STOCHASTIC APPROACH TO THE ANALYSIS OF HIGHWAY PAVEMENTS

BY

HANI KHALIL FINDAKLY

B.Sc. University of Baghdad
(1966)

Submitted in partial fulfillment
of the requirements for the degree of
Master of Science
at the
Massachusetts Institute of Technology
January 1971

Signature of Author..........................

Department of Civil Engineering, January 1971

Certified by..

Thesis Supervisor

Accepted by..

Chairman, Departmental Committee on Graduate Students
ABSTRACT

STOCHASTIC APPROACH TO THE ANALYSIS OF HIGHWAY PAVEMENTS

by

HANI KHALIL FINDAKLY

Submitted to the Department of Civil Engineering on January 22, 1971 in partial fulfillment of the requirements for the degree of Master of Science.

A probabilistic method of analysis is presented as an integrated part of a rational approach to the analysis and design of highway pavements.

The suggested approach is based on the Monte Carlo simulation procedure. The pavement is represented by a mathematical model based on "Layered Systems Theory". It consists of three different layers with various mechanical properties which are acted upon by vehicular loading and environmental conditions.

The stochastic nature of the model is derived from the changes in the environment and the variability and inhomogeneity of the materials properties. This results in unpredictable behavior of the system associated with probabilities of overloading or inadequate capacity of the system of some components thereof to carry its stipulated functions.

The behavior of the system is characterized by its response to various excitations. This response may be in the form of developed stresses, strains or deflections at any point in the system, or it may, at later stages, take the form of damage manifested by cracks or excessive deformations. Regardless of the nature of response, it is uncertain in nature and should be characterized statistically rather than deterministically.

The stochastic approach for the analysis of pavement systems, therefore, provides realistic and sufficient information about the behavior of the system in operational environment.

This approach seems to be promising and can be pursued further for a comprehensive study of the performance
and failure of pavement systems under realistic operational environment. However, it is suggested that obtaining closed form probabilistic solutions may be more efficient at these subsequent stages of performance evaluation and study, where simulation has proved to be very costly.

Thesis Supervisor: Professor Fred Moavenzadeh
Title: Associate Professor of Civil Engineering
ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude to his thesis advisor, Professor Fred Moavenzadeh, for his many hours of advice and encouragement throughout the course of this study.

Appreciation is extended to Dr. John F. Elliott, of the University of Sierra Leone, for many hours of helpful discussion. Many thanks to Professor Joseph Soussou, whose comments and discussion were very useful and informative.

The author is also indebted to the Iraqi Scientific Research Council which enabled him to continue his education.

Finally, the financial support of the U. S. Department of Transportation, Federal Highway Administration, Bureau of Public Roads which sponsored this research, is greatly appreciated.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title Page</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>2</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>4</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>5</td>
</tr>
<tr>
<td>List of Figures</td>
<td>7</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>9</td>
</tr>
<tr>
<td>II. Computer Simulation Techniques</td>
<td>11</td>
</tr>
<tr>
<td>2.1 Definition and Scope</td>
<td>11</td>
</tr>
<tr>
<td>2.2 Rational for Computer Simulation</td>
<td>12</td>
</tr>
<tr>
<td>2.3 Monte Carlo Methods</td>
<td>15</td>
</tr>
<tr>
<td>2.3.1 Monte Carlo Analysis</td>
<td>17</td>
</tr>
<tr>
<td>2.4 Random Numbers</td>
<td>21</td>
</tr>
<tr>
<td>2.5 Sampling of Random Events</td>
<td>25</td>
</tr>
<tr>
<td>2.6 Monte Carlo Simulation Models and their Properties</td>
<td>28</td>
</tr>
<tr>
<td>2.7 Representation of the Elements of the Simulation Model in Monte Carlo Analysis</td>
<td>33</td>
</tr>
<tr>
<td>2.8 Final Procedural Remarks on the Use of the Method</td>
<td>40</td>
</tr>
<tr>
<td>III. The Three-Layer Half-Space Viscoelastic System</td>
<td>44</td>
</tr>
<tr>
<td>3.1 Model for the Pavement System</td>
<td>44</td>
</tr>
<tr>
<td>3.2 Numerical Example of Simulation of the Three-Layer System</td>
<td>54</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.3 Results and Discussion</td>
<td>56</td>
</tr>
<tr>
<td>IV. Conclusions</td>
<td>78</td>
</tr>
<tr>
<td>V. Recommendations for Future Work</td>
<td>80</td>
</tr>
<tr>
<td>5.1 Primary Response Model</td>
<td>80</td>
</tr>
<tr>
<td>5.2 Performance Prediction Model</td>
<td>83</td>
</tr>
<tr>
<td>5.3 Summary</td>
<td>89</td>
</tr>
<tr>
<td>Bibliography</td>
<td>92</td>
</tr>
<tr>
<td>Appendix I</td>
<td>96</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.</td>
<td>Use of Monte Carlo Method in Computing Integrals</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.</td>
<td>Sampling Procedure by the Inverse Transformation Method.</td>
<td>29</td>
</tr>
<tr>
<td>Figure 3.</td>
<td>Three-Layer System.</td>
<td>45</td>
</tr>
<tr>
<td>Figure 4.</td>
<td>Variation of the Relaxation Function with Temperature at a Fixed Time.</td>
<td>49</td>
</tr>
<tr>
<td>Figure 5.</td>
<td>Creep Functions of the Simulated Pavement system.</td>
<td>55</td>
</tr>
<tr>
<td>Figure 6.</td>
<td>Typical Distribution of Time-Dependent Normalized Vertical Strains for Material Properties Shown in Figure 5.</td>
<td>59</td>
</tr>
<tr>
<td>Figure 7.</td>
<td>Relative Frequency Distribution of Vertical Strain at t/τ=0.0 for Uniformly Distributed Random Inputs.</td>
<td>61</td>
</tr>
<tr>
<td>Figure 8.</td>
<td>Relative Frequency Distribution of Vertical Strain at t/τ=10.0 for Uniformly Distributed Random Inputs.</td>
<td>62</td>
</tr>
<tr>
<td>Figure 9.</td>
<td>Relative Frequency Distribution of Vertical Strain at t/τ=0.0 for Normally Distributed Random Inputs.</td>
<td>63</td>
</tr>
<tr>
<td>Figure 10.</td>
<td>Relative Frequency Distribution of Vertical Strain at t/τ=10.0 for Normally Distributed Random Inputs.</td>
<td>64</td>
</tr>
<tr>
<td>Figure 11.</td>
<td>Relative Frequency Distribution of Uniformly Distributed Temperature as Generated by an IBM/ System 360 Random Number Generator.</td>
<td>66</td>
</tr>
<tr>
<td>Figure 12.</td>
<td>Relative Frequency Distribution of Normally Distributed Temperatures as Generated by an IBM/ System 360 Random Number Generator.</td>
<td>67</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Figure 13.</td>
<td>Cumulative Distribution of Vertical Strains for Frequency Distribution Shown in Figure 7.</td>
<td>68</td>
</tr>
<tr>
<td>Figure 14.</td>
<td>Cumulative Distribution of Vertical Strains for Frequency Distribution Shown in Figure 8.</td>
<td>69</td>
</tr>
<tr>
<td>Figure 15.</td>
<td>Cumulative Distribution of Vertical Strains for Frequency Distribution Shown in Figure 9.</td>
<td>70</td>
</tr>
<tr>
<td>Figure 16.</td>
<td>Cumulative Distribution of Vertical Strains for Frequency Distribution Shown in Figure 10.</td>
<td>71</td>
</tr>
<tr>
<td>Figure 17.</td>
<td>Cumulative Distribution of Uniformly Distributed Temperatures.</td>
<td>72</td>
</tr>
<tr>
<td>Figure 18.</td>
<td>Cumulative Distribution of Normally Distributed Temperatures.</td>
<td>73</td>
</tr>
<tr>
<td>Figure 19.</td>
<td>Summary of Simulation of Vertical Strains for Uniformly Distributed Random Inputs.</td>
<td>75</td>
</tr>
<tr>
<td>Figure 20.</td>
<td>Summary of Simulation of Vertical Strains for Normally Distributed Random Inputs.</td>
<td>76</td>
</tr>
<tr>
<td>Figure 21.</td>
<td>History of Repeated Load and Environment Acting on a Pavement System.</td>
<td>82</td>
</tr>
<tr>
<td>Figure 22.</td>
<td>Two-Dimensional Simulation of the Performance of a Pavement Structure.</td>
<td>84</td>
</tr>
<tr>
<td>Figure 23.</td>
<td>Markov Process Simulation of the Damage Process in a Pavement System.</td>
<td>87</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

In recent years the behavior of materials and structures have been the subject of extensive studies. These studies have emphasized the variability which occurs in the magnitude and distribution of the structural loadings, in the properties of the material, in the surrounding operational environment, and in the response of the structures and other engineering systems to such excitations (1)*.

In highway systems, the increasing use of unconventional road structures emphasizes the need for a better understanding of the contribution which each element of the pavement structure and the surrounding environment (including mechanical loads), makes to the overall behavior of the whole system.

A highway pavement system is a joint product of a complex interaction of the pavement structure, vehicular loads, and environmental conditions operating on the system. The behavior and the performance of the system, therefore is greatly influenced by these parameters. Any variability in one or more of these parameters implies a variability in the response and the overall performance of the system.

This study presents a simulation procedure based on the "Monte Carlo" method for the investigation of variability in the response of the pavement system. The method has been used in a variety of disciplines to study and predict the

* The numbers in the parenthesis refer to the list of references.
behavior of both deterministic and stochastic phenomena. Simplified stochastic models which yield both mean behavior and deviations from the mean can be obtained using the proposed simulation procedure.

A three-layer model representing a highway pavement system is analyzed, taking into consideration the variability of certain parameters in the structure itself as well as in the surrounding environment operating on the system. Cumulative distribution functions of the response of the system under variable loads and environmental conditions are obtained. This study is only a demonstration of the effectiveness of the method, and is not necessarily an exact evaluation of the actual performance of the pavement system under real operational environment.

This study is presented in five chapters. In Chapter II, the principles of computer simulation techniques are discussed, with the relevant justifications for the use of these techniques. Also discussed in this chapter are the Monte Carlo method of analysis as a sampling technique and its application to physical problems. Chapter III presents a methodology for the application of the Monte Carlo method to the analysis of a three-layer model representing a highway pavement system. A numerical example and results are also presented in this chapter.

A summary and conclusions are found in Chapter IV, while Chapter V presents some recommendations for future work.
2.1 Definition and Scope

The word "simulation" has been used quite freely to refer to a number of different things. Recognizing the inherent inconsistencies and ambiguities involved in the use of the term, many definitions have emerged for simulation. Churchman has defined "simulation" as follows:

"x simulates y" is true if and only if:

a) x and y are formal systems
b) y is taken to be the real system, and
c) x is taken to be an approximation to the real system (8)

Shubik's definition of simulation, however, appears to be more appropriate because it is typical of more popular definitions (41), it states:

"A simulation of a system or an organism is the operation of a model or simulator which is a representation of the system or organism. The model is amenable to manipulations which would be impossible, too expensive, or impractical to perform on the entity it portrays. The operation of the model can be studied and, from it, properties concerning the behavior of the actual system or its subsystems can be inferred."

For the purpose of this study, however, a narrower defi-
nition of simulation will be used, and it will be restricted to experimentation on mathematical models. Also, our primary interest lies in simulation experiments that are performed on digital computers. In addition, we are concerned with experiments which take place over extended periods of time, under stochastic or dynamic conditions, and which have solutions that are not necessarily deterministic by strictly analytical means.

With these constraints, the following definition, similar to that suggested by Naylor et al. (33), is used in this study:

"Simulation is a numerical technique for conducting experiments on a digital computer, which involves certain types of logical and mathematical models that describe the behavior of a physical system (or some component thereof) over extended periods of real time".

2.2 Rational for Computer Simulation

It is recognized that in order to study and predict the future behavior of any system, certain steps must be taken in a systematic manner; these include:

1. Observation of the physical system.
2. Formulation of a hypothesis of a mathematical model that attempts to explain the observations of the system.
3. Prediction of the behavior of the system on the basis of the hypothesis by using the mathematical or logical deduction, i.e., by obtaining solutions to the mathematical model.
4. Performance of experiments to test the validity of the hypothesis or the mathematical model.

Generally, it may not be plausible to follow all these steps for any particular problem, and some form of simulation may be a satisfactory substitute.

For example it may be either impossible or very costly to make field observations on the real system. In highway systems for instance, it is almost impossible to perform experiments on the pavement structure where all combinations of the factors affecting its performance, such as temperature, moisture, loads, different combinations of materials properties for each layer can be used in such tests.

Furthermore, the observed system may be so complex that it is impossible to describe it in terms of mathematical equations for which analytic solutions that could be used to predict the behavior of this system are possible to obtain. An example of this is the complex interaction between the environmental factors and the materials' properties in the pavement structure, and the interaction between the environmental factors and the response of the structure itself. These make it virtually impossible to describe the performance of the system in an operational environment in mathematical forms. In such cases, simulation have proved to be an effective tool to describe and predict the future performance of the systems (33).

Although in some cases a mathematical model can be formu-
lated to describe the system, it may not be possible, however, to obtain a solution to it by ordinary analytical techniques. Again, the complexity in the highway systems and other economic systems can well provide examples for this case. In such cases it may be possible to use complicated mathematical models to simulate the systems under consideration. Although this approach does not guarantee precise prediction of the future performance or exact solutions to the model describing the system; it is possible to experiment with a variety of alternative solutions and decision rules to determine which solutions or decision rules are more realistic than others in predicting the behavior of the system. Therefore, computer simulation techniques such as the Monte Carlo method, which has been employed in this study, are used as efficient techniques of numerical analysis for solving complicated stochastic models or systems.

The principal justification for computer simulation is its ability to overcome the aforementioned difficulties in implementing a scientific method to study and analyze physical and other systems. There are, however other reasons for which computer simulation may be necessary. The following are a few of these additional reasons. They are not intended to be mutually exclusive and are closely related to the above discussion.

1. The use of computer simulation permits the study of systems with complex internal interaction
between their different components, by breaking down each system into subsystems, where it may be possible to model these subsystems and analyze them separately.

