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AN EVALUATION OF OMEGA WIND-FINDING ACCURACY
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ABSTRACT

The accuracy of wind estimates that have been derived from Omega
signals was investigated using stationary dropwindsondes. Omega
phases were collected for 145 min during two experiments in
which NOAA aircraft flew patterns near dropwindsondes on the
ground. Thus, actual Omega wind errors could be computed as
the estimated wind speed. With this data set, the effect of
aircraft maneuvers on Omega wind accuracy was documented, and
the accuracy of three commonly used Omega phase-smoothing
algorithms was evaluated over a range of signal qualities and
station-sonde geometries. Noise-free synthetic Omega signals
were used to estimate the relative resolution of the three
algorithms.

Winds computed in real-time are shown to be greatly dependent
on the motion of the aircraft receiving the Omega signals.
During aircraft maneuvers (turns), wind errors increased by over
50%.

Wind estimates obtained using cubic-spline phase smoothing are
shown to be 20-50% more accurate than estimates obtained using
the other methods. The synthetic data show that quadratic
smoothing has an inherently higher resolution than the spline;
however, this advantage is negated by the presence of noise
typically found in Omega signals. Hence it is recommended that
cubic-spline phase smoothing be used in dropwindsonde postprocessing.
It is estimated that postprocessing of dropwindsonde data using
the cubic-spline algorithm will reduce wind errors by 60% during
aircraft turns and by 30% at other times.

Thesis supervisor: Dr. Richard Passarelli

Title: Assistant Professor of Meteorology



I. INTRODUCTION

Omega dropwindsondes (ODW's) are instruments that are

released from aircraft to obtain vertical profiles of pressure,

temperature, humidity, and wind from otherwise data-sparse

regions. Over 5000 such soundings are included in the First

Global Atmospheric Research Program (GARP) Global Experiment

(FGGE) data set (Julian, 1982). ODW's have been used in recent

years over the Mediterranean Sea in GARP's 1982 Alpine Experiment

(ALPEX), by the Atlantic Oceanographic and Meteorological

Laboratory (AOML) Hurricane Research Division (HRD) to investigate

the environmental flow of Hurricane Debby (1982), and by

meteorologists to study the El Nino phenomenon in the eastern

Pacific. Recently, researchers have been using ODW's in hopes

of computing diagnostic quantities that require fairly precise

measurements (El Nino, for example). ODW's have been used, or

will be used, in the near future as input for important operational

forecasting decisions regarding hurricanes and coastal winter

storms, and they will continue to be a valuable tool until

satellites can provide similar information. It is important,

therefore, to understand the capabilities and limitations of

this instrument. The accuracy and reliability of the thermodynamic

measurements have been described by Franklin (1983). This study

investigates the accuracy of ODW wind estimates.

To measure winds, ODW's use a network of eight very low

frequency (13.6 kHz) transmitters, each of which broadcasts a

1 s pulse of energy every 10 s. Distance from one of these

Omega stations to a sonde can be determined by measuring the

signal phase of that station's transmission. As the sonde falls

on a parachute (at 25-30 mb/min) it moves with the wind, and

Omega signals relayed from the sonde from three or more stations

provide an estimate of the sonde's horizontal position. Successive

position estimates are used to estimate the horizontal wind.

There are many valid methods of arriving at a vertical wind



profile from a set of phase measurements, the fundamental

difference between these methods being how noise (always present

in Omega data) is handled. Because of noise, individual phase

measurements are not reliable enough to difference values, for

example, 1 min apart, to get a 1-min average wind. It is

necessary to somehow smooth each time series of phase values in

order to obtain accurate estimates of the time rate of change

of phase (Acheson, 1974). The manner in which this smoothing

is done is a crucial factor in determining the character and

accuracy of the estimated winds. One goal of this research is

to evaluate three commonly-used smoothing algorithms that offer

different approaches to this problem.

If the measurement error of an ODW wind estimate is defined

to be {var(U)+var(V)}1/ 2 , then the equations that govern the

solution of the horizontal winds also provide a solution for

this error, or uncertainty in the wind estimate (Passi, 1977).

For reasons discussed below, a quantity proportional to this

uncertainty is usually calculated; hence, the uncertainty

estimates of a given smoothing algorithm are generally calibrated

empirically. A second goal of this work is to evaluate the

accuracy of these uncertainty estimates and to suggest possible

improvements, if necessary.

How accurate are Omega wind estimates is a commonly asked

question that has no simple answer. Propagation characteristics

vary with such factors as location on the globe, time of day,

and even time of year. Signals may be degraded by interference

from nearby machinery, by lightning hundreds or thousands of

miles away, or by solar flares millions of miles away (Acheson,

1974). The spatial distribution of Omega stations around the

sonde has a profound influence on wind accuracy. In the case

of an airborne launch platform, computed winds are also affected

by maneuvers of the aircraft. In most cases, interference,

station geometry, and aircraft accelerations exert the strongest

influence on Omega wind accuracy. The effects of these factors,



which are estimated by the wind uncertanties, are examined in

this study.

Data from ODW's are available in real time. A computer on

the aircraft receives raw signals from the falling sonde and

converts them into measurements of pressure, temperature, and

wind. These measurements are then displayed-on the aircraft

where they can be interpreted and relayed to forecasters and

entered into the data base for operational models. (The

wind-finder that is used to produce these real-time winds is

one of the algorithms to be evaluated in this paper.) Although

such real-time data can be extremely valuable to forecasters

(as in the hurricane environment missions flown by HRD), many

soundings contain errors that can be identified and corrected

only with computing and graphics capabilities unavailable in

the air. Thus, "postprocessing" of ODW data is generally advised

(Franklin, 1983). The size of the on-board computer limits the

sophistication of the airborne wind-finder, so the recording of

phase data for postprocessing also allows the estimation of

winds using a more complicated and possibly more accurate

wind-finding algorithm on the ground. Knowledge of whether one

algorithm is superior to the others would improve the accuracy

of future postprocessed ODW data sets. By evaluating the accuracy

of several competing wind-finders and their associated error

estimates, the author expects that future ODW data sets will be

more accurate and more readily interpreted than those in the

past.



II. MATHEMATICAL BACKGROUND

At this point a discussion of the theory of Omega wind-finding

is in order so that the reader may better understand the analysis

that .follows. Much of the derivation below can be found in

Passi (1974) and Acheson (1974).

A. Equations

Consider k Omega stations S., j=l,k at longitudes a. and

latitudes b.. If a dropwindsonde is at (longitude,latitude)=(x,y),

the central earth angle f. between station j and the sonde is

given by

-1
(1) f.=cos {cos(aj-x)cos(y)cos(b.)+sin(y)sin(b.)}

and the distance between the station j and the sonde is Rf.,

where R is the radius of the earth. If a transmitted wave W

propagating from station j has a radial frequency w, wavelength

L, and has zero phase at the transmitter at time tl, then at

time t the wave received at the sonde can be expressed as

(2) T=exp i{(2W/L)s + w(t-t1 )}

where s is the propagation path length equal to Rfj. The signal

phase at the sonde, sj(t), is given by the ratio of the imaginary

to the real part of (2):

(3) Idsj (t)=2llRf./L + w(t-t ).

Omega signals are received by the sonde and retransmitted

without modification to the launching aircraft. The signal

phase at the aircraft, j (t), will therefore be given by 6sj(t)+c,



where c is the change in phase that occurs between the sonde

and the plane. $j is not the quantity that is measured on board,

however, but rather a relative phase pj, which is the signal

phase j minus a local oscillator phase. If we define pij as

pi-Pj, the phase difference between stations i and j, it can be

shown easily that this difference of relative phases is equal

to the difference of Omega signal phases i-0.. It then follows

quickly that

(4) pij={2R/L}fij, where fij=f i-f ifj=l,k.

Such a set of equations is referred to as a hyperbolic set, for

reasons that shall be clear momentarily. Rearranging (4) gives

(5) (Rfi-Rf.)=(L/2t)pij, ifj=l,k.

We measure the right hand side of (5). Now the set of

points that satisfy (Rfi-Rf.)= a constant describe a hyperboloid.

Another relative phase measurement Pim, mfj defines a second

hyperboloid, whose intersection with the first is a (nearly)

vertical line. In this manner Omega signals from three stations

define the (x,y) position of the sonde.

