w+2)) (6.1)
2 3 w +2

Recall now that in the proof of Theorem 1 for the case of uniform demand

on the d-cube S = [0,1) d (i.e., in the proof of Lemma 3), we used the

fact that, for any = 2, 3, ...

Ed-l
1 (10

"s =z (6.2)S d(Q P S+x)
i=0 i

where the xi's are the integer points in the cube [0,) d
1

From (6.2) with 2 = 2, and properties (P1)-(P4) of Lemma 2, we

deduced the convergence of the subsequence {K DK2d ,22d

to some ¥d > 0. In a similar fashion, we may deduce from (6.1) and

(P1)-(P4) the convergence of {K D1 (w/ ) 2 where 6 = log 3 2.
K=1,2,2 ,...

(Comparing (6.1) and (6.2) observe that d log d . Having 6 =

log3 2, play the same role that d played for the uniform distribution on

a solid d-dimensional cube explains, in a sense, the rationale of regard-

ing 6 as the (fractional) dimension of the Cantor set and the Cantor

distribution.)
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Unlike the case of the uniform distribution on the solid cube, how-

ever, the convergence of {K1/ 6 D(w)} 2 does not extend to the
wK K=1,2,2 ,...

whole sequence. One may explain this difference by the fact that the

self-similarity property (6.2) is somewhat stronger than the self-

similarity property (6.1). Compare for example (6.1) with (6.2)

for the case d = 1, i.e., when S is the interval [0,1). Note that while

the interval [0,1) can be partitioned to any number of identical scaled

down and translated copies of itself, the Cantor set can be partitioned

only to any power of 2, of identical scaled down and translated copies of

itself.

Nonetheless, using the fact that there is convergence along sub-

sequences of the form K = p, 2p, 22p, ... for p > 1, we may suggest a

K1 /6 DK(w)
modified convergence result of the form K+ where g is

g(K/(21lo2 K))
some (to be specified) real valued function defined on [1,2) with

g(1) = 1.

An explicit computation (Appendix D) yields, y = 1/3 and g(x) =

xl1/6 5 2x)
3 3 

Similar conclusions may be obtained for fractal demand distribution

lying in Rd for d > 1, and we conjecture that similar results may be

obtained for randomly generated fractal distributions.
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FIGURE 5 A fractal set in the plane (the Cartezian

square of the Cantor set)

7. SUMMARY

In this paper we have established asymptotic properties of the

K-median problem for deterministic and absolutely continuous demand

distributions. We demonstrated the convergence of K1/dDK(w) for a

d-dimensional version of the problem defined by abstracting quite general

properties satisfied by the K-median problem. Our discussion has intro-

duced extensions and modifications of this result for different versions

of geometrical location problems where costs are not necessarily linear

in distances or in the demand, where set-up costs or capacities for

facilities may be included in the model, where distances are not neces-

sarily Euclidean, and where the demand distribution (customer population)

is highly clustered in an hierarchical manner that admits so-called

fractal modeling.
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The applications of the results in this paper lie in providing

"fast" approximate formulas for the cost and for the allocation of

facilities in large scale location problems, especially for preliminary

design purposes. They may also be used in heuristics that utilize

(locally) the hexagonal partition property ([F2], [4], [Pi]).

In a companion paper [Hal we provide a rigorous justification to

the use of continuous demand distribution, as a "smoothed" representation

of basically discrete customer populations. We show that if N customers

are independently located at random according to some probability dis-

tribution p then as N/K X (whether K is fixed or K X simultaneously),

the average cost and the center locations to the associated K-median

problem coincide asymptotically (with probability 1) with those of the

K-median problem with the probability measure p as the demand.
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APPENDIX A

LEMMA Al: For any {DK}K>1 that satisfies (P1)-(P6), there is a constant

a > 0 so that:

lim sup K1/d DK( ) < o Iwl il/d
K+>

Proof: Let R = S(w), Jpi = p(R), Iwl = w(R).

Claim: There is a set P which is a finite union of disjoint cubes so

that:

p(PAR) < and w(PAR) < 2 (where PAR (P - R) u (R - P))

Proof of claim:

By the regularity of , we know that there exist a compact set Q1

and an open set V1 so that Q1 c R c V1 and p(V1 - Q1) < .