2. Detailed observations on the system being simulated may lead to a better understanding of the system and to suggestions for improving it, which otherwise would not be possible. This may include the study of the effects of certain informational, environmental, or characteristic changes on the behavior of the system. This is achieved by making alterations in the model of the system and observing the effects of these alterations on the performance of the system.

3. Simulation can be used to foresee the implications of introducing new components into the system. Also, it is very useful with new situations about which little or now knowledge is available. In such cases simulation can serve as a "preservice test" to try out new alternatives for physical and geometric characteristics of a system, before taking the risk of experimenting it on the real system. Economy and safety, the main objectives in engineering design are, hence, satisfied by the implementation of computer simulation.

4. In certain stochastic problems, the sequence of events may be of particular importance, where information about expected values may not be sufficient to describe the process. Monte Carlo methods may be the only satisfactory way of providing the information in such cases. The sequence of occurrence of certain environmental and loading effects has a great importance on the evaluation of the performance of a highway pavement and the degree of damage that exists at any period in the lifetime of the pavement.

2.3 Monte Carlo Methods

The systematic development of the Monte Carlo methods started in the early 1940's, in nuclear physics where attempts
were made to simulate the probabilistic problems concerned with random neutron diffusion in fissile materials (19).

In general, Monte Carlo methods comprise that branch of experimental mathematics which is concerned with experiments on random numbers. The simplest Monte Carlo approach to probabilistic problems is to observe numbers which are randomly chosen in such a manner that they simulate the physical process being studied, and to infer the probable solution for the behavior of the physical system from the behavior of these random numbers.

Problems handled by the Monte Carlo methods can be of two types: probabilistic or deterministic depending on whether or not they are directly concerned with the behavior and the outcome of random processes (19).

The first group consists of those problems which involve some kind of stochastic process. The second group are those deterministic mathematical problems which cannot be solved by strictly deterministic methods. It may however be possible to obtain approximate solutions to the latter group of problems by simulating a stochastic process which has moments, density functions, or cumulative distribution functions that satisfy the functional relationships or the solution requirements of the deterministic problem. Examples of this group are solutions to high order difference equations and multiple integral problems.
The greatest success of the Monte Carlo method has been in those areas where the basic mathematical problem itself consists of the investigation of some random process. Therefore, it seems obvious that this method can serve as a powerful tool to solve a boundary-value problem with random input parameters. This is one of the main reasons why this particular method has been chosen for the analysis of the highway pavement problem.

2.3.1 Monte Carlo Analysis

In order to define the characteristics of the Monte Carlo method, it is suitable to present a simple example on how the method works for solution of mathematical problems.

The development of mathematical statistics played an important role in the computation of integrals. Since "probability" can always be regarded as a measure, the problem of determining the probability of some event or its mathematical expectation can be reduced to a problem of computing some integral, such as the following:

$$\int_{0}^{1} \phi(\xi) d\xi \quad (2.1)$$

Assume that the values of the function $\phi(\xi)$ lie between 0 and 1, i.e., $0 \leq \phi(\xi) \leq 1$ for $a \leq \xi \leq b$. Therefore the problem is to find the area A of the region R, (Figure 1), bounded by the
curve \(\eta = \phi(\xi) \), the \(\xi \)-axis, and the coordinates \(\xi = 0 \) and \(\xi = 1 \). Naturally, the restrictions imposed on the function \(\phi(\xi) \) are not necessary, since there is a possibility of shifting and scaling.

Now let a point \((x,y)\) fall randomly in the square \(0 < \xi < 1, \quad 0 < \eta < 1 \), with independent coordinates which are uniformly distributed between \(a \) and \(b \). Since \(0 < x < 1 \), and \(0 < y < 1 \), the probability \((p) \) that the point \((x,y)\) falls within the area under the curve is equal to \(A \), which is the required area.

Using any technique for finding independent uniformly distributed variables as discussed in the following section, say \(x \) and \(y \), the following condition should be satisfied:

\[
\phi(x) < y \quad (2.2)
\]

in order to guarantee that the random point \((x,y)\) lies within the region \(R \) under the curve. Therefore, \(N \) pairs of sampled random variables are taken and a test is run on each to determine whether they satisfy the inequality \((2.2)\). If this inequality holds for \(n \) pairs out of \(N \), the ratio of \(n/N \) is approximately equal to the probability that any random point \((x,y)\) falls within the region \(R \), so

\[
\frac{n}{N} = p = \int_0^1 \phi(\xi)d\xi \quad (2.3)
\]

It is clear then that the number of tests \(N \) will affect the accuracy of the computation of such integrals and the
Figure 1. USE OF THE MONTE CARLO METHOD FOR COMPUTING INTEGRALS.
associated error. Also, it is interesting to notice that the restrictions that are usually required to evaluate this integral such as the smoothness of the function need not be imposed in this method. All that is required is that the function be bounded and measurable.

A more general case is that in which a modeled process of the type discussed in the previous example, is used for estimating the unknown mathematical expectation of some random variable \(x \). The same example is used here; i.e., it is required to evaluate the integral \(\int_{0}^{1} \phi(\xi)d\xi \).

Let \((y) \) be a uniformly distributed variable over the range \((0,1)\). Then the mathematical expectation of the variable \(x = \phi(y) \) is

\[
M_{x} = \int_{0}^{1} \phi(\xi)d\xi \tag{2.4}
\]

It is necessary, therefore, to sample \(N \) independent values of the variable \(y_{1}, y_{2}, \ldots, y_{N} \) in order to evaluate the integral. It is also necessary to compute the arithmetic mean:

\[
\bar{X} = \frac{1}{N} \sum_{i=1}^{N} \phi(y_{i}) \tag{2.5}
\]

This value of the arithmetic \(\bar{X} \) is approximately equal to the value of the integral. The value of the errors involved in computing some of the values of \(\phi(y_{i}) \) will be
"smoothed out" if the value of N is large. This will guarantee the stability of the method against any disturbances arising from defect of randomness in the machine.

The process, then, involves the estimation of the probability of some event A, or its mathematical expectation by means of a modeled process. The following characteristic features can be inferred from the above discussion:

1. Large number of computations of a uniform type is performed, and
2. The error involved in the computation is "smoothed out" for larger number of samples
3. It is also known that this method needs a comparatively small amount of "memory for storage of intermediate results which is well suited for multi-dimensional problems" (8). This point is extremely significant in very large and complex problems where the storage problem becomes an important issue in the computation process (8,19,28).

The above discussion shows that the Monte Carlo method is a modeling procedure where a random event A, occurring with probability p, is modeled by means of the independent variable.

2.4 Random Numbers

The essential feature common to all Monte Carlo computations is that at some point a random value is substituted for a corresponding set of actual values with similar statistical
properties. This random value is called "random number", on the basis that it could well have been produced by chance by any suitable random process. However, the fact that random numbers are not usually produced in a random way does not influence their effectiveness in this method; the important thing is the distribution of these numbers and not the source they come from.

In order to discuss the techniques for generating random numbers, it is essential to define some terms that are closely related to the properties and the use of these numbers according to the way they are produced.

First, it is important to define what is meant by a "random event" and "probability". A random event is an event which has a chance of happening, and probability is the numerical measure of that chance.

In Monte Carlo work, random numbers are classified into three categories, according to the way they are produced and used, random, pseudorandom, and quasirandom.

Random numbers, \(y \), are the numbers that are produced by chance and follow a standardized rectangular distribution of the type shown in equation (2.6).

\[
F(y) = \begin{cases}
0, & y < 0 \\
y, & 0 < y < 1 \\
1, & y > 1
\end{cases}
\] (2.6)
where \(F(y) \) is the cumulative frequency distribution of the function \(y \).

However, in practice these so-called "random numbers" are substituted by some other numbers which are convenient to produce and are equally effective from statistical point of view.

For electronic digital computers it is most convenient to calculate a sequence of numbers one at a time as required by a specified rule. These numbers, however, are so devised that usual statistical tests will detect any significant departure from randomness. This sequence is called "pseudorandom". One good advantage of the use of a specified rule in producing random numbers is that the sequence is reproducible for purposes of computational checking.

Pseudorandom numbers are generally used in all classes of problems of the Monte Carlo type. However, in some cases the violation of some statistical tests of randomness may not invalidate the results. In such cases non-random sequences may deliberately be used, provided that this sequence have the particular statistical problem. Such a sequence is called "quasirandom" (19).

Several methods of generating sequences of random numbers are available. Naturally, all the methods embody some
quasirandom physical process that generates sequences of random numbers of a desired length and property (33). One of the principle requirements of these sequences, as in any other random sampling procedures, is statistical independence (18).

Three alternative methods are used to generate sequences of random numbers; they are:

1. Manual methods
2. Library methods
3. Computer methods

Manual methods include such slow procedures as coin flipping, dice rolling, card shuffling, etc., which are the simplest but the least practicable methods.

A number of library tables for random numbers have been published (37). These numbers are generated by one of the aforementioned methods before being tabulated. The one advantage of such tables is that they offer reproducible sequences of random numbers. However, the method lacks the speed and, in some cases, the sufficiency of the numbers contained in the tables where it is not desirable to use the same "random data" for solution of all the problems!

Computer methods include: analog computer methods, and digital computer methods.
Analog computer methods depend on some random physical process (such as the behavior of an electric current), thus they are fast, but the sequences they generate are again non-reproducible.

Three modes for providing random numbers on digital computers have been suggested by Tocher (45): external provision, internal generation by a random physical process, and internal generation of sequences of digits by a recurrence relation.

In examining several methods for generating random numbers, it seems that an acceptable method to be used for such purposes must provide sequences of random numbers having the following properties:

1. They are uniformly distributed,
2. They should be statistically independent,
3. They can be reproducible, and
4. Through a desired length of a sequence, they should be non-repeating.

Furthermore, for this method to be largely acceptable, it must be capable of generating random numbers at high rates of speed and with minimum amount of computer memory capacity (33, 39).

2.5 Sampling of Random Events

The generation of simulated statistics (random variates)* is entirely statistical in nature and is carried out by supplying

*The term "variates" means a random variable having a certain mathematical expectation or probability of occurrence.
pseudorandom numbers generated by one of the methods mentioned in the previous section. These numbers are supplied into the process or system under study (where the system is represented by a probabilistic model), and then numbers (random variates) are obtained from it as the required solution. In general, simulation involves replacing an actual statistical span of elements by its theoretical counterpart, i.e., a span described by some assumed standard statistical or probability distribution and then sampling from this theoretical population by means of some type of random number generator (33). However, in some cases it may not be possible to find a standard theoretical distribution that describes a particular stochastic process or some of its components. In such cases, the stochastic process can be reproduced or simulated only by sampling from empirical distributions rather than from theoretical ones (This, naturally, assumes the existence of empirical data.).

In considering stochastic processes involving either continuous or discrete random variables, a function \(F(x) \), known as the "cumulative distribution function" of \(x \), denotes the probability that a random variable \(X \) takes on the value of \(x \) or less. If the random variable is discrete, then \(x \) takes on specific values and \(F(x) \) is a step function. If \(F(x) \) is continuous over the domain of \(x \), then the probability density function is \(f(x) = \frac{dF(x)}{dx} \). The cumulative distribution
function can be stated mathematically as

\[F(x) = P(X < x) = \int_{-\infty}^{x} f(t) dt \quad (2.7) \]

where \(F(x) \) is defined over the range \(0 < F(x) < 1 \), and \(f(t) \) represents the value of the probability density function of the random variable \(X \).

Several methods for generating pseudorandom numbers or uniformly distributed random variates over the interval \((0,1)\) have been developed (33). Uniformly distributed random variates will be denoted by \(d \), when \(0 < d < 1 \), and \(F(d) = d \).

There are three methods for generating variates from probability distributions — the "inverse transformation" method, the "rejection" method, and the "composition" method. These methods are discussed in references (33,41); however, a brief description of the first method is presented here because of its relation to the simulation of the highway system under consideration.

Inverse transformation method for generating stochastic variates on a computer is done as follows (see figure 2).

If one wishes to generate random variates \(x_i \)'s from some particular statistical population whose density function is given by \(f(x) \), the cumulative distribution function \(F(x) \) first must be obtained. Since \(F(x) \) is defined over the range 0 to 1, one can generate uniformly distributed random numbers over the
same range and set \(F(x) = d \). Therefore, for any particular value of \(d \), say \(d_0 \), which has been generated by any of the methods mentioned previously, it is possible to find the corresponding value for \(x \), which is in this case \(x_0 \). This is done by inverting the function \(F \), if it is defined. So

\[
d_0 = F_X(x_0) \\
x_0 = F_X^{-1}(d_0)
\]

where \(F_X^{-1}(d) \) is the inverse transformation of \(d \) on the unit interval into the domain of \(x \). This can be summarized mathematically by saying that if random numbers corresponding to a given \(F(x) \) are generated (equation 2.10),

\[
d = F_X(x) = \int_{-\infty}^{x} f(t) \, dt
\]

then

\[
P(X \leq x) = F_X(x) = P[d \leq F(x)] = P[F_X^{-1}(d) \leq x]
\]

and consequently \(F_X^{-1}(d) \) is a variable that has a probability density function \(f(x) \). This is equivalent to solving equation for \(x \) in terms of \(d \). Figure 2 is an illustration of this method.

2.6 Monte Carlo Simulation Models and Their Properties

The primary concern in this section is that with mathematical models. Mathematical models of systems in general consist of four well-defined elements: components, variables,
Figure 2. SAMPLING PROCEDURE BY THE INVERSE TRANSFORMATION METHOD.
Components of the mathematical models tend to vary widely depending on the nature of the model being simulated and the purpose of simulation. A highway pavement structure can be a component of highway transportation system. While the different layers, the geometry, etc. can well serve as components of a highway pavement structure which is under consideration in this study.

The variables that appear in the model are used to relate one component to another and may be conveniently classified as exogenous variables, status variables, and endogenous variables.

Exogenous variables are the input variables and are assumed to have been predetermined independently of the model being simulated. They may be regarded as acting on the system but not being acted upon or influenced by the system (34,35).

The state of the system over a certain period of time is described by the status variables. These variables interact with both the exogenous and endogenous variables according to an existing functional relationship of the elements of the system.