Only k-1 equations of (4) are independent. With no loss,

therefore, we may set j=k:

(6) Pik(t)=(2TR/L)fik, i=l,k-l.

Differentiation with respect to t gives

21R ik x fik y
Pik"Pik = L Fx at by bt

and since U=Rcos(y) x/at and V=Ry/bt, substitution gives

S ik ik
(7) ik = {2/Lcos(y)} xU + /L} V, i=,k-1



or in vector notation,

(8) = F[V]

It is the method of estimating 5 that distinguishes the

three wind-finding algorithms to be examined in this study.

The estimating algorithm must serve two functions: noise removal

in the phase data, and evaluation of the phase rates for different

stations at a common time, since the eight stations transmit

sequentially rather than simultaneously. Before entering into

a discussion of these "phase smoothers," however, we shall

proceed a bit further with the more general equations.

5 is generally represented as 5 + s, where 5 is the phase

rate estimator and s is the matrix of phase-rate difference

errors. Equation 8 then becomes

(9) + s = F[ v.

For k Omega stations, (9) represents k-l independent equations

in two unknowns. Thus, for k>3 the system is overdetermined

and the traditional solution (Julian, 1982) is

T -1 -1 T -1^
(10) U = (FTE F) F E 5,

where E is the covariance matrix of s, and U=[U,V] . (F E F)

represents the covariance matrix of U (Passi, 1977), so the wind

uncertainty WU={Var U + Var V}1 / 2 equals the square root of the

trace of this matrix.

How shall we estimate the elements of E? Since s is made

up of phase-rates, the elements eij should come from estimates

of observed phase-rate errors. Standard procedure, however, is

to estimate ^ first (by fitting the raw phases to a quadratic,

for example) and then to differentiate to obtain phase rates;

hence, it is much more convenient to get phase errors (as



residuals from a quadratic least-squares fit, for example) than

phase-rate errors. Passi argues that the covariance matrix E

based on phase-rate errors would be proportional to one based

on phase errors alone. This proportionality constant would fall

out of (10) and not influence U, although it would affect the

wind uncertainty WU. The covariance matrix E that Passi suggests

is standard in many wind-finders. Its elements eij are given

by

2 2 ..
e.. = s. + s k =j

(11)
2

eij = sk i/j

where the phase variance s2 is given by

2 n 1 2(12) s2 = P(t )-P(ti)]2/(n-1)

and n is the total number of phase observations. The scaling

of the wind uncertainties is accomplished by tracking ODW's with

precision radars (Julian, 1983, private communication and Passi,

1977).

Having seen the basic equations used in Omega wind-finding,

we can now look at the differences between some of these

algorithms. As stated earlier, in this study we are interested

in seeing whether any of three common phase-smoothing routines

provide significantly more accurate wind estimates than the

others. The three smoothers to be examined are a quadratic

least-squares fit, application of a low-pass filter, and a

cubic-spline fit to the phase data.

B. Quadratic Least-Squares Smoothing

The simplest of the three methods is a second-order least-



squares polynomial approximation to the phase data. Because of

its simplicity, this routine is used to compute real-time winds

on board the aircraft. In addition, this routine was used in

the postprocessing of about half of the data from the Hurricane

Debby HRD dropsonde missions (low-pass filtering was used on

the rest) and with data sets processed by HRD for other scientists.

To evaluate winds at time T, 3 min of phase data (19 phase

measurements) surrounding T are fit to a quadratic by the method

of least-squares. A fit is done for each of the Omega stations

to be used in the computation (up to a maximum of four in real

time). Once the fitting polynomials are determined, one can

analytically differentiate to obtain phase rates at time T.

(The derivatives are evaluated at times slightly different from

T to correct for the fact that Omega stations broadcast in

sequence.) Phase variances are evaluated using residuals from

the polynomial fit in (12) with n=19. This procedure is then

repeated for time T+10 with the next 10-s phase measurement at

the center of a new 3-min window.

What are the limitations of this quadratic model? As a

practical matter, since each wind evaluation occurs at the

midpoint of a 3-min interval and the sonde falls at 25-35 mb/min,

no winds can be computed until about 40 mb after launch and the

procedure must stop about 50 mb before splash (or other loss of

signal). No direct estimate of surface winds is therefore

available. There are theoretical limitations as well. The

quadratic approximation implies a constant component of acceleration

toward each Omega station over a 3-min interval (Passi, 1977).

For a sonde moving with the wind, this is a reasonable approximation;

however, the measurement of signal phase does not take place at

the sonde, but for dropwindsondes, on a moving aircraft. The

relayed signal from the sonde thus reflects aircraft as well as

sonde motion. When the aircraft turns, the restriction of

constant acceleration implied by the quadratic is not satisfied.

For this reason, required turns are executed just before the



launch of a sonde whenever possible. The least-squares fitting

presents another problem as well. The overall slope of a

low-order fit is rather sensitive to the location of the points

near the ends of the fit. In unedited Omega where noise may be

present, or in all Omega where aircraft turns have occurred,

such irregularities in the signal could be expected to have a

large impact on computed winds as the irregularities enter and

exit the 3-min smoothing window. This "window-endpoint" effect

is demonstrated in section IV.

C. Low-Pass Filtering

A wind-finder that uses low-pass filtering of Omega data

is described by Julian (1982) and has been implemented at HRD.

This procedure takes the entire phase sequence for each station

and transforms it into frequency space using a fast Fourier

transform. The transform is then multiplied by a low-pass filter

function, a complex exponential exp(-iorj) to correct for the

transmission time difference between stations, and by isto

produce phase rates from phases. After experimentation with

radar-tracked upsondes, Julian settled on a filter with a 4-min

effective length.

This procedure seems to have certain advantages over

quadratic smoothing. One would expect it to be less susceptible

to unedited random noise than a quadratic, because much of the

noise is explicitly filtered, and because there are no

window-endpoint effects. This routine was used in HRD processing

primarily with sondes with relatively poor Omega; much less

erratic wind profiles resulted from this algorithm than from

quadratic fits for these sondes. One drawback of this procedure,

however, is that its 4-min filter length prevents the computation

of winds over even larger intervals than the 3-min quadratic;

these intervals are 60-70 mb thick with this method. It has



been, nonetheless, an excellent complement to the quadratic

smoother for poorer quality signals.

D. -Cubic-Spline Smoothing

The third algorithm examined in this study is described by

Passi (1977) as a cubic spline smoother, although the method

does not actually use a true spline. Cubic spline smoothing

was used to process ALPEX Omega data at the National Center for

Atmpspheric Research (NCAR), but not until recently was the

method available at HRD. This routine first divides the entire

phase sequence into segments of about 3-min. Cubic polynomials

are then fit to each segment, with the restriction that adjacent

cubics give the same phases, phase rates, and radial accelerations

at the join points, or nodes. Specifically,

3 
m =(13) =La. tm = P (t), T <t<T., j=l,...,N

m-o jm j j-l= j'

describes the N cubics while the restrictions are given by

(14) b Pj_l(Tj_)/at = apj(Tj_l)/t, i=0,1,2, j=2,...,N.

Passi attempts to estimate the improvement in wind accuracy

with the spline over quadratic smoothing by comparing quadratic

wind uncertanties (i.e., quadratic error predictions) with

"actual" cubic spline errors estimated by tracking Omega upsondes

with radar. He estimates that wind errors with the spline will

be lower than the quadratic uncertainties by a factor of 3. He

does not, however, compare spline errors with actual (rather

than predicted) quadratic errors as this study does.

The idea of cubic spline smoothing is to use more information

than that contained in any 3-min interval alone, allowing

continuity of the wind field to influence the solution. The



cubic nature of the individual polynomials should allow this

routine to handle aircraft maneuvers better than the quadratic,

while the node restrictions should eliminate window effects.

Another important benefit is that winds can be computed at all

points along the drop down to the surface, making postprocessing

with this wind-finder particularly attractive. It is possible,

however, that wind accuracy near these exterior nodes would be

low since there are no continuity restrictions at these points;

certainly bad Omega would cause difficulties here. One might

also wonder about the effect of the continuity restrictions on

the wind-finder's resolution. These questions and others

regarding the performance of the three routines are examined in

section IV.



III. DATA

How shall we evaluate the accuracy of Omega wind estimates?

In the normal use of ODW's, the winds are, of course, unknown.

