AIRFIELD PAVEMENT MAINTENANCE

by

BOBBY DAVID BARNES

SB, North Carolina State University

Submitted in partial fulfillment of the requirements for the degree of Master of Science

at the Massachusetts Institute of Technology

September 1971

Signature of Author

Department of Civil Engineering,

Certified by

Thesis Supervisor

Accepted by

Chairman, Departmental Committee on Graduate Students of the Department of Civil Engineering
ABSTRACT

TITLE: AIRFIELD PAVEMENT MAINTENANCE

by

BOBBY DAVID BARNES

Submitted to the Department of Civil Engineering on August 16, 1971 in partial fulfillment of the requirements for the degree of Master of Science.

The demands for service placed upon airfield pavements is increasing at a substantial rate. The unexpected failure of these facilities may lead to air transport problems around the world. The prediction of airfield performance with time and the effects which specified maintenance programs may have upon this performance are important in the efficient operation of the facility.

In connection with any proposed pavement maintenance program two questions may be posed:

1. What is the best balance between initial construction cost and future maintenance cost; and
2. How much maintenance should be done on existing facilities?

No single answer to either of these questions can be applied to all airfield pavements. Instead each particular facility will operate under a solution which is satisfactory to its individual needs and resources.

To allow the facility planner or maintenance manager (i.e. decision maker) to answer these questions in the context of his own peculiar problems, an airfield pavement maintenance computer model has been developed which yields:

1. Estimates of the condition of the runway/taxiway pavement;
2. Estimates of the maintenance efforts required to change conditions;
3. Estimates of the associated costs with changes.

The maintenance model as presented in the thesis has been found, through sensitivity analysis, to validly predict performance trends under specified climatic and air traffic environments. While the model has not been fully calibrated, those areas which may prove most fruitful for further work are noted. The parameters of pavement thickness, traffic load (weight), subgrade support, and rut depth filled are identified as the most influential parameters.
While the model cannot "accurately" predict maintenance costs or pavement condition at this time, it should be able to do so with calibration. This process may be carried out either in a research or application atmosphere.

Thesis Supervisor: Professor Fred Moavenzadeh
Title: Associate Professor of Civil Engineering
ACKNOWLEDGEMENT

The author wishes to express his sincere appreciation to Professor Fred Moavenzadeh for his interest, guidance, and assistance throughout this research.

Also deserving of special thanks are Antoine Naaman, Carlos Ramos, Mark Becker, A.C. Lemer, and Tom Parody for their time, opinions, criticism, and friendship throughout the course of the author's study at M.I.T.

Deepest thanks are due the author's wife for her patience, encouragement, and typing and to his parents, Mr. and Mrs. A.D. Barnes.

Finally the author is indebted to the National Science Foundation, and the M.I.T. Department of Civil Engineering for the support which enabled this study.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>1</td>
</tr>
<tr>
<td>Abstract</td>
<td>2</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>4</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>5</td>
</tr>
<tr>
<td>List of Figures</td>
<td>7</td>
</tr>
<tr>
<td>List of Tables</td>
<td>9</td>
</tr>
<tr>
<td>CHAPTER I - INTRODUCTION</td>
<td>10</td>
</tr>
<tr>
<td>1.1 DISCUSSION OF MAINTENANCE</td>
<td>10</td>
</tr>
<tr>
<td>1.2 GENERAL BACKGROUND</td>
<td>11</td>
</tr>
<tr>
<td>1.3 OBJECTIVES AND SCOPE</td>
<td>12</td>
</tr>
<tr>
<td>CHAPTER II - PERFORMANCE AND ECONOMIC CONSIDERATIONS</td>
<td>14</td>
</tr>
<tr>
<td>2.1 PERFORMANCE</td>
<td>14</td>
</tr>
<tr>
<td>2.1.1 Serviceability</td>
<td>14</td>
</tr>
<tr>
<td>2.1.2 Reliability</td>
<td>15</td>
</tr>
<tr>
<td>2.1.3 Maintainability</td>
<td>15</td>
</tr>
<tr>
<td>2.1.4 Performance of Constructed Facilities</td>
<td>17</td>
</tr>
<tr>
<td>2.2 ECONOMICS</td>
<td>17</td>
</tr>
<tr>
<td>2.2.1 Total Cost of Service</td>
<td>18</td>
</tr>
<tr>
<td>2.2.2 Details of Total Cost Evaluation</td>
<td>19</td>
</tr>
<tr>
<td>2.2.3 Maintenance–Construction Costs</td>
<td>20</td>
</tr>
<tr>
<td>2.2.4 User Costs</td>
<td>21</td>
</tr>
<tr>
<td>2.3 SUMMARY</td>
<td>22</td>
</tr>
<tr>
<td>CHAPTER III - THE MAINTENANCE MODEL</td>
<td>30</td>
</tr>
<tr>
<td>3.1 MODEL CONCEPT</td>
<td>30</td>
</tr>
<tr>
<td>3.1.1 Ideal Structural Concept of Model</td>
<td>31</td>
</tr>
<tr>
<td>3.1.2 Current Model</td>
<td>34</td>
</tr>
<tr>
<td>3.1.3 Basic Relationships</td>
<td>34</td>
</tr>
<tr>
<td>3.1.4 Performance Concept</td>
<td>35</td>
</tr>
<tr>
<td>3.2 DETAILED DESCRIPTION OF MAINTENANCE MODEL</td>
<td>35</td>
</tr>
<tr>
<td>3.2.1 Deterioration</td>
<td>36</td>
</tr>
<tr>
<td>3.2.2 Serviceability-Roughness</td>
<td>40</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>2-1</td>
<td>Reliability Of Two Different Runway Designs Under Identical Traffic And Maintenance</td>
</tr>
<tr>
<td>2-2</td>
<td>Reliability Under Different Maintenance Policies, A More Intensive Than in Figure 2-1</td>
</tr>
<tr>
<td>2-3</td>
<td>Sequence Of Questions To Be Asked In The Allotment of Resources</td>
</tr>
<tr>
<td>2-4</td>
<td>Serviceability Of Different Quality Construction</td>
</tr>
<tr>
<td>2-5</td>
<td>Serviceability-Time Relation For Equal Initial Construction Quality</td>
</tr>
<tr>
<td>2-6</td>
<td>Maintenance Cost-Improvement Relation</td>
</tr>
<tr>
<td>2-7</td>
<td>Maintenance Effort-Improvement Changes With Time, T_i</td>
</tr>
<tr>
<td>2-8</td>
<td>Maintenance-Improvement With Varied Maintenance Effort And Initial Construction Quality</td>
</tr>
<tr>
<td>3-1</td>
<td>Concept Of Performance And Damage</td>
</tr>
<tr>
<td>3-2</td>
<td>Flow Chart Of Ideal Concept Of Simulation Model</td>
</tr>
<tr>
<td>3-3</td>
<td>Detailed Schematic Of Maintenance Model</td>
</tr>
<tr>
<td>3-4</td>
<td>Schematic Of Equivalent Coverage Function</td>
</tr>
<tr>
<td>3-5</td>
<td>Subjective Response Data From Parks (14,37)</td>
</tr>
<tr>
<td>3-6</td>
<td>Schematic Relation Of Vertical Acceleration, Time, Roughness</td>
</tr>
<tr>
<td>3-7</td>
<td>Typical Maintenance Program Print Out</td>
</tr>
<tr>
<td>4-1</td>
<td>Maintenance Costs For Varying Pavement Thickness</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>4-2</td>
<td>Vertical Acceleration Vs. Time For Varying Pavement Thickness</td>
</tr>
<tr>
<td>4-3</td>
<td>Maintenance Costs For Changing Maintenance Policy</td>
</tr>
<tr>
<td>4-4</td>
<td>Vertical Acceleration Vs. Time For Changing Maintenance</td>
</tr>
<tr>
<td>4-5</td>
<td>Maintenance Cost for Various Intervals Of Maintenance Application</td>
</tr>
<tr>
<td>4-6</td>
<td>Vertical Acceleration Vs. Time For Several Intervals Of Maintenance Application</td>
</tr>
<tr>
<td>4-7</td>
<td>Maintenance Cost For Three Subgrade Support Values</td>
</tr>
<tr>
<td>4-8</td>
<td>Vertical Acceleration Vs. Time For Three Values of DCBR</td>
</tr>
<tr>
<td>4-9</td>
<td>Maintenance Cost For Different Aircraft Loads</td>
</tr>
<tr>
<td>4-10</td>
<td>Vertical Acceleration Vs. Time For Three Aircraft Loads</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Input Factors Influencing The Damage Estimation Of Airfield Pavements</td>
<td>48</td>
</tr>
<tr>
<td>4-1</td>
<td>Base Run Data</td>
<td>70</td>
</tr>
<tr>
<td>4-2</td>
<td>Sensitivity Analysis: Thickness</td>
<td>72</td>
</tr>
<tr>
<td>4-3</td>
<td>Sensitivity Analysis: Spring Thaw Subgrade Support, SCBR</td>
<td>73</td>
</tr>
<tr>
<td>4-4</td>
<td>Sensitivity Analysis: Traffic Repetitions</td>
<td>74</td>
</tr>
<tr>
<td>4-5</td>
<td>Sensitivity Analysis: Equivalent Single Wheel Loads, ESWL (P)</td>
<td>75</td>
</tr>
<tr>
<td>4-6</td>
<td>Sensitivity Analysis: Tire Inflation Pressure, PC</td>
<td>76</td>
</tr>
<tr>
<td>4-7</td>
<td>Sensitivity Analysis: Design Subgrade Support, DCBR</td>
<td>77</td>
</tr>
<tr>
<td>4-8</td>
<td>Sensitivity Analysis: Maintenance Unit Costs, MUC</td>
<td>78</td>
</tr>
<tr>
<td>4-9</td>
<td>Maintenance Cost Distribution</td>
<td>79</td>
</tr>
<tr>
<td>4-10</td>
<td>Sensitivity Analysis: Maintenance Policy, MAPOL</td>
<td>80</td>
</tr>
<tr>
<td>4-11</td>
<td>Results Of Sensitivity Analysis For 10% Change In Input Parameter</td>
<td>82</td>
</tr>
<tr>
<td>4-12</td>
<td>Results Of Sensitivity Analysis For Maintenance Parameters, 1/10 Fractional Change</td>
<td>83</td>
</tr>
</tbody>
</table>
CHAPTER I
INTRODUCTION

1.1 DISCUSSION OF MAINTENANCE

The basic questions concerning maintenance of the airfield pavement are:

1. What is the best balance between initial system cost and future maintenance cost; and
2. How much maintenance should be done on existing systems?

The right amount or proper balance of maintenance for one facility may not be the same for another. For this reason a single answer which will be applicable at all airfields cannot be defined. However general methodologies and techniques by which the answer(s) to these questions can be determined for an individual facility are being sought by several agencies (National Aeronautics and Space Administration, U.S. Federal Aviation Administration, U.S. Army Corps of Engineers, Port of New York Authority, etc.). What is needed is a problematical approach for consideration of maintenance and its implementation via the development of an airfield pavement maintenance computer program.

This problematical approach should consider three entities: the facility suppliers, the facility, and the user. Conceptually the model should evaluate the existing or planned construction in the existing or predicted traffic and climatic environment. This evaluation would yield, first of all, expected physical damage or deterioration response with time. Secondly it should take the predicted damage quantities and estimate the effect they have upon the aircraft crew or passengers. This process should be capable of being repeated for each period the pavement is in service. Hence the proposed computer program should allow the simulated performance of maintenance during these periods and estimate both the cost of maintenance and the effect maintenance has upon the facility's performance.
1.2 GENERAL BACKGROUND

The observation has been made that the sudden loss of service on a runway at Kennedy International Airport in New York can tie up traffic patterns halfway around the world (1)*. A similar statement concerning service complications could be made about many of the other 21 air transport hubs** which are operating at or near capacity in the U.S. (2,3). These far-reaching and drastic effects are the result of continually increasing demands upon airfield service. These demands occur both in the number of passengers and in the number of aircraft (2-5). Accompanying this numeric growth of passengers and aircraft has come large increases in aircraft dimensions and weight (2-5). Increases of the type mentioned are not expected to cease in the near future (1970-1985) (6). Hence the runways of today and the future will be faced with functionally serving aircraft demands much different than those in the past.

In order to meet these growing air traffic demands two broad categories of solution exist:

1. Increase the number of present facilities;
 or

2. Increase the capacity of existing facilities (6).

The implementation of either of these categories will require knowledge of the performance properties of the facility. This knowledge is required to allow reasonable evaluation of the facility's condition such that sudden or unexpected losses of service may be unlikely to occur (7,8).

To this end it is desirable to be able to predict the state of performance of the runway pavement at any time, and the effect of any given maintenance program upon this performance.

* Numbers in parenthesis refer to references.

** hubs - those airfields which handle 1% or more of the U.S.'s annual enplanements, e.g. O'Hare, Kennedy, L.A. International, etc.
Functionally, the airfield runway and taxiway pavements will be required to provide service to the user at an adequate level. This service may be perceived in two areas: 1. human systems and 2. mechanical systems.

1. The human system relates primarily to comfort and safety. This is to say that the passengers must be comfortable during ground movement; and the pilot must be able to execute movements in a safe manner.

2. The mechanical system deals with (a) the reliability of instrument readings, (b) the structural stability of the aircraft and (c) the condition of the cargo.

The task remains to evaluate how well the pavement meets the functional requirements of an adequate service level. In the evaluation of runways two groups are important: (a) the planners, designers, maintenance managers, and operators (suppliers) and (b) the users (8,9). Group (a) is generally interested in the deterioration or damage which the pavement undergoes while group (b) finds that the service which they receive from the facility is most important (10). In order for both evaluations to be made it seems feasible to formulate a model which predicts, first, damage (cracking, rutting, roughness) as a function of construction, traffic, and climate and second the effect this damage has upon the user's perception of service.

1.3 OBJECTIVES AND SCOPE

The objective of this thesis is to present a maintenance model which allows prediction of runway pavement condition and maintenance costs under specified maintenance programs. This model has been formulated as a computer program simulation.
This program is viewed as a tool which can aid the designer or maintenance manager in his decision-making process. In this respect the maintenance model allows tradeoffs between various maintenance policies and between initial construction and future maintenance to be rationally examined.

The presentation of the thesis is made in five chapters. Chapter II deals in detail with (a) the concepts of performance of constructed facilities and (b) the implications of a total cost framework for analysis. Tradeoffs between construction costs, maintenance costs, and user costs are examined.

Chapter III sets forth both the concepts and the detailed description of the maintenance model. Therein is pointed out the desirability of constructing a stochastic model to account for the random characteristics of traffic, of climatic environment, and of materials' properties. The later portion of Chapter III explains the deterioration, serviceability, roughness, and quantities and cost (material, labor, equipment) relationships used in the computer program. The empirical nature of these relationships is noted.

Chapter IV presents the results of sensitivity and tradeoff analysis conducted with the airfield pavement maintenance computer program. The presentation:

1. Examines the validity of the maintenance model response;
2. Isolates the input parameters and hence the computer program functions which have the most effect upon model response;
3. Delineates areas for most fruitful further research or calibration; and
4. Examines tradeoffs which may be investigated with the model.

The final chapter, Chapter V, presents a summary and evaluation of the present work together with recommendations for further work.
In Chapter I the requirements for a functional airfield runway pavement were noted. Particularly it was stated that the facility should "provide service to the user at an adequate level". In other words the facility must meet serviceability demands. In addition this serviceability should be provided with a certain degree of reliability and an understanding of its maintainability. Collectively these three components, serviceability, reliability, and maintainability define the performance of a constructed facility. These terms and their implications will be explored in some detail below.

2.1.1 Serviceability

Success of any constructed facility requires that it provide service at some useful or adequate level. This in turn implies that the evaluation of the service provided by the facility lies with the user. Broadly defined, the term refers to direct, indirect, and subsidiary users (11).

As a group, all users can evaluate some of their reactions to the facility in terms of cost. Predominately the judgement of the indirect and subsidiary users are more influenced in this respect. However the direct user, passengers and crew, consider not only economic effects but also psychological effects (11,12,13). Psychological effects encompass perceptions or feelings of comfort and safety. Vibration and noise are most often cited in connection with these effects (9,14).

Serviceability is then a measure of how well the desires and needs (psychological, physical, and economical) of the users are met. In this respect no consideration is made for the future characteristics of the service. Serviceability implies only the existing or desired condition of the facility. Reliability and maintainability account for future states.
2.1.2 Reliability

Reliability accounts for the probability of the facility being in any one state at a particular time. That is, the probability that the facility can furnish the desired level of serviceability throughout some period of time; often referred to as a design life.

As an example consider two runways A and B. A has been designed for a traffic of 1000 coverages of aircraft having Equivalent Single Wheel Loads (ESWL) of 30,000 pounds. Whereas B was designed for the same ESWL's but for 2,000 coverages; i.e., construction effort or quality is higher for B than A. If we assume that the traffic and maintenance for each pavement is identical, reliability might be plotted as shown in Figure 2-1. Without making definitive statements concerning failure, it is apparent that as each runway accumulates traffic, the probability of failure increases.

Provided that the ultimate objective of each runway is to supply a pavement having a specific service level for 2,000 coverages, it is clear that the probability of A remaining at the desired serviceability level falls off more rapidly than does the probability of B. Hence, one sees that each runway provides service to the user but that the reliability of that service is different.

This example has shown a comparison of two differently designed runways under identical maintenance operations. An alternative to the provision of more construction effort lies in maintenance or maintainability considerations.

2.1.3 Maintainability

Maintainability may be defined as a measure of the effort required during the life of a facility to assure an adequate level of service. The manner in which this required effort is expended is termed maintenance. And, it may be divided into two categories, normal maintenance and corrective maintenance. Normal maintenance is of a preventive nature. Generally, it is composed of programmed activities which accomplish certain tasks at a given rate; e.g. sealing 75% of all
cracks once a year. Corrective maintenance in contrast is an unscheduled activity. It is undertaken when a portion of the facility has failed or failure is impending; e.g. replacement of asphalt where a disabled aircraft has torn away a portion of the pavement.

In general, corrective maintenance cannot be accurately planned. Conceptually, more intense normal maintenance may or may not effect the potential need for corrective maintenance. Nonetheless, the proper planning and application of normal maintenance can effect system reliability. Consider the above example of runways A and B. The reliability of these two pavements could be made to approach each other under proper maintenance policies. That is, A could attain a higher reliability, if it were subjected to a more comprehensive maintenance policy. For example, if the maintenance policies had been:

A - Patch 50% of all cracks
Seal 40% of all cracks
Fill 60% of depth of all ruts

B - Patch 20% of all cracks
Seal 10% of all cracks
Fill 0% of depth of all ruts

then the corresponding reliabilities might approach each other, Figure 2-2.

Alternatively one could view A and B as having identical design and traffic, but with different maintenance policies, B more intensive than A. In this case Figure 2-1 could be viewed as a likely representation of reliability.

Another implication of Figure 2-1 concerns the relation between construction effort and maintainability. It is noted that A has lower reliability than B. Hence it may be recognized that in order to maintain the desired serviceability with a given reliability that more maintenance should be investigated for A.

At this point it should be clear that serviceability, reliability, and maintainability must be considered in the design process.
2.1.4 Performance of Constructed Facilities

Performance of a constructed facility is the embodiment of the three aforementioned components: serviceability, reliability, and maintainability. No system can effectively be evaluated without recognition of these either implicitly or explicitly. From a structural integrity view, performance lends itself fairly well to evaluation. On the other hand, from a user's psychological perspective the evaluation is much more difficult. As was mentioned earlier, vibration and noise effect the direct user, but to what extent this influences the users perceived utility is difficult to judge. Even more difficult to evaluate, is the relationship between the vibration level the user experiences and the structural integrity of the pavement. In order to begin this evaluation much work is needed in the fields of psycho-physics and psychometrics. The detailed examination of these fields and their implications is somewhat outside the realm of this thesis. (For a comprehensive explanation of this area see Thurstone (13), Fechner (15), Winkler (16), Galantner (17).) Nonetheless, the maintenance model deals with these areas in its evaluation and a brief discussion of them is presented in Chapter III.

In analysis and design of systems of constructed facilities, system performance and the economic costs of the facility must be evaluated. Most often the designer's task is to provide some level of performance within some set of cost constraints. Tradeoffs exist between construction cost, maintenance costs, and user cost. Hence it is economically feasible to evaluate the performance of a system within the context of a total cost analysis.

2.2 ECONOMICS

The planning, design, construction operation, and maintenance of any constructed facility must be considered within the context of a broadly defined environment. Four problem areas should be investigated: (a) economic, (b) social, (c) political, and (d) technical. One logical manner of attacking these problems is to ask a series of
questions concerning the distribution of resources and the accruement of returns, Figure 2-3. It is assumed that the terms resources and returns may be considered in a broad sense economic but in a more specific sense social and political.

In this study, it is sought to provide the decision maker with a tool which will aid him in answering questions 5 and 6 of Figure 2-3. Consequently, some technique or methodology is required to allow evaluation of the costs involved: construction, maintenance, and user.

2.2.1 Total Cost of Service

Several alternative methods of economic analysis are available: (a) equivalent uniform net return, (b) net present value, (c) benefit/cost ratio, (d) equivalent uniform annual cost, and (e) internal rate of return (for a thorough treatment of these see Samuelson (12), Baumol (18), Grant and Ireson (19), or Winfrey (20). The method proposed for evaluation of costs in this study is present value of total costs.