The output of the system is represented by the endogenous variables. Clearly, these variables are generated from the interaction of the input variables and the status variables according to some existing functional relationships.
Whether a particular variable should be classified as an exogenous variable, a status variable, or an endogenous variable depends on the purpose of the research. For example, vertical deflection may be regarded as an endogenous variable in a study concerned with the pure analysis of load application on a layered system, but may legitimately be treated as an exogenous variable in models concerned with predicting cumulative damage and distress of highway pavements. Exogenous variables may be used in two different ways in simulation experiments. They may either be treated as given parameters (determined by the environment, geometrical, and physical factors associated with the system), which of course have to be estimated first, and read into the computer as input data, or if they are stochastic variables, they may be generated internally by the computer by one of the methods mentioned in Section 2.4.

In the language of experimental design, exogenous variables or parameters are categorized as "factors". In conducting computer simulation experiments on a given system, the main concern is with the effects of the different levels of the various factors on the endogenous variables of the system. This is to say that a computer simulation experiment compromises a series of computer runs in which the effects of alternative factor levels on the endogenous variables are tested empirically (using simulation data) (33).
The functional relationships describing the interaction of the variables and components of a model are two-fold — identities and operating characteristics. Both identities and operating characteristics are used to generate the behavior of the system. Identities may take the form of either definitions or tautological statements about the components of the model. For a pavement, the vertical deflection may be defined as the difference between the vertical level before a load was applied and that upon load application. An operating characteristic is a hypothesis, usually mathematical equation, relating the system's endogenous and status variables to its exogenous variables (33). Compatibility equations and stress-strain relationships for a layered system are examples of the operating characteristics of the pavement system. Operating characteristics for stochastic processes take the form of probability density functions. Unlike components and variables, which can be directly observed from the real system the parameters of operating characteristics can only be derived on the basis of statistical inference. Naturally, the accuracy of the results of simulation depend on the accuracy of these estimates of the system's parameters.

In this study, the functional relationships describing the interaction between the variables and the components of an engineering model are called "congruity relationships". The
reason behind this is the fact that these equations and definitions relate the different variables and components and describe their inter-compatibility and congruences.

2.7 Representation of the Elements of the Simulation Model in the Monte Carlo Analysis

To illustrate the aforementioned system of classifying elements of mathematical models, and to set forward the problem under consideration, the elements chosen in this section represents a typical example of the problem being faced in the real world for any engineering system.

The behavior of a material in a given operational environment can be represented by a set of responses, R_i, where the subscript (i) is a number that varies in unit steps from 1 to the number of responses desired, say N. The choice of the response terms depends on the particular aspects of the material behavior under consideration. The set of response terms R_i's constitutes the endogenous variables in the simulation model.

The material is characterized by a set of relevant properties P_j, and the environment is described by a set of conditions C_k. The subscripts j and k take the values $1, 2, \ldots, n$ and $1, 2, \ldots, m$ respectively, where n is the number of pertinent material properties, and m is the number of prevailing environmental conditions considered.
In general, material properties, environmental conditions and response terms are all expected to vary with time.

The three sets of quantities respectively can be regarded as a vector of material properties, an environmental vector, and a response vector.

In a deterministic approach, a functional relationship between each response term and the associated material properties and environmental conditions is usually assumed to exist. Material properties also vary systematically with the environment. These relations are the ones referred to as the Congruity Relationships in the previous section of this Chapter. So:

\[R_i = \psi_i [P_1, P_2, \ldots, P_j, \ldots, P_n, C_1, C_2, \ldots, C_k, \ldots, C_m] \] (2.12)

\[P_j = \beta_j [C_1, C_2, \ldots, C_k, \ldots, C_m] \] (2.13)

However, both material properties and environmental conditions are subject to considerable random variability over fairly wide ranges, even under well-controlled laboratory tests. For brevity the attention is focused in this section on the situation where the environmental factors are not correlated. The modifications which are required to account for the correlation of the environmental factors are discussed in section (2.8) of this chapter. Therefore, the \(C_k \) vectors are treated as random variables with probability density functions \(f_{C_k} \) and associated cumulative
distributions F_{c_k}. When the environmental factors are correlated*, their joint frequency distributions** yield the necessary statistical data. If the environmental factors are not correlated, their independent frequency distribution sufficiently describe the environment.

Materials properties are inherently variable. Even though the observed variabilities can partly be imputed to the variability in environmental conditions and to experimental and measurement errors, material properties basically can vary under idealized, constant environmental conditions and identical test specimens. Therefore, the terms P_j are also considered to be random variables with probability density functions f_{P_j} and cumulative distributions F_{P_j}.

In as much as the material properties are dependent on the environment conditions, statistical correlation is implied by equation (2.13). However, even under strict conditions of stable environment, material properties can be inherently correlated (24). The joint density function $f_{(P_1,P_2,...,P_j,...,P_n)}$ rather than the density functions f_{P_j} gives "complete" information.

* This correlation exists when there is an interaction between the environmental parameters. An example of this is the interaction between moisture and temperature and the effect of one on the other.

** This may be written as $f(C_1,C_2,...,C_m)$.

35
about the inherently correlated material properties.

Variability in material properties and environmental conditions in any engineering system implies variability in material behavior, i.e., in the response terms R_i. To any system, in general, the basic inputs are the constituent materials characterized by a set of relevant properties, and environmental conditions surrounding the system and affecting its operation. The environment is meant to include loads (mechanical and thermal) as well. So the material properties and the environmental conditions are the basic inputs to the model, i.e., the exogenous variables. The geometry of the layers and of the load enters the model through the congruity relationships, and are also inputs to the model. A set of density functions f_{R_i} or alternatively cumulative distribution functions F_{R_i} represents the variability in material behavior and response, i.e., the endogenous variables.

To evaluate f_{R_i}, prerequisite data should be available for the density functions f_{p_j} and f_{c_k}. Even if these density functions are somehow evaluated, then considerable difficulty can arise in determining f_{R_i} by analytical methods. Such difficulties can be encountered if f_{p_j} and f_{c_k} are not normal and the congruity relationships are not linear. In these cases,
a numerical solution can be obtained by the Monte Carlo method.

The simulation method for the evaluation of the cumulative distribution function \(F_{R_1} \) has been proposed in an algorithmic form which is suitable for computer programming. The method is probabilistic in its approach and is based on conditional probability of the form shown below.

Initially, we consider a situation in which the endogenous variables (i.e., the response terms \(R_i \)) are related to \(m \) non-correlated environmental variables \(C_k (k=1,2,\ldots,m) \) and \(n \) material properties \(P_j (j=1,2,\ldots,n) \). The cumulative distribution functions \(F_{C_k} \) and \(F_{P_j} \) are assumed to have been previously determined and that the congruity relationships of the form of equations (2.12) and (2.13) are at hand. The method comprises the following steps:

1. Draw the first set of values \(C_{K_1} \), \(k = 1,2,\ldots,m \) of the environmental factors \(C_k \) from populations with cumulative distributions \(F_{C_k} \).

2. Obtain the conditional probability distribution function of each material property \(P_j \) for the values \(C_{K_1} \) available from step 1 above:

\[
F_{P_j|C_k}(P_j|C_k = c_{K_1}), \quad k = 1,2,\ldots,m \quad (2.14)
\]
Whereas this equation takes the following form if the material properties are not influenced by the environment:

\[F_{P_j|C_k} = F_{P_j} \]

(2.14a)

3. Using the distribution functions obtained from step 2, draw the first set of values \(p_j, j = 1,2,...,n \) of the material properties \(P_j \).

4. Compute the first set of endogenous variables, \(R_{11} \), using the congruity relationship (2.10).

5. Repeat the previous steps \(M \) times to obtain \(M \) sample values of the \(R_1 \). The summary for the conditional probability used in this procedure is stated in equation (2.15) below:

\[F_{P_j|C_k} \left(P_j \leq P_j | C_k = c_{k1} \right), j = 1,2,...,m \]

(2.15)

where \(c_{j_1} \) is any set of values of \(c_j \) from populations with cumulative distributions \(F_{C_k} \).

In much the same algorithm, i.e.,

\[F_{P_j|C_k} \left(P_j | C_k \right) \cdot F_{C_k} (C_k) = F_{P_j} (P_j) \]

(2.16)

the inherent interdependence of material properties can be taken into account. When the environmental factors are correlated, some modifications have to be introduced in the above algorithm in a similar way (24).
As a result of M simulations, histograms, means, variances, and percentage points can be obtained. If the number M is sufficiently large, the histograms can accurately represent the continuous distribution of the parent populations.

From the above discussion, it is clear that this method is based upon, and is only reliable as the technique used to obtain a sample value x of a random variable x with a given distribution F_x. Various techniques have been suggested for this purpose; in fact there is a considerable amount of literature devoted to this subject (32,33). Most techniques (22,33,47) are based on the generation of pseudorandom numbers which are uniformly distributed in the region between 0 and 1, which is discussed in Section (2.5) above.

The "inverse transformation" method suggested in section (2.5) has been employed in this study to generate random variates from certain probability distributions. However, care should be taken in the selection of random number generators as some are less efficient than others, depending on the nature of the problem, the parameters involved in the simulation, and the statistical properties of these parameters. An approximate normal deviate generator has been used in case of normally distributed properties in this study. The generator which is part of the IBM/360 system, and can be found under SUBROUTINE GAUSS, in the system's library,
is based on the Central Limit theorem. It uses 12 uniform random numbers to compute each normal deviate, which is done by calling another generator (SUBROUTINE RANDU) twelve times. The latter has been used when the material properties and environmental conditions are assumed to be uniformly distributed. RANDU is based on the "power residue" method to compute sets of randomly distributed numbers (22). Listings of both subroutines (i.e., RANDU and GAUSS) are found in Reference (22).

In the next chapter, application of the above method is presented as applied to a mathematical model representing a highway pavement structure taking into account the effect of the variability in the material properties and environmental conditions on the behavior of the pavement under a static condition of load application.

2.8 Final Procedural Remarks on the Use of the Method

The simulation procedures suggested and discussed above is a simple numerical method giving statistical answers to specific problems which are not amenable to analytical procedures due to their inherent complexity and interacting characteristics. The method is approximate in nature, however, adequate currency can be attained if the number of simulations is "sufficiently" large.* In this case, the decision as to how many samples are to be drawn

*The "Sufficiency" conditions here depend on the available and the required statistical data.
out should be preceded by sensitivity analysis. The choice of sample size to be used for simulation experiments is one of the most important decisions to be made in planning a simulation study. It is completely inappropriate to select these sample sizes arbitrarily and then assume that the estimates thereby obtained are sufficiently accurate to yield valid conclusions. Instead, it is essential that statistical analysis be conducted to determine the required sample sizes. Hillier and Lieberman (21), Meier et al. (29), Naylor et al. (33), and Wagner (45) suggest various techniques for determining the size of simulation experiments.

Several other techniques have been developed to reduce the number of simulation experiments. They are either regression type of analyses or variance analyses (11,19,21,29,33,45). Variance reducing techniques are aimed to increase the information in the "interesting regions" of the distribution functions F_{R_1}, and consequently to decrease the information in the "non-interesting regions or ranges".* For instance, most structures usually are designed with a very low probability of failure, so that the low probability regions of the distribution functions of the variables

* Information on the entire cumulative distribution function of the variables representing the material behavior is obtained by statistically taking a sufficiently large number of values simulated using the Monte Carlo method. However, only a small portion of the distributions, referred to as the "interesting region", may be of interest in design and safety considerations.
contributing to such failure in the structure will be of prime interest (46). Therefore, it can be concluded that a larger number of simulations over the range of interest would simultaneously yield fairly good estimates of the cumulative frequency distributions over than range, and a reduction of the computer time for simulation. This is achieved by conducting a sensitivity study on the system under consideration to determine the regions of most interest.

The other factors which have an influence on the cumulative frequency distribution of the endogenous variables are the probability density functions of the exogenous parameters (i.e., the environmental variables and the material properties), their interaction and their correlations. In case of interacting parameters, it is suggested that a joint density function of the form shown in equations (2.17) and (2.18) below, be used rather than the single density functions. If these parameters are stochastically independent, then

\[
f(C_1, C_2, ..., C) = \prod_{k=1}^{m} f_k\]

(2.17)

where the probability that the response \(R \) falls below a particular value \(r \), will be

\[
F_R(r) = P(R < r) = \int \cdots \int \frac{m}{G} \prod_{k=1}^{m} f_k = (2.18)
\]

The restriction \(R < r \) defines the region of interest \(G \).
The probability density functions of the different simulated parameters are either assumed or obtained by some statistical tests. Sampling from the actual, statistically determined distribution is superior to that obtained from assumed distribution. However, when the statistical data for the density functions of the parameters under consideration are not available, special care should be taken in assuming such density functions. This can be done by looking into the literature for statistical representation of the same or similar parameters.
III. THREE-LAYER HALF-SPACE VISCOELASTIC SYSTEM

3.1 Model for the Pavement System

A pavement system is represented by a three layer model with two layers of a finite depth and the third layer being infinitely deep. Horizontally, the layers are assumed to extend infinitely. The materials in the layers are linearly elastic or viscoelastic, isotropic, with properties varying in a certain statistical manner. The load is assumed to be a single load uniformly distributed over a circular area at the surface of the top layer. The model is shown schematically in Figure (3). The formulation of the problem for the numerical solution of the stresses, strains, and deflections for the model is that developed in References 13, 14, and 30.

The material properties that are pertinent here are the compliance or the creep function, and the Poisson's ratio. Geometric properties are represented by the heights of the different layers.

The exogenous variables of the model are: material properties, geometric factors, environmental conditions (including mechanical loads).

Poisson's ratio is assumed to be constant and does not vary with the environment. Therefore, the compliance or the creep function is the only property which is assumed to be influenced by the environment, and is also assumed to be statistically distributed in a certain form.
Figure 3. THREE - LAYER SYSTEM
The environmental operating on a highway system is assumed to be composed of three components: the traffic load, the temperature, and the humidity or moisture.

The traffic load is independent of the values of temperature and moisture, but there is an unknown relationship between temperature and moisture. Temperature is assumed to be a random variable having a certain distribution in the range \((T_1, T_2)\), where \(T_1\) and \(T_2\) are the extreme points of an assumed working range of temperature. The values for an average temperature values over a one year period in the Boston area were obtained from tables of the U.S. Weather Bureau in Boston. Then two distributions for the temperature were assumed, having the extreme values reported by the weather bureau:

a) Uniform (rectangular) distribution over the range between \(T_1\) and \(T_2\)

b) Normal (Gaussian) distribution over the same range, where a statistical average and mean were calculated from the values of temperature obtained from the above tables.