Predictions of wind-finding accuracy for particular regions have

been made by Acheson (1974), Passi (1973), and others by modelling

or ignoring some of the factors influencing accuracy. Attempts

have also been made to compare ODW winds with winds derived from

radar tracking of ascending sondes by Passi (1977), and by Julian

(1982) using standard dropwindsondes. Such radar tracking also

contains error, however, and the proper attribution of the

differences between radar and Omega winds is unclear. This

study is different in that Omega wind errors are measured directly

by using motionless sondes. The effects of station-sonde geometry

and different levels of interference are simulated by computing

winds with many different station combinations and by using raw

and edited Omega signals.

On 4 August 1982, and on 13 September 1983 the NOAA Research

Facilities Center (RFC), (now Office of Aircraft Operations)

flew missions in which Omega signals were received from stationary

sondes that were resting on Key Largo and Virginia Key, Florida.

During the first mission, the RFC aircraft flew "L" patterns

(Fig. la) and received adequate Omega for wind-finding for about

95 min. The second mission's aircraft flew a triangular pattern

(Fig. Ib) and collected usable Omega for about 50 min. Flight

level for the missions was 790 mb for the first and 450 mb for

the second, the latter being more typical of normal dropwindsonde

missions.

Actual Omega wind errors in these cases are known directly;

they are given by the computed wind speed, since true sonde

velocity is zero. A second experiment during the first mission

involved a sonde on a boat moving with a known but changing

velocity; unfortunately, interference from the boat's motor

prevented adequate signals from being received on the aircraft.



This experiment would have allowed an evaluation of the different

wind-finders' ability to resolve wind shear. The question of

resolution is addressed instead by applying each wind-finder to

a time series of simulated Omega signals. The data collected

by the RFC aircraft will primarily address the question of how

each of several wind-finders react to noisy Omega and aircraft

maneuvers.

As Omega signals were received during the flights, an

on-board computer calculated winds for real-time inspection.

The Omega signals were stored on cassettes for postprocessing

at the HRD, where they could be displayed and examined for noise

spikes and other problems that typically degrade the quality of

real-time wind estimates. The original data set was then divided

into two parts: one in which the Omega was left just as it had

been recorded on board, and one in which the noise was subjectively

removed. This Omega editing is standard procedure in dropwindsonde

processing; it removes spurious winds often found in wind profiles

that have been computed from raw Omega (Franklin, 1983). Figures

2 and 3 show examples of typical raw and edited Omega data from

the 1982 flight. The rapid changes in slope identify the aircraft

turns, which are labelled by letter corresponding to the turn

points in Fig. la. Figure 4 shows a sample of raw Omega from

the 1983 mission. The turns, which are not as obvious here

because of the flight-track geometry, are marked by brackets

and labeled according to their locations in Fig. lb. Notice

that the worst Omega reception tends to occur while the aircraft

turns. This partial loss of signal is caused by "shadowing" of

the Omega antenna. As the roll angle of the aircraft increases

to execute a turn, the antenna (mounted on the underside of the

plane) may find itself "behind" the aircraft relative to the

sonde. This would temporarily reduce signal strength (Farr,

1983, private communication). As a result of shadowing, one

would expect real-time Omega-derived wind accuracy to be low

during turns. That winds computed using edited Omega would also



be less accurate during turns for some wind-finders has been

suggested in section II and is demonstrated in section IV.

Editing decisions, while subjective, were based on experience

with many other data sets, including ALPEX, El Nino, and Hurricane

Debby. Because of the complexity of the wind-finding computation

and its sensitive dependence on the slopes of the phase curves,

it is extremely difficult, if not impossible, to produce a

particular desired wind field through selective editing of Omega

data. There should be no concern, therefore, that the edited

data set has been biased to yield desired results.

After the substantial job of Omega editing had been completed,

winds were computed for both raw and edited Omega using the

three wind-finders described earlier. Software to compute winds

using the quadratic and low-pass filter smoothers was already

in place on the HRD HP-1000 minicomputer. The cubic spline wind

solutions were obtained on the Environmental Research Laboratories'

CDC-750 computer in Boulder, Colorado, and sent on magnetic tape

to HRD for analysis. Results of these wind-finding efforts

follow in section IV.



IV. RESULTS AND DISCUSSION

The basic data set for this study consists of raw (R) and

edited (E) phases for each of the two research flights. These

four subsets of phase data are abbreviated by 82R, 82E, 83R,

and 83E. Of the eight Omega stations, six provided adequate

signals for wind-finding during the 1982 flight, while only five

were available for the 1983 mission. The eight stations, their

locations, and those used for wind-finding are given in table

1. Figure 5 shows the station-sonde geometry for the two missions.

Omega winds are usually computed from as many Omega stations

as are available (except in real-time, where no more than four

may be used). So that the results of this study would be

applicable to outside the south Florida area, winds in this

study were computed using 12 station combinations in an attempt

to simulate the geometries of other regions. These combinations

were chosen to represent a range of possible geometries, from

optimal to marginal. (Optimal geometry is obtained by maximizing

the angular separation of the Omega stations while avoiding the

use of antipodal stations; for example, the three-station

combination of Hawaii, Norway, and Argentina is excellent.) Each

of the three wind-finding algorithms was used with each combination

for the four phase subsets, so that, in all, 144 wind time-series

(profiles) were produced. For each of the 144 profiles, the

following instantaneous quantities were calculated at 10-s

intervals: the actual wind error (WE), which for these stationary

sondes equals {U2 +V2 } 0 . 5 , where U and V are given by (10); the

estimated wind error, or wind uncertainty (WU), defined by {Var

U + Var V}0.5; and the wind error ratio R, defined to be WE/WU.

X shall denotes the profile (time) average of the quantity X

over either 95 or 50 min, depending on the flight. For example,

E (83R,QUAD,2345) refers to the mean wind error for the 1983

raw phase data, computed using the quadratic wind-finder with

stations 2, 3, 4, and 5 (table 1). <X> refers to an average



over all 12 station combinations of the time-mean of X, so that

<WU>(82E,SPL) is the average wind uncertainty (over time and

"geometry") for the cubic spline wind-finder for the edited 1982

phase subset.

We now begin our investigation into the performance of

ODW's. This investigation is divided into two main parts; first,

we examine ODW performance in aircraft maneuvers; then we look

at a few more general features of the three wind-finders under

scrutiny in this paper. There is some overlap in the discussion,

which we hope the reader will find reinforcing rather than

repetitive.

A. ODW Performance: Turns Versus Legs

One would suspect that raw Omega would be particularly

susceptible to reduced accuracy in turns because of poorer signal

reception at these times (Figs. 2-4). Since only the quadratic

wind-finder is used on real-time raw phases in normal aircraft

operations, the effect of aircraft maneuvers on ODW accuracy is

described primarily in terms of the quadratic.

Figure 6 shows wind uncertainty WU (82E,QUAD,234578) plotted

against time for a portion of the 1982 flight. During this time

the RFC aircraft made four turns, identified by the dashed

arrows. The impact of these maneuvers on WU is dramatic, as

the wind uncertainty increases from about 1.2 m/s during periods

of straight-line motion (legs) to well over 3 m/s in the

neighborhood of each turn. Notice that the intervals of high

uncertainty are much larger than the length of the turns (about

45 s). This is because a wind estimate for time T is obtained

from a window of phase data (3-min long, in this case) which

may include a turn even though T itself is part of a leg. A

quantity X(T) is described as coming from a turn, then, not only

if T is contained in a turn, but also if any portion of the

phase window surrounding T contains a turn. For the quadratic



and cubic spline wind-finders, we define T to be part of the
turn sample if T falls within 105 s of the center of an actual
aircraft turn. For the 4-min low-pass filter this limit is 135
s.. We shall see shortly that actual wind errors for the quadratic
are as large when a turn falls at the edge of the phase window
as when one occurs at the center.

A striking aspect of Fig. 6 is the double peak of WU for
each turn. One wonders whether actual wind errors (WE) behave
in the same fashion. To address this question, turn points are
further stratified into three subgroups based on their location
on the uncertainty curve and are referred to as edge, peak, and
center points. The definitions of these groups are given in
table 2 and the groups are indicated in Fig. 6.