Similarly by the regularity of w (recall that any finite Borel

measure on a Euclidean space is regular [Ru], Th. 2.18) there exists a

compact set Q2 and an open set V2 so .that Q2 c R c V2 and w(V2 - Q2)

< £2. Set now Q = Q1 Q2, V = V1 n V2, then Q c R c V, p(V - Q) < 

and w(V - Q) < £2

Consider now an open cover of Q consisting of open d-cells with

edges parallel to the coordinate axes and with rational endpoints that

are contained in V. There is a finite subcover whose union P is such

that Q c P c V and therefore PAR c V - Q implying p(PAR) p(V - Q) < £

and w(PAR) < w(V - Q) < £.

It is not hard to see that P may be partitioned into a finite number

of cubes.

(QED claim)
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Now let G 1, G2, ..., G be the partition of P into cubes and let Go

be the smallest cube containing R - P (the edge of Go is not longer than

dw, the diameter of R).

Consider the partitioning of each Gi, i = 0, 1, 2, ..., p into d

congruent sub-cubes where

od KE < (o + )d

d < -(Gi) d
i K(1 - ) p(p) < (i + 1) i = 1, 2, ... , p

For large enough K we have i > 1 for all i. Assume, then, . 1 for
1 1

i = 1, 2, ... , p. The diameter of each subcube of Go is:

d (K&)l/d dw d d
wd + 1 w < 2 wl

-o o (K) /d < o (Ke)l/d (Ks)l/d

The diameter of each of the subcubes in Gi, i = 1, 2, ..., p is:

((Gi)) /d g + 1 p(Gi) l/d __

vd ("(Gi) = i ( i d ) 1/d > 2d (K(P))/d
1 1 (9 + ) K(I 

1

d P d
The total number of subcubes is K = + 2. and by our construction

i=l1
K K + K(1 - ) = K. Now let a/(2@i) be the uniform upper bound in

property (P6), and let w. be the restriction of w to the jth subcube

j = 1, 2, ..., K, where j = 1, 2, ..., dO denote the subcube of Go then

by properties (P5), (P1), (P3), (P2), (P6) we have
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K Od d
DK(W) DK(W) < 2 nD(wj) • i- Iwl-2_ w

K - j=l j= (Kc) / d

K ,- p(P)l/d
+ Id 2 Iw 12d( 1` ( (1-

j=o2+l 2-~ K(

acwl ~dW '' (lw IPIw 1/d d 2-/d
= 2 W/d K+ IWI( ) W(K(l - ) 1/d

(K) Kl/d

l/d 'PIw + 1 d 2-1/d
i.e.: lim sup K DK(W) < olwI( 1 + ad w

K-*w

Letting +- 0 completes the proof. C

LEMMA A2: For any {DK}K>1 that satisfies (Pl)-(P7): (i) The lower and

upper limits of K1
/ d DK(w) do not depend on the singular part of w.

(ii) Let Q be any bounded set containing the support of m, then the

lower and upper limits of K /d DK(W ) are continuous in m over L(Q).

(In other words if {wj}j>l is a sequence of demands with supports

contained in some common bounded set Q, so that the corresponding densi-

ties {mj}j>1 satisfy lim lm. - mldp = 0 where m is the density of w,

then

lim (lim sup K 1 /d D )) lim sup K1 /d D (W)
j->C K-o J KO K

and lim (lim inf K 1 /d D(W.) = lim inf K1 /d DK() )
j -> K+- J K-

Proof: Let wl and w2 be two demand distributions with support in Q and

let ml, m2 be the densities of their corresponding absolutely continuous

parts. Let (w2 - wl)+ be the positive part 9 of w2 - wl, then w2
< w +

9According to Jordan's decomposition of signed measures.
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(w2 - W1) . Now for 0 < < 1 set K2 = [KE] and K1 = K - K2. By

properties (P7), (P1) we have for K > 1/8:

DK(W2) < DK(W1 + (W2 - W1 ) < +(w) + D ((W2 - Wl) )= ) D1 DK2

Multiplying through by K1/d and

that K1/K -+ 1 - and K2/K -+ )

lim sup K /d DK(W2) 
K-+oK -

taking to the limit as K + (Noting

yields by Lemma Al:

(1 )/d lim sup K DK(l)
K->o 

+ ()/d I(w2 - w1) I P218~~~~) /
(A2.1)

lim inf K/d DK( 2)
K+>oK

< ( )l/d lim inf K/ DK(1)= I -z K-,-w 

+ (1) I/d /d
+ ( )l/d uI(w 2 - w1) + 1 18

P21 = IP1

(A2.2)

+= (S((w2 - wl)+))
(W2-wl)

+

Noting that > 0 is arbitrary and that the role of indices 1 and 2 in

the inequalities (A2.1), (A2.2) can be interchanged, we may deduce the

validity of part (i) of the lemma. That is, if w and w2 differ only in

their singular parts (i.e. if 21 = 12 = 0), then,

lim sup K1/ DK(w1) = lim sup K
1/ DK(W2)

K-*w K->OD 

lim inf K1/d DK(w1) = lim inf K
1/ d DK(w2)

K- K K-*o

Having established (i) we may substitute the I(w2 - w) I on the

right hand sides of (A2.1), (A2.2) by:

where

and
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{x:m(x)>m (x)}( - m(x))dp(x) Im2 - ml(X))d) <m 2 - m2 mL

and consequently the right-most terms of (A2.1), (A2.2) can be replaced

by ( l/d aM2 - M1 p(Q)1/d (Note that 21 < (Q)). Observing

the modified inequalities, and noting as before that is arbitrary and

that the indices 1 and 2 may be interchanged we may deduce part (ii) of

the Lemma. o

LEMMA A3: For any bounded measurable set Q c Rd and any q 1,

f mqdp is continuous in m over L(Q) (i.e., if lim Im. - mldp = 0
j -C J

where m, mi, m2, ... are integrable functions with supports in some

bounded set, then lim I mqdp = f mqdp for all 0 < q < 1)).
j-> J

Proof: Note first that by Jensen's inequality

() fq dp < (p) I fd )q (A3.1)

Next, by the inequality la + blq < lal q + lbl q that is valid for

O q 1 we have:

I m qdp - I q2 - • f mdp < I mqdp + f I 2 - mlqdp

and thus by (A3.1) (substituting f = m2 - m1l ):

I mdp - mqdpl < p(Q)1-q(f 1i2 - mldp) q

and the assertion clearly follows. Q

Definition: G1, G2, ..., G c Rd are called separated if
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Max inf {JJx - yl: xG i, yG.}: 1 i< } > 0

Let 1 denote the characteristic function of Gi, i.e., 1G(x) = 1 if
i i1

x G. and 0 otherwise.
1

LEMMA A4: The set of functions of the form I mi 1G . where G, G2,
i=1 i

..., G are separated cubes, is dense in L1(Rd).

Proof: We know that continuous functions with compact support are dense

in L1 (see [Ru], p. 71, Th. 3.15). Now let m be a continuous function

with the compact support R. m is uniformly continuous and bounded on

its support R. For any > 0 there is 6 > 0 so that Im(x) - m(y)l <

2 whenever Ix - yll < 6. (Note that the case (R) = is trivial
2p(R)'

since it implies m - 0 in L1.) Let M = Max Im(x) l. Using a construc-
xsR

tion as in the proof of Lemma Al, we may approximate R by a set P which

is a union of disjoint cubes so that p(PAR) < /4M. If necessary we may

further partition the cubes in P into smaller cubes so as to have P
£
u G. where the G.'s are disjoint cubes with diameters shorter than 6.
i1 1

i=l

If we wish the cubes to be separated, we may (while keeping their cen-

ters fixed) contract each one of them by a (1 - 4 scale factor
p(p)

£ .
so that the modified union u Gi satisfies p( u GiAR) < /2M. Now for

i=l i=l
i = 1, 2, ..., let mi be some (non-zero) value assumed by m in Gi (if

m(x) O0 on Gi, then delete Gi from the union).

Let m = m i 1G then:
i=1 i

f Im 0mldp Rn(uG i)m - mld + R-uG. Im - m 2d < 2p(R) + M 2M
i i
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We have proved, then, that simple functions based on separated cubes are

dnese in the space of continuous functions with compact support and thus

also dense in L1.