Several investigations have been conducted to study the effect of temperature on the modulus of the asphalt and soil layers in pavements \((7,33,38)\). Figure (4) has been used in this study to establish an empirical relationship between the temperature and the modulus of the different layers. This has been based on a study conducted by Dormon and Metcalf \((7)\), which is derived from experimental obser-
vations. The moduli of the materials constituting the layered system are assumed to vary with the temperature in the following manner:

\[E_i = A_i e^{-\alpha_i (T+C)}, \quad i = 1,2,3 \] \hspace{1cm} (3.1)

where "A" and "\(\alpha \)" are assumed to be constants for the layers, and the subscript \(i \) refers to the layer of interest (Figure 4). Ideally, the two parameters (A and \(\alpha \)) should also be considered random variables with certain statistical distributions. "A" represents the value of the modulus at \(T = -C \), where C is the value of the temperature at which the creep function or the modulus have been determined, or some reference temperature. At a given temperature \(T \), which is a random variable distributed in the range \((T_1, T_2) \), the value of the compliance \(D \) can vary between \(D_l(T) \) and \(D_u(T) \), where the subscripts \(l \) and \(u \) refer to the lower and upper bound values of the function. The position of \(D \) will greatly depend on the moisture. No direct relationship was ascertained to determine the coupled effect of the moisture and temperature in evaluating the modulus or the creep properties of the material in the layers of a pavement system. Further work in this area is necessary.

Two curves are therefore arbitrarily drawn for the representation of the functional relation that has been assumed in equation (3.1) between the material properties and temperature.
The upper-bound curve is for the best condition of moisture, which may be the driest, and the lower-bound curve is for moisture conditions approaching saturation. This is true when the relation of equation (3.1) is for the modulus or the creep function of the materials. In case of the compliance, the inverse of the relation exists, i.e.,

\[D_i = \frac{1}{A_i} e^{a_i(T+C)} \] (3.2)

The upper-bound curves discussed above become the lower-bound curves for the compliance, and vice versa.

From the above discussion, it is clear that the effect of the moisture has been implicitly incorporated in the analysis, although no direct and explicit relation has been established between both the moisture content and the temperature on one hand, and the material properties, on the other hand.

Figure (4) shows the relation between the temperature and the modulus of the material with the assumption that:

a) The moduli and the temperature are uniformly distributed between upper and lower bounds defining best and worst moisture conditions.*

* Note that both distributions assumed here have been arbitrarily chosen for the sake of demonstration. Any realistic or hypothetical type of probability density function can be used in the model to represent the behavior of the elements of the model.
Figure 4. VARIATION OF THE RELAXATION FUNCTION WITH TEMPERATURE AT A FIXED TIME.
b) The modulus as well as the temperature, are assumed to be normally distributed between the above limits.*

In the first case, the distributions are assumed to be uniform (i.e., rectangular) of the following form:

\[T = T_1 + d_1 (T_2 - T_1) \] \hspace{1cm} (3.3)
\[D = D_1 + d_2 (D_u - D_1) \] \hspace{1cm} (3.4)

where "d_1" and "d_2" are pseudorandom numbers uniformly distributed in the range \((0 < (d_1, d_2) < 1)\). The above distribution is shown in Figure (4).

The coefficient "α" in the assumed exponential relationship between the temperature and the compliance, can also be assumed to be a statistical variable with a certain distribution, as shown in equation (3.5) below:

\[α = α_1 + d_3 (α_2 - α_1) \] \hspace{1cm} (3.5)

where the term α is uniformly distributed** in the range be-

* Note that both distributions assumed here have been arbitrarily chosen for the sake of demonstration. Any realistic or hypothetical type of probability density function can be used in the model to represent the behavior of the elements of the model

** The same discussion in the above footnote is applicable to the variable α.
tween α_1 and α_2. This assumption is more realistic since it satisfies the modulus-temperature superposition and shifting principles, but it will result in a more complicated situation and will considerably affect the computer time. In the present analysis α is assumed to be a constant for each layer.

In the second case, i.e., when the temperature and the compliance are assumed to be normally distributed in an assumed working range of values (Figure 4), a standard normal (Gaussian) distribution has been chosen using a random number generator for normally distributed variables as illustrated in section (2.7) of Chapter II.

The above techniques and assumptions are employed using a computer program that considers a three-layer system with a static load applied at the top of the surface layer (13, 14, 30). The program is a primary model for the study of the behavior of pavement systems under traffic load. It calculates the stresses, deflections, and strains developed at any point in the system. The program handles linear elastic, linear viscoelastic, or partially viscoelastic system. The formulation of the problem for analytical solution for the stresses, strains, or displacements of the three-layer system is found in References (13, 14, 39).

The effect of the variation in the environment and in the material properties is taken into consideration in the following manner. The compliance or the creep functions used as input to the program are represented in the form of a
series of exponentials, namely the Dirichlet Series, for mathematical conveniences (equation 3.6).

\[D_j = \sum_{i=1}^{n} G_i e^{-t \delta_i}, \ j = 1,2,3 \text{ (layer number)} \]

(3.6)

Therefore, for a given axle load, a radius "a" is determined as the contact area between the wheels and the pavement with a certain load intensity, and, depending on the temperature of the surroundings, the material property is randomly chosen for each layer, i.e., the value of the compliance or the creep function is selected from a given spectrum between upper and lower bound values \(D_L \) and \(D_U \). \(D_L \) and \(D_U \) are used as input to the program in the following manner:

\[D_L^j = \sum_{i=1}^{n} \hat{G}_i e^{-t \delta_i}, \ j = 1,2,3 \]

(3.7)

\[D_U^j = \sum_{i=1}^{n} G_i^u e^{-t \delta_i}, \ j = 1,2,3 \]

(3.8)

where the superscripts "L" and "U" on the coefficient of the exponential series \((G_i) \) denote upper and lower values respectively. The variation in the coefficients \((G_i) \) will eventually yield a variation in the creep or elastic compliances. The assumption made here for simplicity, is that only the instantaneous or the elastic portion of the creep function varies statistically, by fixing the value of the retardation time \((1/\delta_i) \). However, the whole curve may vary statistically.
in an unknown manner. More statistical tests can contribute
to the understanding of such variation. Future changes to
accommodate such variation can be made by changing the prob-
ability density function which has been arbitrarily assumed
in this study.

Selecting the value of the compliance or the creep func-
tion in this model fixes a value for the moisture content
which can easily be calculated, provided that the functional
relationship between the modulus or the compliance and the
moisture is given.

The above process is repeated a number of times for a
selected sample value of temperature. The number of iter-
ations mainly depends on the sensitivity of the material
properties to the variations in the environment and to the
statistical characteristics of the material properties as
has been discussed in section (2.8) of Chapter II. A flow
chart of the computer program describing this process is
shown in Appendix I.

In order to make use of the data, the values of the
response terms are calculated for a given set of environ-
mental variables by selecting a range of material properties
for a given monthly variation in the temperature depending
on the surrounding moisture conditions. This requires the
determination of the monthly, rather than daily, temperature
variation in each layer over a cycle of one year, for example.
The magnitude of stresses or strains is calculated on this
basis for several times each month, and a most probable value can be predicted. This procedure is repeated over the whole year period. Assuming that the results are additive, if a critical or intolerable value of stress is reached, then the system is assumed to have partially failed. The analysis is applicable to the case where the value of the deflection is limited and therefore, the value of the compressive stress or strain at the second interface* is limited. However, the values of temperatures in this study were chosen randomly between upper and lower limits over the whole year and are based on a monthly variation because the sequence of their occurrence is not critical when the static load case is studied. When the repeated loading case is studied, it is important to emphasize on the significance of the sequence of occurrence of events to account for accumulation of response over extended periods of time.

In the next section, an illustrative example is presented where numerical values of the inputs and outputs of the model are also listed. Discussion of the results obtained through the computer programs are also presented in this section.

3.2 Numerical Example of Simulation of the Three-Layer System

To illustrate the effectiveness of the techniques dis-

* The interface between the second layer and the subgrade.
Figure 5: CREEP FUNCTIONS OF THE SIMULATED PAVEMENT SYSTEM

\[D_j(t) = \sum G_i e^{-t\delta_i}. \]
cussed above, and to give typical results, a three-layer half
space viscoelastic system with the following geometry and material
properties have been analyzed.

\[
\frac{a}{h} = 1.19
\]

\[
H = 2.0
\]

\[
u^1_i (t) = \sum_{j=1}^{6} u^j_1 e^{-t \delta_j}
\]

\[
l^1_i (t) = \sum_{j=1}^{6} l^j_1 e^{-t \delta_j}
\]

where the values of \(G^j_i \) and \(\delta_j \) are given in Tables 1, and 2, and
the compliances are also shown in Figure (5) for materials used in
each layer.

3.3 Results and Discussion

Simulation of the data in this example was conducted by drawing
100 sample values of the input variables which were assumed to have
two different statistical properties:

1) Uniform distribution for the temperature and the viscoelastic
creep compliances, and

2) Normal (Gaussian) distribution for the variables mentioned
above.

Figure (6) shows typical response functions in terms of the
vertical strains \(\varepsilon_{zz} \) at the first interface under the center of
the loaded area, versus time. This figure shows that for a 15%
TABLE 1

Extreme Values for the Coefficients of the Dirichlet Series Representation of the Creep Compliance $\sum G_i e^{-t\delta_i}$

<table>
<thead>
<tr>
<th>Layer</th>
<th>Upper Extremes</th>
<th>Upper Extremes</th>
<th>Upper Extremes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First Layer</td>
<td>Second Layer</td>
<td>Third Layer</td>
</tr>
<tr>
<td></td>
<td>$u_{G_1}^1 = -0.5750$</td>
<td>$u_{G_2}^1 = -1.1500$</td>
<td>$u_{G_3}^1 = 0.0$</td>
</tr>
<tr>
<td></td>
<td>$u_{G_2}^1 = -0.0863$</td>
<td>$u_{G_2}^2 = -0.1725$</td>
<td>$u_{G_3}^2 = 0.0$</td>
</tr>
<tr>
<td></td>
<td>$u_{G_1}^3 = -0.0575$</td>
<td>$u_{G_2}^3 = -0.1150$</td>
<td>$u_{G_3}^3 = 0.0$</td>
</tr>
<tr>
<td></td>
<td>$u_{G_1}^4 = -0.0863$</td>
<td>$u_{G_2}^4 = -0.1725$</td>
<td>$u_{G_3}^4 = 0.0$</td>
</tr>
<tr>
<td></td>
<td>$u_{G_1}^5 = -0.0575$</td>
<td>$u_{G_2}^5 = 0.1150$</td>
<td>$u_{G_3}^5 = 0.0$</td>
</tr>
<tr>
<td></td>
<td>$u_{G_1}^6 = 0.5750$</td>
<td>$u_{G_2}^6 = 1.1500$</td>
<td>$u_{G_3}^6 = 1.1500$</td>
</tr>
<tr>
<td></td>
<td>$\gamma_{G_1}^1 = -0.4250$</td>
<td>$\gamma_{G_1}^1 = -0.8500$</td>
<td>$\gamma_{G_1}^1 = 0.0$</td>
</tr>
<tr>
<td></td>
<td>$\gamma_{G_2}^1 = -0.0538$</td>
<td>$\gamma_{G_2}^2 = -0.1275$</td>
<td>$\gamma_{G_2}^2 = 0.0$</td>
</tr>
<tr>
<td></td>
<td>$\gamma_{G_3}^1 = -0.0425$</td>
<td>$\gamma_{G_2}^3 = -0.0850$</td>
<td>$\gamma_{G_2}^3 = 0.0$</td>
</tr>
<tr>
<td></td>
<td>$\gamma_{G_4}^1 = -0.0638$</td>
<td>$\gamma_{G_2}^4 = -0.1275$</td>
<td>$\gamma_{G_2}^4 = 0.0$</td>
</tr>
<tr>
<td></td>
<td>$\gamma_{G_5}^1 = -0.0425$</td>
<td>$\gamma_{G_2}^5 = -0.0850$</td>
<td>$\gamma_{G_2}^5 = 0.0$</td>
</tr>
<tr>
<td></td>
<td>$\gamma_{G_6}^1 = 0.4250$</td>
<td>$\gamma_{G_2}^6 = 0.8500$</td>
<td>$\gamma_{G_2}^6 = 0.8500$</td>
</tr>
</tbody>
</table>

* All the G_i^j values are multiplied by 10^3, so the actual value of $u_{G_1}^1$ for example is (-0.0005750).
TABLE 2

Exponents of the Coefficients of the Creep Compliance in the Dirichlet Series Representation \(\sum G_1 e^{-t\delta_i} \)

\[\delta_1 = 10.00 \]
\[\delta_2 = 3.162 \]
\[\delta_3 = 1.00 \]
\[\delta_4 = 0.316 \]
\[\delta_5 = 0.10 \]
\[\delta_6 = 0.0 \]
Figure 6. TYPICAL DISTRIBUTION OF THE TIME-DEPENDENT NORMALIZED VERTICAL STRAIN FOR MATERIAL PROPERTIES SHOWN IN FIGURE 5.
variations in the input creep compliances a relatively wide scatter results in the response function. This also shows that for each value of the creep compliances of the different layers, any of the response curves shown in Figure (6) has a chance of occurrence. This variation in the response is substantial enough to justify the use of a probabilistic treatment.

The frequency distributions of the vertical strain at two different points in time are plotted in Figures (7) through (10). Figures (7) and (8) represent frequency distribution for the first case, i.e., when the probability density functions of the input variables are assumed to be uniform. While Figures (9) and (10) represent the corresponding frequency distributions of the vertical strain for normally distributed input variables. Each histogram in Figures (7) through (10) is in fact a cross-section at that particular point in time of Figure (6).

The trend in these histograms appears to be toward that of the corresponding distribution of the input variables, although there are some peaks or irregularities. The reason for these deviations from the assumed distributions may be attributed to the fact that the number of samples drawn for the simulation experiment was not sufficiently large to be representative of the parent populations.