Figure 7 shows, in addition to the wind uncertainty given
in Fig. 6, the actual wind error WE(82E,QUAD,234578) for the
same period of time. There is much more short-term variation
in WE than WU; remember that WU is an estimate of the variance
of the wind, which will change much less rapidly than the wind
itself. Nonetheless, there does appear to be a correlation
between the two curves. In particular, it appears that those
episodes of largest WE lie in the turn regions. To test this,
the entire 95-min sequence of WE(82E,QUAD,234578) (of which Fig.
7 is a portion) was examined and 30 local maxima of WE were
identified. The criteria for this selection were somewhat
loosely defined; any local maximum of WE that appeared to last
for a minute or more and that "struck the eye" of the author
was included. Those maxima that fell in the time period of Fig.

7 are indicated in the figure. These 30 maxima then were
classified as occurring in a turn or leg, depending on whether

the midpoint of the maxima was a turn or leg point as described

in table 2.' Of the 30 maxima, 25 (83%) occurred during turns,

although turn points make up only 58% of the sample. When one

assumes a binomial distribution on the fraction of maxima in

turns, a 95% confidence interval on this fraction is found to



be (0.70-0.96), an interval that does not include 0.58. Wind

error maxima, then, do not occur randomly, but are more likely

to occur in turns. Remembering that this is an edited phase

subset, we see that this behavior is not due at all to signal

shadowing, but rather is due solely to the limitations of the

quadratic model.

A similar analysis was done for 26 identifiable minima in

WE, some of which are also identified in Fig. 7. Of the 26, 16

(62%) occurred in the turns, about what one would expect from

a random distribution (58%). Thus we conclude that although

periods of low wind error are as likely to occur in turns as in

legs, periods of relatively high error are more likely to occur

in turns.

There is a hint in Fig. 7 that turn edges (table 2) might

be particularly susceptible to these maxima in WE. This was

tested in two ways. In the 95-min sample, there were 32 distinct

turn edges. Of these 32, a WE maximum fell in 11, while a

minimum in WE occurred in only 4. If we consider only the 15

cases in which either a maximum or a minimum fell in a turn

edge, this is not a random distribution at the 95% confidence

level; that is, a turn edge is more likely to produce an error

maximum than an error minimum. The same statement could not be

made for turn peaks or centers, however, as there was no preference

for maxima over minima in these regions. A second test for the

preference of maxima for turn edges examined the distribution

of maxima within turns. Observed numbers of maxima in edges,

peaks, and centers were 11, 10, and 4, respectively, with

corresponding expected counts of 10, 10, and 5. The chi-square

p-value of 0.86 indicates no preferential distribution of WE

maxima within the turns. Still, this nearly random distribution

suggests that a turn at the edge of the 3-min quadratic smoothing

window will degrade the winds at least as strongly as if the

turn were in the center of the window (assuming that all WE

maxima are of equal magnitude).



While the preceding analysis gives some idea of where the

highest and lowest wind accuracy can be found, it is more useful

to examine mean values of wind error and uncertainty for the

different groups over the 95-min sample. Table 3 shows these

and other quantities for the wind profile that we have been

examining, (82E,QUAD,234578). The table gives two sample sizes

for each group; the first of these is the actual count of points

in the sample. One would not expect each of these to be an

independent estimate, however, since the 19-point phase window

producing the wind at time T contains 18 of the 19 points. used

to produce the wind at T+10. Given a number of serially correlated

data points, one can estimate an equivalent number of independent

points (World Meteorological Organization, 1979). The sequence

of values WE(82E,QUAD,234578) was evaluated for serial correlation

using this method, with the result that the 579 correlated points

were equivalent to an independent sample of 272 points. The

independent sample size given in the table is obtained by

multiplying the actual sample size by 0.47 (272/579). That

nearly every second wind estimate is independent with the

quadratic algorithm is at first very surprising, but it simply

indicates that winds from the quadratic wind-finder are extremely

dependent on phase points at the edges of the 3-min window.

Knowing this helps us to understand table 3; as a turn enters

the phase window, wind errors immediately rise from 1.93 m/s to

2.49 m/s, and remain approximately the same as the turn moves

through the window. Wind uncertainty, which depends on the mean

residual of the least-squares quadratic fit and not on the

relative location of those residuals, rises more slowly, so that

wind errors will be relatively underpredicted by the uncertainties

about 90 s before and after the turn or noise spike causing the

increase in error. -This behavior has particular implications

for those trying to make a real-time interpretation of Omega

winds as they are computed on board the aircraft.

The table indicates that wind error in turns is greater



than that in the legs, and this difference can be shown to be

statistically significant. Using a modified t-test on the

equivalence of the means 1.93 and 2.51 with no assumption on

the variances, one finds that WE for legs is different from WE

for turns with a p-value of less than 0.01. We conclude that

wind error in turns is higher than that in legs. Again, it must

be remembered that we are considering postprocessed data here,

where signal qualities in and out of turns are equal; hence the

poorer performance of the quadratic in turns is, in fact, a

statement about the quadratic.

We now broaden our view by considering table 4, which

presents WE and WU for the 144 wind profiles computed from the

1982 research flight. We will refer to this table many times;

for now consider only the columns for the quadratic wind-finder.

For every geometry, WE for turns is higher than WE for legs,

both for edited and raw Omega. When we average over geometry

as well as time, <W-E> for turns exceeds <WE> for legs by 25%

(3.67 versus 2.93) for edited Omega, while for raw Omega this

increase in error is 53% (5.14 versus 3.37). This reduced error

difference for edited Omega reflects the correction of low signal

quality experienced during shadowing as discussed in section

III. In practical terms, avoidance of aircraft maneuvers is

less important for those experiments in which real-time winds

are unimportant and postprocessing of the phase data is planned.

Phase editing is one way to improve wind accuracy in turns;

another way is to use a different wind-finder in the postprocessing.

Looking at the cubic spline columns of Table 4, one sees that

the spline seems not to be influenced by the presence or absence

of turns; in fact, in the mean, errors for turns are slightly

lower than those in the legs. Values for <WE>(82E,SPL) are 2.02

and 2.13 for turns and legs, respectively. In the "best case"

of (82E,SPL,234578), WE for turns and legs are 1.40 and 1.39.

The low-pass filter routine gives a 26% increase in mean wind

error for turns for the best-case profile (82E,FIL,234578) (2.31



versus 1.83, with a p-value on the equality of the means of

0.13). The spline, then, is the only algorithm (of the three

studied here) in which wind accuracy is not reduced in turns.

There are probably two reasons for this behavior. A cubic fit

to phase data does not imply a constant component of acceleration

towards the Omega stations (as a quadratic does), a restriction

not satisfied when the aircraft turns. Thus a cubic fit is

better able to "handle" the sharp changes in phase slope shown

in Figs. 2-4. Another factor, though, may be the continuity

restrictions of the spline, in which phase data minutes away

affect a wind estimate. These restrictions would tend to blur

the distinction between turns and legs. It may still be true

that spline winds are less accurate when turns are in the flight

pattern, although the data collected for this study will not

help to answer this question.

When we compare turn accuracy of the spline to the two

other algorithms we find significant, but, by now, expected

differences. For best-case geometry (82E,234578), mean error

for the spline is only 1.40 m/s as noted above, compared with

2.31 and 2.51 m/s for the filter and quadratic (table 4). A

modified t-test on the equality of these means gives p-values

of less than .01 for both the quadratic and the filter smoothers,

so that the 40% error reduction by the spline over the other

methods represents a significant difference. This percentage

reduction remains approximately the same when averaged over

geometry.

Table 5 contains the results of the 1983 mission in the

same format as table 4. One sees immediately that the overall

level of wind accuracy is much lower for this second flight.

The stations selected for wind computations for this data are

not the same because of the lack of Hawaii's signal during the

second flight, which accounts, in part, for the higher average

wind error. Poorer quality Omega was also present, however, as

station combinations common to both missions ([2378], [257],



and [278]) had lower errors for the first flight.