Present value of total costs is a particularly attractive method in that it allows not only the evaluation of construction costs, maintenance costs, and users' costs; but it also provides the decision maker with a time stream flow of resources - costs. This last aspect may be of substantial importance in that it allows consideration of expenditures of future resources as balanced against projected availability of these resources. It is evident that the benefits of the total cost technique are lost if any of the components of cost are deleted or misjudged. In previous years the components, construction cost, and user cost have received much attention. Consequently, several sophisticated techniques exist which allow close approximations of their values. (See Manheim, et. al. (21)). Contrastingly, the estimates of maintenance cost, when not omitted entirely, have relied on what can only be termed "experience". Several objections to these estimates exist. Two of these are:

1. The facility for which the estimate is rendered must already exist in
order for experience to be gained.

2. In order for estimates to be made for a proposed facility, a similar facility must exist in a similar environment.

Of course several other objections concerning changing traffic and changing maintenance policies exist. Consequently an accurate mechanism for maintenance estimation will be desired.

2.2.2 Details of Total Cost Evaluation

The formula used for the evaluation of present worth of total cost is:

\[TC_i = \sum_{j=0}^{n} \frac{CC_{ij} + MC_{ij} + UC_{ij}}{(1 + d)^j} \]

where \(TC_i \) = Present worth of strategy \(i \) over an analysis period of \(j \) years

\(CC_{ij}, MC_{ij}, \) and \(UC_{ij} \) = respectively construction, maintenance, and user costs predicted for strategy \(i \) in year \(j \).

\(d \) = discount rate or the opportunity cost of capital

By this method, the strategy with the lowest present worth of total service cost is preferred (22). Hypothetically, this technique could be expanded to include costs associated with political and social effects. However this does not appear practical. Nevertheless the total cost approach can yield costs for the facility which are required in the evaluation and comparison of different projects within a broad framework.

From the total costs perspective the components of maintenance costs and user's cost do not necessarily remain equal for two different construction efforts. (It is assumed that more construction effort requires increased construction costs.) In fact many combinations of
construction costs, maintenance costs, and user costs are possible. It was shown in the preceding section concerning performance that combinations of maintenance and construction effort may result in facilities which have equal reliability. Furthermore, it can be shown that these components effect the serviceability of the facility. In this respect it should be recognized that interaction among the cost components is not independent. Hence this leaves the way clear for consideration of tradeoffs among the three.

2.2.3 Maintenance-Construction Costs

Intuitively, one may assume that low maintenance costs are associated with high construction quality. Conversely, high maintenance expenditures should be required for projects having low construction quality. These maintenance-construction relations are most nearly true for projects which must meet similar serviceability requirements within equivalent economic environments. Figure 2-4 shows a relationship between two projects which must meet similar serviceability requirements with time. Apparently the low quality construction could have approached the serviceability history of the high quality construction if more maintenance effort had been expended. Furthermore, it could be shown that the service life of X could have approached that of Y had a smaller maintenance effort been expended on X.

On examining the effects of different maintenance efforts for projects having equal construction quality, Figure 2-5, it can be seen that the serviceability histories of A and B are considerably different. By relating \(\Delta S_1, \Delta S_2 \) (change in serviceability - improvements) and \(M_1, M_2 \) (maintenance effort), a maintenance cost-improvement relation can be proposed similar to Figure 2-6. For this relationship it is assumed that a higher maintenance effort \((M_1 > M_2) \) regains a larger value of serviceability \((\Delta S_1 > \Delta S_2) \). Presumably \(M_1 \) is more expensive than \(M_2 \).

It should be noted that the relationship of Figure 2-6 is valid for only one time period. Even though later time periods will require \(\Delta S_X \) improvements equivalent to previous \(\Delta S \)'s, the cost will not necessarily be the same. This difference is related to the method of
achieving a specific ΔS_x through a maintenance effort M_x, i.e.,

$M_t \neq M_{t-1} \neq M_{t+1}$ even though $\Delta S_t = \Delta S_{t-1} = \Delta S_{t+1}$ because the

maintenance operations for M_t, M_{t-1}, and M_{t+1} may be entirely different.

Consequently, the associated costs of repair will be different. Hence,

the representation of the relationship between maintenance effort and

improvement requires a family of curves as shown in Figure 2-7.

If one wishes to also associate maintenance effort and improvement

with construction quality, another family of curves will be needed as

shown in Figure 2-8.

The foregoing serviceability, construction quality, maintenance

effort interactions show some of the complexity involved in designing,

constructing, and maintaining constructed facilities. These interactions

have special significance for runway pavements because they allow the

designer or maintenance manager the alternative of meeting service level

requirements in several different ways.

2.2.4 User Costs

The maintenance-construction tradeoffs discussed above concern

themselves with equivalent serviceabilities. That is, there are

combinations of construction effort and maintenance effort which can

provide similar serviceability histories (performance). In this respect

the user will experience no change in his cost. However, if the service

level differs from strategy to strategy the user's cost will vary.

Explicitly this means that no trouble occurs when using present value of

total costs for comparing projects of similar performance.

In contrast, modifications must be made if the service level varies.

Implicitly, varying levels of service are accompanied by changes in user

costs. And unless the facility is subject to an inelastic demand for

service, the number of users will change. To some extent, large

metropolitan airfields represent facilities having an inelastic demand

for service. Whether the runways are in poor condition or excellent

condition, the same number of aircraft will seek to land. This observ-

ation is made under the influence of present capacity operations at

many of this nation's air transport hubs. There exists the probability
however, that the inelasticity of this demand cannot be extrapolated into future years. Prediction concerning demand must consider that new airfields are under construction (and existing fields are undergoing reconstruction) and will enter the air transport market in a competitive manner. Furthermore, it is evident that the inelasticity of the demand has limits, i.e. after a certain user cost is passed other modes of transport will become more popular and more competitive. Therefore the decision maker must have some methodology for establishing service levels and thereby user costs.

A modification of equation 2-1 will allow consideration of various service levels together with maintenance and construction costs under changing demands. It is suggested that the concept of willingness to pay be used in the modification of the present worth of total costs technique.

A thorough treatment of this evaluation is not essential here. Thus the reader is referred to reference (20) for a more detailed description.

2.3 SUMMARY

For a given level of serviceability there exist many combinations of maintenance and construction effort which will provide the desired performance. For each combination considered there are costs associated with construction and maintenance. It has been shown in section 2.2.3 that maintenance costs and maintenance efforts vary with construction quality. In fact even though the same change in serviceability may be desired for two different projects or at two different times the maintenance model computer program which is described in the next chapter allows tradeoffs between construction and maintenance to be examined in terms of service, damage, and maintenance costs. While the model does not allow the specification of ΔS's it does allow the evaluation of the resulting costs and performance under specified maintenance efforts, M's. This means that those relationships that are discussed in section 2.2.3 have been established, but in reverse of the manner described therein (i.e. M's are specified and ΔS's are evaluated and output in combination
with the service level after maintenance).

The concept of a total cost evaluation has been introduced to show how different combinations of construction and of maintenance may be evaluated by the decision maker (i.e. planner, designer, maintenance manager, operator). The third component, user costs, should have no significant effect upon the total cost decision unless changing levels of service are to be considered. The actual evaluation of user cost is not a part of this study. However it has been discussed because it forms an integral part of the proposed economic evaluation technique; and hence must be considered in any meaningful economic evaluation.

It should be apparent now that the intent of this study is not to formulate a decision making model. Instead the purpose of this study is to present both in concept and in detail a tool which can aid the decision maker in his task. This tool should be able to predict costs and performance which will allow decisions to be made more effectively within a broad environment involving not just technology and climate but also politics, economics, and society.
Figure 2-1: Reliability Of Two Different Runway Designs Under Identical Traffic And Maintenance

Figure 2-2: Reliability Under Different Maintenance Policies A More Intensive Than In Figure 2-1
Figure 2-3: Sequence Of Questions To Be Asked In The Allotment Of Resources
Figure 2-4: Serviceability Of Different Quality Construction
(Maintenance effort and loading history equal)
Figure 2-5: Serviceability - Time Relation For Equal Initial Construction Quality (Equivalent loading history but different maintenance effort)
Figure 2-6: Maintenance Cost – Improvement Relation
(\(\Delta S\) denotes increment of improvement)

Figure 2-7: Maintenance Effort – Improvement Changes With Time, \(T_i\). (Relationship assumes equivalent loading and initial quality of construction)
Figure 2-8: Maintenance - Improvement With Varied Maintenance Effort And Initial Construction Quality
CHAPTER III
THE MAINTENANCE MODEL

The maintenance model described in this chapter forms the central portion of this thesis. The chapter is divided into two sections. Section 3.1 deals with the model concept. It notes both the need for stochastic modeling as well as the empirical nature of the current model. The detailed description of the airfield pavement maintenance model follows in section 3.2. This section discusses the relations which were chosen for simulating pavement deterioration and maintenance and their operation. The operation of the model is explained by the use of an example.

3.1 MODEL CONCEPT

The driving motivation for maintenance operations is to maintain adequate serviceability at a desired level of reliability. In the model concept developed herein, serviceability, reliability, and maintainability are not input parameters. Rather, the model evaluates proposed or existing designs in a specified climate and traffic environment and yields indications of these performance parameters. These indications take the form of estimates;

1. Estimates of the condition of the runway/taxiway pavement;
2. Estimates of the maintenance efforts required to change conditions;
3. Estimates of the associated costs with changes.

Ideally the performance of the pavement could be shown as Figure 3-1. The performance, P, as shown can be related to damage, D, in the pavement. If P and D are fractional quantities and hence range in value between 1.0 and 0.0 inclusive, a relationship between them may be established as a function of time or traffic.

\[P(t) = 1 - D(t) \] (3-1)
where $t =$ traffic or time

at $t = 0.0$, $P = 1.0$

and at $P = 0.0$, $t =$ time at end of service

life, $D = 1.0$

This is the concept upon which this work is based.

3.1.1 Ideal Structural Concept of Model

In concept the model should evaluate the existing or planned airfield pavement construction and yield estimates of its performance. From the point of view of the supplier (planner, designer, operator, maintenance manager, etc.,) and user the amount of damage or deterioration and the level of serviceability are important. Hence it appears that the complete evaluation of this constructed facility may require at least two transfer functions, T and U. Where $T(Y_i)$ relates some set of structural design properties, Y_i's, to the future pavement response (damage or deterioration) which the facility will exhibit under a predicted climatic and traffic environment. Once this response is predicted the $U(X_i)$ function evaluates the damage or deterioration measures, X_i's, and predicts the reaction of the user. Parameters in the Y_i set include materials properties, pavement geometry, climate, and traffic. While the X_i set may be composed of such damage characteristics as cracks, ruts, and roughness. This is the technique which is proposed in the ideal and current model. At first a deterministic solution of T and U seems applicable, however a stochastic approach is more reasonable (23).

The stochastic approach is preferred due to the probabilistic nature of the pavement and user responses. It should be noted that the observed response (damage) of the pavement structure depends upon the probabilistic nature of loading rate effects (24, 25), the position and magnitude of the applied load (26), climate (27), materials type (26), previous traffic history (26), temperature (26), and construction variables (28). Furthermore the perceived utility of the users will also exhibit some mean value together with a distribution of perceptions.
The ultimate objective of the pavement facility is to provide service to the user. The interim objective of this study is to yield estimates of maintenance cost and the associated maintainability and reliability. To associate these objectives with the desired results and format of a model, an ideal strategy must be formulated. First it is desirable to break the problem into its component parts. These parts include input, damage evaluation, aircraft response, and user response. This division implies a linear structure in which each successive component of the system responds to the preceding component. In the simulation model this simply means that responses are calculated step by step. The generalized ideal model might operate as follows:

a. Input pavement design parameters
b. predicted climatic environment
c. predicted traffic
d. response characteristics of aircraft
e. response characteristic of users
f. calculate damage response of pavement from traffic and climate
g. response of aircraft to runway
h. response of user to aircraft

Superimposed on this process are maintenance activities and maintenance cost routines. In flow chart form the total process might appear as Figure 3-2.

Recall that it is most desirable to investigate stochastic modeling for this system. This implies that a certain knowledge of system variables exists. The knowledge should include not only material properties but their accompanying distributions for the pavement system. For the user the response character of cargo would be needed as well as the response character of passengers and crew. These relations require not only a great deal of data but also a reasonable understanding of how the components of the system interact.

At the first level of interest, the pavement, it has been pointed out that many factors effect its structural response and/or
damage. Elliot (29) has made the following observation: "... the indicators of structural inadequacy are the manifestations of the physical failure of the facility, in the particular load, temperature and material property environment. It is therefore pertinent to ask whether analytical models, mathematical or otherwise could be found to account for the manner in which a particular load-temperature-material property-environment would effect the performance of the layered structure." The author of the present thesis knows of no such all inclusive model in operational existence at the present time (1971). Likewise models for aircraft response and user response are required. One model by Tung, Penzien, and Horonjef has particular promise for predicting airframe responses (30). Furthermore a model by Coermann (31) may be used to predict the physical response of human users in the aircraft. The most well developed model is the aircraft response model while the user model is perhaps the least developed. Obviously the user response is a difficult evaluation in that physical and psychological models are required.

Even though many problems are apparent a rational simulation and evaluation of the responses of the several system components may be proposed within the ideal framework of Figure 3-2. Three submodels are required (a) pavement, (b) aircraft, and (c) user. In connection with each of these the author has found three models which may, after much work, be combined as a total rational model. Ashton (32), Elliot (33), Findakly (34), and Soussou (35), have all worked on stochastic models of the viscoelastic nature of bituminous pavements. The work to date has not resulted in a final damage model but it promises to in the near future. The aforementioned model by Tung et. al. (30) has much promise. It is formulated as a deterministic model. Response of the airframe in terms of vibrations and acceleration may be predicted. The third model needed is one which simulates user response. Assuming that human response is most critical (i.e. cargo response can be altered by packing techniques) the model of the human body by Coermann (31) may be used. This model presently has the limited capability of predicting
average physical responses. By a thorough investigation of human response to motion (vibration and acceleration), the fields of psychology and human factors might be used to derive a rational user response function. At the outset of this study none of the three models mentioned were in suitable form for incorporation. However the rationale which surrounds these has been thoroughly investigated and where appropriate utilized. Hence due to the present shortcomings of the above an empirical technique is used.

3.1.2 Current Model

The current model is not viewed as a completed study but as an interim tool. In its present form it should be able to aid two groups (a) researchers and (b) designers and maintenance managers. With some additional work in the area of comparison and calibration, it is thought that the model, as it exists, may be used as a tool for the designer and maintenance manager in the area of service life prediction and maintenance planning. The researcher should find the interactions which occur in the model instructive and helpful.

3.1.3 Basic Relationships

Before dealing in detail with each component of the program, the essential relationships between pavement, aircraft and user should be presented. The predominant pavement factor of interest is macro-roughness or surface unevenness (14, 36-44)*. Pavement roughness, defined as deviation from a smooth flat horizontal surface, causes several modes of movement or vibration, vertical, horizontal, and angular, in the airframe (30, 42, 44). These vibrations together with their amplitude have been shown through human factors research (14,36,37) to effect the users perception of comfort and/or safety. Therefore the two parameters which this study is most interested in are roughness and vibration.

*Macro-roughness does not include skid resistance problems which are of a smaller scale and termed micro-roughness. For a thorough review of skid problems and their possible solution see Dahir (45).
3.1.4 Performance Concept

The components serviceability, reliability, and maintainability may be examined with the model. Measures of service are derived by investigating the vertical acceleration to which the passenger is subjected. Maintainability may be inspected through the service level-time relationship which results with changes in maintenance policy. And reliability can be checked by comparing the service behavior of the facility under equal traffic and environment but with different maintenance and construction strategies (see section 2.1.2).

It should be recognized that with these capabilities the model not only approaches the ideal concepts but that it becomes a useful tool to those experienced in airfield maintenance.

3.2 Detailed Description of Maintenance Model

The preceding section, 3.1, has shown that the maintenance model is based upon the concept that damage and performance are related. This implies that if one can be predicted the other can be determined. In section 3.1.1 it has been pointed out that it is desirable to determine some functions T and U which allow first the prediction of damage (as a function of materials properties, pavement geometry, climate, and traffic) and secondly the prediction of user response. Relationships which allow these determinations are formulated in the current model. These relationships have been used in programming an airfield pavement maintenance computer simulation using the Fortran IV computer language (46). Basically the computer program performs four functions:

1. Simulates deterioration of the pavement by predicting the change in roughness as a function of traffic and environment.

2. Predicts changes in serviceability with changes in roughness.

3. Estimates changes in roughness as a function of maintenance policy.
4. Estimates quantities of labor and material and costs for a specified maintenance policy.

The structure of these functions within the program is presented in Figure 3-3.

Each of the four individual functions are described in detail within this chapter. Furthermore, at the end there is included a brief summary of the required input and expected output of the program.

3.2.1 Deterioration

The primary value to be considered in deterioration is surface roughness. It has been shown that roughness may vary linearly with both the weight and number of applications of traffic (47,48,49). Nevertheless one realizes that an aircraft having a weight of 100,000 pounds per landing gear effects this deterioration of the pavement differently than one having 30,000 pounds per gear. The approach used in this study concerns the equating of some common measure of traffic to a measure of damage (50-54). Therefore derivation of equivalence factors which allow the reduction of several different loading conditions to a common denominator is desirable. The Corps of Engineers pavement design method has been used in the derivation of these equivalence factors (55-59).

Considerations for pavement properties and traffic may be represented by (47,55,60,62):

1. Subgrade support
2. Equivalent pavement thickness (60)
3. Equivalent coverages*

The Corps of Engineers' thickness design equation allows the investigation of the interaction of these parameters.

"a coverage occurs when each point on the pavement surface has been subjected to one maximum stress by the operating aircraft" (61).
\[t = (0.23 \log C + 0.15) \sqrt{\frac{P}{8.1 \text{ CBR}}} - \frac{P}{p_c} \]
(3-2)

where:
- \(t \) = thickness of flexible pavement structure
- \(C \) = traffic volume, (coverages)
- \(P \) = wheel load, (single or equivalent single wheel load, ESWL - pounds)
- \(\text{CBR} \) = soil strength measurement, (California Bearing Ratio)
- \(p_c \) = tire inflation pressure, (psi).

Equation 3-2 may be rewritten in terms of coverages:

\[C = 10^w \]
(3-3)

where:

\[w = \left\{ \frac{t}{\frac{P}{8.1 \text{ CBR}} - \frac{P}{p_c}} - 0.15 \right\} \frac{1}{0.23} \]

With equation 3-3 equivalent coverages may be determined via equivalence factors, \(EF \), as derived in equation 3-4 and shown schematically in Figure 3-4.

\[EF = \frac{C_{ta}}{C_x} \]
(3-4)

Where:

- \(EF \) = Equivalence factor
- \(C_{ta} \) = Coverages to failure for the aircraft for which the pavement was designed
- \(C_x \) = Coverages to failure for any aircraft, \(x \) other than the type for which the runway was designed.

To account for climatic influence, subgrade support during the spring thaw period was considered. An environmental factor, \(\text{ENVFT} \), was
derived from Asphalt Institute (62) and Road Test Research (63).

\[\text{ENVFT} = \log_{10} \frac{\text{CBR}_{\text{design}}}{\log_{10} \text{CBR}_{\text{spring}}} \]

(3-5)

Both the equivalence factor, EF, and the environmental factor, ENVFT, are used to determine the total number of equivalent coverages per year (see Figure 3-4).

The following example best explains the equivalent loading calculations.

EXAMPLE

Given

<table>
<thead>
<tr>
<th>Type Aircraft</th>
<th>Number of Coverages/Year</th>
<th>Equivalent Single Wheel Load* (kg.)</th>
<th>Tire Inflation Pressure (kg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>28636</td>
<td>10.6</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>30909</td>
<td>11.6</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>30909</td>
<td>11.6</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>15909</td>
<td>9.2</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>18181</td>
<td>10.2</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>41818</td>
<td>12.7</td>
</tr>
</tbody>
</table>

Pavement Thickness = 71cm.
Design CBR = 10.0
Spring CBR = 7.0.

*Determined by Corps of Engineers Method (56,57).
Findings For Loading Only

<table>
<thead>
<tr>
<th>Type (I)</th>
<th>Coverages to Failure (\text{CFAIL(I)})</th>
<th>Equivalence Factors</th>
<th>Equivalent Coverages For Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13,954</td>
<td>1.0</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>8,354</td>
<td>1.67</td>
<td>167</td>
</tr>
<tr>
<td>3</td>
<td>8,354</td>
<td>1.67</td>
<td>167</td>
</tr>
<tr>
<td>4</td>
<td>774,284</td>
<td>0.018</td>
<td>1.8</td>
</tr>
<tr>
<td>5</td>
<td>247,691</td>
<td>0.056</td>
<td>5.6</td>
</tr>
<tr>
<td>6</td>
<td>1,780</td>
<td>7.84</td>
<td>784</td>
</tr>
</tbody>
</table>

Total For Year = 1, \(\text{TOTAC} \) = 1225 coverages

Determine Total, With Environmental Factor

Given 1. \(\text{SPTHW} \), % of traffic during spring thaw period

SOLUTION

1. Determine number of equivalent coverages during spring thaw, \(\text{SPRING} \)

\[
\text{SPRING} = \text{TOTAC} \times \text{SPTHW}
\]

2. Determine \(\text{ENVFT} \), Environmental Factor

\[
\text{ENVFT} = \frac{\text{DESIGN CBR}}{\text{SPRING CBR}}
\]

\[
= \frac{\log_{10} 10}{\log_{10} 7} = 1.18
\]

3. Determine total corrected equivalent loadings for year, \(\text{YTOTL} \)

\[
\text{YTOTL} = (\text{TOTAC} - \text{SPRING}) + (\text{SPRING} \times \text{ENVFT})
\]

\[
\text{YTOTL} = 1270 \text{ Coverages}
\]
The next step after calculating the equivalent loadings for the year involves determining the amount of associated roughness. As was previously noted the deterioration-loading relation can be represented as a linear process. This of course implies that a sharp increase in traffic will be accompanied by a similar rise in roughness.