LEMMA A5: If w has a compact support S(w) and lim I fKdw = 0, fK}K>1

being equicontinuous, then lim ( sup fK(x)) = 0.
K-+ x&S(w)

Proof: Suppose on the contrary that there is > O so that Sup fK(x)
xES(w)

> 2 for infinitely many K's, K1 K2 K3 .... By the equicontinuity

assumption there is a 6 > 0 so that IfK(x) - fK(y)l < whenever jlx - yll

< 6. And thus for K = K 1, K2, ... there is a ball of radius 6 in which

fK > ' . Now the function g(x) = w(B(x,6)), B(x,6) being a ball of radius

6 centered at x is lower semicontinuous in x and therefore assumes some

minimum a > 0 on S(w) which is compact. That implies lim sup f fKdw >
K~oK

6a > 0 which is a contradiction. O

LEMMA A6: If R is a bounded measurable subset of Rd with a boundary of

null Lebesgue measure, then for every > 0, there are sets P and Q both

finite unions of d-cells with rational coordinates so that P c R c Q and

p(Q - P) < .

Proof: Since p is regular there exists an open set V and a compact set

T so that T c Int(R) c R c cl(R) c V and p(V - cl(R)) < /2,

p(Int(R) - T) < /2 (cl(R) and Int(R) denote the closure and interior of

R, respectively).

For any point x T consider an open d-cell with rational endpoints

that includes x but is contained in Int(R). That constitutes an open

cover of T, of which, by compactness of T, there is a finite subcover.

Let P be the union of such finite subcover T c P c Int(R). In a similar
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fashion (considering the fact that cl(R) is compact and contained in the

open set V) we may construct a finite union of open d-cells Q so that

cl(R) c Q c V. It follows now that,

p(Q - P) < p(V - T) = p(V - cl(R)) + p(aR) + p(Int R n T) < /2 + 0 + /2

(OR E cl(R) - Int(R) is the boundary of R).

And the proof is complete.

LEMMA A7: If the supports of w (i = 1, 2, ..., ) are separated then

there is integer M with the property that whenever K M, DK( wi) =

Z DK (wi) for some Ki > 1 (i = 1, 2, ..., ) where K = K.
Proof: We first establish the lemma for is enough to show

Proof: We first establish the lemma for = 2. It is enough to show

that if K is sufficiently large no center in the optimal center set CK,

will serve both w and w2. Since, by hypothesis, Inf {x - lj:

x&S(w1), yES(w2)} > 0 it is enough to prove that:

lim ( Sup Min lix - cll) = 0 (A7.1)
K+x- xS(w) cC*

To prove (A7.1) note first that:

lim DK(w) = lim (f Min Ilx - clldw(x)) = 0 (A7.2)
K+-o K-+> c&C*

This follows from the fact that with an unlimited number of centers we

can make DK(w) arbitrarily small by covering S(w) with a fine enough

grid of center.

Consider now the sequence of functions:
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fK(x) - Min x - clj

K

K = 1, 2, ...

Obviously, IfK(x) - fK(y)l < ix - YII for all c, yR d implying that the

sequence {fK}KŽ1 is equicontinuous. From Lemma A5 we know, then, that

(A7.2) implies (A7.1) 10 and the proof (for = 2) is complete. Repeated

application of the lemma with = 2 establishes it for arbitrary Q. E

10Recall that for general (non-equicontinuous) sequences of func-

tions, L1 convergence does not imply L convergence.
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APPENDIX B: Extension of Theorem 1 to the Restricted K-median problem

We prove here that Theorem 1 holds for DK(w) Min {D(w,C):

C c S(w), ICI K} with the same constant d as for DK(w).

LEMMA B: For any bounded measurable R

lim K 1/ DK(PR) = Yd((R))(

Remark: Since DK satisfies all the properties of Lemma 2 except of

(P7), we already know (Lemma 3*) that Lemma B1 holds for R's with a

boundary of zero Lebesgue measure.

Proof: For any integer n 1 approximate R by a finite union, P, of

d-cells with rational endpoints so that p(PAR) < 1/n2. Using Lemma Al

and property (P1) of Lemma 2 (note that all the properties in Lemma 2

with the exception of (P7) remain valid for DK(w)) we may neglect R - P

(just allocate some fixed but small fraction of the K centers to R - P).