Despite the overall reduced accuracy, the trends observed

in the 1982 data set are confirmed in the newer data. For the

quadratic wind-finder, <WE> for turns exceeds <WE> for legs by

32% (6.87 versus 5.21) for edited data and by 48% (8.44 versus

5.71) for raw Omega, not far from the 1982 values of 25% and

53%, respectively. Spline wind accuracy is again lower in the

turns than in the legs, but this time by substantial amounts

(3.35 versus 4.31 for <WE>[SPL,83E]). The cause of this curious

behavior is not at all clear; perhaps the relatively high-order

spline is reacting to noise in the legs portions, while in the

turns the cubic must primarily respond to the naturally large

changes in phase slope present there. The analysis, complicated

enough by the continuity restrictions of the spline, is further

muddled by a flight track that removes phase-slope sign changes

from turns and places them in legs (Fig. 4). In any event, it

is clear that the spline has again outperformed the other

algorithms in turns, with edited Omega geometric-mean wind errors

of 3.35, 6.33, and 6.87 m/s for the spline, filter and quadratic.

This is roughly a 50% reduction in error for the spline, about

the same as the 40% reduction obtained with the 1982 data. The

data from both flights clearly dictate that the spline should

be the wind-finder of choice when turns are an important part

of the flight track. We will see below that the spline should

be used irrespective of the presence of turns.

B. Omega Wind-finding Algorithms

We now move to a more general comparison of the three

wind-finders used in this study: quadratic smoothing, low-pass

filtering, and cubic-spline smoothing of the Omega signals.

The emphasis here is on performance during straight-line motion

of the launching aircraft (legs) since, by far, most phase data



are collected during such motion, and performance during turns

has already been discussed in section A.

B.1 Which Algorithm Is Best?

Figure 8 shows wind error and uncertainty for a portion of

the (82E,234578) wind profiles for each algorithm. When used

on identical phases, the three methods give profiles that vary

greatly in smoothness. The quadratic, with its high dependence

on window end points, varies most rapidly. The reduced uncertainty

in the center of each turn implies that a second-order polynomial

fits a turn with lower residuals when the turn is centered on

the smoothing interval. Although the figure suggests that actual

error may also be reduced at the turn center, table 3 reveals

that, in the mean, this is not the case. The plot of WE for

the filtered phases looks much like a highly smoothed version

of the quadratic. The cubic-spline profile looks nothing like

the other two, however, with slowly changing errors and

uncertainties that bear little or no relationship to the turns.

This dissimilarity is reflected in nearly identical turn and

leg mean wind errors for this spline profile (1.40 and 1.39 m/s;

see table 4).

These scales of variablility are reflected in the calculations

of independent sample size for the three wind-finders. Recall

(section A) that the sample size for quadratic wind estimates

had to be reduced by only a factor of 2 to account for the serial

dependence of the wind estimates. Similar calculations for the

spline and the filter methods gave very different results. For

the low-pass filter, an equivalent independent sample size was

found to be 16% of the full sample, while, for the spline, this

fraction was only 11%. This outcome is not surprising, since

both the filter and spline allow all points even minutes away

to influence wind solutions, while quadratic winds are primarily

determined by a few points at the edges of the 3-min window.



We return to table 4, to determine whether one of the

wind-finders is significantly better than the others. Looking

at the left hand side of the table (legs), we see that for both

raw and edited Omega the cubic spline gives the lowest errors.

For best case edited signals, spline mean error is 24% lower

than the low-pass filter and 28% lower than the quadratic, with

means of 1.39, 1.83 and 1.93 m/s respectively. The modified

t-test on the equality of the filter and spline means gives a

p-value of 0.15, a value not statistically significant due to

the small independent sample sizes, but suggestive nonetheless.

For the quadratic and spline means, the p-value is lower at

0.01. When we average over geometry, we find the spline maintains

its leadership, with errors 19% and 27% lower than the filter

and quadratic. The cubic spline has the lowest mean wind error

of the three algorithms in 23 of the 24 "contests" on the

left-hand side of table 4. Although statistical significance

is not quite achieved over both competitors, it should be

reasonably clear that the spline is the superior method, especially

when its great success with turns is considered.

Data from the 1983 flight also indicate that the spline is

the most accurate algorithm. Values of <WE>(83E) for the spline,

filter, and quadratic are 4.31, 5.12, and 5.21 m/s; this is an

error reduction of 16% over the filter and 18% over the quadratic.

The spline has the lowest sonde-mean wind error for every case

in table 5; for turns and legs, for raw and edited signals, and

for every station combination, the smallest errors come from

the spline.

Note that although the spline algorithm permits the

calculation of winds from the first phase point to the last,

winds computed in the first and last 90 s of each profile were

not included in any of the means in tables 4 and 5. This was

done to keep the samples for the three methods equivalent. As

one would expect, wind accuracy at the edges of the spline is

not as high as in the interior. For the case of WE(82E,SPL,234578),



wind error in these edges is 2.50 m/s, compared with 1.39 m/s

for the remainder of the profile (table 4). A subjective

examination of these edges for other station combinations shows

examples of varying wind accuracy in these regions. Until this

effect has been investigated in greater detail, much care should

be taken in the interpretation of spline winds at the beginning

and end of drops.

Although the spline has been shown to be more accurate than

the quadratic or filter for the two stationary sondes, one might

be concerned about the resolution of the spline, and hence, its

suitability for soundings with significant wind shear. To

examine the question of resolution, a time series of simulated

Omega signals was created. Using (8), noise-free phase rates

corresponding to selected values of U and V were computed to

form a 20-min "synthetic" sounding. For simplicity, phases were

created for only three Omega stations (Norway, North Dakota and

Argentina). The winds used in the synthetic sounding were taken

from rawinsonde data for Dodge City, Kansas at 0 GMT on December

6, 1978, and feature a distinct frontal zone with a wind shear
-2 -1

of 2.4x10 -  s between 725 and 750 mb (fig. 9). A wind shear

of similar magnitude is also observed near 650 mb. "Truth"

values of U and V at 20 s (about 10 mb) intervals were obtained

by interpolating between the points in Fig. 9. Synthetic phase

data were computed using these interpolated winds in (8), and

the synthetic phases were then used to estimate winds with the

three wind-finders.

Wind errors for the three wind-finders are shown in Fig.

9. Errors for all three wind-finders increase dramatically in

the frontal zone; none of the algorithms can accurately resolve

such a wind shift. Wind errors are also large above the frontal

zone in the second region of highest shear. Over most of the

sounding, however, errors are generally less than 2 m/s.

The spline is clearly the weakest of the three wind-finder

in terms of wind-shear resolution. Average error for the spline

28



with this sounding is 1.72 m/s, compared with average errors of

1.01 and 0.89 m/s for the filter and quadratic algorithms. In

the two regions of highest shear, the spline has by far the

highest errors, and below the frontal zone, a brief veering of

the wind to the northeast is picked up by the quadratic and

filter, but not by the spline.

One must be very careful in drawing conclusions from this

experiment. The poor performance of the spline in resolving

the fine structure of the wind field does not imply that the

quadratic or filter algorithms would yield more accurate winds

in a real sounding. The continuity restrictions at the nodal

points of the spline, which are responsible for its relative

lack of resolution, are also responsible for the spline's ability

to extract accurate phase rates from real (i.e., noisy) Omega

(as demonstrated by the stationary sonde experiments). There

is a trade-off between resolving power and sensitivity to noise.

Through its continuity restrictions, the spline increases its

effective sample of phase points for the cubic fit, reducing

phase variance and the effects of noise, but in doing so it

ignores "local" changes in phase rate that represent regions of

high shear. The quadratic, on the other hand, examines only

three minutes of data at a time. This makes the quadratic more

responsive to smaller-scale changes in phase rate, but also

makes it highly susceptible to unrepresentative phase measurements.

The current accuracy of Omega phase measurement dictates that

wind-finding algorithms must primarily be able to handle noise.

This can be demonstrated by adding artificial noise to the

synthetic sounding. For simplicity, a random "error" having a

uniform distribution over (-2,+2 cec) was added to each synthetic

phase value. This produced phase time series with variances

(given by (12)) of about 1.5 cec 2 . This is approximately the

level of noise found in real Omega signals of high quality,

which rarely have variances less than 1.0 cec 2 (Passi, 1977).

When these phase errors were added to the synthetic sounding,



mean wind error with the quadratic increased 135%, from 0.89 to

2.09 m/s. With the spline, however, mean error only increased

17%, from 1.72 to 2.02 m/s. Even though this model for noise

is quite simple, it seems reasonable to conclude that the

quadratic's high resolution is a liability, not an asset, for

all but the cleanest Omega signals.

The low-pass filter was virtually unaffected by the addition

of noise; wind errors increased from 1.01 to 1.05 m/s. This is

not surprising since uncorrelated random noise is the precise

target of the low-pass filter. Tables 4 and 5, however, show

that improvements in wind accuracy due to phase editing are

larger with the filter than with either the quadratic or spline.