All the traffic in the example has been converted to equivalent coverages of aircraft type 1, CFAIL(1). Thus the change in roughness, RCHNG, for the example may be determined.

\[
RCHNG = \left(\frac{YTOTL}{CFAIL(1)} \right) \times 158 \text{cm/km} \quad (3-6)
\]

where:

- \(RCHNG \) = change in roughness, cm/km
- 158 = range of roughness variation in cm/km
- New construction = roughness = 79 cm/km
- Failed condition = roughness = 237 cm/km. (64)
- \(YTOTL \) = Total environmentally corrected equivalent coverages for year, equal to 1270 for the example
- \(CFAIL(1) \) = coverages to failure of aircraft type 1, equal to 13954 coverages in the example

Therefore RCHNG for one year is

\[
RCHNG = \left(\frac{1270}{13954} \right) \times 158 = 14.38 \text{ cm/km}.
\]

Hence the roughness at the end of year 1, before maintenance is:

\[
\text{Roughness} = 79.0 + 14.38 = 93.38 \text{ cm/km}
\]

The reader should refer to the flow diagram of the current model Figure 3-3. From here it can be seen that the foregoing process can be repeated in part or in full for each year of analysis.

3.2.2 Serviceability—Roughness

Work by Hutchinson (14), Goldman (36), and Parks (37), and others leads to the concept of roughness related serviceability. It is seen from much of the work done by NASA (65), ALPA (66), and the U.S. Corps
of Engineers (67) that pavement roughness directly effects vibration of both the human and mechanical systems which traverse the runway/taxiway. Vertical vibration is considered the most critical case.

Human response to vertical vibration may be characterized as shown in Figure 3-5. The range of frequencies from 0 cps to 20 cps is particularly critical because man's natural capacity for vibration absorption is least effective in this range (14). For this first model a serviceability relation is formulated by investigating vertical acceleration (VA) in the 5 cps range.

Establishment of an arbitrary measure of serviceability, as in the AASHO Road Test, (63), may tend to limit the utility of the model. Consequently, the model predicts and evaluates vertical acceleration, VA, as a function of roughness. This procedure is more generally useful in that it will allow consideration of the pavement serviceability to the airframe, cargo, instruments, crew, and passengers. In these early stages of development the model is used to evaluate serviceability in relation to human response. Since the major concern at this stage is service to the passengers and crew; a safety criterion was chosen in connection with failure. The failure state is defined as that condition at which the VA ≥ 0.7g because it becomes extremely difficult for the pilot to carry out his duties safely at this amplitude of vibration (especially in the 5 cps to 20 cps range of interest in this study) (14,40).

The shape of the acceleration-roughness deterioration curve (Figure 3-6B) may be determined by considering a variety of runway profiles with their accompanying roughness and acceleration measures. Actual comparison of runway roughness and resulting vertical acceleration has not been undertaken in this study. Rather the relationship has been assumed. It is noted that normal bituminous pavements vary from a roughness of 50 inches/mile (79 cm/km) to 150 inches/mile (237 cm/km) from their newly constructed to their failed states respectively (64). Equation (3-7) is the result of associating 0.1g and 1.0g vertical acceleration with these roughness measures and assuming a linear

41
relationship for intermediate values (see Figure 3-6C).

\[VA = -0.35 + 0.0057 R^{**} \] \hspace{1cm} (3-7)

where:

\[VA = \text{vertical acceleration in g's} \]
\[R = \text{roughness in cm/km}. \]

The foregoing allows two relations to be considered:

1. effect of number of equivalent coverages and climate on roughness; and
2. effect of roughness on vertical acceleration.

3.2.3 Maintenance-Roughness

As roughness changes so do the associated modes of deterioration; rutting and cracking. With the aid of Road Test damage data (63,67) and regression analysis (68), the form of equations 3-8 and 3-9 has been determined.

\[CP = 627.9 + 89 \sqrt{0.633 R^{**}} \] \hspace{1cm} (3-8)
\[RD = -26.7 + 0.338 R + 0.335 \sqrt{CP^{**}} \] \hspace{1cm} (3-9)

where:

\[CP = \text{Cracking plus patching, m}^2/1000m^2 \]
\[R = \text{Roughness, cm/km} \]
\[RD = \text{mean rut depth, cm} \]

These equations permit the model to estimate structural deterioration with changing roughness. The next step requires the determination of the change in roughness as associated with maintenance effort,

**Equations noted by ** are the result of empirical relations or regression analysis. The units often do not work out properly. In these cases the reader may imagine the components to be multiplied by some unit factor Q which will yield the specified units.
equation 3-10,

\[R = 79.0 + 2.96 \times RD - \sqrt{CP^{**}} \tag{3-10} \]

where:

RD and CP are repaired quantities.

To illustrate the simulation of maintenance operations as a function of deterioration and specified maintenance policy consider the following:

\[NA = \left[(CP)_x - (CP)_{x-1} \right] \times WOS \times LOS \times 1000 \text{ m/km} \tag{3-11} \]

where:

\(NA \) = area of new cracking on the pavement section, \(m^2 \)

\(WOS \) = width of section, \(m \)

\(LOS \) = length of section, \(km \)

The maintenance policy for sealing and patching are specified as fractions of new cracking that will be sealed or patched.

\[SMS = FTS \times NA \tag{3-12} \]

\[SMP = FTP \times NA \tag{3-13} \]

where:

\(SMS \) = Area sealed, \(m^2 \)

\(SMP \) = Area patched, \(m^2 \)

Specified in maintenance policy

\[\begin{cases}
FTS = \text{fraction of } NA \text{ to be sealed} \\
FTP = \text{fraction of } NA \text{ to be patched}
\end{cases} \]

Now the new area of cracking after maintenance, \(NA' \), is given by

\[NA' = NA - (SMS + SMP) \tag{3-14} \]

3.2.4 Maintenance Quantities and Costs*

To transform the quantities of maintenance required (in this case

*This portion of the program is taken from the previous work of Alexander (22). The explanation is altered only slightly from the original.

43
square meters of sealing and patching) to quantities of labor, equipment and materials is fundamentally a problem in engineering estimation. This part of the model may be thought of as an automated estimating procedure. Productivity and consumption rates used in the following equations were determined partly by a review of existing maintenance studies of operational efficiency, and partly from the performance characteristics of the equipment involved.

Hours of labor or equipment time required to accomplish the quantity of work estimated above are determined by functions similar to the following equation, for the equipment hours needed to place patching material.

\[
EHN_{ij} = \frac{CCM_{ij} \times DOP \times SMP}{PT_2\times 100} \quad (3-15)
\]

In equation 3-15, \(EHN_{ij}\) represents the hours of \(j\) type equipment needed to accomplish \(i\) type maintenance operations for the year. \(CCM_{ij}\) is the hours of \(j\) type equipment needed to accomplish one unit of the \(i\) maintenance operation (in this case, one cubic meter of patching material), \(DOP\) is the average depth of patch placed in centimeters, \(SMP\) represents the square meters of patching as determined by equation 3-13 and \(PT_2\) is an efficiency factor representing hours actually worked for each hour on the job. This factor can be used to calibrate the model for the efficiency of the maintenance organization involved. Each type of labor and equipment is estimated by an equation similar to equation 3-15.

Estimating the quantity of materials required is a straight-forward process. Materials estimated are fuel for the maintenance equipment and the actual materials placed on the road during maintenance.

The quantity of fuel required for each type of equipment is estimated from the hours of equipment use previously estimated:

\[
MP_{ij} = EHN_{ij} \times C_{ij} \quad (3-16)
\]
Where MP_{ij} represents liters of gasoline required for the j type of equipment to accomplish the i operation: EHN_{ij} is determined in equation 3-15 and C_{ij} is the appropriate fuel consumption factor.

It is also relatively simple to estimate the quantity of material placed on the road during maintenance. To continue with the example of sealing and patching, the tons of bituminous patching material needed is found by:

$$MBA_i = \frac{DCG \times DOP \times SMP}{100} \quad (3-17)$$

where DCG is the compacted density of the finished patch, and the other variables have been previously defined.

After the quantities of labor, equipment, and materials needed for the year have been determined, cost for each quantity is found. The quantities of each item are multiplied by the appropriate unit costs, which are furnished by the model user.

The estimated maintenance costs are subtotaled for labor, equipment and material. Each of these subtotals is then discounted to present worth values.

The subtotals of present worth cost are then added to find the total, present worth cost for the year. The actual costs are also totaled for each year. These total yearly maintenance costs are accumulated as the model works to the end of the analysis period.

3.2.5 Input-Output

The preceding detailed descriptions have sought to recount the rationale behind the formulation of the current model. It is perhaps unclear just what quantities the computer program requires as input. Furthermore the output quantities may be vague.

Table 3-1 lists both the type of factor and its measure needed as input for damage estimation. Additional input is required for the maintenance estimating routine. A thorough treatment of the input details is given in Appendix II, User's Manual.
Typical output includes:

(1) the number of equivalent coverages;
(2) the amount of cracking and patching before and after maintenance;
(3) average roughness for each period or year;
(4) the changes in roughness;
(5) the average vertical acceleration for the year and;
(6) the yearly and accumulated actual and discounted costs.

This output sequence is continued for any one project until either the number of periods of simulation or the allowable vertical acceleration is exceeded. A copy of the output for year 1 of one run is given in Figure 3-7. A more comprehensive description is not included here. However the reader is again referred to Appendix II for a full description of the program's requirements and capabilities.

3.2.6 Review of Details of Maintenance Model

In review, one should again examine the flow of the maintenance model. Figure 3-3 is schematically designed to explain the flow of operation which the computer model of maintenance follows.

The model provides the designer with the capability to test various combinations of construction quality and maintenance effort. Furthermore, it permits the designer to test a particular combination of construction and maintenance under changing climatic and traffic demand environments. For maintenance management, the model yields estimates of the performance consequences of various specified maintenance programs. Maintenance management may also test a given maintenance policy against varied traffic and climatic environments. In both cases, the model will predict damage and estimate the flows of cash, material, men, and machines under various input constraints as presented in Table 3-1.
One should remember that the maintenance model as presently constructed, will serve as an estimating tool. Consequently, as experience is gained with its use both the model's accuracy and usefulness will improve.
TABLE 3-1

Input Factors Influencing The Damage Estimation Of Airfield Pavements

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>MEASURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Construction Quality</td>
<td>1. (a) Pavement Thickness</td>
</tr>
<tr>
<td></td>
<td>(b) CBR Of Subgrade</td>
</tr>
<tr>
<td>2. Traffic</td>
<td>2. (a) ESWL</td>
</tr>
<tr>
<td></td>
<td>(b) Tire Inflation Pressure</td>
</tr>
<tr>
<td></td>
<td>(c) Number Of Coverages</td>
</tr>
<tr>
<td>3. Environment</td>
<td>3. (a) CBR - Design</td>
</tr>
<tr>
<td></td>
<td>(b) CBR - Spring</td>
</tr>
<tr>
<td>4. Maintenance Effort</td>
<td>4. (a) Fraction of Cracks Filled</td>
</tr>
<tr>
<td></td>
<td>(b) Fraction of Cracks Sealed</td>
</tr>
<tr>
<td></td>
<td>(c) Fraction of Rut Depth Filled</td>
</tr>
</tbody>
</table>
Figure 3-1: Concept Of Performance And Damage
Figure 3-2: Flow Chart Of Ideal Concept Of Simulation Model
INPUT:
1. CONSTRUCTION QUALITY
2. ENVIRONMENTAL PARAMETERS
3. TRAFFIC CHARACTERISTICS
4. SPECIFIED MAINTENANCE POLICY
5. MAXIMUM ACCEPTABLE VERTICAL ACCELERATION
6. NO. OF PERIODS OF TEST

DETERMINE EQUIVALENT UNIFORM LOADINGS FOR PERIOD -- EQUIVALENCE & ENVIRONMENTAL FACTORS

DETERMINE INCREASE IN SURFACE ROUGHNESS

PERFORM MAINTENANCE AS PER SPECIFIED MAINTENANCE POLICY

ESTIMATE COSTS, QUANTITIES, AND ACTIVITIES FOR PERIOD

ADD PERIOD COSTS AND QUANTITIES TO ACCUMULATED TOTALS

DETERMINE IMPROVED ROUGHNESS

DETERMINE AVERAGE ROUGHNESS FOR YEAR i.e. (ROUGHNESS BEFORE TRAFFIC FOR YEAR + ROUGHNESS JUST BEFORE MAINTENANCE + ROUGHNESS JUST AFTER MAINTENANCE) / 3

ESTIMATE AVERAGE VERTICAL ACCELERATION FOR YEAR

Figure 3-3: Detailed Schematic Of Maintenance Model
Figure 3-4: Schematic Of Equivalent Coverage Function
Figure 3-5: Subjective Response Data From Parks (14,37)
Figure 3-6: Schematic Relation Of Vertical Acceleration, Time, Roughness

Assumed Vertical Acceleration - Roughness Relation

VA = 0.35 + 0.0057 R

R in cm/km And Never Less Than 79.0 cm/km

Curvilinear Deterioration
Associated With Increasing Traffic

Possible Vertical Acceleration - Deterioration Curves

Y - Extremely Annoying
X - Perceptible

54
Figure 3-7: Typical Maintenance Program Print Out
CHAPTER IV
RESULTS AND DISCUSSION

This chapter addresses itself to the questions concerning the validity of model response and the use of the model. In order to consider these questions this chapter is divided into two sections, sensitivity analysis and tradeoff analysis, which discuss the problems of validity and of use respectively.

4.1 SENSITIVITY ANALYSIS

The purpose of this sensitivity analysis is threefold. It seeks to:

1. Examine the validity of the maintenance model response;
2. Isolate the input parameters and hence the computer program functions which have the most effect upon model response; and
3. Delineate areas in need of further research or calibration.

In the context used here, the first of these, validity, does not imply accuracy. Rather it is sought to examine the response trends of the airfield pavement maintenance computer program. In order for the program to be valid, the predictions which it makes should agree with those pavement response trends which have been observed both in the field and in the lab. After the program has been checked for validity it may be calibrated, i.e. it should be modified so that it predicts accurately the responses which occur in service. Calibration thus implies further work which will require substantial field data. In order to calibrate the model most efficiently it is desirable to isolate the input parameters and functions which effect the model's operation most significantly. If these are known the data acquisition and program modification which should be part of further research or calibration can be planned easily and effectively.
The strategy used in this sensitivity analysis involves the selection of a "standard" set of data which may be altered, one parameter at a time, and then compared with the results of other alterations. The standard set of data which was selected is given in Table 4-1, and is called the base run.

4.1.1 Variables Considered

It is the objective of this sensitivity analysis to examine only those airfield maintenance input variables which are of primary concern to the design and maintenance process. The parameters tested and presented herein are:

1. Thickness of pavement, T
2. Spring thaw subgrade support, SCBR
3. Design subgrade support, DCBR
4. Traffic
 a. coverages (repetitions), ANUMB
 b. loading (equivalent single wheel load, ESWL), P
 c. tire inflation pressure, PC
5. Maintenance unit costs, MUC - labor, equipment, and material
6. Maintenance policy, MAPOL
 a. fraction of rut depth filled, FRF
 b. fraction of cracks sealed, FTS
 c. fraction of cracks patched, FTP

Functionally, the maintenance model deals with these by predicting (a) maintenance cost and (b) runway pavement condition. Several output parameters are available for monitoring as listed in section 3.2.5. Those chosen were:

a. vertical acceleration (VA),
b. accumulated discounted total maintenance cost, and
c. the year in which VA equalled or exceeded 0.7 g.
The cumulative effect of damage or deterioration, cracking, patching, ruts, and roughness, is incorporated in the model response as VA and hence the selection of (a) for monitoring. The cost of maintenance, (b), was an obvious choice since its prediction is one of the major objectives of the thesis. Together with maintenance cost and facility condition it is necessary to know the expected service life, (c), of the facility. Therefore when $VA \geq 0.7g$ the ability of the facility to meet the requirements of an adequate service level is significantly impaired and the facility is considered failed (see section 3.2.2). Each time a parameter is altered the service life of the facility may change. It would be quite difficult to compare the costs and performance as affected by parameter variation unless some constant length of time is chosen as a basis for comparison. Five years was selected as this time for two reasons: (a) because almost all of the projects survived that long and (b) because it is of special importance if reconstruction, upgrading, or staged construction are of interest (see references (69) and (70) for details).

The standard set of data in Table 4-1 gives the following results for comparison:

VA at five years = 0.46g
Accumulated discounted total cost of maintenance at five years = $83,955
Year $VA \geq 0.7g = 8$.

4.1.2 Results of Analysis

Pavement thickness, T, was varied from -50% to +50% of the base run value, 71.12cm. The tabulated results of these are given in Table 4-2. At a thickness of 35.56 cm (-50%) the pavement rapidly deteriorates and fails within the first year. On the other hand a small increase in thickness of 10% lengthens the service life of the pavement approximately six years. A response trend of this sort should be expected from what is generally known about pavement design. This type of interaction (service life, maintenance cost, and pavement
thickness) has been observed and reported by Witczak (71), the U.S. Corps of Engineers (56, 57), and the U.S. Federal Aviation Administration* (72).

Spring thaw subgrade support, SCBR, exhibits only limited variation in facility service, cost, and life as shown in Table 4-3. A spring subgrade support value 80% less than the design or fall CBR value decreases facility life by only 25%. However it should be recalled that in this analysis merely 20% of the yearly traffic traverses the pavement during this critical time. Hence, this parameter may show marked changes in the response of the facility with substantial increases in traffic (73). Nevertheless, the parameter SCBR is not deemed overly significant unless the traffic distribution for the year is exceedingly difficult to predict.

Design subgrade support, DCBR, Table 4-4 is probably one of the most important parameters. The proper evaluation of this quantity is especially important in view of the design and deterioration assumptions made using the Corps of Engineer's method (equations 3-2 and 3-3). Since these equations use DCBR as an important parameter, the model should accurately reflect this importance. Furthermore, the deterioration of pavement is suspected of being related to the quality of the subgrade (74-76). Hence changes in DCBR should be accompanied by substantial changes in serviceability and costs. This is exactly what the model predicts. Changes in DCBR of +10% and -10% yield service lives of eleven and five years respectively.

Traffic variables, coverages, equivalent single wheel loads, and tire inflation pressure, all cause significant variations in response of the runway pavement. The results of sensitivity tests performed on these three parameters are given in Tables 4-5, 4-6, and 4-7. Equivalent single wheel load exhibits the most substantial effect while tire inflation pressure shows much less variation. The number of coverages causes variation somewhere in between.

Coverages per year were varied by ±10%, ±30%, and ±50%. Typical

*This assumes that the material of construction is the same or of equal quality.
service lives were 12 years for -50%, 7 years for +10%, and 6 years for +30%. The costs and VA varied as shown in Table 4-5. Variations of ±10% and ±30% were conducted for load and tire pressure. An increase in ESWL of +30% results in the failure of pavement at 3 years instead of the base run figure of 8 years. Tire inflation pressure shows only moderate changes from the base run results. This is to be expected since only small changes in the intensity of load usually accompany increases in tire pressure (77).

The trends shown in the traffic analysis seem to correspond quite well with airfield and highway pavement experience gained at the WASHO (27), and AASHO (63) road tests and the Stockton (78) and other U.S. Corps of Engineers full scale tests (12).

Maintenance unit costs, MUC, Table 4-8, were varied ±10% and ±25%. The resulting costs of maintenance varied in the same manner by percentage. Individual unit costs were not varied. However it is recognized that individual prices influence the percentage costs of equipment, material and labor. To this end the maintenance costs have been broken down percentage-wise by (a) individual components and (b) groups, Table 4-9. It is clear that the division which will prove most beneficial is labor costs. It should be noted that this breakdown is peculiar to U.S. prices. The relative size of the components will change from country to country, depending upon the degree of labor or capital intensity (see Hirschman (80)). The division of costs between labor, equipment, and material appears to be valid. This may be supported from trends observed for the U.S. in both the Dodge Estimating Guide (81) and the National Construction Estimator (82).

Maintenance policy, MAPOL, Table 4-10, is probably the most interesting evaluation. Tests were run on fraction of cracks patched, FTP, fraction of cracks sealed, FTS, and fraction of rut depth filled, FRF. The most peculiar results occur when one examines the relation between increased values of FTS and FTP (FRF = 0.0) and the vertical acceleration at five years. Instead of more maintenance leading to increased serviceability the serviceability decreases i.e. vertical acceleration increases. The simplest way to explain this phenomenologically is to
recall the technique by which cracks are patched (includes crack filling) and sealed. Generally it is difficult to repair a crack in such a manner that it will be flush with the pavement surface (83). The patching or sealing material protrudes above the surface and may increase the amount of surface roughness slightly. Evidently this effect of crack maintenance, patching, is reflected in equations 3-7, 3-8, 3-9, and 3-10. The regression analysis used to determine the form of several of these included both cracking and patching. Hence this reaction of the model seems justifiable; but since the regression analysis relied upon highway measurements (AASHO (63)) rather than airfield data, the implications of these results require verification with field data. Another question arises when one notes that the costs and vertical acceleration are lowest when FTP and FTS equal zero. If one assumes that the subgrade support is not affected by the seepage of water from surface cracks this is probably a valid phenomena. However most studies in the area (74-77, 27, 63, 78, 79, 83) have found that subgrade support should vary with the amount of seepage allowed. Hence crack maintenance is required. The seepage of water ultimately affects the spring subgrade support and hence this is the parameter which must be accurately estimated under various crack maintenance programs. Therefore the values of VA at five years for zero and non zero crack maintenance may not be readily compared unless different SCBR values of subgrade support are used. This further implies that in order to avoid changes in the pavement structural support, it is necessary that cracks be filled and patched. Therefore, the extent of patching and filling is directly related to the rate of deterioration.