To validate and check these description of the histograms, it is possible to conduct simple statistical tests called "Goodness-of-fit" tests, to estimate the coincidence of the obtained results with
Figure 7. RELATIVE FREQUENCY DISTRIBUTION OF VERTICAL STRAIN AT $t/\tau = 0.0$ FOR UNIFORMLY DISTRIBUTED RANDOM INPUTS.
Figure 8. FREQUENCY DISTRIBUTION OF VERTICAL STRAIN AT t/τ^* = 10.0 FOR NORMALLY DISTRIBUTED RANDOM INPUTS.
Figure 9. RELATIVE FREQUENCY DISTRIBUTION OF VERTICAL STRAIN AT \(t/\tau = 0.0 \) FOR NORMALLY DISTRIBUTED RANDOM INPUTS.
Figure 10. RELATIVE FREQUENCY DISTRIBUTION OF VERTICAL STRAIN AT $t/r = 10$. FOR NORMALLY DISTRIBUTED RANDOM INPUTS.
those from theories. A χ^2 - test was, therefore, conducted on the results of the above simulation. Both cases showed that they fit their corresponding theoretical distributions within a reasonable degree of accuracy.

Moreover, to confirm the fact that the lack of adequate number of samples is responsible for the discrepancy between theoretical distributions and those obtained by simulation, the temperature distributions obtained from the IBM System/360 Random Number Generator are plotted in Figures (11) and (12). Figure (11) is a frequency distribution of uniformly distributed temperatures, and Figure (12) is that of normally distributed temperatures. These figures show a trend similar to the corresponding distributions of the response terms shown in Figures (7) through (10).

The cumulative distributions of the above histograms are plotted in Figures (13) through (18).

The above results and their scatter show the importance of the statistical nature of the materials properties and other input variables that will describe the resulting scatter in the response of the pavement to load and environment. In order to use the results of such simulations is the analysis of response of the pavement systems, one may use first and second order movements, i.e., the mean, the variance and the coefficient of variation. From this, a summary of the simulation may be plotted
Figure 11. RELATIVE FREQUENCY DISTRIBUTION OF UNIFORMLY DISTRIBUTED TEMPERATURES AS GENERATED BY AN IBM / SYSTEM 360 RANDOM NUMBER GENERATOR.
Figure 12. RELATIVE FREQUENCY DISTRIBUTION OF NORMALLY DISTRIBUTED TEMPERATURES AS GENERATED BY AN IBM / SYSTEM 360 RANDOM NUMBER GENERATOR.
Figure 13. CUMULATIVE DISTRIBUTION OF VERTICAL STRAIN FOR FREQUENCY DISTRIBUTION SHOWN IN FIGURE 7.
Figure 14. Cumulative distribution of vertical strains for frequency distribution shown in Figure 8.
Figure 15. CUMULATIVE DISTRIBUTION OF VERTICAL STRAINS FOR FREQUENCY DISTRIBUTION SHOWN IN FIGURE 9.
Figure 16. CUMULATIVE DISTRIBUTION OF VERTICAL STRAINS FOR FREQUENCY DISTRIBUTION SHOWN IN
FIGURE 10.
Figure 17. CUMULATIVE DISTRIBUTION OF UNIFORMLY DISTRIBUTED TEMPERATURES.
Figure 18. CUMULATIVE DISTRIBUTION OF NORMALLY DISTRIBUTED TEMPERATURES.
as those in Figures (19) and (20). Figure (19) describes the mean, deviations, and extreme values for the time-dependent strain shown in Figure (6), when the input properties were assumed to have a uniform distribution. The corresponding values for the normally distributed input variables are shown in Figure (20).

In the design process, it is more realistic to consider all information similar to that shown in Figures (19) and (20). Using averages and single values for the design may result in a very conservative design, or else failure may be more eminent than that predicted.

Finally, variations in the load function may result in a change of the physical properties of the materials in the pavement that would affect significantly its response. This type of behavior is not being accounted for if classical averaging procedures are followed in the design. While it is obvious that the extreme values of the response shown in Figures (19) and (20) may be due to this type of behavior, and therefore it allows the designer to consider the uncertainty associated with their occurrence to account for these properly in the design.

The next step to be taken in this type of analysis is to use the results obtained from the simulation of the system under a single stationary load and operational environment into a repetitive load mode applied randomly to the system. From this, the effect of load repetitions and varying environment on the
Figure 19. SUMMARY OF SIMULATION OF VERTICAL STRAINS FOR UNIFORMLY DISTRIBUTED RANDOM INPUTS.
Figure 20. SUMMARY OF SIMULATION OF VERTICAL STRAINS FOR NORMALLY DISTRIBUTED RANDOM INPUTS.
response and behavior of the system can be studied. Consequently
the analysis of the so called primary response behavior of the
three-layer system under realistic load and environmental
excitations would be completed.

The response of the system to a repeated loading mode under
constant environment has been studied deterministically, and can
be found in references (13) and (14).

It is clear that the study presented in this thesis is
essential for the study of damage and failure of pavement
systems. This stage of damage progression and failure may be
characterized as the secondary response stage as distinguished
from the primary response stage presented in this work.
IV. CONCLUSIONS

It has been shown that simulation is a rather promising approach in dealing with problems that involve various degrees of uncertainty due to the variation in certain parameters in them. The highway pavement is a good example of these problems, and simulation provides a systematic approach for developing a meaningful probabilistic input-output relationship. Another advantage associated with the use of the simulation procedure discussed above is that it can handle any irregular shape of probability density function of the input parameters.

However, it is clear that in order to obtain a useful and accurate probabilistic output, the number of simulation experiments to be conducted has to be very large. A sensitivity study is needed to optimize the number of samples required for a specific problem (21). This means that high accuracy requires large computer time, which can be a major setback in the use of the method for simulation of the model.

Therefore, it seems that if the probability density functions of the input parameters have some standardized forms, a more realistic way to attack the problems will be that of using a closed form probabilistic solution. This closed form solution will provide very useful information regarding probabilistic properties of the output, such as the mean, the variance, coefficient of variation, etc., which are needed for purposes of design or further analysis. Since
this approach has proved useful in many applications in engineering, it seems that even if the shapes of the probability density functions are not that of some standardized forms, it can be approximated to fit a standardized theoretical form. The error involved here is hardly significant due to the high degree of uncertainty associated with the problem. Therefore, if the stochastic properties of the problems are known, an alternative formulation and solution of the problems based on the above techniques will be considerably more economical.

However, in the present analysis of response of the pavement system under static load conditions, it is not feasible to use closed form probabilistic solutions. The reason for this is due to the fact that the response terms are expressed numerically as a function of time. This means that the resulting response is not found in a single-valued form. Therefore, simulation is thought to be a reasonable approach in this analysis.
V. RECOMMENDATION FOR FUTURE WORK

5.1 Primary Response Model

An immediate extension for this approach would seem to study the system under realistic operational environment. Assuming that the system is linear, the classical input-output relation for linear systems may be expressed in the following form of a convolution integral:

\[y(t) = \int_{-\infty}^{t} h(t - \tau) \cdot x(\tau) \, d\tau \]

(5.1)

where \(y(t) \) represents the response of the system,

\(x(\tau) \) represents a history of the excitation function, and

\(h(t - \tau) \) is a characterization function of the system, and is usually called the "response function".

Equation (5.1) considers a linear system as a black box, characterized by its response function \(h(t - \tau) \), and is being acted upon by a history of some excitations described by \(x(\tau) \), as shown in figure (21).

This relation is a very useful one, and may be used as described below to study the behavior of the system under realistic operational environment.

Since the vehicular load is applied on the pavement in a repeated mode, it may be represented by some frequency wave such as a half sinusoidal, or haversine function, etc., to describe the history of load. The response function \(h(t - \tau) \) can be
represented by the response of the system to a unit step load. This response is obtained using the method described in the thesis. However, since the environment is an important factor in the response of the system, equation (5.1) may be modified to include another term \(\phi(s) \) describing an arbitrary history of the environment (equation 5.2).

\[
y_s(t) = \int_{-\infty}^{t} x(\tau) h[(t - \tau), \phi(s)] \, d\tau \tag{5.2}
\]

The excitation function \(x(\tau) \) may be treated as a random variable, i.e. with random amplitude and frequency of arrivals of vehicles. The response function can also be treated as a random variable with certain statistical properties and associated means and variances. A simulation study may then be conducted to study the cumulative response under this type of random excitation and environmental history. Damage may then be accumulated according to a certain damage rule, such as that suggested by Miner:

\[
\sum_{i=1}^{N_f} D_i = \sum_{i=1}^{N_f} n_i = 1 \tag{5.3}
\]

Healing and recovery may also be accounted for by some time-dependent process characterizing the system.

Different manifestation of damage can be predicted and accumulated by the suggested model, each by satisfying a certain criterion until an untolerable threshold is reached by one or a combination of more than one type of damage. At this limit,
Figure 21. HISTORY OF REPEATED LOAD AND ENVIRONMENT ACTING ON A PAVEMENT SYSTEM.
the system is considered to have failed structurally.

Another alternative for simulation of this process, which has proved to be costly, is that of using a closed form probabilistic solution.

Equation (5.1) in fact describes a deterministic system. A probabilistic description in the time domain of the process may be written as:

\[R_y(\tau) = \int \int h(\alpha) h(\beta) R_x(\tau+\alpha-\beta) \, d\alpha \, d\beta \quad (5.4) \]

If the statistical properties of the pattern of load application as well as that of the environment are known, and if the statistical scatter of the material properties is also known, a probabilistic solution may be developed to yield the probabilistic information that will be provided otherwise by simulation.

5.2 Performance Prediction Model

Highway pavements belong to a class of structures which are identified as structure-sensitive systems. Structure-sensitive systems are those engineering systems in which damage or failure of a component results in a loss in the level of performance, rather than the abrupt incidence of total failure. For these systems, internal damage develops within the operational environment over a certain period of time, and failure is viewed as the ultimate conditions which result from the loss of performance.
Figure 22. TWO - DIMENSIONAL SIMULATION OF THE PERFORMANCE OF A PAVEMENT STRUCTURE.
Failure, therefore, is the extent of damage which has been accumulated as a consequence of structural deterioration over a range of stress, strain, time, and environmental conditions in an operational environment.

The performance level of pavement system, as a structure-sensitive system, may be defined as the degree to which the stipulated functions of the system are executed within the environment. This level is, therefore, dependent on the history of the applied load and its distribution, on the quality of the construction materials used and their spatial distribution, on the history of the environment, and on the extent to which proper maintenance practices are executed over the entire life of the system.

Finally, damage in the structure may be defined as the extent of structural deterioration resulting in a loss in the performance of the system.

Figure (22) illustrates that the performance of the system diminishes in some way until an unacceptable level is attained. This behavior results from the combined action of the load and the environment during the operational life period of the system.

Therefore, performance, which is in this case the integrity level of the system at any time is one minus the amount of damage accumulated within that time.
\[P_1(t_1) = 1 - D_1(t_1) \] (5.5)

Where \(D_1 \) is the amount of damage accumulated from \(y_s(t) \) in equation (5.2).

Since damage is probabilistic in nature, the performance level will be dependent on the temporal and spatial distribution of damage at any time during the life period of the system. Damage progression in highway pavements can be represented by a Markov process model. A Markov process, is one with the following properties:

\[P[X(n+1) = x(n+1) \mid (X(1) = x_1) \ldots (X(n) = x_n)] = P[X(n+1) = x_{n+1} \mid X(n) = x_n] \] (5.6)

This simply states that there is only one step dependence. The future state depends only on the current state, and the dependence of the future events on the past is of a particularly simple nature.

The transition of the state of the system may be represented by birth and death processes with the birth representing more damage due to cumulative response and aging effects, and death representing some level of maintenance introduced at that stage.

Each stage in the Markov chain will represent a certain level of damage, or otherwise performance level, accumulating over a period of time, in this case it may be a few months or one year,
Figure 23. MARKOV PROCESS SIMULATION OF THE DAMAGE PROCESS IN A PAVEMENT SYSTEM
as the case may be. The transition probability matrix can then be established on this basis. The rewarding matrix will express the amount of damage or loss in performance that will be involved in the transition from one state to another. The final stage is one where failure takes place at, and can be reached when the damage reaches some untolerable limit, or when the performance reaches some unacceptable level, at which time the system is considered to have failed.

This analysis provides very useful information that can be used in design practices based on reliability criteria. A distribution of the life time of the system can be obtained by finding the distribution of the time to reach the final state which, in this case is a trapping state since the system is rendered unusable upon entering that state. The amount of maintenance required throughout the life of the system can also be predicted through the model, since maintenance will be responsible for a possible transition from one state to a previous one (filling a crack, a hole, etc.).

Therefore, an important factor is achieved also in this process, which is the introduction of maintenance prediction in the design process based on quantitative and scheduling estimation of the maintenance required throughout the life time of the system. From an economics point of view, this will also be very helpful in estimation of the expected values of construction as
well as operation of the highway system.

A schematic representation of this process is presented in figure (23).

5.3 Summary

Factors contributing to the initiation, propagation, and propagation of damage can be divided into three categories: (a) materials properties and pavement geometry, (b) load variables, and (c) climatic conditions. A substantial variability is associated with the measurement or prediction of each of these factors, thereby resulting in a stochastic nature of the response and behavior of pavement systems. To account for these variabilities, the damage model should be capable of yielding statistical estimates of the temporal and spatial distribution of the different modes of structural deterioration resulting from the action of load and environment throughout the service life of the system. A pavement system is represented by a three-layer Viscoelastic system describing its physical and geometrical properties. The load application can be represented by a Poisson process of random occurrence at a certain rate of arrival. Temperature, moisture, and other environmental variables may be assigned some statistical distribution of a standard type such as normal distribution, uniform distribution, etc.
Damage is accumulated due to repeated load action within the operational environment. A Markov process model can be used to describe the progression of damage over some relatively long periods of time. Each state in the Markov process defines a certain level of damage or performance. A transition matrix will provide the probabilities of the transition of the different states into others. The reward matrix will provide some quantitative measure of damage or loss in the performance level through the transition from one state to another. Maintenance practices will cause the transition of a certain state to a previous one, in other words, it will raise the level of performance or decrease the amount of damage in the system.

Failure is then the state of untolerable extent of damage or unacceptable level of performance.

The above analysis provides a realistic study of the behavior and performance of highway pavement systems based on realistic inputs and outputs of the system. The system is also characterized by a model which is based on a true representation of the physical behavior of the system as well as its geometrical properties.