This relatively strong filter dependence on real-world phase

errors suggests that the noise model described above is unrealistic,

or that other relevant factors are not being taken into account.

Correlated phase errors, not modeled above, would survive

filtering and reduce wind accuracy; Govind (1975) describes one

way in which atmospheric noise could produce such errors in

Omega phases. The effect on wind estimates of small but

ever-present variations in aircraft velocity is another possibility.

Which windfinder, then, should we recommend for use in ODW

postprocessing? When flight tracks involve turns, it is clear

that the cubic spline can provide the most accurate wind estimates.

In cases where there are no turns, however, the choice is not

as clear. The low-pass filter has the advantages of relatively

high resolution and insensitivity to uncorrelated random noise;

however, it is difficult to recommend this method until its high

accuracy with synthetic soundings can be more fully reconciled

with its poorer performance with the stationary sondes. The

60-70 mb layers after launch and before splash, during which no

winds are estimated, also make this algorithm less desireable

than the other methods. In cases of very low phase variance

(about 1.0 cec 2 ), the quadratic should be considered if maximum

resolution is desired. For noise levels typically found in



real-world Omega data, however, the synthetic and stationary

sonde experiments suggest that the spline will give more accurate

wind estimates, despite its lower resolution. It has the

additional advantage of providing wind estimates immediately

after launch and before splash. We recommend, then, that cubic

spline smoothing be used for most ODW postprocessing.

B.2 The Value of Wind Uncertainties

Wind uncertainties (WU) or estimated wind errors, can be

computed easily as part of the wind-finding procedure. They

depend upon two factors only: the quality of the sonde-station

geometry, and the quality of the fit of the smoothed phases to

the original phase data. They cannot take into account factors

that are external to the-dropwindsonde system, such as unsteady

or anomalous propagation of the Omega signals. Figure 8 hints

that uncertainties are, at best, indicators of mean wind accuracy

over some period of time and are probably not useful predictors

of actual wind error on an instantaneous basis.

Figures 10-12 are scatter diagrams of WU versus WE for

every 10-s wind calculation of (82E,234578) using the three

wind-finders. Correlation coefficients have not been calculated

for these cases, but they are certainly very small; it is clear

that knowledge of the wind uncertainty at a given point indicates

almost nothing about the actual wind error at that point. A

possible use for uncertainties on a point-by-point basis would

be as identifiers of turns and noise spikes (with the quadratic

and filter algorithms) that might be accompanied by increased

error, although it is apparant that high WU is neither a necessary

nor sufficient condition for high WE.

If one averages WE and WU over the length of each wind

profile (tables 4 and 5), their behavior becomes more regular.

The sonde-mean WE-WU pairs listed in these two tables are plotted

in Figs. 13 and 14 (for the legs only). Notice first that the



best profiles (those in the lower left of the figures) are

produced by the cubic spline. Notice also that, for the raw

phases of both research flights, fitted curves relating mean WE

to mean WU would be nearly identical for the three wind-finding

algorithms. This is a satisfying observation, since the

uncertainties for these algorithms were scaled by different

investigators with different test drops (Passi, 1977; Julian,

1983, private communication). The clustering of points close

to the WE-WU line is also satisfying, since it indicates that

the wind uncertainties have been scaled fairly accurately.

Winds computed from edited data behave differently, however.

The heavily edited data from the 1982 flight show a division on

the basis of algorithm, indicating that, at least for this data

set, editing has had different effects on the three smoothing

methods. Examination of table 4 and Fig. 13 reveals that editing

has little effect with the cubic spline, while its primary effect

with the quadratic is to reduce uncertainty and with the filter

to reduce actual error. A second separation can be seen in the

edited 1983 data, as the spline profiles lie above and to the

left of the others (Fig. 14). Table 5 reveals that spline wind

profiles have become less accurate after phase editing. The

reason for this behavior is not clear but the lesson to be

learned is; namely, one should not edit noisy Omega signals when

the spline will be used to estimate the winds.

One feature of Fig. 13 is the nonlinearity of the WE-WU

relationship; i.e., the slope of this relationship is close to

one for low uncertainty, but appears to approach zero as the

uncertainty increases. This behavior is displayed somewhat

differently in Fig. 15. In this figure, for the 12 wind profiles

(82E,QUAD), each 10-s wind measurement is assigned to a class

on the basis of its value of WU and whether it is a turn or leg

point. For example, all winds from the leg portions of

(82E,QUAD,247) with uncertainties between 1 and 2 m/s are

represented by one point in Fig. 13. The means of WU and R=WE/WU



for each class containing at least 15 points are plotted in the

figure. One hopes that R will be approximately 1.0 for the

range of uncertainties, but this is not the case. Low uncertainties

are seen to be substantial underestimates of actual error, while

high uncertainties tend to slightly overestimate the wind errors.

This is not a behavior peculiar to the quadratic, as Fig. 16

shows a similar trend with the cubic spline. Some of this change

in the value of R, at least in the case of the quadratic, seems

to be due to editing. Figure 17 is the raw-Omega counterpart

to Fig. 15, and although the dependence of R on uncertaintty is

reduced, there remains a behavior that cannot be explained by

"human" interference.

Why the error ratio R should depend upon the magnitude of

the uncertainty is difficult to explain. Recall that uncertainty

measures error that is due only to the effects of geometry and

signal quality. Actual wind errors can be due to other causes

as well (WE can be expressed as WU + X, where X represents errors

external to the uncertainty calculation). One is thus tempted

to speculate that other sources of error may become evident when

uncertainties are low. These errors would be small compared to

the typical errors due to noisy Omega and poor geometry. Two

possible sources of such error are the diurnal effects of signal

transmission through sunrise or sunset, and sudden ionospheric

disturbances that temporarily alter the path of signal propagation

(Acheson, 1974). The diurnal effects are modeled by the

wind-finders in this study, albeit crudely, and are probably

not having a noticeable influence on the computed winds. If it

is true that a propagation phenomenon is responsible for the

behavior of the error ratio, Acheson showed remarkable insight

when he suggested that "as the...noise problem diminishes with

the use of high-power VLF transmitters, problems with propagation

we have previously been able to ignore as being relatively small

will likely become the more important [and] set the limit on

windfinding performance".



C. The Effect of Post-Processing

The data presented in this study demonstrate clearly that

wind accuracy from Omega dropwinsondes can be significantly

impro.ved by reprocessing with the cubic-spline wind-finder.

The on-board quadratic algorithm has two major deficiencies that

degrade the quality of real-time winds: the quadratic model is

inappropriate for aircraft maneuvers, and it is very sensitive

to noisy Omega on the edges of its 3-min smoothing window. By

using the low-pass filter algorithm on many soundings and by

editing poor Omega, Franklin (1983) observed changes in direction

of at least 20 degrees or in speed of at least 5 m/s in 29% of

the standard level wind reports for the HRD flights around

Hurricane Debby. With data from our stationary sondes we can

estimate the improvements to be expected from postprocessing by

comparing wind errors from the quadratic using raw Omega with

those from the spline using edited Omega. From table 4 we see

that in the geometric mean, postprocessing reduced mean wind

error by 37% in the legs (3.37 to 2.13 m/s) and by 57% in the

turns (5.14 to 2.02 m/s). For the individual geometries, error

reductions ranged from 14% to 47% in the legs and from 52% to

67% in the turns. The overall poorer signal quality and geometry

of the 1983 data given in table 5 do not seem to affect these

error reductions greatly; geometric-mean error reductions for

the 1983 flight are 25% and 60% for legs and turns, respectively.

These would seem to be significant reductions in wind error for

nearly all meteorological applications.

The error reductions quoted above all consider only the

effects of editing noisy Omega and the use of the cubic-spline

smoother. Examination of tables 4 and 5 shows that further

improvements in accuracy can be obtained by adding a fifth or

sixth Omega signal to the postprocessed wind computation (recall

that no more than four may be used in real-time). WE(82E,SPL)

averaged over the four-station combinations is 1.83 m/s, compared



with 1.42 and 1.39 m/s for the five and six-station combinations,

respectively. There are similar reductions in the 1983 data.