The repair of rutting shows the most marked influence on the parameters of cost and vertical acceleration (via roughness equations 3-7 and 3-10). The assumption which are associated with this substantial cost accumulated in filling ruts are perhaps in error.* Another potential cause for both cost and VA results lies in the use of the AASHO data (63) to determine the constants and form of equation 3-7 and 3-10

*For a thorough presentation of these assumptions see Appendix V, Assumptions Concerning Maintenance.
and especially equation 3-9. However the accuracy of these predictions may only be determined by comparison with actual data. Variations in fraction of rut depth filled, FRF, from 0.1 to 1.3 have been studied. The life of the facility under these FRF's varied from 8 years to 19 years respectively. Accordingly, the parameter FRF is the most influential variable under maintenance policy (both in terms of model response and associated assumptions). And it may have far reaching effects upon the remainder of the model simulation.

4.1.3 Discussion of Sensitivity Results

The foregoing results of sensitivity analysis show that:

a. Those references which have been cited tend to support the predictions which the model makes.

b. From an a priori view the model functions well and predicts responses which are reasonable in terms of increments or decrements e.g. increased thickness implies larger maintenance costs and decreased service life.

The results of the sensitivity analysis demonstrates that the model developed is most sensitive to the following parameters:

1. pavement thickness, \(T \)
2. design subgrade support, DCBR
3. traffic weight, \(P \)
4. fraction of ruts filled, FRF.

(It should be noted that these results are to be expected in keeping with the inherent assumptions in the design equations which have been used.) In order to numerically examine the effects which these have upon the model operation their values were changed by either 10% or 1/10 fraction and the percent change in output (see section 4.1.1) was monitored. The results are tabulated in Tables 4-11 and 4-12. The results show that the four parameters mentioned above are extremely influential upon the
response of the airfield maintenance computer program. Therefore these parameters should receive primary attention in further work because it is apparent that the accuracy of these determine largely the accuracy of the output (response) of the model as a whole. Consequently, the functions or equations and assumptions which relate these input parameters to the output should be investigated. A review of Chapter III and Appendix V shows that the effect these parameters exhibit is highly dependent upon equations 3-2, 3-9, and A-V-1*.

In the decision making process of the airfield designer, operator, or maintenance manager it is most useful to know what design or maintenance parameters effect the performance of the pavement most. The preceding sensitivity analysis has identified these. Hence the next consideration concerns tradeoff analysis.

4.2 TRADEOFF ANALYSIS

The decision maker for an airfield pavement design or maintenance policy is confronted with a large number of parameters from which to construct the facility or to derive a maintenance policy. However as was shown in the sensitivity analysis he may be able to confine the majority of his considerations to four parameters**: (a) pavement thickness, (b) design subgrade support, (c) weight of aircraft, and (d) fraction of ruts to be filled.

In all cases the decision maker, designer, operator, maintenance manager, or planner, should be concerned with at least two issues: (a) the total cost and (b) the performance of the facility. He should

*Equation 1 in Appendix V

**When examining these parameters it should be remembered that most of the relations in this model are correlative. They are not analytical derivations. Hence the responses predicted at this stage of development are most probably inaccurate in terms of magnitude.
recall that the components of total cost, maintenance cost, user cost, and construction cost, are not independent variables. Furthermore it should be remembered that to attain higher performance operations more effort and generally more cost is inherent. It may also be useful to recall that the right amount or proper balance of maintenance for one may not be the same for another. Hence, the selection of a design or a maintenance policy should be made within the context of the particular facility's total environment (i.e. political, economic, climatic, etc.,). Therefore as this presentation continues no effort will be made to pick any one most suitable strategy.

The tradeoff analysis which follows examines maintenance cost and facility service with time. Maintenance costs are monitored as accumulated discounted total maintenance costs. Therefore the time stream flow of costs may be inspected for each potential project. Facility service is characterized by the predicted vertical acceleration, VA, for each project. The choice of VA has already been discussed in section 3.2.2. It should be noted that the program as it now exists uses this parameter from a safety standpoint; i.e., the ability of the pilot to perform ground movements safely while undergoing a VA of 0.7g is significantly impaired. Referring to Figure 3-5 one can observe that the monitoring of this parameter allows the prediction of the aircraft's crew or passengers psycho-physical response to the airfield pavement's condition. At a vibration rate of 5 cps a VA of about 0.25g is only mildly annoying whereas a VA of 0.7g may be alarming. If one assumes that the VA-roughness relation (equation 3-7) is accurate and that the prevailing frequency of vibration is 5 cps the prediction of serviceability may be usefully extrapolated to allow user costs to be examined. This implies that the force impinging on the landing or taxiing aircraft together with its frequency (5 cps) could be predicted and used to examine the damage and cost of damage to the airframe and to cargo as caused by the runway.

On the other hand since this reflects the service perceived by the user the interaction of maintenance and serviceability may be
considered by varying the maintenance policy and monitoring VA. Furthermore the relationship between maintenance and reliability may also be investigated in a simplistic manner. This implies that a maintenance policy which increases the time during which $VA < 0.7g$ produces a facility which has a higher probability of meeting service demands than a project with a less effective maintenance program (all other things being equal, section 2.1.2).

What follows is the result of testing various values of pavement thickness, design subgrade support, aircraft weight, and maintenance policy (FRF). For each of these parameters, two curves have been plotted: time versus maintenance costs and time versus VA. Accompanying each of these is a discussion of the tradeoff analysis which a decision maker might consider.

4.2.1 Results of Tradeoff Analysis*

The proper selection of a pavement thickness, T, is one of the prime decisions to be made in the design of airfield pavements. Of course it is evident that this requires some analysis of initial cost versus future maintenance cost. However the service which the facility provides is also quite important. A look at Figure 4-1 shows clearly that the maintenance cost and service life under a constant maintenance policy changes with the pavement thickness. Figure 4-2 shows the serviceability, in terms of VA, that the facility may provide with time as related to the pavement's thickness. At this stage only two alternatives are available. The decision maker may choose a predicted serviceability which suits the needs of his facility and automatically be forced to select a certain pavement thickness; or he may choose a pavement and be confined to a specific predicted serviceability.

To increase the number of degrees of freedom which are available, a change in maintenance policy should be considered. It was proposed in section 2.2.3 that increased maintenance effort for a constructed facility could change its service characteristics. Again these changes

*All parameters are at their base run value unless specified.
are also noticed in terms of maintenance costs. Figures 4-3 and 4-4 exhibit the costs, service, and time relationships which might be considered for a pavement having a thickness of 71.12 cm (base value) with changing maintenance effort (FRF). However these maintenance policies assume that maintenance is an on-going process and is distributed throughout the course of each year. Maintenance may be accomplished by concentrating the necessary work into short periods occurring at reasonably long intervals (i.e. maintenance may be carried out at intervals of two, three, four, or five years or more). The cost and service results for such a process are shown in Figures 4-5 and 4-6. As an example of the results of such a process, consider the two year interval (Figures 4-5 and 4-6) and the maintenance policy having FRF = 0.3 (Figures 4-3 and 4-4). The two year interval process has a service life of 11 years with a cost of $5.6 million while the continuous policy costs $2.2 million more for only one additional year of service. If the additional year of service is not an essential requirement of the pavement it may be cheaper to institute maintenance at two year intervals rather than to distribute it over every year.*

It is clear then that tradeoffs exist among pavement thickness and maintenance operations. Two other effective parameters are the subgrade support of the runway and the weight of the aircraft which will use the pavement. The design subgrade support, DCBR, can influence both the selection of the pavement thickness (equation 3-2) and the deterioration of the pavement's service. If only DCBR is varied, cost and service effects appear as in Figures 4-7 and 4-8. The physical variation of this parameter may be accomplished in at least four ways: (a) replacing the existing subgrade soil with a higher quality material (higher potential California Bearing Ratio), (b) mixing cement or other chemicals with the subgrade to raise its quality, (c) using a larger...

*Maintenance which occurs during short time periods and at long intervals might be accomplished by contracting or renting equipment as opposed to owning the necessary equipment and maintaining the men and organization required for a continuous effort. By specifying the factor prices (costs of men, machines, and material) each of these alternatives can be investigated.
compactive effort to increase the DCBR, or (d) selecting a sight which has a high quality subgrade already present. Each of these four techniques may effect costs substantially. Therefore DCBR may influence a wide range of cost properties as well as the service of the pavement. Thus the evaluation of this parameter deserves much of the attention of the decision maker.

The last parameter to be considered here is aircraft equivalent single wheel weight. Variation of this parameter by as little as ±10% can cause significant changes in maintenance cost and service, Figures 4-9 and 4-10. The evaluation of the effects of this parameter allows the designer to determine the adequateness of his design and the maintenance manager the adequateness of a given maintenance program. This allows adjustments to be made either in design or in maintenance. An alternative might involve the discouragement of the landing of overly heavy aircraft. Thus landing fees may be altered to induce aircraft operators to reduce their "all up" weight or to find other suitable airfields for their operations.

All of the variables which the airfield maintenance computer program considers have not been analyzed. Nevertheless, those which were found by sensitivity analysis to produce substantial changes in model response (output) in comparison to small input changes have been investigated. A discussion of the results of this tradeoff analysis follows.

4.2.2 Discussion of Tradeoff Analysis

The results of tradeoff analysis have shown graphically the effects which pavement thickness, maintenance policy (FRF), aircraft weight, and pavement subgrade support may have upon both maintenance costs and serviceability. It is however necessary for the decision maker to select a combination of these parameters which best fits the needs of the particular airfield pavement in question. The combination which might be selected for Kennedy International Airport would most likely be different than the selection for Raleigh-Durham Airport (North Carolina).
Not only do these airports operate under different economic environments but they also must provide different levels of service. It should be noted that a primary concern at Kennedy International is to guard against failure and the impairment of pavement service. Therefore it may be more reasonable to provide a high degree of construction quality such that only small amounts of maintenance, which will not interfere with the pavement's ability to serve traffic, is required (8). On the other hand Raleigh-Durham Airport is not subjected to extreme demands upon its service (84). Hence the adoption of a thinner pavement thickness along with a more liberal intense maintenance policy may be suitable. This implies that interruption of service for maintenance purposes will probably not result in substantial inconvenience or cost to the users of the airfield pavement.

Other problems which may be faced concern the subgrade support which the proposed or existing location should or does provide. Four methods of changing the DCBR of a location have been mentioned in section 4.2.1. And it has been recognized that a certain amount of cost is involved with each of these. Tradeoffs between initial effort and future maintenance effort exist here. For example, a site which has a low subgrade support may be chosen with the understanding that substantial future maintenance effort will be required. Nonetheless the predicted performance of the facility under this strategy should be comparable to one having low maintenance and high initial effort. Furthermore from an economic viewpoint the total cost of the high maintenance project should be lower or more suitable (time stream flow of capital) than for this large initial effort strategy. For an already existing pavement, it may be difficult to improve the subgrade support. However it is apparent from Figures 4-7 and 4-8 and Table 4-11 that DCBR can have a major effect upon the deterioration of service and thereby the results of any proposed maintenance policy.

In review it is apparent that the three above discussed parameters and aircraft weight have substantial effects upon the airfield pavement's maintenance cost and performance. These four parameters should be the
ones with which the decision maker is most interested because only small changes in their values can have large effects upon the response of the airfield pavement. It has furthermore been noted that the results of tradeoff analysis involving pavement design, deterioration, and maintenance at one airport should not necessarily correspond with those at another facility in a different environment. Hence it is the decision maker's job to select those quantities which will provide the desired level of service under an appropriate maintenance policy at a reasonable level of reliability for an acceptable cost. While the airfield maintenance program cannot solve this problem for the decision maker, it can be used as an efficient tool to aid in his evaluation.
TABLE 4-1

Base Run Data

1. Maintenance policy, (MAPOL)

fraction of ruts filled, FRF = 0.0
fraction of cracks patched FTP = 0.3
fraction of cracks sealed, FTS = 0.3
mean rut depth allowable, MRD = 2.0 cm

2. Unit costs for maintenance*, (MUC)

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>bituminous distributor, UEDS</td>
<td>$4.00/hour</td>
</tr>
<tr>
<td>dump truck, UEDT</td>
<td>$3.00</td>
</tr>
<tr>
<td>tractor loader, UELD</td>
<td>$3.00</td>
</tr>
<tr>
<td>motor grader, UEMG</td>
<td>$3.75</td>
</tr>
<tr>
<td>roller, UERL</td>
<td>$4.10</td>
</tr>
<tr>
<td>water truck 6 cu. m., UETR</td>
<td>$0.00</td>
</tr>
<tr>
<td>water truck 7 cu. m., UEWT</td>
<td>$0.00</td>
</tr>
<tr>
<td>common labor, ULC</td>
<td>$5.25</td>
</tr>
<tr>
<td>equipment operator, ULEO</td>
<td>$7.17</td>
</tr>
<tr>
<td>foreman, ULF</td>
<td>$8.20</td>
</tr>
<tr>
<td>truck driver, ULTD</td>
<td>$6.68</td>
</tr>
<tr>
<td>liquid asphalt, UMB</td>
<td>$0.04/liter</td>
</tr>
<tr>
<td>bituminous aggregate patch mix, UMBA</td>
<td>$6.60/M. Ton</td>
</tr>
<tr>
<td>cover aggregate for sealing, UMCA</td>
<td>$3.45</td>
</tr>
<tr>
<td>delivered diesel fuel, UMD</td>
<td>$0.04/liter</td>
</tr>
<tr>
<td>gravel at source, UMG</td>
<td>$3.58/M. Ton</td>
</tr>
<tr>
<td>gasoline, UMP</td>
<td>$0.07/liter</td>
</tr>
<tr>
<td>water at source, UMW</td>
<td>$0.00/cu. m.</td>
</tr>
</tbody>
</table>

*Unit costs taken from, National Construction Estimator, 1970-71 (82) and Dodge Estimating Guide (81).
3. Number of different type aircraft, $NTYPE = 6$
4. Design CBR, $DCBR = 10.0\%$
5. Thickness of pavement, $T = 71.12\ cm$
6. Width of pavement, $WOS = 45.75\ m$
7. Length of runway, $LOS = 3.05\ km$
8. Spring CBR, $SPRNG = 7.00\%$
9. Fraction of traffic during spring thaw period, $SPTHW = 0.20$
10. Fraction of traffic increase per year (coverages), $TRINC = 0.10$
11. Discount rate, $DISCR = 0.07$
12. Limiting acceptable vertical acceleration, $VA = 0.7g$
13. Traffic data:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>ESWL,P (kg)</th>
<th>Tire inflation pressure, PC (kg/cm3)</th>
<th>Coverages/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28636.63</td>
<td>10.57</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>30909.09</td>
<td>11.63</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>30909.09</td>
<td>11.63</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>15909.09</td>
<td>9.16</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>18181.82</td>
<td>10.15</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>41818.18</td>
<td>12.68</td>
<td>100</td>
</tr>
</tbody>
</table>
TABLE 4-2*

<table>
<thead>
<tr>
<th>Thickness (cm)</th>
<th>% change</th>
<th>VA (g's)</th>
<th>% change</th>
<th>Cost ($)</th>
<th>normalized</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.56</td>
<td>-50</td>
<td>***</td>
<td>***</td>
<td>593,820</td>
<td>7.07</td>
<td>1</td>
</tr>
<tr>
<td>49.78</td>
<td>-30</td>
<td>***</td>
<td>***</td>
<td>158,253</td>
<td>1.88</td>
<td>1</td>
</tr>
<tr>
<td>64.01</td>
<td>-10</td>
<td>***</td>
<td>***</td>
<td>147,950</td>
<td>1.76</td>
<td>4</td>
</tr>
<tr>
<td>71.12</td>
<td>0</td>
<td>0.46</td>
<td>0</td>
<td>83,955</td>
<td>1.00</td>
<td>8</td>
</tr>
<tr>
<td>78.23</td>
<td>+10</td>
<td>0.24</td>
<td>-48</td>
<td>36,364</td>
<td>0.43</td>
<td>14</td>
</tr>
<tr>
<td>92.46</td>
<td>+30</td>
<td>0.13</td>
<td>-72</td>
<td>7,199</td>
<td>0.09</td>
<td>+20</td>
</tr>
<tr>
<td>106.68</td>
<td>+50</td>
<td>0.11</td>
<td>-76</td>
<td>2,273</td>
<td>0.03</td>
<td>+20</td>
</tr>
</tbody>
</table>

*For Tables 4-2 through 4-12 the following is important:

1. % change - change from base run values (for VA and costs at five years)
2. VA - Vertical Acceleration
3. costs - accumulated discounted total maintenance costs at five years
4. normalized - ratio of project costs to base run costs at five years
5. *** - project failed before five years - values reported are for last year of analysis
TABLE 4-3*

Sensitivity Analysis: Spring Thaw Subgrade Support, SCBR

<table>
<thead>
<tr>
<th>SCBR % change from DCBR</th>
<th>VA (g's)</th>
<th>% change</th>
<th>Cost</th>
<th>normalized</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.44</td>
<td>-4</td>
<td>81,405</td>
<td>0.97</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>0.45</td>
<td>-2</td>
<td>82,074</td>
<td>0.98</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>0.45</td>
<td>-2</td>
<td>82,900</td>
<td>0.99</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>0.46</td>
<td>0</td>
<td>83,955</td>
<td>1.00</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>0.47</td>
<td>2</td>
<td>87,367</td>
<td>1.04</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>0.49</td>
<td>7</td>
<td>90,513</td>
<td>1.08</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>0.60</td>
<td>30</td>
<td>112,434</td>
<td>1.34</td>
<td>6</td>
</tr>
</tbody>
</table>

See TABLE 4-2 notes.
TABLE 4-4*

Sensitivity Analysis: Traffic Repetitions

<table>
<thead>
<tr>
<th>Number</th>
<th>% change</th>
<th>VA (g's)</th>
<th>% change</th>
<th>Cost</th>
<th>normalized</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>-50</td>
<td>0.28</td>
<td>-39</td>
<td>45,909</td>
<td>0.55</td>
<td>12</td>
</tr>
<tr>
<td>70</td>
<td>-30</td>
<td>0.35</td>
<td>-24</td>
<td>61,680</td>
<td>0.73</td>
<td>10</td>
</tr>
<tr>
<td>90</td>
<td>-10</td>
<td>0.42</td>
<td>-9</td>
<td>76,695</td>
<td>0.91</td>
<td>8</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0.46</td>
<td>0</td>
<td>83,955</td>
<td>1.00</td>
<td>8</td>
</tr>
<tr>
<td>110</td>
<td>+10</td>
<td>0.49</td>
<td>7</td>
<td>91,066</td>
<td>1.08</td>
<td>7</td>
</tr>
<tr>
<td>130</td>
<td>+30</td>
<td>0.56</td>
<td>22</td>
<td>104,878</td>
<td>1.25</td>
<td>6</td>
</tr>
<tr>
<td>150</td>
<td>+50</td>
<td>0.63</td>
<td>37</td>
<td>118,198</td>
<td>1.41</td>
<td>6</td>
</tr>
</tbody>
</table>

*See TABLE 4-2 notes.
TABLE 4-5*

Sensitivity Analysis: Equivalent Single Wheel Loads, ESWL, (P)

<table>
<thead>
<tr>
<th>ESWL % change</th>
<th>VA (g's)</th>
<th>VA % change</th>
<th>Cost</th>
<th>Year = VA = 0.7g</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30</td>
<td>0.16</td>
<td>-65</td>
<td>16,384</td>
<td>0.20</td>
</tr>
<tr>
<td>-10</td>
<td>0.32</td>
<td>-30</td>
<td>53,533</td>
<td>0.64</td>
</tr>
<tr>
<td>0</td>
<td>0.46</td>
<td>0</td>
<td>83,955</td>
<td>1.00</td>
</tr>
<tr>
<td>+10</td>
<td>0.65</td>
<td>41</td>
<td>122,440</td>
<td>1.46</td>
</tr>
<tr>
<td>+30</td>
<td>***</td>
<td>***</td>
<td>131,976</td>
<td>1.57</td>
</tr>
</tbody>
</table>

*See TABLE 4-2 notes.
TABLE 4-6*

Sensitivity Analysis: Tire Inflation Pressure, PC

<table>
<thead>
<tr>
<th>PC % change</th>
<th>VA (g's)</th>
<th>VA % change</th>
<th>Cost</th>
<th>Cost normalized</th>
<th>Year</th>
<th>VA = 0.7g</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30</td>
<td>0.35</td>
<td>-24</td>
<td>60,231</td>
<td>0.72</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td>0.43</td>
<td>-7</td>
<td>77,331</td>
<td>0.92</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.46</td>
<td>0</td>
<td>83,955</td>
<td>1.00</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>+10</td>
<td>0.48</td>
<td>4</td>
<td>89,616</td>
<td>1.07</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>+30</td>
<td>0.53</td>
<td>15</td>
<td>98,736</td>
<td>1.18</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