For the sake of simplicity assume, then, that R c P to begin with.

Since the endpoints of the cells in P are rational, P can be parti-

tioned to a finite number, say £, of congruent cubes. Now for any inte-

ger K an, set m = ( L ) 1/dJ and partition each cube into md congruent

subcubes. We have now md disjoint congruent cubes Q1, Q2, -- , Q d

covering the set R. Locate now n centers (medians) to each subcube

Qi' i = 1, 2, ..., md, so as to solve the unrestricted n-median problem

for the demand pQ . Let Ci be the set of centers for Qi (clearly

Ci C Qi). If Qi R = 4 let 6. = 0, otherwise let

6. = max inf IIx-cI, let c* be some ceC for which this maximum is
1 cC. xR 1

1
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obtained, and let Ti be the cube of edge 26.i/ that is centered at

*i (assume same orientation as Q1 Q2' ...). Clearly Qi n Ti c Qi - R.

Now since at least one corner point of Ti as well as its center are

contained in Qi, it follows that Qi n Ti and thus also Qi - R,

contain a d-orthant of Ti (i.e., a cube of edge 6i/-). Consequently,

-d d
(Qi - R) - d 6i and

md

z 1- d d
Z d-d 6d p( - R) < (Bl.l)

i=l

Consider now the feasible solution for the restricted K-median problem

Qmd

with demand pR' obtained by substituting each center in u Ci by the

~11 ~i=l
closest point in the closure of R. Let Di be the cost contributed by

the demand in Qi' Using Lemma 3 and the triangle inequality we have:

Di < (d + (1))(
P ))(d+ l)/d n-1/d + (() 6

where o(1) is a term tending to 0 as n a.

Consequently:

m d

K(OR) < md(d + o( 1))(O(P))(d+
l)/d n-l/ d + O(p) 1 6

D km d md i)d 1

md n d

Noting that - 6 < ( 1 / d and (B1.1) it follows that:
md =1

£m i=l m i=l

11 Note that md -n K, so we have at most K centers.
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DK(PR) < (Y+ ))(p)(d+l)/d (d) d + d)))/ n)d l(P)(Qmdn) -1/d -1/d

= (Y + O(1))(p)(d+l)/d(Qmdn)-l/d

where the equality reflects that n 1/d = o(l) (as n z). Noting now

km nthat for any fixed n (and ) lim =K 1 and that p(P) = p(R) + o(l)
K-*w K

the proof is complete. 0

Corollary B2: Theorem 1 remains valid, with the same constant Yd' when

DK is substituted by DK (in (3.1a, b) and in the definition of kK).

Proof: By Lemma Al and by subadditivity (P1) we may neglect, for K + c,

the cost contribution of the singular part of w as well as of the part

of w supported by subsets where the demand density m(x) is higher than

some arbitrary big number M (By Lemma Al DK(W{x:m(x)>M) =

O(Kl /d ({x: m(x) > M})/d) = (K-l/ d M-l/d).)

Consider, then, an absolutely continuous demand distribution w with

a bounded density m. One can approximate such density from above by a

density mS which is a simple function dominating m but with the same

support as m. Obviously DK(w) < DK(W) < DK(w), where wS denotes the

demand associated with mS. It is enough, now, to prove the theorem for

densities that are simple functions, since if it holds for simple

functions, then

d( md/(d+l) d) ( )/ < lim inf K DK(w) lim sup K DK()

< ¥d( md / (d + l) dp)(d+l)/d
s

��II__^IIILI.
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and if we take a sequence of simple functions mS. - m, then by the bounded
1

convergence theorem f md/(d + l ) dp + f md / (d+ l ) dp, establishing converg-

ence for K1/d DK(w). Assume, then, that m is simple, that is, w =

2 mjR R. Let K =
.j j

d/(d+1) 
1 -

d/(d+l)
. j

D__(w) < De_ (m.u ) and thus u

y subadditivity (P1),

B1 and Theorem 1 we have after
-K'"' - - -K.'--iR .. 