This additional 20-25% reduction in error through postprocessing

would not occur in all cases, however. If the four stations

selected in real-time were nearly optimal, the reduction of

error obtained by using additional stations would be small.

Furthermore, many times only three or four usable Omega signals

are available. Nonetheless, in most cases the inclusion of a

(generally available) fifth station should result in an additional

error reduction of 10-20%.



V. SUMMARY AND CONCLUSIONS

It was observed that aircraft turns greatly affect the

accuracy of real-time wind estimates; that is, winds estimated

with the on-board quadratic wind-finder using raw Omega. In

the geometric mean, wind error during turns was 51% higher than

in legs for the two flights. About half of this increase was

due to the shadowing of the Omega antenna during turns, with

the remainder due to the quadratic's implied assumption of

constant aircraft acceleration.

Of the three wind-finders investigated in this study, the

cubic-spline phase smoother clearly outperformed both the

quadratic and low-pass filter methods on the stationary sonde

data of both research flights. In turns, using edited Omega

signals, wind errors for the spline averaged 48% lower than the

quadratic and 43% lower than the low-pass filter. These are

average figures over many Omega-station combinations that

represent all qualities of station-sonde geometry. For soundings

with turns, then, the spline is the recommended wind-finder for

ODW postprocessing.

During periods of straight-line aircraft motion (legs),

stationary sonde wind errors with the spline were lower than

those of the quadratic and filter by 22% and 18%, respectively,

for high-quality edited Omega, and by 34% and 33% for the noisier

raw phases. Results of the synthetic sounding experiments

indicated that the quadratic had the finest resolution of the

three methods, although phase variances of 1.0 cec2 or less, as

well as an absence of turns, are necessary to take advantage of

this higher resolution. Most Omega signals, even after editing,

contain sufficient noise to warrant use of another wind-finder.

The low-pass filter performed extremely well with the synthetic

soundings, but questions remain concerning its accuracy with

real-world Omega. We therefore recommend the cubic spline

wind-finder for all ODW's containing typical amounts of noise.



An estimate of the effect of postprocessing was made by

comparing wind error with the quadratic using raw Omega against

error with the spline using edited Omega. The postprocessed

wind errors averaged 31% lower than real-time errors in the legs

and 59% lower in the turns. Thus, highly significant reductions

in wind error can be expected through postprocessing.

Results of this study indicated that wind uncertainties

(predicted wind errors) had been scaled accurately by previous

investigators. Sonde-mean uncertainties were useful in estimating

the mean wind error in .a sounding, but instantaneous uncertainty

estimates bore little relation to actual errors and probably

should be replaced by the sonde-means in future postprocessed

data sets (particularly if the spline wind-finder is used).

Finally, although very low uncertainties were observed in

this study (<1 m/s), actual wind errors did not drop as low as

the uncertainties. This suggests that sources of error external

to the uncertainty calculation (such as ionospheric disturbances)

may produce noticeable effects when other errors become small.

If this is true, we may be approaching a practical lower limit

on Omega wind error, which neither perfect geometry nor noise-free

signals could overcome. Fortunately, such a lower limit would

probably be small; sonde-mean wind accuracies of 1.3 m/s were

achieved for the test drops of this study.

Although much has been learned about Omega wind accuracy

and the three phase-smoothing algorithms, many questions still

remain. The true effect of turns on cubic spline winds is hard

to gauge with only one flight track, since the classification

of "turn" and "leg" points may be meaningless in light of the

spline's continuity restrictions. A one-sonde, two-aircraft

experiment in which only one plane executes turns would address

this question but only at high cost. A more economical alternative

would be to add "aircraft" motion to existing synthetic soundings.

More work with such soundings could also increase our understanding

of the filter's performance with the stationary sonde data.



With the data already collected, however, progress could be made

in the problem of wind accuracy at the ends of the spline. Any

of a number of restrictions can be made at the end points; these

restrictions should be investigated so that surface wind estimates

can be obtained with greater reliability. Perhaps the most

intriguing questions raised by this research, however, are those

concerning the high error ratios for low wind uncertainties.

The causes of this behavior, and the variablility of this apparent

lower limit on Omega wind accuracy, as well as the other questions

raised above, should be points of future investigation.
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Table 1. The locations of the eight Omega transmitters.
The stations used for windfinding have been
identified with an "x".

Number Station Name Latitude Longitude Used 1982? Used 1983?

Japan

Norway

Liberia

Hawaii

N. Dakota

La Reunion

Argentina

Australia

34.6

66.4

6.3

21.4

46.4

21.0

43.0

38.4

129.4 E

13.2 E

10.7 W

157.8 W

98.3 W

55.3 E

65.1 W

147.0 E



Table 2. Stratification of sample. Classification of
a wind estimate valid at time T is determined
by the value of D=IT-tj, where T is the time
of the midpoint of the nearest aircraft turn.
Units for D are seconds.

Quadratic Low-pass Filter Cubic-spline

Leg D>105 D>135 D>105

Edge 65<D<105 105<D<135 65<D<105

Peak 25<D<65 35<D<105 25<D<65

Center D<25 D<35 D<25

Turn D<105 D<135 D<105

Table 3. Error Statistics for (82E,QUAD,234578)

Sample Size Independent WE WU R
Sample Size (m/s) (m/s)

Legs 228 107 1.93 1.19 1.63

Turns 351 165 2.51 2.65 1.06

Edges 136 64 2.49 1.98 1.39

Peaks 140 66 2.44 3.29 0.75

Centers 75 35 2.66 2.69 1.01



Table 4. Sonde-mean wind errors and
wind uncertainties for 1982
research flight. Wind error
is given first, all values
are in m/s.

LEGS TURNS
EDITED OMEGA RAW OMEGA EDITED OMEGA RAW OMEGA

STATIONS QUAD FILTER SPLINE 1.0AD FILTER SPLINE QUAD ILTER SPLINE QUAD FILTER PLNE

1.93 1.83 1.39 2.02 2.27 1.31 2.51 2.31 1.40 2.91 2.71 1.30

234578 1.19 1.94 0.95 1.55 1.99 0.95 2.65 3.42 1.07 3.64 4.29 1.12
1.99 1.89 1.42 2.15 2.57 1.63 2.39 2.14 1.46 3.39 3.27 1.42

23457 1.35 2.22 1.11 1.78 2.29 I 1.10 3.02 3.88 1.22 4.19 4.95 1.22

2.25 2.14 1.56 2.77 2.80 I 1.67 2.62 2.31 1.51 3.90 3.71 1.46

2347 1.59 2.49 1.32 2.53 2.64 1.30 3.33 4.25 1.45 4.78 5.54 1.46
S2.29 I 2.23 1.64 2.50 2.79 2.01 2.69 2.51 1.60 4.06 3.84 1.67

2457 1.67 2.71 1.57 2.14 2.86 1.52 3.66 4.68 1.76 5.11 6.00 1.76
2.59 2.53 2.15 2.71 3.06 2.06 3.34 1 3.22 1.94 4.01 3.87 1.83

2345 1.97 3.35 1.92 2.57 3.62 2.00 4.60 5.94 1.98 6.38 7.62 2.15
2.98 2.55 1.96 3.55 3.48 2.09 3.48 3.22 1.98 4.87 4.69 1.94

2378 1.82 2.73 1.39 2.55 2.97 I 1.39 3.58 4.65 1.55 5.47 6.19 1.65
2.55 2.40 1.63 2.98 3.01 2.01 2.87 1 2.61 1.61 4.78 4.39 1.67

247 1.86 2.94 1.68 2.43 3.37 1.64 3.92 4.99 I 1.89 5.78 6.66 1.91

2.99 2.55 2.33 4.04 3.42 2.41 3.68 3.19 2.16 6.04 5.58 2.05

257 2.39 4.00 I 2.36 4.26 4.59 2.29 5.43 6.98 2.74 8.37 9.71 2.79
S3.48 2.62 3.26 3.80 3.64 3.06 5.40 4.35 2.99 6.21 5.61 2.79

245 4.74 8.79 5.12 6.55 9.92 5.25 12.68 16.45 5.25 16.63 19.39 5.41

3.61 3.23 2.73 4.05 3.77 2.40 4.24 3.95 2.34 6.24 5.67 2.28

234 I 2.66 4.10 2.53 4.02 4.74 I 2.65 5.34 6.78 2.73 8.66 9.95 3.12

'3.51 3.01 2.29 4.35 I 3.81 I 2.47 4.40 4.10 2.26 6.00 5.56 2.27
278 2.35 3.48 1.95 3.41 I 3.92 I 1.94 4.59 5.77 2.14 7.00 7.72 2.21

4.95 4.42 3.15 5.56 5.85 1 4.37 6.38 5.53 3.04 9.24 8.61 3.63

458 5.63 9.54 5.57 7.52 10.09 5.41 13.12 16.88 6.78 17.17 19.46 6.50

<WE> 2.93 2.62 2. 2913 3.37 I 3.3742 2.29 3.67 I 3.2906 2.02 5.14 4.78.96 2.6103
<WU> 1 2.44 I 4.02 I 2.29 3.44 4.42 I 2.29 5.49 I 7.06 I 2.55 7.77 I 8.96 1 2.61



Table 5. Sonde-mean wind errors and
wind uncertainties for 1983
research flight. Wind error
is given first, all values
are in m/s.