*See TABLE 4-2 notes.
TABLE 4-7*

Sensitivity Analysis: Design Subgrade Support, DCBR

<table>
<thead>
<tr>
<th>DCBR % (CBR)</th>
<th>% change</th>
<th>VA (g's)</th>
<th>% change</th>
<th>Costs</th>
<th>normalized</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>-30</td>
<td>***</td>
<td>***</td>
<td>133,982</td>
<td>1.60</td>
</tr>
<tr>
<td>8</td>
<td>-20</td>
<td>***</td>
<td>***</td>
<td>171,347</td>
<td>2.04</td>
</tr>
<tr>
<td>9</td>
<td>-10</td>
<td>0.72</td>
<td>57</td>
<td>134,701</td>
<td>1.60</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.46</td>
<td>0</td>
<td>83,955</td>
<td>1.00</td>
</tr>
<tr>
<td>11</td>
<td>+10</td>
<td>0.31</td>
<td>-33</td>
<td>52,158</td>
<td>0.62</td>
</tr>
<tr>
<td>13</td>
<td>+30</td>
<td>0.18</td>
<td>-61</td>
<td>20,420</td>
<td>0.24</td>
</tr>
<tr>
<td>15</td>
<td>+50</td>
<td>0.13</td>
<td>-72</td>
<td>8,521</td>
<td>0.10</td>
</tr>
</tbody>
</table>

*See TABLE 4-2 notes.
TABLE 4-8*

Sensitivity Analysis: Maintenance Unit Costs, MUC

<table>
<thead>
<tr>
<th>% change</th>
<th>VA (g's)</th>
<th>Costs</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>-25</td>
<td>0.46</td>
<td>62,894</td>
<td>8</td>
</tr>
<tr>
<td>-10</td>
<td>0.46</td>
<td>75,480</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>0.46</td>
<td>83,955</td>
<td>8</td>
</tr>
<tr>
<td>+10</td>
<td>0.46</td>
<td>92,264</td>
<td>8</td>
</tr>
<tr>
<td>+25</td>
<td>0.46</td>
<td>104,837</td>
<td>8</td>
</tr>
</tbody>
</table>

See TABLE 4-2 notes.
TABLE 4.9

Maintenance Cost Distribution

<table>
<thead>
<tr>
<th>Resource</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor (Total)</td>
<td>71.56</td>
</tr>
<tr>
<td>Common labor</td>
<td>43.74</td>
</tr>
<tr>
<td>Truck driver</td>
<td>26.96</td>
</tr>
<tr>
<td>Equipment operator</td>
<td>0.86</td>
</tr>
<tr>
<td>Equipment (Total)</td>
<td>12.93</td>
</tr>
<tr>
<td>Dump truck</td>
<td>11.83</td>
</tr>
<tr>
<td>Other</td>
<td>1.10</td>
</tr>
<tr>
<td>Material (Total)</td>
<td>15.51</td>
</tr>
<tr>
<td>Liquid Asphalt</td>
<td>0.82</td>
</tr>
<tr>
<td>Patching mixture</td>
<td>12.69</td>
</tr>
<tr>
<td>Gasoline</td>
<td>2.00</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
<tr>
<td>FTS</td>
<td>FTP</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>0.3</td>
<td>0.9</td>
</tr>
<tr>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>
TABLE 4-10* (continued)

<table>
<thead>
<tr>
<th>FTS</th>
<th>FTP</th>
<th>FRF</th>
<th>VA (g's)</th>
<th>% change</th>
<th>Cost normalized</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.39</td>
<td>-15</td>
<td>1,277,741</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
<td>0.6</td>
<td>0.33</td>
<td>-15</td>
<td>2,298,390</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
<td>0.8</td>
<td>0.29</td>
<td>-37</td>
<td>2,893,067</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
<td>1.0</td>
<td>0.26</td>
<td>-43</td>
<td>3,425,949</td>
</tr>
<tr>
<td>0.3</td>
<td>0.3</td>
<td>1.3</td>
<td>0.22</td>
<td>-52</td>
<td>4,121,270</td>
</tr>
</tbody>
</table>

*See TABLE 4-2 notes.

FTS - fraction of cracks sealed
FTP - fraction of cracks patched
FRF - fraction of ruts filled

VA = 0.7g
TABLE 4-11*

Results Of Sensitivity Analysis For 10% Change ** In Input Parameter

<table>
<thead>
<tr>
<th>Rank</th>
<th>Parameter</th>
<th>Cost % change</th>
<th>Vertical Acceleration Parameter</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T</td>
<td>57</td>
<td>T</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>46</td>
<td>P</td>
<td>41</td>
</tr>
<tr>
<td>3</td>
<td>DCBR</td>
<td>38</td>
<td>DCBR</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>MUC</td>
<td>10</td>
<td>ANUMB</td>
<td>6.5</td>
</tr>
<tr>
<td>5</td>
<td>ANUMB</td>
<td>8.5</td>
<td>PC</td>
<td>4.3</td>
</tr>
<tr>
<td>6</td>
<td>PC</td>
<td>6.7</td>
<td>SCBR</td>
<td>1.1</td>
</tr>
<tr>
<td>7</td>
<td>SCBR</td>
<td>0.7</td>
<td>MUC</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rank</th>
<th>Parameter</th>
<th>Cost % change</th>
<th>Vertical Acceleration Parameter</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Service Life Parameter</td>
<td>% change</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DCBR</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ANUMB</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SCBR</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PC</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MUC</td>
<td>0</td>
</tr>
</tbody>
</table>

*See TABLE 4-2 notes.

**From Base Run Values
<table>
<thead>
<tr>
<th>Rank</th>
<th>Parameter</th>
<th>% Change in Cost</th>
<th>% Change in VA</th>
<th>% Change in Service Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FRF</td>
<td>499</td>
<td>6.5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>FTP</td>
<td>49</td>
<td>2.2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>FTS</td>
<td>17</td>
<td>2.2</td>
<td>0</td>
</tr>
</tbody>
</table>

*See TABLE 4-2 notes.

**From Base Run Values
Figure 4-1: Maintenance Costs For Varying Pavement Thickness
Figure 4-2: Vertical Acceleration Vs. Time For Varying Pavement Thickness
For All Curves
FRF = 1.0
FTP = 0.3
FTS = 0.3
MRD = 2.0 cm

Pavement Thickness = 71.12 cm

Figure 4-3: Maintenance Costs For Changing Maintenance Policy

86
Figure 4-4: Vertical Acceleration Vs. Time For Changing Maintenance
Figure 4-5: Maintenance Cost For Various Intervals Of Maintenance Application
Figure 4-6: Vertical Acceleration Vs. Time For Several Intervals Of Maintenance Application
Figure 4-7: Maintenance Cost For Three Subgrade Support Values
Figure 4-8: Vertical Acceleration Vs. Time For Three Values Of DCBR
Figure 4-9: Maintenance Cost For Different Aircraft Loads
Figure 4-10: Vertical Acceleration Vs. Time For Three Aircraft Loads

-10 %
+10 %
"Base" weight

AVERAGE VERTICAL ACCELERATION (g's)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TIME (Years)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
CHAPTER V
SUMMARY, EVALUATION, AND RECOMMENDATIONS

5.1 SUMMARY

The two questions which were posed at the beginning of this thesis may now be dealt with in an objective manner. Recall that these questions were:

1. What is the best balance between initial system cost and future maintenance cost; and
2. How much maintenance should be done on existing facilities?

The maintenance model computer program provides the primary vehicle through which these questions may be evaluated for a particular facility in its own peculiar technical, economic, social, political, and climatic environment. The model itself predicts the condition of the pavement and the cost of specified maintenance operations throughout the facility's service life. Typical output of the model contains:

1. Accumulated and yearly equivalent traffic
2. Cracking and patching before and after maintenance
3. Mean rut depth before and after maintenance
4. Average roughness for each period or year
5. Average vertical acceleration for each period
6. Yearly and accumulated maintenance costs (both actual and discounted) broken down into equipment costs, labor costs, materials cost, and total cost.

The formulation of the airfield pavement maintenance computer program is based upon empirical relations (section 3.2). However the structure of the program relies upon the simulation (as realistically as possible) of the physical cycle of deterioration and repair. Hence the more common approach of relating pavement deterioration and maintenance costs to combinations of significant variables through simple regression analysis has been rejected (22). The cycle of deterioration and repair
has been divided into its several physical activities. These are then simulated individually and combined by the computer program to predict the total system response (damage and performance).

The two major concerns of any constructed facility, costs and performance, have been discussed in detail. It is recognized that the two are not independent. There are several combinations of total cost which may produce facilities of similar performance. Furthermore it was noted that facility performance is composed of serviceability, maintainability, and reliability. These three measures may be varied together with costs to attain a desired performance.

The maintenance program allows the evaluation and prediction of costs and performance of a specified airfield pavement. Thus the program of itself cannot make the actual design, construction, and maintenance decisions but it can present the consequences of various strategies or decisions in terms of damage, serviceability (VA), and maintenance costs.

5.2 EVALUATION

The structure of the airfield pavement maintenance model seems to be conceptually sound. The model predicts reasonably valid pavement response to variation in design characteristics, traffic loads, climatic environment, and maintenance policy. Furthermore the model structure, which bases the maintenance cost estimates on the overall simulation of pavement behavior, appears to be practical for estimating future maintenance costs. During the numerous runs for sensitivity and tradeoff analysis no major inconsistencies in the model's operation have been observed. However one particular area concerned with the cost of rut repair does warrant further review and probably calibration since these costs seem substantial.

At present the model is capable of aiding the planner, designer, operator, or maintenance manager in addressing the two aforementioned questions of maintenance. However since the model has not been calibrated some further work may be needed to make the model operational. Nevertheless even in its present form the model may be used to evaluate and compare
cost and performance trends of various construction and/or maintenance strategies. Therefore if the user understands the accuracy limitation of the model, it may be used as a detector of most suitable strategies.

The further work that may be needed in the area of calibration can be accomplished at two levels. These are discussed in the next section.

5.3 RECOMMENDATIONS FOR FURTHER WORK

Two levels of calibration may be investigated. The first of these involves the collection of large amounts of traffic, deterioration, performance, and maintenance cost data. This data could in turn be used to calibrate the model; or to make it more accurate. The relations dealing with the most sensitive input parameters: (a) pavement thickness, (b) subgrade support, (c) traffic weight, and (d) maintenance policy (FRF) should be considered first. Work at this level should not require more than an additional year of research.

The second level of calibration might extend over a period of several years. It would involve the adaptation of the model to a specific locality or project. Thus the response of the model and the facility or facilities could be examined together. Hence adjustments in the model would accompany changes in the pavement condition. Conceptually, this type of trial application should result in general improvement of the model which will increase its accuracy for use in other areas.*

A much more ambitious recommendation concerns the combination of calibration and extension of the current model. At first this would involve the refinement of many of the damage prediction functions such as equations 3-8, 3-9, 3-10. Further concern would involve a more thorough investigation of the performance prediction relating roughness and vertical acceleration. To a degree these might constitute calibration. Extending the model refers to the addition of construction and user operations. These extensions should allow evaluation and prediction not only of effort and costs but also perceptions of psycho-physical serviceability.

*For further elaboration concerning pavement maintenance model calibration using specific application see Alexander (22), section 9.2.
Obviously much work would be involved in a process involving extension and calibration. However several submodels of user response, construction, damage, etc. (Chapter III) already exist. These could lend much aid to the extension process. The random nature of performance and deterioration and thereby costs should be recognized. Therefore the application of stochastic modeling is suggested as a refinement. The benefits of a total model of this type are far reaching. Not only would more accurate predictions be possible but the extrapolation of the concepts and methodologies would greatly aid the performance and cost investigations concerning many other types of constructed facilities.
REFERENCES

14. Hutchinson, B.C., The Evaluation of Pavement Structural Performance,
REFERENCES CONTINUED

REFERENCES CONTINUED

REFERENCES CONTINUED

71. Witcyak, M.W., Design Analysis - Full-Depth Asphalt Pavement For Dallas-Fort Worth Regional Airport, Research Report 70-3, The Asphalt Institute, College Park, Maryland, 1970.

73. Sebastyan, G.Y., Head Engineering Design Section, Construction Branch, Air Services, Canadian Department of Transport, personal correspondence, 1970.

75. The Asphalt Institute, Soils Manual, College Park, Maryland, 1964.

APPENDIX I

Alphabetical Listing of Important Abbreviations
C - coverage; "occurring when each point on the pavement surface has been subjected to one maximum stress by the operating aircraft" (61)

\[C_{ij} \] - maintenance equipment fuel consumption factor

CBR - California Bearing Ratio, a measurement of subgrade support capability

\[C_{ij} \] - hours of j type equipment needed to accomplish one unit of i maintenance operation

CFAIL(I) - coverages to failure for I type aircraft

CP - cracking plus patching, \(m^2/1000m^2 \)

DCBR - design or fall subgrade support value, CBR

DCG - compacted density of finished patch

DOP - average depth of patch placed in centimeters

EF - equivalence factor, converts different type aircraft into an equivalent number of standard or design aircraft

\[E_{ij} \] - hours of j type equipment needed to accomplish i type maintenance operations for the year

ENVFT - environmental factor; compares variations in subgrade support for fall and spring

ESWL - Equivalent Single Wheel Load

FRF - fraction of ruts filled

FTP - fraction of cracks patched

FTS - fraction of cracks sealed

LOS - length of pavement section, km.

\[MBA_i \] - tons of bituminous patching material needed

\[MP_{ij} \] - liters of gasoline required for j type

\[NA \] - area of cracking on the pavement section, \(m^2 \)

\[NA' \] - new area of cracking after maintenance, \(m^2 \)

\[P \] - wheel load, (single or equivalent single wheel load), pounds
P_c - tire inflation pressure, kg/cm2

PT_2 - efficiency factor, representing hours actually worked for each hour on the job

R - macro-roughness, cm/km

$RCHNG$ - change in roughness, cm/km

RD - mean rut depth, cm

$SCBR$ - subgrade support, CBR, during spring thaw period

SMP - square meters of pavement cracking patched

SMS - square meters of pavement cracking sealed

$SPRNG$ - number of equivalent coverages during the spring thaw period

$SPTHW$ - percent of traffic using the pavement during the spring thaw period

$TOTAC$ - total equivalent coverages for year, not corrected with environmental factors

$TRINC$ - percent increase in traffic per year

VA - vertical acceleration, expressed in g's

WOS - width of pavement section, meters

$YTOTL$ - total corrected equivalent loadings for year
APPENDIX II

Airfield Pavement Maintenance

USER'S MANUAL
The User's Manual seeks to not only acquaint the potential user with the computer program but to also enable him to work with it. The following description is structured such that the input data required is defined and explained in terms of quantities and effects. At the end of this appendix is a properly arranged set of input data. This data is the same as the "base run" with the exception that pavement thickness equals 64.01 cms. The execution of this data results in the print out exhibited in Appendix IV.
Data Structure

Maintenance Policy - MAPOL (20)

Format: 4 cards, 5 columns/card, each column F 10.2,
i.e. (5F10.2)

<table>
<thead>
<tr>
<th>Matrix* Position</th>
<th>Description</th>
<th>Options</th>
<th>Abbreviation in Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>drainage maintenance</td>
<td>+1.0, yes; -1.0, no</td>
<td>DSWTH</td>
</tr>
<tr>
<td>2</td>
<td>regravel</td>
<td>+1.0, yes; -1.0, no</td>
<td>REGRL</td>
</tr>
<tr>
<td>3</td>
<td>shoulder maintenance</td>
<td>" "</td>
<td>SWITCH</td>
</tr>
<tr>
<td>4</td>
<td>mow grass medians</td>
<td>" "</td>
<td>VSWM</td>
</tr>
<tr>
<td>5</td>
<td>blade</td>
<td>" "</td>
<td>BLADE</td>
</tr>
<tr>
<td>6</td>
<td>frequency of blading (dry)</td>
<td>must be decimal number</td>
<td>FBLDR</td>
</tr>
<tr>
<td>7</td>
<td>frequency of blading (wet)</td>
<td>" "</td>
<td>FBLWT</td>
</tr>
<tr>
<td>8</td>
<td>frequency of mowing/year</td>
<td>" "</td>
<td>FREQM</td>
</tr>
<tr>
<td>9</td>
<td>fraction of ruts filled</td>
<td>" "</td>
<td>FRF</td>
</tr>
<tr>
<td>10</td>
<td>fraction of cracks patched</td>
<td>" "</td>
<td>FTP</td>
</tr>
<tr>
<td>11</td>
<td>fraction of cracks sealed</td>
<td>" "</td>
<td>FTS</td>
</tr>
<tr>
<td>12</td>
<td>mean rut depth allowable</td>
<td>" "</td>
<td>MRD</td>
</tr>
</tbody>
</table>

*Maintenance operation 1-8 are not available in present model option are no, -1.0.
Card Set-Up For Maintenance Policy

<table>
<thead>
<tr>
<th>Column No.</th>
<th>1</th>
<th>10</th>
<th>11</th>
<th>20</th>
<th>21</th>
<th>30</th>
<th>31</th>
<th>40</th>
<th>41</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card No.</td>
<td>1</td>
<td>10</td>
<td>11</td>
<td>20</td>
<td>21</td>
<td>30</td>
<td>31</td>
<td>40</td>
<td>41</td>
<td>50</td>
</tr>
<tr>
<td>1</td>
<td>-1.0</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FTS</td>
<td>MRD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Matrix Position

MAPOL (13) - (20) unused
Unit Costs Of Maintenance - MUC(25)

Format: 5 cards, 5 columns/card, each column F10.2, i.e. (5F10.2)

<table>
<thead>
<tr>
<th>Matrix Position</th>
<th>Description</th>
<th>Measure</th>
<th>Abbreviation in Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>bituminous distributor</td>
<td>$/hour</td>
<td>UEDS</td>
</tr>
<tr>
<td>2</td>
<td>dump truck</td>
<td>$/hour</td>
<td>UEDT</td>
</tr>
<tr>
<td>3</td>
<td>tractor loader</td>
<td>$/hour</td>
<td>UELD</td>
</tr>
<tr>
<td>4</td>
<td>motor grader</td>
<td>$/hour</td>
<td>UEMG</td>
</tr>
<tr>
<td>5</td>
<td>roller</td>
<td>$/hour</td>
<td>UERL</td>
</tr>
<tr>
<td>6</td>
<td>water truck 6 cubic meters</td>
<td>$/hour</td>
<td>UETR</td>
</tr>
<tr>
<td>7</td>
<td>water truck 7 cubic meters</td>
<td>$/hour</td>
<td>UEWT</td>
</tr>
<tr>
<td>8</td>
<td>common labor</td>
<td>$/hour</td>
<td>ULC</td>
</tr>
<tr>
<td>9</td>
<td>equipment operator</td>
<td>$/hour</td>
<td>ULEO</td>
</tr>
<tr>
<td>10</td>
<td>foreman</td>
<td>$/hour</td>
<td>ULF</td>
</tr>
<tr>
<td>11</td>
<td>truck driver</td>
<td>$/hour</td>
<td>ULTD</td>
</tr>
<tr>
<td>12</td>
<td>liquid asphalt</td>
<td>$/liter</td>
<td>UMB</td>
</tr>
<tr>
<td>13</td>
<td>bituminous plus aggregate patching mix</td>
<td>$/M. Ton</td>
<td>UMBA</td>
</tr>
<tr>
<td>14</td>
<td>cover aggregate (sealing)</td>
<td>$/M. Ton</td>
<td>UMCA</td>
</tr>
<tr>
<td>15</td>
<td>delivered diesel fuel</td>
<td>$/liter</td>
<td>UMD</td>
</tr>
<tr>
<td>16</td>
<td>gravel @ source</td>
<td>$/M. Ton</td>
<td>UMG</td>
</tr>
<tr>
<td>17</td>
<td>gasoline</td>
<td>$/liter</td>
<td>UMP</td>
</tr>
<tr>
<td>18</td>
<td>water @ source</td>
<td>$/cubic meter</td>
<td>UMW</td>
</tr>
</tbody>
</table>

MUC(19) - (25) unused, 0.0
Card Set Up For Maintenance Unit Costs

<table>
<thead>
<tr>
<th>Column No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card No.</td>
<td>1</td>
<td>10</td>
<td>11</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>UEDS</td>
<td>UEDT</td>
<td>UELD</td>
<td>UEMC</td>
<td>UERL</td>
</tr>
<tr>
<td>6</td>
<td>UETR</td>
<td>UEWT</td>
<td>ULC</td>
<td>ULEO</td>
<td>ULF</td>
</tr>
<tr>
<td>7</td>
<td>ULTD</td>
<td>UMB</td>
<td>UMBA</td>
<td>UMCA</td>
<td>UMD</td>
</tr>
<tr>
<td>8</td>
<td>UMG</td>
<td>UMP</td>
<td>UMJ</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Matrix Position

MUC(19) - (25) unused, 0.0
NTYPE, DCBR, T

NTYPE = number of different type aircraft, Integer
DCBR = design CBR, %, Decimal
T = pavement thickness, cm, Decimal

Format: 1 card, 3 columns/card, I10, 2F10.2

<table>
<thead>
<tr>
<th>Card #10</th>
<th>1</th>
<th>10</th>
<th>11</th>
<th>20</th>
<th>21</th>
<th>30</th>
<th>31</th>
<th>40</th>
<th>41</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTYPE</td>
<td>DCBR</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fill right to left, Integer

Section size: WOS, LOS

WOS = width of runway - meters, Decimal
LOS = length of runway - kilometers, Decimal

Format: 1 card, 2 columns/card, 2F10.2

<table>
<thead>
<tr>
<th>Card #11</th>
<th>1</th>
<th>10</th>
<th>11</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOS</td>
<td>LOS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Environment - SCBR

SCBR = CBR for spring, %, Decimal

Format: 1 card, 1 column/card, F10.2

<table>
<thead>
<tr>
<th>Card #12</th>
<th>1</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCBR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Uniform Distribution Parameters - Subroutine UNDIS