The following features designate the above method of approach from the viewpoint of design practices:
1. Prediction of the distribution of the performance level of
the system at any period throughout its lifetime.

2. As a consequence of (1) above, maintenance estimates and scheduling will be based on more realistic grounds. This will facilitate incorporating maintenance in the design process as well as the economical analysis of costs of construction and operation of the system.

3. Prediction of the distribution of the lifetime of the pavement. This is very important in any design process as well as economical analysis, since resurfacing is required after this period.

4. All the above analyses are based on a probabilistic approach which accounts for the unpredictable occurrences of events, an approach which is more realistic and more reliable.

APPENDIX I

COMPUTER PROGRAM

This Appendix Contains a Flow Chart and a Program Listing of the Simulation Program for the Three-Layer Viscoelastic System.
Read Input Data

Print Input Data

Call subroutine "RANDU" or "GAUSS"
Generate Random Numbers

Generate values for Temperature between Specified Upper & Lower Limits

Compute Corresponding Extreme Values for Modulus

Generate Values for Modulus between Specified Upper & Lower Extremes

Call Main Program - Stationary Load Program

Return from Main

Printed Computed Response Terms

are all values for temperature simulated

is number of simulations the maximum required

YES

STOP

NO

YES

NO
THIS IS THE MAIN PROGRAM FOR THE ANALYSIS OF A LINEAR VISCOELASTIC MAIN0001
THREE-LAYER HALF-SPACE UNDER A UNIFORM CIRCULAR LOAD, FOR THE CASE MAIN0002
THAT THE MULTIPLE CONVOLUTION INTEGRALS ARE EVALUATED EXACTLY. MAIN0003
IN ADDITION TO THAT, THE PROGRAM USES THE MONTE CARLO SIMULATION MAIN0004
PROCEDURE TO GENERATE RANDOM NUMBERS AS REPRESENTATIVE SAMPLES MAIN0005.
FOR THE VALUES OF THE RESPONSE TERMS DESIRED, THIS IS A STOCHAS-
TIC APPROACH TO PREDICT THE PROBABILITY THAT A DESIRED RESPONSE MAIN0006
TERM (BE IT STRESS, STRAIN, OR DEFLECTION) TAKES A CERTAIN VALUE. MAIN0007
THE PROGRAM TAKES INTO CONSIDERATION THE EFFECTS OF THE INHERENT MAIN0009
VARIATION IN THE PROPERTIES OF THE MATERIAL (WHICH IS IN THIS CASE MAIN010
THE CREEP COMPLIANCE OF THE DIFFERENT LAYERS CONSTITUTING THE MAIN011
SYSTEM). IT ALSO TAKES INTO ACCOUNT THE EFFECT OF THE CONSTANTLY MAIN012
VARYING ENVIRONMENTAL CONDITIONS (SUCH AS TEMPERATURE AND MOISTURE) MAIN013
ON THE BEHAVIOR OF THE SYSTEM. MAIN014
THE NECESSARY SUBROUTINES ARE VISCC, CNVIT, CNSTNT, SOLVE, AND TERPJ. MAIN015
ALSO NECESSARY IS THE REAL FUNCTION SUBPROGAM JB. MAIN016
THE INPUT IS IDER, ILAYER, IDEFLE, H, A, R, ZZ, NJJJ, DELXX, MAIN017
DELTX, N, NNN, NS, NMOTH, IARB, T1(), T2(), THE VECTORS YL1(), MAIN018
YL2(), YL3(), YU1(), YU2(), A1, A2, A3, AND DELTA(). MAIN019
YL2(), YL3(), YU1(), YU2(), YU3(), A1, A2, A3, TLIV, DELTA(). MAIN020
IDER IS A DUMMY FOR THE STRAINS, IST IS A DUMMY WHICH, TOGETHER MAIN021
WITH IDEFLE DETERMINES WHICH STRESS, STRAIN OR DEFLECTION IS DESIRMAIN022
IST IS 1 FOR NORMAL STRESS, NORMAL STRAIN OR NORMAL DEFLECTION, MAIN023
IS 2 FOR SHEAR STRESS, RADIAL STRAIN OR RADIAL DEFLECTION, AND IS MAIN024
3 FOR RADIAL STRESS. H IS THE THICKNESS OF THE SECOND LAYER (THE MAIN025
R IS THE OFF-SET AT WHICH THE RESPONSE IS DESIRED. ZZ IS THE DEPTH MAIN027
OF THE SOILUTION IS DESIR. ILAYER IS THE LAYER OF INTEREST MAIN028
(1, 2, OR 3). IDEFLE IS POSITIVE IF THE DEFLECTION IS DESIRED, MAIN029
ZERO FOR THE STRESSES, AND NEGATIVE IF THE STRAINS ARE DESIRED. MAIN030
NJJJ IS AN INPUT TO THE SUBROUTINE SOLVE, AND IS EXPLAINED IN MAIN031
DETAIL THERE. DELTX AND DELXX ARE INPUTS TO THE SUBROUTINE TIME MAIN032
AND ARE EXPLAINED IN DETAIL THERE. N AND NNN ARE ALSO INPUT. N MAIN033
IS THE NUMBER OF TERMS IN THE DIRICHLET SERIES REPRESENTATIONS OF MAIN034
THE INPUT CREEP FUNCTIONS. NNN IS THE NUMBER OF POINTS IN TIME AT MAIN035
WHICH THE SOLUTION IS DESIRED. THE VECTORS YL1(), YL2(), YL3() MAIN036
ARE THE CONSTANTS FOR THE SERIES REPRESENTATIONS OF THE CREEP FUNCTIONS FOR THE ASSUMED LOWER BOUND FOR THE FIRST, SECOND AND THIRD LAYERS RESPECTIVELY, WHILE THE VECTORS YU1(), YU2(), AND YU3(), ARE THE SAMECONSTANTS FOR AN ASSUMED UPPER LIMIT(Probably)...

AT THE MOST FAVORABLE MOISTURE CONDITIONS. AS IS THE NUMBER OF SAMPLES TO BE DRAWN EACH MONTH. NMONTH IS THE NUMBER OF MONTHS OVER WHICH THE SIMULATION IS CONDUCTED. IARB IS AN ODD INTEGER NOT MORE THAN 7 CHARECTERS TO BE USED AS INPUT TO THE RANDOM NUMBER GENERATION SUBROUTINE, IT IS HOWEVER ADVISED TO USE A VALUE OF 65539 FOR A BETTER STATISTICAL DISTRIBUTION OF THE GENERATED RANDOM NUMBERS. YU1(), YU2(), AND YU3() ARE VECTORS CONTAINING RESPECTIVELY THE LOWER AND UPPER LIMITS OF TEMPERATURES FOR EACH MONTH OF THE YEAR. TLIM IS THE INITIAL VALUE OF TEMPERATURE AT WHICH BOTH THE UPPER AND LOWER CREEP CURVES HAVE BEEN MEASURED. NTEMP IS THE NUMBER OF TEMPERATURES USED IN COMPUTATIONS. THE RESULTS OF THE PROGRAM ARE THE DESIRED, STRAIN OR DISPLACEMENT AT EACH OF THE NNN TIMES.

DIMENSION G(20,3)
DIMENSION w(201)
DIMENSION 1(6),E2(6),E3(6),EA(360),EB(360),EC(360),C1(20,12),C2(12,12),C3(12,12),P(12),EL1(6,20,12),EL2(6,20,12),EL3(6,20,12),EU1(6,20,12),EU2(6,20,12),EU3(6,20,12),EF1(6,20,12),EF2(6,20,12),EF3(6,20,12),ET(201),T1(12),T2(12),Y1(6),Y2(6),Y3(6)

COMMON CC(6,20),CC(8,20),FF(6,20),TT(201),DELT(20)
COMJN/MAME/IDR,ITER,NNN,IST,1,IDEFLE,G,H,A,R,ZZ,ILAYER,
1 N,AJJ,DELXX,DELT X
EQUIVALENCE(G(1,1),E1(1,1)),(G(1,2),E2(1,1)),(G(1,3),E3(1,1))
DO 222 IT=1,1,100
WRITE(6,88)IDR
88 FORMAT(7H IDER = 110)
ITEM=IDER
ITEM IS A DUMMY AND IS GIVEN THE VALUES OF -1, 0, 1 FOR THE NORMAL...
29 FORMAT(5I5)
52 FORMAT(15/5F10.5)
WRITE(6,210) IST, ILAYER, IDEFLE, H, A, R, ZZ
210 FORMAT(7H IST = II/10H ILAYER = II/10H IDEFLE = II/10H
15H H = F10.5/5H A = F10.5/5H R = F10.5/6H ZZ = F10.5)
READ(5,20) NJJJ
NJ AND NJJ ARE INPUTS TO THE SUBROUTINE SOLVE. THEY HAVE NO SIGNIFICANCE IN THE PRESENT USE OF THAT SUBROUTINE AND ARE GIVEN ARBITRARY VALUES.
READ(5,1) DELTX, DELXX
READ(5,20) N, NNN
1 FORMAT(6F10.5)
3344 FORMAT(4I5)
READ(5,3344) NS, NMONTH, NTEMP, 1ARB
WRITE(6,7998) NS, NMONTH
7998 FORMAT(4X,'NS = ',I10, ' NMONTH = ',I5)
READ(5,7998) (T1(II), II=1, NTEMP)
READ(5,7998) (T2(II), II=1, NTEMP)
WRITE(6,7998) (T1(II), II=1, NTEMP)
WRITE(6,7998) (T2(II), II=1, NTEMP)
7C0 FORMAT(12F6.2)
7C1 FORMAT(4X,'LOWER MONTHLY TEMPERATURES = ',12F7.2)
7C2 FORMAT(4X,'UPPER MONTHLY TEMPERATURES = ',12F7.2)
DO 797 KL=1, N
E1(KL)=.0
E2(KL)=.0
797 E3(KL)=.0
DO 232 J=1, NS
C1(J, I)=.0
C2(J, I)=.0
C3(J, I)=.0
P(J, I)=.0
DO 232 K=1, N
EL1(K, J, I)=.0
EL2(K, J, I)=.0
EL3(K, J, I)=.0
MAIN0073
MAIN0074
MAIN0075
MAIN0076
MAIN0077
MAIN0078
MAIN0079
MAIN0080
MAIN0081
MAIN0082
MAIN0083
MAIN0084
MAIN0085
MAIN0086
MAIN0087
MAIN0088
MAIN0089
MAIN0090
MAIN0091
MAIN0092
MAIN0093
MAIN0094
MAIN0095
MAIN0096
MAIN0097
MAIN0098
MAIN0099
MAIN0100
MAIN0101
MAIN0102
MAIN0103
MAIN0104
MAIN0105
MAIN0106
MAIN0107
MAIN0108
EU1(K,J,I)=0.0
EU2(K,J,I)=0.0
EU3(K,J,I)=0.0
EF(K,J,I)=0.0
ES(K,J,I)=0.0

232 ET(K,J,I)=0.0

KIL=NS=NMONTH=N
DO 9001 LLL=1,KIL
EA(LLL)=0.0
EB(LLL)=0.0

9001 EC(LLL)=0.0

READ(5,703) (YL1(KL),KL=1,N)
READ(5,703) (YL2(KL),KL=1,N)
READ(5,703) (YL3(KL),KL=1,N)
READ(5,703) (YL4(KL),KL=1,N)
READ(5,703) (YL5(KL),KL=1,N)
READ(5,703) (YU1(KL),KL=1,N)
READ(5,703) (YU2(KL),KL=1,N)
READ(5,703) (YU3(KL),KL=1,N)
READ(5,703) (YU4(KL),KL=1,N)

703 FORMAT(6F10.4)

READ(5,706)A1,A2,A3

706 FORMAT(3F10.5)

WRITE(6,707)A1,A2,A3

707 FORMAT(4X,'EXPONENT OF MODULUS VS TEMPERATURE CURVE = ',3F10.5)

READ(5,1112)TLIM

C TLIM IS THE VALUE OF THE TEMPERATURE AT WHICH THE INPUT CREEP
C FUNCTIONS OF THE DIFFERENT LAYERS ARE ORIGINALLY EVALUATED.

1112 FORMAT(6F10.4)

READ(5,50) (DELTA(KL),KL=1,N)

50 FORMAT(3F10.5)

C DELTA(2) IS AN INPUT TO SUBROUTINE TIME, AND IT IS EXPLAINED THERE.

READ(5,9) IDNST

C IDNST IS A DUMMY VARIABLE WHICH GIVES THE OPTION FOR THE SHAPE OF
C THE DENSITY FUNCTION TO BE USED FOR BOTH THE CREEP FUNCTIONS OF
C THE LAYERS AND THE TEMPERATURE OR ENVIRONMENTAL FUNCTION. IF THE
C VALUE OF THIS VARIABLE IS ZERO, THEN THE DENSITY FUNCTIONS ARE
C NORMALLY DISTRIBUTED, OTHERWISE, THE DENSITY FUNCTIONS ARE UNIFOR-
C MLY DISTRIBUTED (I.E., RECTANGULAR DISTRIBUTION).
IF (IONST) 215, 216, 215

216 IZ = IARR

C IZ IS AN ODD INTEGER BETWEEN ZERO AND 2**39. IT IS USED AS INPUT C TO LIBRARY SUBROUTINE GAUSS.

WRITE (6, 1120)

1120 FORMAT (4X, 'THE DENSITY FUNCTIONS ARE NORMALLY DISTRIBUTED IN THE
1FOLLOWING SIMULATION')

C THE STEPS THROUGH 9791 ARE TO FIND THE MEAN AND STANDARD DEVIATION C OF NORMALLY DISTRIBUTED TEMPERATURE OBSERVATIONS OVER ONE YEAR.

C OF NORMALLY DISTRIBUTED TEMPERATURE OBSERVATIONS OVER ONE YEAR. AA = 0.0

AB = 0.0

DO 9790 I = 1, NTEMP

AA = AA + T1(I) + T2(I)

9790 AB = AB + T1(I) + 2*T2(I) = 2

YY = NTEMP**2.0 - 1.0

AM1 = AA / (YY + 1.0)

SS1 = AB / YY - AM1 * AA / YY

C SS1 IS THE VARIANCE OF A NORMALLY DISTRIBUTED XX-OBSERVATION.