i 1 1

some rearrangement:

lim sup K1/ d DK(w) < d(I md/(d+l ) )(d + l )/ d = lim K/d D (

And recalling that DK(w) we conclude that K1 /d DK( ) converges
to te samde imit asKwd

to the same limit as K/d DK(w). It can be easily shown now that the

asymptotic center allocation for the restricted K-median problem is the

same as for the unrestricted problem, completing the proof of Theorem 1

for the restricted K-median problem. 0

_ II -- III- LI·�UI I�-�-XL-- LC-----� -I·.� _I·_IY·-L-·------L-III)__-_-_ _·_ I_._.___ _... 1_.�_.1.__�_���
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APPENDIX C: Optimal Branching Bifurcation Angles in Euclidean Networks

Suppose we have a finite set of sources and sinks in the plane

(with some of the sources possibly without specified supply and/or

location) and suppose that transporting of units along an arc of length

2 costs c(f). What is the geometry of the optimal network (of roads,

pipelines, cables, etc.) supporting the flow requirement?

In the case where c(f) is linearly increasing in f11 2 (or convex

with c(0) = 0), it is clear that in the optimal network there will be

flow only along straight line segments joining sources and sinks (i.e.,

we will not have any transshipment nodes). In other cases, however, we

may have (essentially because of fixed costs and economies of scale)

junctions (nodes) that are neither sources nor sinks.

In the case where c(f) is a positive constant (i.e., cost is inde-

pendent of the flow) one may readily see that the optimal network will

consist of a forest of Steiner trees, each component being a network of

shortest total length joining a balanced set of sources and sinks. Arcs

may join at points other than sources or sinks. The angles the arcs

adjacent at such transshipment node of degree 3 are known to be 1200 (see

[Co] for example).

This well-known result may be generalized in a way that is parallel

to the generalization of the solution of the 1-median problem for 3

identical customers (Fermat Problem, see for example [K2]) to the

It is assumed here and in the rest of the discussion that c(f) =
c(-f) for all f.

----------·11_-1·-�-_1.�
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solution of the 1-median problem with three weighted customers (Weber Problem

[We], or the generalized Fermat Problem [K2]).1

Consider, then, a transshipment node, or a source node whose

location was not pre-specified in the problem, which we call a "free"

node, of degree 3 as in Figure C1 below.

IN

A

c(

c (f2)I-

CL3

c(f1)

C

I Weber triangle

FIGURE C: Angles in a "free" node of degree 3.

Fix any 3 points A, B and C on the adjacent arcs carrying the flows fl,

f2 and f3 out of the "free" node 0. The point 0, obviously minimizes

c(f1) IOA + c(f2)' OBj + c(f3 ) lOCI

13Courant and Robbins [Co] consider the problem of finding the point
in the plane with the smallest sum of distances to n given points for
n > 3 to be a "sterile" generalization of the problem with n = 3, and
view finding the shortest connected network (tree) joining the n points
as "the natural" generalization. Kuhn [K2] on the other hand strongly
contests their statement. The network design problem formulated here
seems to include both generalizations and thus brings the peace to that
debate.

B

_L_� ___ ·1_1_1^ 1�
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that is it solves the weighted 1-median (i.e. general Fermat, or Weber)

problem with weights c(fl), c(f2) and c(f3) at A, B and C. The gradient

of the cost with respect to the position of 0 is

OA OB OC
c(fl) + (f2) + (f3)

JOAI JOBI JOCI

(OA denotes the displacement from 0 to A, and OAI denotes the length of

that displacement) and thus should be null if 0 is a "free" node. Conse-

quently by the triangle law of vector addition the angle ai between fj

and fk is the external angle at the vertex opposite c(f1) in a triangle

of edges c(fl), c(f2) and c(f3). This triangle is known in the context

of the 1-median problem as Weber triangle. By the law of sines we know

that:

sin , _ sin ae - sin a3
(C.1)

c(fl) - c(f2) - c(f3)

If c(f) is homogenous in Ifl i.e., c(f) = blfl for some ~ > 0 and

b > 0, then the angles al, a2, a3 solving (C.1) depend only on the

ratios f2/fl, f3/fl-

Examples:

(a) If fl = f2 = f3 (or if B = 0) we have sin a1 = sin 2 = sin a3

and thus (recalling a + 2 + 3 = 3600) we have a1 = a2 = a3 = 1200.