Format: 1 card, 5 columns/card, 3F10.2, 2I10

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Integer</th>
<th>Decimal</th>
<th>Description</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPTHW</td>
<td>X</td>
<td></td>
<td>fraction of yearly traffic during spring thaw</td>
<td>ranges from 0.0 to 1.0 inclusive</td>
</tr>
<tr>
<td>TRINC</td>
<td>X</td>
<td></td>
<td>fraction of traffic increase per year</td>
<td>ranges from 0.0 to 1.0 inclusive</td>
</tr>
<tr>
<td>TOTAL</td>
<td>X</td>
<td></td>
<td>initialize total no. of accumulated coverages</td>
<td>0.0 if initial year</td>
</tr>
<tr>
<td>ITRAF</td>
<td>X</td>
<td></td>
<td>traffic option</td>
<td>0, fraction increase in traffic per year (TRINC) +1, equal traffic each year -1, each year's traffic specified</td>
</tr>
<tr>
<td>ITCNT</td>
<td>X</td>
<td></td>
<td>an initialization, determines pattern for uniform distribution of traffic, subroutine UNDIS</td>
<td>-1 or +1 not an initial year 0, initial year</td>
</tr>
</tbody>
</table>

Card #13

<table>
<thead>
<tr>
<th>1</th>
<th>10</th>
<th>11</th>
<th>20</th>
<th>21</th>
<th>30</th>
<th>31</th>
<th>40</th>
<th>41</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPTHW</td>
<td>TRINC</td>
<td>TOTAL</td>
<td>ITRAF</td>
<td>ITCNT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fill right to left
Discount Rate – DISCR

DISCR = Discount rate (F10.2) expressed as a fraction

Format: 1 card, 1 column/card, F10.2 Decimal

Card #14

<table>
<thead>
<tr>
<th>DISCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 10</td>
</tr>
</tbody>
</table>

Limits for Time and Vertical Acceleration – NYEAR, SPVA

NYEAR – limiting number of years for evaluation, Integer, I10
SPVA – limiting acceptable average vertical acceleration, Real, F10.2

Format: 1 card, 2 columns/card, I10, F10.2

Card #15

<table>
<thead>
<tr>
<th>NYEAR</th>
<th>SPVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 10 11 20</td>
<td></td>
</tr>
</tbody>
</table>

// Fill this block right to left

Switches for Output Control – ISWTH(5)

<table>
<thead>
<tr>
<th>Matrix Position</th>
<th>Description of Output</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>detailed accounts of maintenance effort, quantities</td>
<td>+1, output detailed accounts -1 or 0, omit details</td>
</tr>
<tr>
<td>2</td>
<td>detailed accounts of maintenance costs</td>
<td>+1, output detailed costs -1 or 0, omit details</td>
</tr>
<tr>
<td>3</td>
<td>output the input data</td>
<td>+1, output; -1, 0 omit</td>
</tr>
<tr>
<td>4</td>
<td>unused</td>
<td>set equal to 0</td>
</tr>
<tr>
<td>5</td>
<td>unused</td>
<td>set equal to 0</td>
</tr>
</tbody>
</table>

Format: 1 card, 5 columns/card, Integer, 5I10

Card #16

<table>
<thead>
<tr>
<th>ISWTH(1)</th>
<th>ISWTH(2)</th>
<th>ISWTH(3)</th>
<th>ISWTH(4)</th>
<th>ISWTH(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 10 11 20 31 41 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

// Fill all columns right to left

116
Traffic Data ~ ITYPE, P, PC, ANUMB

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Measure</th>
<th>Decimal/Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITYPE</td>
<td>type of aircraft numbered consecutively starting with 1</td>
<td></td>
<td>Integer</td>
</tr>
<tr>
<td>P</td>
<td>equivalent single wheel kg load, ESWL for type aircraft numbered</td>
<td></td>
<td>Decimal</td>
</tr>
<tr>
<td>PC</td>
<td>tire inflation pressure kg/cm²</td>
<td></td>
<td>Decimal</td>
</tr>
<tr>
<td>ANUMB</td>
<td>number of coverages/year for ITYPE aircraft</td>
<td></td>
<td>Decimal</td>
</tr>
</tbody>
</table>

Format: 1 card for each type aircraft, 3 columns/card, I6, 2F10.2

Card #17

\[
\begin{array}{ccccccc}
1 & 6 & 7 & 16 & 17 & 26 \\
\hline
\text{ITYPE} & \text{P} & \text{PC} \\
\end{array}
\]

Fill right to left

Format: 1 card for each type aircraft, 2 columns/card, I6,F10.2

Card # NTYPE +16 +1

\[
\begin{array}{cccc}
1 & 6 & 7 & 16 \\
\hline
\text{ITYPE} & \text{ANUMB} \\
\end{array}
\]

Fill right to left

End
Data Set-Up For Base Run With T = 64.01 cm

<table>
<thead>
<tr>
<th>Column No.</th>
<th>1</th>
<th>10</th>
<th>11</th>
<th>20</th>
<th>21</th>
<th>30</th>
<th>31</th>
<th>40</th>
<th>41</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card No.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.57</td>
<td>4.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>5.25</td>
<td>7.17</td>
<td>8.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6.68</td>
<td>0.04</td>
<td>6.60</td>
<td>3.45</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3.58</td>
<td>0.07</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>10.0</td>
<td>64.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>45.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.20</td>
<td>0.10</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column No.</th>
<th>1</th>
<th>6</th>
<th>7</th>
<th>16</th>
<th>17</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card No.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td></td>
<td></td>
<td>28636.63</td>
<td>10.57</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td></td>
<td></td>
<td>30909.09</td>
<td>11.63</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td></td>
<td></td>
<td>30909.09</td>
<td>11.63</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td></td>
<td></td>
<td>15909.09</td>
<td>9.16</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>5</td>
<td></td>
<td></td>
<td>18181.82</td>
<td>10.15</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td></td>
<td></td>
<td>41818.18</td>
<td>12.68</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td></td>
<td></td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td></td>
<td></td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

118
<table>
<thead>
<tr>
<th>Card No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>3</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>4</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>5</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>6</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX III

Airfield Pavement Maintenance

Computer Program Listing
THIS IS THE CONTROLLING PORTION OF THE AIRFIELD PAVEMENT MAINTENANCE PROGRAM

MAIN

REAL MAPOL, MUC, MTCT, LOS, WOS
DIMENSION CFAIL(20), EF(20), MAPOL(20), MUC(25), MTCT(25)
DIMENSION APWC(4), AMTCT(4), PWC(4)
DIMENSION ISWTH(5)
COMMON IN, IOUT, IYEAR, NYEAR, NTYPE, DCBR, T, SCBR, CFAIL, EF, ENVFT, ITRAF
1, ITCNT, SPTHW, TRINC, YTOTL, PRUFF, RUFF, VA, CP, RD, PRECP, WOS, LOS, PRERD,
?MAPOL, MUC, MTCT, DISCR, SPVA, SMP, SMS, CMPR
COMMON APWC, AMTCT, PWC, TOTAL, RUFF1, RUFF2, ISWTH

BEGIN EVALUATION

INPUT - OUTPUT CONTROL
IN=5
OUT=6

VARIABLES REQUIRED FOR PuFIN
PRUFF=70.0

VARIABLES REQUIRED FOR MAINT
PRECP=0.
PRERD=0.

VARIABLES REQUIRED FOR PWCAc
DJ 9901 I=1,4
AMTCT(1)=0.
APWC(I) = 0.
9901 CONTINUE
C
CALL DATA
CALL EQUIV
CALL ENVIR
IYEAR = 0
5001 IYEAR = IYEAR + 1
WRITE (IOUT, 71) IYEAR
71 FORMAT (1H1, 120(' '), //, 54X, 'YEAR = ', I6, //)
CALL UNDIS
CALL RUFIN
CALL DETER
CALL MANT
CALL COSTS
CALL PWCAC
CALL IMPRU
C
C CHECK FD EXCESSIVE 1 VERTICAL ACCELERATION
C 2 END OF TEST PERIOD
C
IF (SPVA - VA) 2501, 2501, 2502
2501 GO TO 7777
2502 IF (NYEAR - IYEAR) 2501, 2501, 5001
7777 CONTINUE
CALL EXIT
END
SUBROUTINE DATA
REAL MAPOL, MUC, MTCT, LOS, WOS
DIMENSION CFAIL(20), EF(20), MAPOL(20), MUC(25), MTCT(25)
DIMENSION APWC(4), AMTCT(4), PWC(4)
DIMENSION ISWTH(5)
COMMON IIN, ICUT, IYEAR, NYEAR, NTYPE, DCRB, T, SCBR, CFAIL, EF, ENVFT, ITRAF
1, ITCNT, SPTHW, TRINC, YTOTL, PRUFF, RUFF, VA, CP, RD, PRECP, WOS, LOS, PRERD,
2MAPOL, MUC, MTCT, DISCR, SPVA, SMP, SMS, CMPR
COMMON APWC, AMTCT, PWC, TOTAL, RUFS, RUFS, ISWTH

C
C
MAINTENANCE POLICY
READ (IIN, 101) (MAPOL(I), I=1, 20)
101 FORMAT (5F10.2)
C
C
UNIT COSTS, MUC, FOR MAINTENANCE
READ (IIN, 102) (MUC(I), I=1, 25)
102 FORMAT (5F10.2)
C
C
VARIABLES REQUIRED FOR EQUIV
READ (IIN, 103) NTYPE, DCRB, T
103 FORMAT (I10, 2F10.2)
C
C
SECTION SIZE
READ (IIN, 104) WOS, LOS
104 FORMAT (2F10.2)
C
C
VARIABLES REQUIRED FOR ENVIR
READ (IIN, 105) SCBR
105 FORMAT (F10.2)
C
C
VARIABLES REQUIRED FOR UNDIS
READ (IIN,106) SPTHW,TRINC,TOTAL,ITRAF,ITCNT
 106 FORMAT (3F10.2,2I10)
 C DISCR, DISCOUNT RATE
READ (IIN,107) DISCR
 107 FORMAT (F10.2)
 C LIMITS FOR TIME AND VERTICAL ACCELERATION
READ (IIN,108) NYEAR,SPVA
 108 FORMAT (I10,F10.2)
 C SWITCHES FOR OUTPUT CONTROL
 ISWTH(1)=+1, OUTPUT DETAILED ACCOUNTS OF MAINT
 -1 OR 0, OMIT DETAILS
 ISWTH(2)=+1, OUTPUT DETAILED MAINT. COSTS
 -1 OR 0, OMIT DETAILS
READ (IIN,109) (ISWTH(I),I=1,5)
 109 FORMAT (5I10)
 IF (ISWTH(3)) 301,301,300
 300 CONTINUE
WRITE (IOUT,200)
 200 FORMAT (1HL,120('**'),///,40X,' INPUT DATA, INCLUSIVE OF TRAFFIC IN
 PUT',///,120('**'))
WRITE (IOUT,201)
 201 FORMAT (1HO,' MAINTENANCE POLICY')
WRITE (IOUT,202) (MAPOL(I),I=1,20)
 202 FORMAT (1HO,5(F10.2,10X))
WRITE (IOUT,203)
 203 FORMAT (1HO,' UNIT COSTS FOR MAINTENANCE')
WRITE (IOUT,204) (MUC(I),I=1,25)
 204 FORMAT (1HO,5(F10.2,10X))
WRITE (IOUT,205) NTYPE,DCBR,T
 205 FORMAT (1HO,' NTASTE =',I10,5X,' DCBR =',F10.2,5X,' T =',F10.2)
WRITE (IOUT,206) WOS,LOS
 206 FORMAT (1HO,' WOS =',F10.2,10X,' LOS =',F10.2)
WRITE (IOUT, 207)
WRITE (IOUT, 208) SCBR, SPTHW, TRINC, TOTAL, ITRAF, ITCNT
WRITE (IOUT, 209)
209 FORMAT (1HO, 5X, 'DISCR', 11X, 'NYEAR', 11X, 'SPVA')
WRITE (IOUT, 210) DISCR, NYEAR, SPVA
WRITE (IOUT, 211) (ISWTH(I), I=1, 5)
211 FORMAT (1HO, ' OUTPUT SWITCH STATUS', 5I10)
301 CONTINUE
RETURN
END
SUBROUTINE EQUIV
REAL MAPOL, MUC, MTCT, LOS, WOS
DIMENSION CFAIL(20), EF(20), MAPOL(20), MUC(25), MTCT(25)
DIMENSION APWC(4), AMTCT(4), PWC(4)
DIMENSION ISWTH(5)
COMMON IIN, IOUT, IYEAR, NYEAR, NTYPE, DCBR, T, SCBR, CFAIL, EF, ENVFT, ITRAFF, ITCNT, SPTHW, TRINC, YTOTL, PRUFF, RUFF, VA, CP, RD, PRECP, WOS, LOS, PRERD,
2 MAPOL, MUC, MTCT, DISCR, SPVA, SMP, SMS, CMPR
COMMON APWC, AMTCT, PWC, TOTAL, RUFF1, RUFF2, ISWTH
C
THIS SUBROUTINE CALCULATES COVERAGES AND LOADING WEIGHTING FACTORS
VARIABLES CONSIDERED ARE:
1. DESIGN CBR OF SUBGRADE, DCBR
2. P EQUIVALENT SINGLE WHEEL LOAD OF SPECIFIC AIRCRAFT
3. PC TIRE INFLATION PRESSURE
4. CFAIL(I), COVERAGES TO FAILURE FOR AIRCRAFT, I
C
WRITE OUT NO. OF DIFFERENT TYPE AIRCRAFT TO BE CONSIDERED
WRITE (IOUT, 401) NTYPE
401 FORMAT (1H, 'NTYPE =', I6)
C
LOOP TO CALCULATE CFAIL FOR EACH AIRCRAFT, I
WRITE (IOUT, 402)
C
CONVERT CM. TO INCHES
T=T/2.54
DO 801 I=1, NTYPE
READ (IIN, 102) ITYPE, P, PC
102 FORMAT (I6, 2F10.2)
WRITE (IOUT, 502) ITYPE, P, PC, T, DCBR
502 FORMAT (1H, I6, 4X, F10.2, 4X, F10.2, 4X, F10.2, 4X, F10.2)
C
CONVERT KILOGRAMS TO POUNDS
P=2.2*P
C
CONVERT KILOGRAMS / SQUARE CM. TO PSI
PC=14.19*PC
RTAIR=((P/(8.1*DCBR))-(P/(PC*3.1416)))**0.5
CFAIL(I)=10.**(((T/RTAIR)-0.15)/0.23)
CONTINUE
C LOOP TO CALCULATE EQUIVALENCE FACTORS
DO 802 I=1,NTYPE
 EF(I)=CFAIL(I)/CFAIL(I)
802 CONTINUE
WRITE (IOUT,403)
403 FORMAT (IH,'CFAIL')
WRITE (IOUT,503) (CFAIL(I),I=1,NTYPE)
503 FORMAT (IH,F10.2)
WRITE (IOUT,404)
404 FORMAT (IH,' EQUIVALENCE FACTORS')
WRITE (IOUT,405) (EF(I),I=1,NTYPE)
405 FORMAT (IH,F10.2)
RETURN
END
SUBROUTINE ENVIR
REAL MAPOL, MUC, MTCT, LOS, WOS
DIMENSION CFAIL(20), EF(20), MAPOL(20), MUC(25), MTCT(25)
DIMENSION APWC(4), AMTCT(4), PWC(4)
DIMENSION ISWTH(5)
COMMON IIN, IOUT, IYEAR, NYEAR, NTYPE, DCBR, T, SCBR, CFAIL, EF, ENVFT, ITRAF
1, ITCNT, SPTHW, TRINC, YTOTL, PRUFF, RUFF, VA, CP, RD, PRECP, WOS, LOS, PRERD,
2, MAPOL, MUC, MTCT, DISCR, SPVA, SMP, SMS, CMPR
COMMON APWC, AMTCT, PWC, TOTAL, RUFF1, RUFF2, ISWTH

C ENFT CALCULATES ENVIRONMENTAL FACTOR
C FOR DETERIORATION DURING SPRING THAW
C
1. DCBR, DESIGN CBR
2. SCBR, SPRING CBR
3. ENVFT, ENVIRONMENTAL FACTOR

ENVFT = ALOG10(DC BR) / ALOG10(SC BR)
WRITE (IOUT, 406) ENVFT
406 FORMAT (1H , ' ENVFT = ', F6.2)
WRITE (IOUT, 407) DC BR, SC BR
407 FORMAT (1H , ' DC BR = ', F6.2, 5X, ' SC BR = ', F6.2)
RETURN
END
SUBROUTINE UNDIS

REAL MAPOL, MUC, MTCT, LOS, WOS

DIMENSION CFAIL(20), EF(20), MAPOL(20), MUC(25), MTCT(25)

DIMENSION APWC(4), AMTCT(4), PWC(4)

DIMENSION TSWTH(5)

COMMON IN, IOUT, IYEAR, NYEAR, NTYPE, DCBR, T, SCBR, CFAIL, EF, ENVFT, ITRAF

ITCNY, SPTHW, TRINC, YTOTL, PRUFF, RUFF, VA, CP, RD, PRECP, WOS, LOS, PRERD,

2MAPOL, MUC, MTCT, DISCR, SPVA, SMP, SMS, CMPR

COMMON APWC, AMTCT, PVC, TOTAL, RUFF1, RUFF2, ISWTH

UNDIS CALCULATES UNIFORM DISTRIBUTED COVERAGES FOR A PERIOD OF ONE YEAR

THREE OPTIONS ARE AVAILABLE

1. ITRAF = 1, EQUAL TRAFFIC EACH YEAR
2. ITRAF = 0, TRINC (2), % INCREASE IN TRAFFIC EACH YEAR
3. ITRAF = -1, EACH YEARS TRAFFIC SPECIFIED

CHECK FOR INITIAL YEAR, ITCNT=0

2002 IMPLIES THIS IS NOT AN INITIAL YEAR OF ANALYSIS

CHECK FOR TRAFFIC OPTION; ITRAF=-1,0,1

2003 YTOTL = YTOTL + YTOTL*TRINC

WRITE (IOUT, 412) YTOTL

412 FORMAT (1H,'TOTAL COVERAGES FOR YEAR BY PER CENT INCREASE =',F10.12)

GO TO 2004

C 2004 STARTS UNIFORM DISTRIBUTION ANALYSIS FOR INITIAL OR ITRAF=-1

2001 TOTAL=0.

C LOOP FOR UNIFORM COVERAGES; NO ENVIRONMENTAL WEIGHTING

WRITE (IOUT, 408) NTYPE

408 FORMAT (1H,'NTYPE =',I6,/)
WRITE (IOUT,409)

409 FORMAT (1H,'TYPE AIRCRAFT',4X,'NO. COVERAGES',4X,'EQUIV. COVER')
DO 803 J=1,NTYPE
C READ TYPE OF AIRCRAFT AND NO. OF COVERAGES
READ (IIN,103) ITYPE,ANUMB
103 FORMAT (I6,F10.2)
C CALCULATE EQUIVALENT UNIFORM COVERAGES FOR THIS AIRCRAFT
UNIFA=ANUMB*EF(ITYPE)
WRITE (IOUT,509) ITYPE,ANUMB,UNIFA
509 FORMAT (1H,I6,12X,F10.2,7X,F10.2)
C ACCUMULATE UNIFORM COVERAGES
TOTAC=TOTAC+UNIFA
803 CONTINUE
WRITE (IOUT,411) TOTAC
411 FORMAT (1H,' TOTAL EQUIVALENT COVERAGES FOR YEAR =',F10.2)
C DETERMINE NUMBER OF EQUIVALENT COVERAGES DURING SPRING THAW
SPRNG=TOTAC*SPTHW
C GET TOTAL CORRECTED EQUIVALENT LOADINGS FOR YEAR; INCLUDE
C ENVIRONMENTAL FACTOR
YTOTL=(TOTAC-SPRNG)+(SPRNG*ENVFT)
WRITE (IOUT,413) YTOTL
413 FORMAT (1H,' TOTAL UNIFORM COVERAGES, SAME OR REFEED,= ',F10.2)
C UPDATE ITCNT; CK. ON INITIAL YEAR
2004 ITCNT=ITCNT+1
TOTAL=TOTAL+YTOTL
WRITE (IOUT,414) TOTAL
414 FORMAT (1H,' ACCUMULATED COVERAGES =',F16.2)
RETURN
END
SUBROUTINE RUFIN
REAL MAPOL, MUC, MTCT, LOS, WOS
DIMENSION CFAIL(20), EF(20), MAPOL(20), MUC(25), MTCT(25)
DIMENSION APWC(4), AMTCT(4), PWC(4)
DIMENSION ISWTH(5)
COMMON IIN, IOUT, IYEAR, NYEAR, NTYPE, DCBR, T, SCBR, CFAIL, EF, ENVFT, ITRAFT,
1, ITCNT, SPTHW, TRINC, YTOTL, PRUFF, RUFF, VA, CP, RD, PRECP, WOS, LOS, PRERD,
2, MAPOL, MUC, MTCT, DISCR, SPVA, SMP, SMS, CMPR
COMMON APWC, AMTCT, PWC, TOTAL, RUFF1, RUFF2, ISWTH

C DETERMINE CHANGE IN ROUGHNESS FOR YEAR, (CM/KM)
C CALCULATE ROUGHNESS
RUFF = PRUFF + RCHNG
WRITE (IOUT, 414) RCHNG, RUFF, PRUFF
414 FORMAT (1H1, ' RCHNG = ', F10.2, 5X, ' RUFF = ', F10.2, 5X, ' PRUFF = ', F10.12)
RUFF1 = PRUFF
RUFF2 = RUFF
RETURN
END
SUBROUTINE DETER
REAL MAPOL, MUC, MTCT, LOS, WOS
DIMENSION CFAIL(20), EF(20), MAPOL(20), MUC(25), MTCT(25)
DIMENSION APWC(4), AMTCT(4), PWC(4)
DIMENSION ISWTH(5)
COMMON IIN, IOUT, IYEAR, NYEAR, NTYPE, DCBR, T, SCBR, CFAIL, EF, ENVFT, ITRAF
1, ITCNT, SPITHW, TRINC, YTOTL, PRUFF, RUFF, VA, CP, RD, PRECP, WOS, LOS, PRERD,
2, MAPOL, MUC, MTCT, DISCR, SPVA, SMP, SMS, CMPR
COMMON APWC, AMTCT, PWC, TOTAL, RUFF1, RUFF2, ISWTH
C
C DETER ESTIMATES CRACKING AND PATCHING AND MEAN RUT DEPTH AS A
F C FUNCTION OF ROUGHNESS
C
C CALCULATE (C+P); SQUARE METERS /1000 SQUARE METERS
CP=-627.9+89*(0.633*RUFF)**0.5
IF (CP) 9801, 9801, 9802
9801 CP=0.
9802 CONTINUE
C CALCULATE RD; CENTIMETERS
RD=-26.7+0.338*RUFF+0.335*((CP)**0.5)
IF (RD) 9803, 9803, 9804
9803 RD=0.
9804 CONTINUE
WRITE (IOUT,416) CP, RD
416 FORMAT (1H1, ' C+P, BEFORE MAINTENANCE = ', F10.2, 5X, ' RD, BEFORE MAINTENANCE = ', F10.2)
RETURN
END
SUBROUTINE MAINT
REAL MAPOL, MUC, MTCT, LOS, WOS
DIMENSION CFAIL(20), EF(20), MAPOL(20), MUC(25), MTCT(25)
DIMENSION APWC(4), AMTCT(4), PVC(4)
DIMENSION ISWTH(5)
COMMON IN, IOUT, IYEAR, NYEAR, NTYPE, DCBR, T, SCBR, CFAIL, EF, ENVFT, ITRAF, MAIN
1, ITCNT, SPTHW, TRINC, YTOTL, PRUFF, RUFF, VA, CP, RD, PRECP, WOS, LOS, PRERD, MAIN
2MAPOL, MUC, MTCT, DISCR, SPVA, SMP, SMS, CMPR
COMMON APWC, AMTCT, PVC, TOTAL, RUFF1, RUFF2, ISWTH

MAIN PERFORMS MAINTENANCE ON CP AND RD AS PRESCRIBED IN MAINTENANCE POLICY
FRF=MAPOL(9)
FTP=MAPOL(10)
FTS=MAPOL(11)
MRD=MAPOL(12)

DELCP, INCREASE CP; PRECP, PREVIOUS CP

DELCP=CP*WOS-PRECP

DELRD, INCREASE RD; PRERD, PREVIOUS RD

DELRD=RD-PRERD

SQUARE METERS PATCHED, SMP

SMP=FTP*DELCP

SQUARE METERS SEALED, SMS

SMS=FTS*DELCP

CHECK POLICY FOR RUT DEPTH MAINT.