LEGS TURNS
S EDITED OMEGA I RAW OMEGA EDITED OMEGA I RAW OMEGA

STATIONS QUAD FILTER SPLINE QUAD FILTER SPLINE QUAD FILTER SPLINE I QUAD FILTER SPLINE
3.69 3.81 2.76 3.86 4.10 2.8 4.00 3.70 2.22 5.14 I 4.79 I 2.33

23578 2.73 2.86 I 1.12 I 3.18 2.76 1.13 3.30 3.67 1.10 4.64 4.93 1.22

4.28 3.93 I 3.34 4.68 4.52 3.26 5.48 4.91 2.44 6.12 5.63 2.76

2578 3.52 3.66 1.49 4.08 3.54 I 1.45 4.41 I 4.82 I 1.53 6.17 I 6.36 I 1.64

4.18 4.09 4.03 4.22 4.03 I3.61 5.90 I5.26 I3.00 6.27 I5.51 I 2.94
2378 3.87 4.05 1.50 4.65 I 4.00 1.51 4.51 I 4.91 I 1.55 6.62 I 6.75 I 1.69

4.34 4.33 2.77 4.74 I 4.93 I 2.59 5.07 I 4.76 I 2.19 6.14 I 5.67 2.32

2358 3.31 3.46 1.44 1 3.90 | 3.51 I 1.44 4.04 4.511 1.53 I 5.44 5.87 1.62

4.17 4.71 I 3.55 1 4.62 I 5.35 I 3.35 4.87 I 4.53 I 2.68 16.49 6.09 2.72

2357 3.64 I 3.91 1.70 I 4.42 I 3.68 I 1.71 4.32 I 4.76 I 1.86 I 6.79 I 6.72 I 1.65

14.84 15.35 4.14 I 5.36 I 5.53 I 3.25 7.06 6.22 I 3.57 8.46 I 7.27 I 3.32
357 5.26 6.17 I 2.23 1 7.74 I 6.34 I 2.30 5.80 I 6.28 2.70 9.54 9.75 2.33

4.77 4.14 3.98 I 5.05 14.37 I 3.56 7.60 i6.59 I 3.27 I 7.39 6.52 I 3.42

278 4.68 4.85 2.07 5.72 I 5.27 I 2.03 6.04 I 6.431 2.40 8.98 I 8.65 2.49

7.10 7.16 6.34 8.21 I 7.46 I 4.75 10.84 I 9.89 I 5.51 114.83 111.80 4.98

237 7.55 8.281 3.24 9.701 8.34 I 3.36 8.12 9.02 3.921 12.90 13.18 3.48

5.49 5.10 4.89 6.00 .98 1 4.15 8.04 7.69 3.85 110.39 I 9.20 3.62

238 5.87 I 6.32 2.17 7.28 I 6.30 I 2.19 6.15 I 6.91 2.56 I 9.34 I 9.98 I 2.77

4.83 4.94 3.30 5.12 I 5.07 I 2.96 5.59 I 5.32 2.57 6.60 I 5.86 I 2.57

358 3.66 3.89 1.73 I 4.56 I 4.14 I 1.70 4.53 I 5.10 2.05 I 6.03 6.53 I 2.11

8.94 8.05 1.57 110.20 18.27 I 7.77 11.75 110.97 5.64 115.52 14.06 I5.89
235 10.68 10.22 4.90 12.45 I 10.25 I 5.20 11.87 12.83 5.50 1 15.21 16.91 5.97

5.90 5.87 I 5.07 6.41 6.86 I 5.48 6.20 6.12 3.20 1 8.37 8.51 3.74

257 5.00 5.44 2.48 5.68 I 5.04 I 2.45 5.97 I 6.54 I 2.76 I 8.78 I 9.05 I 2.30

<WE> 5.21 5.12 4.31 5.71 5.54 3.94 6.87 1 6.33 I 3.35 18.44 I 7.58 I 3.38
<WU>l 4.98 1 5.26 1 2.17, 6.11 I 5.26 2.21 5.76 I 6.32 I 2.46 I 8.37 I 8.72 2.44



1982 FLIGHT TRACK
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Figure 1. Flight tracks for the missions of
4 August 1982 (a) and 13 September 1983 (b).
Position of the sonde is marked by the "S."
Turn types are identified by letter.



DATE 820804
STATION NORWAY
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Figure 2. Raw (top) and edited (bottom) Omega signals
from the Norway station during part of the 1982 mission.
Turn labeling corresponds to that in figure la.
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Figure 3. Same as figure 2,
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DATE 830913
STATION ARGENTINA

400 I I I I

320

S240

U 160

-j 80 
-0z

80w
1 -80 D E

0240

-320

-400
17:01:59 17:07:44 17:13:30 17:19:16 17:25:02 1730:48

TIME (hhmmss)

Figure 4. Raw Omega signals from the Argentina station during part of the
1983 mission. Turns are identified by the brackets and are labeled as in
figure Ib.



OMEGA-STATION / DROPWINDSONDE GEOMETRY

Figure 5. Relative station-sonde geometry for the research missions.
The center of the diagram is near 25.7 N, 80.2 W.



WIND UNCERTAINTY
(82E, QUAD, 234578)
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TIME (hhmmss)

Figure 6. Wind uncertainty for a portion of wind profile (82E,QUAD,234578)
(see text). Turns are identified by the arrows and brackets. Relative
locations of the various classes of points are indicated by number: 1=leg,
2=turn, 3=turn edge, 4=turn peak, and 5=turn center.
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WIND ERROR & WIND UNCERTAINTY
(82E, QUAD, 234578)
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Figure 7. Wind uncertainty (thin line) and wind error (thick line) for
same profile as figure 6. Local maxima in wind error are identified by
and local minima by "n."
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Figure 8. Wind uncertainty (thin
(thick line) for a portion of the
for the three windfinders.
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SYNTHETIC SOUNDING

1 2 3 4 5 6
WIND ERROR (m/s)

Figure 9. Wind profile of the synthetic sounding with
associated wind errors for the three wind-finders.
Rawinsonde data, from which synthetic Omega signals
were derived, appear along the right side of the figure.
Values of wind direction and speed (in knots) appear
next to each plotted wind vector. Errors for each
wind-finder in reproducing this sounding are given on
the left side of the diagram.
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Figure 10. Scatter diagram for (82E,QUAD,234578).
Each 10-s wind calculation is represented by an
"x" in the diagram.
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Figure 11. Same as figure 10, except for
(82E,FIL, 234578).
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Figure 12. Same as figure
(82E,SPL,234578). Due to
uncertainty (0.1 m/s) the
lower left of the diagram
as it should.
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SONDE -MEAN
WIND ERROR vs. WIND UNCERTAINTY
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Figure 13. Sonde-mean values of uncertainty
and error taken from table 4 (1982 flight) for
raw Omega (top) and edited Omega (bottom).



SONDE - MEAN
WIND ERROR vs. WIND UNCERTAINTY
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Figure 14. Same as figure
(1983 flight).
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WIND ERROR RATIO vs. UNCERTAINTY
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Figure 15. Class-mean values (see text) of uncertainty and error ratio for the
12 (82E,QUAD) profiles. All plotted points represent a minimum of 15 wind
measurements.
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WIND ERROR RATIO vs. UNCERTAINTY
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WIND ERROR RATIO vs. UNCERTAINTY
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15, except for the (82R,QUAD) profiles.
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Figure 17. Same as figure