S1 = SS1**(1.0 / 2.0)

C

DEVI = 0.33*AM1

IF (S1 - DEVI) 1125, 1125, 1126

1126 S1 = DEVI

C THIS RESTRICTION IS IMPOSED BECAUSE OF THE TYPE OF DATA USED HERE C HOWEVER, IF THE DISTRIBUTION IS KNOWN AND THE DATA ARE REAL, THIS C RESTRICTION SHOULD BE REMOVED FROM THE PROGRAM.

C

GO TO 899

215 IY = IARR

C IY IS SIMILAR TO IZ. IT IS USED AS AN INPUT TO SUBROUTINE RANDU.

WRITE (6, 1130)
THE DENSITY FUNCTIONS ARE UNIFORMLY DISTRIBUTED IN THE MAIN0181
FOLLOWING SIMULATION

DC 222 J=1,NS
DO 222 I=1,NS
 KKJ=1
 IF(IDNST)=768,919,708
708 IX=1Y
 CALL RANDU(IX,IY,DIN)
C RANDU IS A SUBROUTINE WHICH GENERATES A SET OF UNIFORMLY DISTRIBUTED RANDOM NUMBERS.
P(J,I)=T1(I)+DIN*(T2(I)-T1(I))
GO TO 717

CALL GAUSS(I2,S1,AM1,P(J,I))
GAUSS IS A SUBROUTINE WHICH GENERATES A SET OF NORMALLY DISTRIBUTED RANDOM VARIABLES. THIS SUBROUTINE IS CALLED FROM THE IBM/360 SYSTEM SCIENTIFIC SUBROUTINE PACKAGE.

WRITE(6,713)P(J,I)
713 FORMAT(4X,'TEMPERATURE GENERATED IS = ',F7.2)
C1(J,I)=-A1*(P(J,I)-TLIM)
C2(J,I)=-A2*(P(J,I)-TLIM)
C3(J,I)=-A3*(P(J,I)-TLIM)
DO 722 K=1,N
722 EL1(K,J,I)=YL1(K)*EXP(C1(J,I))
 EL2(K,J,I)=YL2(K)*EXP(C2(J,I))
 EL3(K,J,I)=YL3(K)*EXP(C3(J,I))
 EU1(K,J,I)=YU1(K)*EXP(C1(J,I))
 EU2(K,J,I)=YU2(K)*EXP(C2(J,I))
 EU3(K,J,I)=YU3(K)*EXP(C3(J,I))
 IF(IDNST)=923,921,920
920 EF(K,J,I)=EL1(K,J,I)+DIN*(EU1(K,J,I)-EL1(K,J,I))
 ES(K,J,I)=EL2(K,J,I)+DIN*(EU2(K,J,I)-EL2(K,J,I))
 ET(K,J,I)=EL3(K,J,I)+DIN*(EU3(K,J,I)-EL3(K,J,I))
GO TO 795

921 AM2=0.5*EL1(K,J,I)+EU1(K,J,I)
 S2=-0.15*AM2
 CALL GAUSS(I3,S2,AM2,EF(K,J,I))
AM3=0.50* (EL2(K,J,I)+EU2(K,J,I))
S3=0.15*AM3
CALL GAUSS(17,S3,AM3,ES(K,J,I))
AM4=0.50* (EL3(K,J,I)+EU3(K,J,I))
S4=0.15*AM4
CALL GAUSS(17,S4,AM4,ET(K,J,I))

II=K+(J-1)*O+(I-1)*N
EA(II)=EF(K,J,I)
EB(II)=ES(K,J,I)
EC(II)=ET(K,J,I)
IF (KKJ=N) 984,984,987
984 KKJ=1
986 E1(KKJ)=EA(II)
E2(KKJ)=EB(II)
E3(KKJ)=EC(II)
KKJ=KKJ+1
722 CONTINUE
WRITE(6,721)(E1(KKJ),KKJ=1,N)
WRITE(6,721)(E2(KKJ),KKJ=1,N)
WRITE(6,721)(E3(KKJ),KKJ=1,N)
C E1(), E2(), E3() ARE THE SELECTED SAMPLES FOR THE COEFFICIENTS OF THE CREEP FUNCTION FOR THIS PARTICULAR SIMULATION PROCESS.
723 FORMAT('X'CREEP COEFFICIENTS OF THE LAYERS = ',6F10.5)
724 IF(ITEM)7,7,96
726 CALL VISCO
DO 8865 L=1,N
8865 WRITE(6,93)(T(L),W(L))
98 FORMAT('TIME = E15.8,17H RADIAL STRAIN = E15.8')
GO TO 222
7 CALL VISCO
IF(IDEFL)10,12,11
10 IF(ITEM)13,14,14
12 IF(ITEM)15,17,17
14 DO 15 L=1,N
15 WRITE(6,97)(T(L),W(L))
97 FORMAT('TIME = E15.8,17H NORMAL STRAIN = E15.8')
GO TO 222
14 DO 17 L=1,NNN
17 WRITE(6,96)T(L),W(L)
30 FORMAT(8H TIME = E15.8,26H CIRCUMFERENTIAL STRAIN = E15.8)
 GO TO 222
11 IF(IST-2)45,46,46
45 DO 120 L=1,NNN
120 WRITE(6,77)T(L),W(L)
77 FORMAT(8H TIME = E15.8,21H NORMAL DEFLECTION = E15.8)
 GO TO 222
46 DO 121 L=1,NNN
121 WRITE(6,95)T(L),W(L)
95 FORMAT(8H TIME = E15.8,21H RADIAL DEFLECTION = E15.8)
 GO TO 222
12 IF(IST-2)44,43,42
44 DO 122 L=1,NNN
122 WRITE(6,452)T(L),W(L)
452 FORMAT(8H TIME = E15.8,17H NORMAL STRESS = E15.8)
 GO TO 222
43 DO 231 L=1,NNN
231 WRITE(6,355)T(L),W(L)
355 FORMAT(8H TIME = E15.8,16H SHEAR STRESS = E15.8)
 GO TO 222
42 DO 111 L=1,NNN
111 WRITE(6,777)T(L),W(L)
777 FORMAT(8H TIME = E15.8,17H RADIAL STRESS = E15.8)
 9 FORMAT(15)
222 CONTINUE
STOP
END
SUBROUTINE VISC001
COMMON/NANE/IDII, ITMY, NNN, IST, W, ICEFLE, G, F, A, R, ZZ, ILAYER,
1 N, NJJ, DELX, DELTX
COMMON CC(8,20), CC(3,20), FF(8,20), T(201), DELTA(20)
DIMENSION E1(20), E2(20), E3(20), G(20,3), BT1(8,20), BT2(8,20),
1 BT3(8,20), B1(8,20,18), B2(8,20,18), B3(8,20,18), B4(8,20,18,3),
2 EM(13), SII(13,201), SIII(13,201), MTX(2,2,3,3), IU(3,3),
3 MITX(3,3), MTXM(3,3), MXS(3,3), W(201)
EQUIVALENCE(G(1,1), E1(1)), (G(1,2), E2(1)), (G(1,3), E3(1))
EQUIVALENCE(B(1), B1(1)), (B(1,1,1,2), B2(1)), (B(1,1,1,3), B3(1))
DATA MXS/1,2,3,5,3,3,3,3/ DATA EM/5,6,2,4,7,1,2,0,3,0,4,5,6,0,7,8,9,10/ DATA MTX/10,1,5,7,0,3,1,3:0,8,0,4,2,9,0,6,5/ DATA IU/1,5,3,3,0,6,2,3,0/ DATA MTXM/3,0,0,0,1,2,2,1,1,2,1,2,2/ REAL JB
DIMENSION BES(91), BES(91)
ITYP=3
IF(IDEFLE.EQ.0) ITYP=1
IF(IDEFLE.EQ.1) ITYP=2
IDEN=1
IF(IST.EQ.0) GO TO 1
IDEN=2
IF(IST.EQ.2 AND IDEFLE.EQ.0) IDEN=3
IF(IST.EQ.2 AND IDEFLE.EQ.1 AND ITME.EQ.0) IDEN=3
1 CONTINUE
C----CALCULATE TIMES FOR WHICH A SOLUTION IS DESIRED
EX=1U0**DELXX
T(1)=0.
T(2)=1U0**(DELX+DELXX)
DO 7 K=3, NNN
7 T(K)=T(K-1)*EX
IOWA=10(ITYP, IDEN)
C----CALCULATE CONVOLUTION INTEGRALS
DO 20 I=1,2
DO 10 I=1, N
BT1(I, I) = G(I, I)
DO 20 I2 = 1, 2
CALL CNVINT(BT2, BT1, G(1, I2), N, 1)
DO 20 I3 = 2, 3
CALL CNVINT(BT2, BT3, G(1, I3), N, 2)
DO 20 I4 = 3, 4
CALL CNVINT(B1(1, I, MTX(I, I, I2, I3, I4)), BT3, G(1, I4), N, 3)
NT = M(I, MIN(I, 2), ILAYER)
NP = 4
NPP = 4
IF (ILAYER EQ 1) GO TO 40
DO 30 I = 1, 10, 9
30 CALL CNVINT(B2(I, J+1-1), B1(I, J), G(1-3), VINC(2, I), N, 4)
NP = 5
NPP = 5
40 IF (ITYP EQ 1) GO TO 60
DO 50 I = 1, NT
50 CALL CNVINT(B3(I, I), B(I, I), G(1, ILAYER), N, NPP)
NPP = NPP + 1
60 DO 70 K = 1, 13
C-----DO FOR 13 VALUES OF M
CALL CNSTNT(B1(K), H, Z, ILAYER, NT, NP, NPP, N, IOWA, B(1, 1, 1, NP-3),
1 B(1, 1, 1, MXS(ILAYER, ITYP)))
CALL SOLVE(SII, CC, FF, K, N, NP, NPP, NNN, NJJJ)
IF (ITYP EQ 1 OR ITYP NE 2) GO TO 70
CALL SOLVE(SIII, DO, FF, K, N, NP, NPP, NNN, NJJJ)
70 CONTINUE
C-----CALCULATE BESSEL MULTIPLIERS
RJ = 0
DO 75 J = 1, 21
BES(J) = B(J)(MTX(I, IDEN), RJ, A, RJ)
75 RJ = RJ + 1
C-----FOR EACH VALUE OF TIME COMPUTE INTEGRALS WRT M
IF (IDEN EQ 2 AND ITYP NE 2) GO TO 100
DO 90 I=1,NNN
 DO 80 J=4,13
 IF(SII(J-1,I)+SII(J,I) .LE.0.) SII(J,I)=0.
 W(I)=TERPO(SII(1,I),BES)*A
 RETURN
100 DO 110 I=1,NNN
 W1=TERPU(SII(1,I),BES)
 IF(ITYP.EQ.1) W2=TERPU(SII(1,I),BESS)
 IF(ITYP.NE.1) W2=-TERPO(SII(1,I),BESS)
110 W(I)=A*(W1+W2)
 RETURN
END
SUBROUTINE CNVINT(A, B, G, N, M)

C-----THIS CALCULATES A CONVOLUTION INTEGRAL EXACTLY
C
A IS THE RESULT
B IS THE ARGUMENT
G IS THE CREEP FUNCTION
N IS THE LENGTH OF THE SERIES
M IS (DEGREE OF POLYNOMIALS OF B)+1

DIMENSION A(8,20), B(8,20), G(20)

COMMON CC(9,20), DD(8,20), FF(8,20), T(201), DELTA(20)