ESTIMATE CMPR=VOL. OF MATERIAL FOR FILLING

FIXRD= FIX RUT DEPTH

2010 CMPR=0.
FIXRD=0.
GO TO 2012
2011 CMPP=467.*FRF*RD
FIXRD=0.5*FRF*RD
2012 CONTINUE
C. ESTIMATE CHANGED CP AND RD AFTER MAINTENANCE FOR YEAR
PRECP=CP*WOS-(SMP+SMS)
IF (PRECP) 501,501,502
501 PRECP=0.
502 CONTINUE
PRERD=RD-FIXRD
CPNEW=PRECP/WOS
WRITE (IOUT,417) CPNEW,PRERD
417 FORMAT (1H,' CRACKING AND PATCHING, AFTER MAINTENANCE =',F10.2,5X)
WRITE (IOUT,418)
418 FORMAT (1H,5X,'DELCP',5X,'DELRD',5X,'SMP',7X,'SMS',7X,'CMPR',6X,'MAIN')
WRITE (IOUT,419) DELCP,DELRD,SMP,SMS,CMPR,FIXRD,FTP,FTS
419 FORMAT (1H,8F10.2)
RETURN
END
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPOL</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>KMCA, KMAT, KLABR, KEQ, KLEM</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>KEMG, KEWT, KEPL, KEDT, KELD, KETR, KEDS, KLC, KLTD, KLEO, KLF, KMG</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>KMW, KMDA, KMP, KMD, KMB</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>MRD</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>EHN, LC, LED, LF, LTD</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>MD, MBA, MCA, MD, MG, MP</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>MW, LG</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>LOS, WOS</td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>MTCT, MUC</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>DIM, CFAIL, EF</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>APWC, AMTCT, PWC</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>ISWTH</td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>COMMON IN, IOUT, IYEAR, NYEAR, NTYPE, DCBR, T, SCBR, CFAIL, EF, ENVFT, ITRAF</td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>S, ITCNT, SPTHW, TRINC, YTOTL, PRUFF, RUFR, VA, CP, RD, PRECP, WOS, LOS, PRERD</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>2MAPOL, MUC, MTCT, DISCR, SPVA, SMP, SMS, CMPR</td>
<td></td>
<td>160</td>
</tr>
<tr>
<td>COMMON APWC, AMTCT, PWC, TOTAL, RUFR1, RUFR2, ISWTH</td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>PATCHING OPERATION CONSUMPTION</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>DATA CCM1, CCM2/7.3</td>
<td></td>
<td>190</td>
</tr>
<tr>
<td>DISTRIBUTOR CONSUMPTION</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>DATA CD1, CD2/7.1</td>
<td></td>
<td>210</td>
</tr>
<tr>
<td>MOTOR GRADER CONSUMPTION</td>
<td></td>
<td>220</td>
</tr>
<tr>
<td>DATA CMG1, CMG2/15.1</td>
<td></td>
<td>230</td>
</tr>
<tr>
<td>LOADER CONSUMPTION</td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>DATA CLI, CL2/12.1</td>
<td></td>
<td>250</td>
</tr>
<tr>
<td>RATIO OF FOREMAN TIME TO GREASER TIME</td>
<td></td>
<td>260</td>
</tr>
<tr>
<td>DATA CLF/2</td>
<td></td>
<td>270</td>
</tr>
<tr>
<td>RATIO OF GREASER TIME TO TRUCKDRIVER AND OPERATOR TIME</td>
<td></td>
<td>280</td>
</tr>
<tr>
<td>DATA CLG1, CLG2/1.1</td>
<td></td>
<td>290</td>
</tr>
<tr>
<td>ROLLER CONSUMPTION</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>DATA CR1, CR2/5.1</td>
<td></td>
<td>310</td>
</tr>
<tr>
<td>RUT PATCHING CONSUMPTION</td>
<td></td>
<td>320</td>
</tr>
<tr>
<td>DATA CRF1, CRF2, CRF3, CRF4, CRF5/1.7.25.2.2</td>
<td></td>
<td>330</td>
</tr>
<tr>
<td>SEALING OPERATION CONSUMPTION</td>
<td></td>
<td>340</td>
</tr>
<tr>
<td>DATA CS1, CS2, CS3, CS4/1.4.1.4,4.3</td>
<td></td>
<td>350</td>
</tr>
<tr>
<td></td>
<td></td>
<td>360</td>
</tr>
</tbody>
</table>
DUMP TRUCK CONSUMPTION
DATA CT1,CT2/7.,1./
C WATER TRUCK CONSUMPTION
DATA CWT1,CWT2/0.,0./
C MOWER CONSUMPTIONS
DATA CV1,CV2/0.,0./
C DENSITY OF COMPACTED GRAVEL
DATA DCG/2.24/
C DENSITY OF LOOSE GRAVEL
DATA DLG/1.8/
C AVERAGE DEPTH OF PATCHES (CM.)
DATA DOP/5./
C LABOR EFFICIENCY
DATA PCL/.75/
C DISTRIBUTOR PRODUCTION
DATA PD2/.75/
C MOTOR GRADER PRODUCTION
DATA PMG1,PMG2,PMG3/2.4,.75,.60/
C LOADER PRODUCTION
DATA PL1,PL2/30.,.75/
C ROLLER PRODUCTION
DATA PR1,PR2,PR3,PR4,PR5/2.,.75,6.,3.,5./
C DUMP TRUCK PRODUCTION
DATA PT1,PT2,PT3,PT4,PT5,PT6/3.,.75,40.,5.,2.,5./
C MOWER PRODUCTIVITIES
DATA PV1,PV2,PV3/0.,0.,0./
C WATER TRUCK PRODUCTION
DATA PWT1,PWT2,PWT3,PWT4,PWT5,PWT6,PWT7/7*,0./
C AGGREGATE RATE FOR SEAL (K. / SQ. METERS)
DATA SA/14./
C ASPHALT RATE FOR SEAL (LITERS / SQ. METER)
DATA SB/1.2/
IPRINT=IOUT

C INITIALIZE COST MATRICES
DO 290 I = 1,12
DO 291 J = 1,7
EHN(I,J)= 0.
LC(I,J)= 0.
LEO(I,J)= 0.
LF(I,J)= 0.
LG(I,J)= 0.
LTD(I,J)= 0.
M(I,J)= 0.
MBA(I,J)= 0.
MCA(I,J)= 0.
MD(I,J)= 0.
MG(I,J)= 0.
MP(I,J)= 0.
MW(I,J)= 0.
CONTINUE
DO 2931 T = 1,25
MTCT(I)= 0.
CONTINUE
DO 2931 T = 1,25
MTCT(I)= 0.
C UNIT PRICES
UEDS=MUC(1)
UEDT=MUC(2)
UEDD=MUC(3)
UEMG=MUC(4)
UERI=MUC(5)
UETR=MUC(6)
UEWT=MUC(7)
ULC=MUC(8)
ULEO=MUC(9)
ULF=MUC(10)
ULTD=MUC(11)
UMR=MUC(12)
UMBA=MUC(13)
UMCA=MUC(14)
UMD=MUC(15)
UMG=MUC(16)
COST 730
COST 740
COST 750
COST 760
COST 770
COST 780
COST 790
COST 800
COST 810
COST 820
COST 830
COST 840
COST 850
COST 860
COST 870
COST 880
COST 890
COST 900
COST 910
COST 920
COST 930
COST 940
COST 950
COST 960
COST 970
COST 980
COST 990
COST 1000
COST 1010
COST 1020
COST 1030
COST 1040
COST 1050
COST 1060
COST 1070
COST 1080
C
124 CONTINUE
C
C MAINTENANCE POLICY
DSWH=MAPOL(1)
REGPL=MAPOL(2)
SWCH=MAPOL(3)
VSWTH=MAPOL(4)
BLADE=MAPOL(5)
FBLDR=MAPOL(6)
FBLWT=MAPOL(7)
FREM=MAPOL(8)
FRF=MAPOL(9)
FTP=MAPOL(10)
FTS=MAPOL(11)
MRD=MAPOL(12)
DSCM=4.0
DISC=4.0
DISW=0.0
C
C COMPUTATION OF LABOR, EQUIPMENT AND MATERIAL REQUIRED FOR
PAVEMENT MAINTENANCE
C
C OPERATION PLACE AND COMPACT BITUMINOUS PATCHING
C OF COLD MIX AS DEEP OR SKIN PATCHES
C
C COMMON LABOR NEEDED
C
C TRUCK DRIVER
C
C FUEL REQUIRED
C
C OPERATION HAUL COLD MIX TO ROAD SECTION
C
C TIME NEEDED FOR ROUND TRIP
C
C TRUCK HRS. NEEDED TO HAUL PATCHING MIX FOR ONE KILOMETER OF ROAD
C
C
EHN(7,4) = DCG*RT*DOP/(DLG*PT1*60*PT2) *SMP*.01

C TRUCK DRIVER HOURS
LTD(7,4) = EHN(7,4)*CT2

C FUEL REQUIRED
MP(7,4) = EHN(7,4)*CT1

CC OPERATION LOAD COLD MIX INTO TRUCKS
C LOADER TIME
EHN(7,5) = DCG*DOP/(PL1*PL2*DLG) *SMP*.01

C OPERATOR TIME
LEO(7,5) = EHN(7,5)*CL2

C FUEL
MD(7,5) = EHN(7,5)*CL1

C PREMIXED PATCHING MATERIAL USED
MBA(6,4) = DCG*DOP *SMP*.01

CC OPERATION PLACE AND ROLL BIT, SEAL COAT FOR ONE KILOMETER OF ROAD
C COMMON LABOR REQUIRED
LC(8,4) = CS1/PCL *SMS*.01
EHN(8,4) = CS2/PT2 *SMS*.01

C TRUCK DRIVER
LTD(8,4) = EHN(8,4)*CT2

C DISTRIBUTOR REQUIRED
EHN(8,7) = CS3/PD2 *SMS*.01

C DISTRIBUTOR TRUCK DRIVER
LTD(8,7) = EHN(8,7)*CD2

C ROLLER HOURS
EHN(8,3) = CS4/PR2 *SMS*.01

C ROLLER OPERATOR
LEO(8,3) = EHN(8,3)*CR2

C FUEL FOR TRUCKS, DISTRIBUTOR, ROLLER
MP(8,4) = EHN(8,4)*CT1
MP(8,7) = EHN(8,7)*CD1
MP(8,3) = EHN(8,3)*CR1

CC OPERATION TRANSPORT AGGREGATE FROM SOURCE TO ROAD SECTION
C DUMP TRUCK TIME TO MAKE ONE ROUND TRIP
RT = PT4+PT6+DISCM*60*2/PT3

C HOURS NEEDED FOR SEALING ON ONE KILOMETER OF ROAD

EHN(9,4) = SA * 100 * RT / (DLG * PT1 * 60 * 1000.) * SMS * .01
C DRIVER TIME
LTD(9,4) = EHN(9,4) * CT2
C LOADER TIME
EHN(9,5) = SA * .1 / (DLG * PL1) * SMS * .01
C LOADER OPERATOR
LEO(9,5) = EHN(9,5) * CL2
C MATERIAL
FUEL
MP(9,4) = EHN(9,4) * CT1
MP(9,5) = EHN(9,5) * CL1
C AGGREGATE
MCA(3,4) = SA * SMS * .01
C LIQUID ASPHALT
MB(8,4) = SB * SMS
C OPERATION: PLACE AND COMPACT RUT PATCHING MIX PER KILOMETER
C COMMON LABOR
LC(10,4) = CRF1 / PCL * CMPR
C DUMP TRUCK
EHN(10,4) = CRF2 / PT2 * CMPR
C TRUCK DRIVER
LTD(10,4) = EHN(10,4) * CT2
C FUEL
MP(10,4) = EHN(10,4) * CT1
C MOTOR GRADER
EHN(10,1) = CRF3 / PMG2 * CMPR
C MOTOR GRADER OPERATOR
LEO(10,1) = EHN(10,1) * CMG2
C FUEL
MD(10,1) = EHN(10,1) * CMG1
C DISTRIBUTOR
EHN(10,7) = CRF5 / PD2 * CMPR
C DISTRIBUTOR TRUCK DRIVER
LTD(10,7) = EHN(10,7) * CD2
C FUEL
MP(10,7) = EHN(10,7) * CD1
C ROLLER
EHN(10,3) = CRF4/PR2 * CMPR

C OPERATOR
LEO(10,3) = EHN(10,3) * CR2

C FUEL
MP(10,3) = EHN(10,3) * CR1

C PATCHING MIXTURE
MBA(10,4) = DCG * CMPR

C TRANSPORT PATCHING MIXTURE FOR RUTS'
TIME FOR ONE ROUND TRIP
RT = PT4 + PT6 + DISCM * 60 * 2 / PT3

C TRUCK TIME
EHN(11,4) = DCG * RT / (DLG * PT1 * PT2 * 60) * CMPR

C TRUCK DRIVER
LTD(11,4) = EHN(11,4) * CT2

C FUEL
MP(11,4) = EHN(11,4) * CT1

C CONTINUE

C LOADER
EHN(11,5) = DCG / (DLG * PL1 * PL2) * CMPR

C LOADER OPERATOR
LEO(11,5) = EHN(11,5) * CL2

C FUEL
MD(11,5) = EHN(11,5) * CL1

C CONTINUE

C COST PER KM

C COST SUM SECTION
C ALL MAINTENANCE COSTS HAVE BEEN CALCULATED AT THIS POINT
C THE COSTS WILL NOW BE SUMMED AND THESE SUMS WILL BE
C RETURNED TO THE MAIN PROGRAM

C COST PER KM

C INITIALIZE COST SUM MATRIX
C SXYZ = QUANTITIES OF XYZ PER KM PER YEAR
C SEMG = 0.
139 CONTINUE
C WATER TRUCK
 SWT = 0.
C ROLLER
 SLR = 0.
C DUMP TRUCK
 SEDT = 0.
 SEDL = 0.
C TRACTOR AND MOWER HOURS
 SETR = 0.
C DISTRIBUTOR
140 CONTINUE
 SEDS = 0.
 SLC = 0.
 SLEO = 0.
 SLF = 0.
 SLG = 0.
 SLTD = 0.
 SMB = 0.
 SMBA = 0.
 SMCA = 0.
 SMD = 0.
 SMG = 0.
 SMP = 0.
C LOADER
 SMW = 0.
DO 301 I = 1,12
DO 300 J = 1,7
 SLC = SLC + LC(I,J)
 SLEO = SLEO + LEO(I,J)
 SLF = SLF + LF(I,J)
 SLG = SLG + LG(I,J)
 SLTD = SLTD + LTD(I,J)
 SMB = SMB + MB(I,J)
 SMBA = SMBA + MRA(I,J)
 SMCA = SMCA + MCA(I,J)
SMG = SMG + MG(I,J)
SMP = SMP + MP(I,J)
SMW = SMW + MW(I,J)
SMD = SMD + MD(I,J)

300 CONTINUE
301 CONTINUE
C
DO 380 I = 1,12
J = 1
SEMG = SEMG + EHN(I,J)
J = 2
SEWT = SEWT + EHN(I,J)
J = 3
SERL = SERL + EHN(I,J)
J = 4
SEDT = SEDT + EHN(I,J)
J = 5
SELD = SELD + EHN(I,J)
J = 6
SETR = SETR + EHN(I,J)
J = 7
SEDS = SEDS + EHN(I,J)

141 CONTINUE
143 CONTINUE

C COSTS FOR ENTIRE SECTION
C
SXYZE = QUANTITY OF XYZ USED ON ENTIRE SECTION IN 1 YEAR
C
C
SEDSE = LOS * SEDS
SEDTE = LOS * SEDT
SELDE = LOS * SELD
SEMGE = LOS * SEMG
SERLE = LOS * SERL
SETRE = LOS * SETR
SEWTE = LOS * SEWT
SLCE = LOS * SLC
SLEOE = LOS * SLEO
SLFE = SLF*LOS
SLGE = SLG*LOS
SLTDE = LOS*SLTD
SMBF = SMB*LOS
SMBAE = SMBA*LOS
SMCAE = SMCA*LOS
SMDE = SMD*LOS
SMGE = SMG*LOS
SMPE = SMP*LOS
SMWE = SMW*LOS

CAPITAL COSTS OF ROAD MAINTENANCE

KXYZ = CURRENT COSTS OF XYZ FOR ENTIRE SECTION
UXYZ = UNIT PRICE OF XYZ

KEDT = UEDT*SEDTE
KEDS = UEDS*SEDS
KELD = UELD*SELDE
KEMG = UEMG*SEMGE
KERL = UERL*SERLE
KETR = UETR*SETRE
KEWT = UEWT*SEWTE
KLC = ULC*SLCE
KLEO = ULEO*SLEOE
KLF = ULF*SLFF
KLG = SLGE*ULC
KLTD = ULTD*SLTDE
KMB = UMB*SMBE
KMBA = UMBA*SMBAE
KMCA = UMCA*SMCAE
KMD = UMD*SMDE
KMG = UMG*SMGE
KMP = UMP*SMPE
KMW = UMW*SMWE

COSTS OF LABOR, EQUIPMENT, AND MATERIALS
KLABR = KLC+KLEO+KLF+KLTD
KEQ = KEDT+KEDS+KELD+KEMG+KERL+KETR+KEWT

COST3250 COST3260 COST3270 COST3280 COST3290 COST3300 COST3310 COST3320 COST3330 COST3340 COST3350 COST3360 COST3370 COST3380 COST3390 COST3400 COST3410 COST3420 COST3430 COST3440 COST3450 COST3460 COST3470 COST3480 COST3490 COST3500 COST3510 COST3520 COST3530 COST3540 COST3550 COST3560 COST3570 COST3580 COST3590 COST3600
\[\text{KMAT} = \text{KMB} + \text{KMCA} + \text{KMD} + \text{KMP} + \text{KM} \]
\[\text{KLEM} = \text{KLBR} + \text{KE} + \text{KMAT} \]

END OF COST SUM SECTION

IF (ISWTH(1)) 711, 711, 712

WRITE(IPRNT, 1011)

1011 FORMAT (1HO, 'THE FOLLOWING ARRAYS CONTAIN DETAILED ACCOUNTS OF THE COST3610 1MAINTENANCE EFFORT/' ' COLUMNS DEAL WITH EQUIPMENT TYPES, WHILE ROW COST3640 2S REFER TO VARIOUS TASKS/' ' TASKS ARE', T100, 'EQUIPMENT TYPES ARE', T150, 3')

WRITE(IPRNT, 1012)

1012 FORMAT (IX, '1 BLADING DURING DRY SEASON', T100, 'MOTOR GRADER'/ ' 2 RE', T100, 'WATER TRUCK'/ ' 3 VEGETATION CONTROL', T100, 'ROLLCOST3730 3' /' 4 DRAINAGE-CULVERT AND DITCH CLEANING', T100, 'DUMPTRUCK'/ ' 5 BLADING DURING WET SEASON', T100, 'LOADER'/ ' 6 PATCH WITH COLD MCOST3750 5IX', T100, 'TRACTOR'/ ')