(b) If we have a transshipment node with fl + f2 + f3 = 0 and

f2 = f3 and if = then (sin al)/ = sin a2 = sin a3 which is solved

by a = 900 and a2 = a3 = 1350°.
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Figure C2 below dmonstrates the soluLon of a ingle facility

(source) location problem for a given set of identical customers (sinks)

given that c(f) = bf ' The geometry is such that in the solution all

the free nodes are of the type fl = f2 = f3 or transshipmlent nodes

(f + f + f = ) with f2
= f 3 as in examples (a) and (b) above.

Sink -1

-1
-1

135

-1

13
1 35

C

-1

-1

source
+12

-1C
135

1
135' 135

-1

-1

-1
-1

FIGURE 2: Solution of a Euclidean network flow problem

with c(f) = bfT and one "free" source.
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APPENDIX D: Calculation of DK(w) for Cantor Distribution

Note first that if the demand in the subinterval [0,1/3] (or

[1/3,1]) is served by a single center outside the subinterval, then the

associated cost is equal to the product of 1/2 (the mass in the sub-

interval) and the distance between the center and the middle of the

subinterval. If, on the other hand, the center lies inside the sub-

interval the associated cost will be higher than the associated product.

Consequently, if we have a single center K = 1 we should place it any-

where in the middle subinterval [1/3,2/3] and the optimal cost D(w) will

be:

mass in each of the sub- the distance between the
1/3 = 1/2 (intervals [0,1/3] and ) · 2/3 (middles of [0,1/3] and )

[2/3,1] [2/3, 1]

Observe now that if we have two centers or more (K 2), then the

subintervals [0,1/3] and [2/3,1] will not share any common center.

Applying this logic recursively we conclude that any optimal solution of

the K-median problem partitions Cantor set into K subsets each being a

scaled-down copy of Cantor set served by a single center lying somewhere

on its middle subinterval. The cost associated with such single center

subset is of the form (1/3)6
-j = (1/3)(1/2J)(1/3

j) for some j 0 (1/3

is the cost for the original scale Cantor set with one center. 1/2J and

1/3J are the demand and the scale, scaling factors.) Consequently:

K -Ji. K -j.
DK(w) = Min { I 6 I 2 1} (D.1)

Jl,2,--'jk i i=l 1

_ �I_
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Let = log2 K], i.e., 2 K 2

LEMMA D1: jl ***, jk are optimal in (D.1) if and only if 2 - K of

the ji s are equal to and the rest of the ji's are equal to + 1.

Proof: Let Jl, 2, --, k be feasible in (D.1), and let t =

max (jl, .., jk)- The number of j's with ji = t is even. To see this,

note first that if ji = t for all i = 1, 2, ..., K, then K = 2t which is

even, otherwise the sum I 2 is a multiple of 2 (t1) and there-

{i:j i<t}

fore its complement (to 1) Y 2 = I{i: . = tl2 should be a

{l:ji=t}

multiple of 2 too, i.e., I{i: ji = til is even. We shall show now

that if jl, ..--., k is optimal, then for all i = 1, 2, ..., k Ji >

t - 1. Suppose on the contrary that there is an i so that ji = t - s

with s -> 2. Observing equality,

2 2-t + 2-(t-s) -(t-s+l)

and the associated inequality,

2-6- t + 6-(t-s) > 6-(t-) + 2 6-(t-s+l)

(Note that since by hypothesis s 2, we have t > t - s + 1 and thus

6-t < 6-(t-s+1) and hence 2 (6
-t) + 6(6 -(t-s

+ l) > 6 (6
-t) + 2(6-(t-s+1))),

we deduce that substituting a pair of the j 's that are maximal (= t)

and a single ji that is smaller than t - 1 (i.e. = t - s) by a pair of

ji's that are euqal to t - s - 1 and a single ji that is equal to t - 1

will reduce the cost, contradicting optimality. Thus for all i t - 1 <

ii < t. It is not hard to see now that the only feasible solution satis-

fying such a condition is the one characterized in the assertion of the
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lemma. It is not hard to see now that an optimal solution of (D.1)

should exist and that the characterization in the statement is sufficient

(since the js are permutable). O

Corollary D2: If w is the Cantor distribution then,

D (w) 1= 1K log23 5 2 K )-log 23

KW 32 29K

where = log 2 K].
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