C-----CALCULATE CREEP FUNCTION AT ZERO
ZER=0.
DO 5 I=1,N
ZER=ZER+G(I)
5 MSUC=M+1
DO 10 J=1,MSUC
DO 10 I=1,N

C-----CALCULATE A(L,J)
RES=0.
IF(L.LE.1) GO TO 25
SUBT=0.
DO 10 J=1,N
IF(I.EQ.J) GO TO 10
DELs=1./(DELTA(I)-DELTA(J))
DO 15 K=1,M
SUBT=SUBT+B(K,1)*DELs
15 DELs=DELs*K/(DELTA(I)-DELTA(J))
10 CONTINUE
RES=RES-SUBT*G(J)*DELTA(J)
GO TO 20
25 RES=RES-B(I-1,J)*DELTA(J)+G(J)/(L-1)
20 IF(L.EQ.MSUC) GO TO 100
SUBT=0.
DO 40 I=1,N
IF(I.EQ.J) GO TO 40
SUBT=0.
DELs=1./(DELTA(J)-DELTA(I))
DO 30 K=L,M
 SSUB=SSUB+B(K,J)*DELS
 DELS=DELS*K/(DELT(A(J))-DELT(A(I))
 SBT=SBT+SSUB*G(I)*DELT(A(I))
40 CONTINUE
 RES=RES+SBT+ZER*B(L,J)
100 A(L,J)=RES
 RETURN
END
SUBROUTINE CNSTNT(X1, CCMMON CC(8, Z'), DOC, D)
QUBL E
PRECIS IO SLIM 1014, 3, 18), Z, 214, B, 5, fB7, 3G11, G'12, G.13, 3G 27, G28, G29, 4G43, G45, G59, GOu, GO1, G61i, 0D 4567 II=1 4
00 4557 12=1,3
DO 4567
4567 0(11, 12, 13)= 0.
EM=XM
H=HH
ZZ=ZZZ
S=EM-H
Z=DEXP(EM)
Z1=DEXP(-EM)
Z2=DEXP(2o , EM)
Z3=DEXP(-2o , EM)
G1=Z/2o
G2=Z1/2o
G3=(1+2o EM)/2o
G4=Z2/2o
G5=Z3/2o
G6=(1+2o EM)/2o
G7=(G1+G2)/2o
G8=(G1-G2)/2o
G9=(G3+G5)/2o
G10=(G3-G5)/2o
G11=(G4+G6)/2o
G12=(G4-G6)/2o
G13=5-G3
G14=5-G5
CNST0001
CNST0002
CNST0003
CNST0004
CNST0005
CNST0006
CNST0007
CNST0008
CNST0009
CNST0010
CNST0011
CNST0012
CNST0013
CNST0014
CNST0015
CNST0016
CNST0017
CNST0018
CNST0019
CNST0020
CNST0021
CNST0022
CNST0023
CNST0024
CNST0025
CNST0026
CNST0027
CNST0028
CNST0029
CNST0030
CNST0031
CNST0032
CNST0033
CNST0034
CNST0035
CNST0036
G15 = 5 - G15
G16 = -G15
G17 = 5 + G3
G18 = -G17
G19 = 5 + G4
G20 = 5 - G4
Z4 = DEXP(2 * S)
G27 = 2 * 74
G28 = (1 + 2 * EXP(M)) * Z4
G29 = G27 * G7 + G28 * G2 + G1
G30 = G27 * G8 + G28 * G2 - G1
G31 = G27 * G9 + G28 * G13 + G17
G32 = G27 * G11 + G28 * G15 + G19
G33 = G27 * G12 + G28 * G16 + G20
G34 = (1 - 2 * S) + Z4
G35 = -2 * S + S + Z4
G36 = G35 * G7 + G7 - G36 * G2
G37 = G35 * G8 - G8 + G36 * G2
G38 = G35 * G9 + G9 + G36 * G13
G39 = G35 * G11 + G11 + G36 * G14
G40 = G35 * G12 + G12 + G36 * G16
L = 0
Z5 = DEXP(5)
Z6 = DEXP(-5)
G53 = Z5
G54 = -Z5
G55 = S + Z5
G56 = S - Z5
G37 = G53
G38 = G54
G39 = G55
G40 = G56
G41 = G37 * G7 + G38 * G7 - G39 * G2 + G40 * G1
G42 = -(G38 * G2 + G4) * G21
G43 = G37 * G8 - G38 * G8 + G39 * G2 - G40 * G1
G44 = -(G38 * G30 + G40 * G22)
G45 = G37 * G9 + G38 * G9 + G39 * G13 + G40 * G17
G46 = -(G38 * G31 + G40 * G23)
G47 = G37 * G10 - G38 * G10 + G39 + G14 + G40 * G18
G48 = -(G38 + G32 + G44 * G24)
G49 = G37 * G11 + G38 * G11 + G39 * G15 + G40 * G19
G50 = G38 * G33 - G40 * G25
G51 = G37 * G12 - G38 * G12 + G39 * G16 + G40 * G20
G52 = -(G38 * G34 + G40 * G26)
IF(L) 1, 1, 2
L = 5
G57 = G41
G58 = G42
G59 = G43
G60 = G44
G61 = G45
G62 = G46
G63 = G47
G64 = G48
G65 = G49
G66 = G50
G67 = G51
G68 = G52
G38 = -G38
G39 = (1.0 + S) * Z5
G40 = -(1.0 - S) * Z6
G0 TU 3
2 A1 = G45
A2 = G46
A3 = G47
A4 = G48
A5 = G50
A6 = G66
A7 = G67
A8 = G68
B1=G49
B2=G50
B3=G51
B4=G52
B5=G61
B6=G62
B7=G63
B8=G64
8 C(1)=A1*A5-B1*B5
C(3)=A3*A5+A1*A7-B3*B5-B1*B7
C(6)=A4*A6+A2*A8-B4*B6-B2*B8
C(7)=A3*A7-B3*B7
C(8)=A4*A7+A3*A8-B4*B7-B3*B8
C(9)=A4*A8-B4*B8
IF(L)4,5,6
6 DO 7 I=1,9
7 THE V(I) TERMS ARE THE THETA(I) TERMS OF THE TEXT
V(I)=C(I)
A1=G49
A2=G50
A3=G51
A4=G52
A5=G57
A6=G58
A7=G59
A8=G60
A9=G41
B2=G42
B3=G43
B4=G44
B5=G65
B6=G66
B7=G67
B8=G58
L=0
GO TO 8
5 L=5
D0 9 I=1,9
Q(3,1,I)=C(I)
A1=G61
A2=G62
A3=G63
A4=G64
A5=G41
A6=G42
A7=G43
A8=G44
B0=G45
B1=G46
B2=G47
B3=G48
B4=G49
B5=G50
B6=G51
B7=G52
B8=G53
B9=G54
GO TO 8
10 D0 10 I=1,9
Q(4,1,I)=C(I)
D0 11 I=1,9
Q3=Q(3,1,I)
Q4=Q(4,1,I)
Q(1,1,I)=V(I) *G1+G3*Q3+G4*Q4
Q(2,1,I)=V(I) *G2+G5*Q3+G6*Q4
Q(1,2,I)=V(I) *G7+G9*Q3+G11*Q4
Q(2,2,I)=Q(1,2,I)
Q(1,3,I)=V(I) *G2+G13*Q3+G15*Q4
Q(4,2,I)=V(I) *G1+G17*Q3+G19*Q4
Q(4,3,I)=V(I) *G21+G23*Q3+G25*Q4
Q(2,3,I)=V(I) *G29+G31*Q3+G33*Q4
Q(3,3,I)=V(I) *G27+G29*Q3+G31*Q4
\[J = 1 + 9 \]
\[Q(1, 2, J) = V(1) + G_8 + G_{10} + Q_3 + G_{12} + Q_4 \]
\[Q(2, 2, J) = -Q(1, 2, J) \]
\[Q(2, 3, J) = V(1) + G_2 + G_4 + Q_3 + G_{16} + Q_4 \]
\[Q(4, 2, J) = -V(1) + G_1 + G_{18} + Q_3 + G_{20} + Q_4 \]
\[Q(4, 3, J) = V(1) + G_{22} + G_{24} + Q_3 + G_{26} + Q_4 \]
\[Q(2, 3, J) = V(1) + G_{30} + G_{32} + Q_3 + G_{34} + Q_4 \]
\[\epsilon Z = \epsilon M \times \epsilon Z \]
\[\epsilon Z_1 = D \exp(\epsilon Z) \]
\[\epsilon Z_2 = D \exp(-\epsilon Z) \]

The \(\text{ALAM}(i, j) \) terms are the \(\text{LAMCA}(i, j) \) s of the text.

\[\text{ALAM}(1, 1) = -\epsilon Z_1 \]
\[\text{ALAM}(1, 2) = -\epsilon Z_2 \]
\[\text{ALAM}(1, 3) = -\epsilon Z_1 \times \epsilon Z_1 \]
\[\text{ALAM}(1, 4) = -\epsilon Z_1 \times \epsilon Z_2 \]
\[\text{ALAM}(2, 1) = -\text{ALAM}(1, 1) \]
\[\text{ALAM}(2, 2) = \text{ALAM}(1, 2) \]
\[\text{ALAM}(2, 3) = \text{ALAM}(2, 1) - \text{ALAM}(1, 3) \]
\[\text{ALAM}(2, 4) = -\text{ALAM}(1, 2) + \text{ALAM}(1, 4) \]
\[\text{ALAM}(3, 1) = \text{ALAM}(2, 1) \]
\[\text{ALAM}(3, 2) = -\text{ALAM}(2, 2) \]
\[\text{ALAM}(3, 3) = 2 \times \text{ALAM}(3, 1) - \text{ALAM}(1, 3) \]
\[\text{ALAM}(3, 4) = 2 \times \text{ALAM}(2, 2) - \text{ALAM}(1, 4) \]
\[\text{ALAM}(4, 1) = \text{ALAM}(1, 1) \]
\[\text{ALAM}(4, 2) = \text{ALAM}(1, 2) \]
\[\text{ALAM}(4, 3) = -\text{ALAM}(2, 3) \]
\[\text{ALAM}(4, 4) = \text{ALAM}(2, 4) \]
\[\text{ALAM}(5, 1) = -1.5 \times \epsilon Z_1 \]
\[\text{ALAM}(5, 2) = 1.5 \times \epsilon Z_2 \]
\[\text{ALAM}(5, 3) = -1.5 \times \epsilon Z_1 \times \epsilon Z_1 \]
\[\text{ALAM}(5, 4) = -1.5 \times \epsilon Z_1 \times \epsilon Z_2 \]
\[\text{ALAM}(6, 1) = 1.5 \times \epsilon Z_1 \]
\[\text{ALAM}(6, 2) = -1.5 \times \epsilon Z_2 \]
\[\text{ALAM}(6, 3) = 1.5 \times \epsilon Z_1 \times \epsilon Z_2 \]
\[\text{ALAM}(6, 4) = -1.5 \times \epsilon Z_1 \times \epsilon Z_2 \]
\[\text{ALAM}(8, 1) = -1.5 \times \epsilon M \times \epsilon Z_1 \]
```
ALAM(8,2) = -1.5 * EM * EZ2
ALAM(8,3) = ALAM(8,1) * (1 + EZ)
ALAM(8,4) = -ALAM(8,2) * (1 - EZ)
DO 910 L = 1, NPP
   DO 910 J = 1, N
      CC(L, J) = 0.
      DD(L, J) = 0.
      FF(L, J) = 0.
      IF(L .GT. NP) GO TO 890
      DO 920 I = 1, 9
         FF(L, J) = FF(L, J) + V(I) * B(L, J, I)
      890   DO 910 I = 1, NT
         P1 = 0.
         P2 = 0.
         DO 930 M = 1, 4
            P1 = P1 + Q(M, ILAYER, I) * ALAM(1) * WA, M
            P2 = P2 + Q(M, ILAYER, I) * ALAM(4, M)
         930   CC(L, J) = CC(L, J) + BB(L, J, I) * P1
      910   DD(L, J) = DD(L, J) + BB(L, J, I) * P2
      RETURN
   END
```
SUBROUTINE SOLVE(SI, HB, B, KK, N, MM, NNN, NJJJ)

C--- THIS CALCULATES THE SOLUTION OF THE INTEGRAL EQUATION

C SI(KK,1,..,NNN) IS THE SOLUTION

C B(1,..,MM,1,..,NNN),B(1,..,MM,1,..,NNN) ARE THE FUNCTIONS (B THE KERNEL)

C NJJJ IS THE # OF INTERVALS USED

COMMON CC(B,20),CD(B,20),FF(B,20),T(201),DELTA(20)

DIMENSION SI(13,211),B(8,20),BB(8,20),BET(3)

C----- CALCULATE SOLUTION AT T=C.

BETA=0.

ARG=0.

DO 10 I=1,N

BETA=BETA+B(1,I)

10 ARG=ARG+B(I,1)

SI(KK,1)=ARG/BETA

DO 70 K=2,NNN

C----- CALCULATE SOLUTION AT T=T(K)

ISN=1

ARG=0.

BET(3)=0.

DO 30 L=1,N

SSUMA=0.

SSUMB=0.

DO 15 J=1,MM

SSUMA=BB(MM-J+1,L)+T(K)*SSUMA

15 DO 20 J=1,MM

SSUMB=BB(M-J+1,L)+T(K)*SSUMB

20 EX=EXP(-T(K)*DELTA(L))

IF (EX. LT 1E-10) EX=0.

ARG=ARG+SSUMA*EX

30 BET(3)=BET(3)+SSUMB*EX

PSI=0.

SI(KK,K)=0.

MIN=MAX(J(K-NJJJ,2))

DO 60 J=MIN,K

ISN=ISN+K

BET(2+ISN)=0.
DO 50 L=1,N
SSUM=0

DO 40 LL=1,M
SSUM=H(M-LL+1,L)+(T(K)-T(J))*SSUM
EX=EXP(-(T(K)-T(J))*DELTA(L))
IF(EX.LT.1.E-10) EX=0.

50 BET(2+ISN)=BET(2+ISN)+SSUM*EX
JJ=J-1
IF(J.EQ.MIN) JJ=1

60 PSI=PSI-(SI(KK,J)+SI(KK,JJ))*(PET(1)-BET(3))*ISN

70 SI(KK,K)=(2.*ARG+PSI)/(BET(1)+BET(3))
RETURN
END
FUNCTION TERPO(S,BES)
C-----THIS COMPUTES THE INTEGRAL WRT TO K
C S(1...13) CONTAINS PSI AT DIFFERENT M'S
C JES(1...91) CONTAINS THE BESSEL MULTIPLIES
DIMENSION S(13),FUN(91),BES(91)
C-----INTERPLOATE 91 VALUES OF S
A=(S(1)-2*0.5)*12.5
V=A*0.5*(S(2)-S(1))*5.
FUN(1)=S(1)
FUN(2)=A*0.1-V*0.1+S(2)
FUN(3)=S(2)
FUN(4)=A*0.1+V*0.1+S(2)
FUN(5)=S(3)
A=(S(3)-2.0*S(4)+S(5))/18
V=A*0.3+(S(4)-S(3))/3.
FUN(6)=A*0.4-V*0.2+S(4)
FUN(7)=A*0.1-V*0.1+S(4)
FUN(8)=S(4)
FUN(9)=A*0.1+V*0.1+S(4)
FUN(10)=A*0.4+V*0.2+S(4)
KK=10
DO 10 K=5,11,2
A=(S(K)-2.0*S(K+1)+S(K+2))*5.
V=A+S(K+1)-S(K)
DO 10 I=1,20
KK=KK+1
10 FUN(KK)=A*0.5*(I-I)*2.0*0.1+V*(I-I)*0.1+S(K+1)
!
FUN(91)=S(13)
C-----USE SIMPSON'S RULE FOR THE INTEGRATION
7 WI=0.
DO 70 J=2,3,2
70 WI=WI+4.0*BES(J)*FUN(J)+2.0*BES(J+1)*FUN(J+1)
WI=WI+BES(1)*FUN(1)+4.0*BES(90)*FUN(90)+BES(91)*FUN(91)
TERPO=WI*0.1/3.
RETURN
END
REAL FUNCTION JB(N,A,B)

C------- JE(J,A,B)=JJ(A*B)

C JB(1,A,B)=JI(A*B)

C JB(2,A,B)=J1(A*B)/B

C FCR A*B>12 AN ASYMPTOTIC APPROX IS USED

J=MINQ(1,N)

S=A*B

IF(S.LE.12.) GO TO 10

PHI=S-.7854

IF(J.EQ.1) PHI=S-.3562

JB=((2./3.*14159./S)**.5)*COS(PHI)

IF(N.GT.1) JB=JB/B

RETURN

10 TERM=1.

IF(N.EQ.2) TERM=A*.5

IF(N.EQ.1) TERM=S*.5

JB=TERM

DC 2 J=1,22

TERM=-(S*S/(4.*I*(I+J)))*TERM

IF(ABS(TERM).LT.0.001) RETURN

20 JB=JB+TERM

RETURN

END