WRITE(IPRNT, 1013)

1013 FORMAT (IX, ' 1 BITUMINOUS SEAL', T100, 'HAUL AGGREGATE FOR SEAL COAT'/ ' 2 AND COMPACT PATCHING MIX IN RUTS'/ ' 3 12 SHOULDER MAINTENANCE'/ ')

WRITE(IPRNT, 1014)

1014 FORMAT (IX, ' AN ARRAY ELEMENT INDICATES THE PHYSICAL QUANTITY EXPECOST3800 1NEED PERFORMING A TASK'/ ' WITH A CERTAIN TYPE OF MACHINERY')

WRITE(IPRNT, 1015)

1015 FORMAT ('0 EQUIPMENT HOURS BY TASKS')

WRITE(IPRNT, 1016) ((EHN(I, J), J = 1, 7), I = 1, 12)

WRITE(IPRNT, 1017)

1016 FORMAT ('0 HOURS OF COMMON LABOR')

WRITE(IPRNT, 1018) ((LC(I, J), J = 1, 7), I = 1, 12)

WRITE(IPRNT, 1019)

1017 FORMAT ('0 FOREMAN HOURS')

WRITE(IPRNT, 1011) ((LF(I, J), J = 1, 7), I = 1, 12)
WRITE(IPRNT,1018)
WRITE(IPRNT,101) ((LG(I,J), J=1,7), I=1,12)
WRITE(IPRNT,1019)
WRITE(IPRNT,101) ((LTD(I,J), J = 1,7), I = 1,12)
WRITE(IPRNT,1020)
WRITE(IPRNT,101) ((MB(I,J), J = 1,7), I = 1,12)
WRITE(IPRNT,1021)
WRITE(IPRNT,101) ((MCA(I,J), J = 1,7), I = 1,12)
WRITE(IPRNT,1022)
WRITE(IPRNT,101) ((MBA(I,J), J = 1,7), I = 1,12)
WRITE(IPRNT,1023)
WRITE(IPRNT,101) ((MD(I,J), J = 1,7), I = 1,12)
WRITE(IPRNT,1024)
WRITE(IPRNT,101) ((MG(I,J), J = 1,7), I = 1,12)
WRITE(IPRNT,1025)
WRITE(IPRNT,101) ((MP(I,J), J = 1,7), I = 1,12)
WRITE(IPRNT,1026)
WRITE(IPRNT,101) ((MW(I,J), J = 1,7), I = 1,12)
101 FORMAT('HO/ (7F10.1)')
711 CONTINUE
COST3970
COST3980
COST3990
COST4000
COST4010
COST4020
COST4030
COST4040
COST4050
COST4060
COST4070
COST4080
COST4090
COST4100
COST4110
COST4120
COST4130
COST4140
COST4150
COST4160
COST4170
COST4180
COST4190
COST4200
COST4210
COST4220
COST4230
COST4240
COST4250
COST4260
COST4270
COST4280
COST4290
COST4300
COST4310
COST4320
MTCT(8) = SEDT
MTCT(9) = SELD
MTCT(10) = SE TR
MTCT(11) = SEDS
MTCT(12) = SLC
MTCT(13) = SLEO
MTCT(14) = SLF
MTCT(?5) = SLTD
MTCT(16) = SMB
MTCT(17) = SM BA
MTCT(18) = SMCA
MTCT(19) = SM D
MTCT(20) = SM G
MTCT(21) = SMP
MTCT(22) = SM W
MTCT(23) = SLG
RETURN
END
SUBROUTINE IMPRU
REAL MAPOL, MUC, MTCT, LOS, WOS
DIMENSION CFAIL(20), EF(20), MAPOL(20), MUC(25), MTCT(25)
DIMENSION APWC(4), AMTCT(4), PWC(4)
DIMENSION ISWTH(5)
COMMON IIN, IOUT, IYEAR, NYEAR, NTYPE, DCBR, T, SCBR, CFAIL, EF, ENVFT, ITRAF
1, ITCNT, SPTHW, TRINC, YTOTL, PRUFF, RUFF, VA, CP, RD, PRECP, WOS, LOS, PRERD,
2 MAPOL, MUC, MTCT, DISCR, SPVA, SMP, SMS, CMPR
COMMON APWC, AMTCT, PWC, TOTAL, RUFF1, RUFF2, ISWTH

IMPRU DETERMINES AVERAGE ROUGHNESS AND VERTICAL ACCELERATION AFTER MAINT.

RUFF3 = 79. + 2.96 * PRERD - ((PRECP/WOS)**0.5)
IF (RUFF3 - 79.) < 9301, RUFF3 = RUFF
9301 C
9302 CONTINUE
PRUFF = (RUFF1 + RUFF2 + RUFF3) / 3.
C
VA = -0.35 + 0.0057 * PRUFF
C
WRITE (IOUT,450) PRUFF, VA
450 FORMAT (1H1, ' AVERAGE ROUGHNESS FOR YEAR', 2X, F10.2, 1H1, ' AVERAGE V
1ERTICAL ACCELERATION FOR YEAR', 2X, F10.2)
RETURN
END
SUBROUTINE PWCAC
REAL MAPOL, MUC, MTCT, LOS, WOS
DIMENSION CFAIL(20), EF(20), MAPOL(20), MUC(25), MTCT(25)
DIMENSION APWC(4), AMTCT(4), PWC(4)
DIMENSION ISWTH(5)
COMMON IIN, IOUT, IYEAR, NYEAR, NTYPE, DCBR, T, SCBR, CFAIL, EF, ENVFT, ITRAF
1, ITCNT, SPTH, TRINC, YTOTL, PRUFF, RUFF, VA, CP, RD, PRECP, WOS, LOS, PRERD,
2 MMAPOL, MUC, MTCT, DISCR, SPVA, SMP, SMS, CMPR
COMMON APWC, AMTCT, PWC, TOTAL, RUFF1, RUFF2, ISWTH

PWCAC ESTIMATES:
1. DISCOUNTED LABOR, EQUIPMENT, MATERIAL AND SUM
 OF L, E, AND M COSTS
2. ACTUAL COSTS OF 19 OTHER COST COMPONENTS

LOOP DISCOUNTS LABOR EQUIPMENT MATERIAL, AND TOTAL COSTS

DO 820 I=1,4
 PWC(I)=MTCT(I)/((1+DISCR)**IYEAR)
820 CONTINUE

WRITE (IOUT,419)
FORMAT (1HO,' YEARLY COSTS'//)
WRITE (IOUT,420)
FORMAT (1H,'15X,' DISCOUNTED COSTS',10X,' ACTUAL COSTS')
WRITE (IOUT,421) PWC(1), MTCT(1)
WRITE (IOUT,422) PWC(2), MTCT(2)
WRITE (IOUT,423) PWC(3), MTCT(3)
WRITE (IOUT,424) PWC(4), MTCT(4)

PWCA0001
PWCA0002
PWCA0003
PWCA0004
PWCA0005
PWCA0006
PWCA0007
PWCA0008
PWCA0009
PWCA0010
PWCA0011
PWCA0012
PWCA0013
PWCA0014
PWCA0015
PWCA0016
PWCA0017
PWCA0018
PWCA0019
PWCA0020
PWCA0021
PWCA0022
PWCA0023
PWCA0024
PWCA0025
PWCA0026
PWCA0027
PWCA0028
PWCA0029
PWCA0030
PWCA0031
PWCA0032
PWCA0033
PWCA0034
PWCA0035
PWCA0036
424 FORMAT (1H, ' TOTAL COSTS', 6X, F10.2, 10X, F10.2)
C
902 IF (ISWTH(2)) 902, 901, 902
901 CONTINUE
WRITE (IOUT, 440) (MTCT(I), I=1, 23)
440 FORMAT (1H, ' MTCT =', F10.2)
901 CONTINUE
C
ACCUMULATE COSTS PW'C AND ACTUAL
C
LOOP TO ACCUMULATE
DO 821 I=1, 4
APWC(I)=APWC(I)+PWC(I)
AMTCT(I)=AMTCT(I)+MTCT(I)
821 CONTINUE
C
WRITE ACCUMULATED COSTS TO DATE
WRITE (IOUT, 425)
425 FORMAT (1H0, ' ACCUMULATED COSTS', 15X, ' DISCOUNTED COSTS', 10X, 'ACTUAL COSTS')
C
WRITE (IOUT, 426) APWC(1), AMTCT(1)
426 FORMAT (1H, ' LABOR COSTS', 6X, F10.2, 10X, F10.2)
WRITE (IOUT, 427) APWC(2), AMTCT(2)
427 FORMAT (1H, ' EQUIPMENT COSTS', 2X, F10.2, 10X, F10.2)
WRITE (IOUT, 428) APWC(3), AMTCT(3)
428 FORMAT (1H, ' MATERIALS COST', 3X, F10.2, 10X, F10.2)
WRITE (IOUT, 429) APWC(4), AMTCT(4)
429 FORMAT (1H, ' TOTAL COSTS', 6X, F10.2, 10X, F10.2)
RETURN
END
APPENDIX IV

Typical Print Out Of Model
The print out which follows was derived from a test on pavement thickness equal to 64.01 cm. All other variables are unchanged from the "Base Run." Output switches are set to omit details of maintenance quantities and maintenance costs.
INPUT DATA, INCLUSIVE OF TRAFFIC INPUT

MAINTENANCE POLICY

<table>
<thead>
<tr>
<th></th>
<th>-1.00</th>
<th>0.00</th>
<th>0.00</th>
<th>0.00</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNIT COSTS FOR MAINTENANCE

<table>
<thead>
<tr>
<th></th>
<th>3.00</th>
<th>3.00</th>
<th>3.57</th>
<th>4.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>4.04</td>
</tr>
<tr>
<td>0.00</td>
<td>0.04</td>
<td>6.60</td>
<td>3.45</td>
<td>0.00</td>
</tr>
<tr>
<td>0.07</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

NYTYP = 6

<table>
<thead>
<tr>
<th>DCRR</th>
<th>10.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>71.12</td>
</tr>
</tbody>
</table>

NYTYP = 45.75

<table>
<thead>
<tr>
<th>LOS</th>
<th>3.05</th>
</tr>
</thead>
</table>

SLBR

<table>
<thead>
<tr>
<th>SPTHW</th>
<th>TRINC</th>
<th>TOTAL</th>
<th>ITRAF</th>
<th>ITCNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.00</td>
<td>0.20</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

UJBR

<table>
<thead>
<tr>
<th>NYEM</th>
<th>SPWA</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.00</td>
<td>0.70</td>
</tr>
</tbody>
</table>

INPUT SWITCH STATUS

<table>
<thead>
<tr>
<th>NYTYP</th>
<th>-1</th>
<th>-1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>228345.63</td>
<td>10.57</td>
<td>28.00</td>
<td>28.00</td>
<td>10.00</td>
</tr>
<tr>
<td>1</td>
<td>228345.63</td>
<td>10.57</td>
<td>28.00</td>
<td>28.00</td>
<td>10.00</td>
</tr>
<tr>
<td></td>
<td>30949.09</td>
<td>11.63</td>
<td>28.00</td>
<td>28.00</td>
<td>10.00</td>
</tr>
<tr>
<td>2</td>
<td>30949.09</td>
<td>11.63</td>
<td>28.00</td>
<td>28.00</td>
<td>10.00</td>
</tr>
<tr>
<td></td>
<td>15986.09</td>
<td>9.16</td>
<td>28.00</td>
<td>28.00</td>
<td>10.00</td>
</tr>
<tr>
<td>3</td>
<td>15986.09</td>
<td>9.16</td>
<td>28.00</td>
<td>28.00</td>
<td>10.00</td>
</tr>
<tr>
<td></td>
<td>41818.18</td>
<td>12.60</td>
<td>28.00</td>
<td>28.00</td>
<td>10.00</td>
</tr>
</tbody>
</table>

UFAIL

228345.63	10.57	28.00	28.00	10.00	
1	228345.63	10.57	28.00	28.00	10.00
2	30949.09	11.63	28.00	28.00	10.00
3	30949.09	11.63	28.00	28.00	10.00
4	15986.09	9.16	28.00	28.00	10.00
5	15986.09	9.16	28.00	28.00	10.00
6	41818.18	12.60	28.00	28.00	10.00

LUVAL UE FACTORS

<table>
<thead>
<tr>
<th>1.00</th>
<th>1.00</th>
<th>1.00</th>
<th>1.00</th>
<th>1.00</th>
</tr>
</thead>
</table>

ENVF = 1.18

<table>
<thead>
<tr>
<th>SCBR</th>
<th>9.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TYPE = 6

TYPE AIRCRAFT	**NO. COVERAGES**	**EQUIV. COVER**
1 | 100.00 | 100.00
2 | 100.00 | 167.02
3 | 100.00 | 167.02
4 | 100.00 | 1.80
5 | 100.00 | 5.63

TOTAL EQUIVALENT COVERAGES FOR YEAR = 1270.19
TOTAL UNIFORM COVERAGES, SAME OR REFEED, = 1270.19
ACCUMULATED COVERAGES = 1270.19
RJHNG = 14.36 | **PRUFF = 79.00** | **RUFF = 79.00**
C+P BEFORE MAINTENANCE = 56.36 | **RD BEFORE MAINTENANCE =** 7.38
SPALLING AND PATCHING, AFTER MAINTENANCE = 22.55 | **PUT DEPTH AFTER MAINTENANCE =** 7.38
DELP	**DELRO**	**SMP**	**SMS**	**CMPR**	**FIXRC**	**FTP**	**FTS**
1 | 7.38 | 773.59 | 773.59 | 0.0 | 0.0 | 0.30 | 0.30

YEARTLY COSTS

DISCOUNTED COSTS	**ACTUAL COSTS**
LABOR COSTS | 9186.43 | 9829.48
EQUIPMENT COSTS | 1622.05 | 1735.83
MATERIALS COST | 2110.71 | 2268.05
TOTAL COSTS | 12923.19 | 13833.16

ACCUMULATED COSTS

DISCOUNTED COSTS	**ACTUAL COSTS**
LABOR COSTS | 9186.43 | 9829.48
EQUIPMENT COSTS | 1622.05 | 1735.83
MATERIALS COST | 2110.71 | 2268.05
TOTAL COSTS | 12923.19 | 13833.16
AVERAGE KNOCKNESS FOR YEAR | 89.49

AVERAGE VERTICAL ACCELERATION FOR YEAR | 0.16
YEAR = 2

TOTAL COVERAGES FOR YEAR BY PER CENT INCREASE = 1397.20
ACCUMULATED COVERAGES = 2667.39
RCHNG = 15.82 RUFF = 105.31 PRUFF = 85.49
CRACKING AND PATCHING, BEFORE MAINTENANCE = 98.76
CRACKING AND PATCHING, AFTER MAINTENANCE = 53.03
RUT DEPTH BEFORE MAINTENANCE = 12.22
RUT DEPTH AFTER MAINTENANCE = 12.22

YEARMY COSTS

<table>
<thead>
<tr>
<th>DISCOUNTED COSTS</th>
<th>ACTUAL COSTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABOR COSTS</td>
<td>11608.63</td>
</tr>
<tr>
<td>EQUIPMENT COSTS</td>
<td>2040.73</td>
</tr>
<tr>
<td>MATERIALS COSTS</td>
<td>2679.62</td>
</tr>
<tr>
<td>TOTAL COSTS</td>
<td>16336.99</td>
</tr>
</tbody>
</table>

ACCUMULATED COSTS

<table>
<thead>
<tr>
<th>DISCOUNTED COSTS</th>
<th>ACTUAL COSTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABOR COSTS</td>
<td>20795.06</td>
</tr>
<tr>
<td>EQUIPMENT COSTS</td>
<td>3671.79</td>
</tr>
<tr>
<td>MATERIALS COSTS</td>
<td>4794.32</td>
</tr>
<tr>
<td>TOTAL COSTS</td>
<td>29245.16</td>
</tr>
<tr>
<td>AVERAGE KOUGHNESS FOR YEAR</td>
<td>100.90</td>
</tr>
</tbody>
</table>

AVERAGE VERTICAL ACCELERATION FOR YEAR = 0.23
YEAR = 3

TOTAL COVERAGES FOR YEAR BY PER CENT INCREASE = 1536.92
ACCUMULATED COVERAGES = 4204.31
Rutting = 17.40 PRUFE = 118.30 PRUFF = 100.00
+PBC = BEFORE MAINTENANCE = 142.28 KUB = BEFORE MAINTENANCE = 17.28
+RACKING AND PATCHING, AFTER MAINTENANCE = 86.73 RUT DEPTH AFTER MAINTENANCE = 17.28

YEARLY COSTS

<table>
<thead>
<tr>
<th>DISCOUNTED COSTS</th>
<th>ACTUAL COSTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABOR COSTS</td>
<td>1224.90</td>
</tr>
<tr>
<td>EQUIPMENT COSTS</td>
<td>2243.31</td>
</tr>
<tr>
<td>MATERIALS COST</td>
<td>2931.58</td>
</tr>
<tr>
<td>TOTAL COSTS</td>
<td>17879.82</td>
</tr>
</tbody>
</table>

ACCUMULATED COSTS

<table>
<thead>
<tr>
<th>DISCOUNTED COSTS</th>
<th>ACTUAL COSTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABOR COSTS</td>
<td>3350.00</td>
</tr>
<tr>
<td>EQUIPMENT COSTS</td>
<td>5915.07</td>
</tr>
<tr>
<td>MATERIALS COST</td>
<td>7120.91</td>
</tr>
<tr>
<td>TOTAL COSTS</td>
<td>47144.69</td>
</tr>
<tr>
<td>AVERAGE ROUGHNESS FOR YEAR</td>
<td>113.31</td>
</tr>
</tbody>
</table>

AVERAGE VERTICAL ACCELERATION FOR YEAR | 0.30 |
<table>
<thead>
<tr>
<th>YEAR = 4</th>
</tr>
</thead>
</table>

TOTAL COVERAGES FOR YEAR BY PER CENT INCREASE = 1690.62

ACCUMULATED COVERAGES = 5894.93

SLHNG = 19.14

RUFF = 132.46

PRUFF = 113.31

CRAE=BEFORE MAINTENANCE = 187.06

RUT DEPTH BEFORE MAINTENANCE = 22.65

CRAKING AND PATCHING, AFTER MAINTENANCE = 128.05

RUT DEPTH AFTER MAINTENANCE = 22.65

JELCP

DELRD

SMR

SMS

CMPR

FIXRD

FTP

FTS

| 4497.90 | 5.17 | 1349.37 | 1349.37 | 0.0 | 0.0 | 0.30 | 0.30 |

YEARLY COSTS

<table>
<thead>
<tr>
<th>LABOR COSTS</th>
<th>DISCOUNTED COSTS</th>
<th>ACTUAL COSTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>13080.36</td>
<td>17145.03</td>
<td></td>
</tr>
<tr>
<td>EQUIPMENT COSTS</td>
<td>2309.59</td>
<td>3027.40</td>
</tr>
<tr>
<td>MATERIALS COST</td>
<td>3018.21</td>
<td>3956.24</td>
</tr>
<tr>
<td>TOTAL COSTS</td>
<td>18408.15</td>
<td>24129.26</td>
</tr>
</tbody>
</table>

ACCUMULATED COSTS

<table>
<thead>
<tr>
<th>LABOR COSTS</th>
<th>DISCOUNTED COSTS</th>
<th>ACTUAL COSTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>46580.35</td>
<td>55829.87</td>
<td></td>
</tr>
<tr>
<td>EQUIPMENT COSTS</td>
<td>8224.69</td>
<td>9497.86</td>
</tr>
<tr>
<td>MATERIALS COST</td>
<td>10748.11</td>
<td>12982.38</td>
</tr>
<tr>
<td>TOTAL COSTS</td>
<td>65553.13</td>
<td>78570.06</td>
</tr>
</tbody>
</table>

AVERAGE WAVELESS FOR YEAR = 126.83

AVERAGE VERTICAL ACCELERATION FOR YEAR = 0.37
YEAR = 5

TOTAL COVERAGES FOR YEAR BY PER CENT INCREASE = 1859.68
ACCUMULATED COVERAGES = 7754.60
ACRNU = 21.06
RUFF = 147.89
PRUFF = 126.83
C+C+BEFORE MAINTENANCE = 232.22
RD,BEFORE MAINTENANCE = 28.40
CRACKING AND PATCHING, AFTER MAINTENANCE = 170.12
RUT DEPTH AFTER MAINTENANCE = 28.40

<table>
<thead>
<tr>
<th>DELR</th>
<th>DELR</th>
<th>MP</th>
<th>SMS</th>
<th>CMPR</th>
<th>FIXRC</th>
<th>FTP</th>
<th>FTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>494.12</td>
<td>5.75</td>
<td>1643.35</td>
<td>1443.35</td>
<td>0.0</td>
<td>0.0</td>
<td>0.30</td>
<td>0.30</td>
</tr>
</tbody>
</table>

YEARKLY COSTS

<table>
<thead>
<tr>
<th>DISCOUNTED COSTS</th>
<th>ACTUAL COSTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABOR COSTS</td>
<td>13074.03</td>
</tr>
<tr>
<td>EQUIPMENT COSTS</td>
<td>2308.84</td>
</tr>
<tr>
<td>MATERIALS COST</td>
<td>3017.22</td>
</tr>
<tr>
<td>TOTAL COSTS</td>
<td>18402.14</td>
</tr>
</tbody>
</table>

ACCUMULATUED COSTS

<table>
<thead>
<tr>
<th>DISCOUNTED COSTS</th>
<th>ACTUAL COSTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABOR COSTS</td>
<td>59656.43</td>
</tr>
<tr>
<td>EQUIPMENT COSTS</td>
<td>10533.52</td>
</tr>
<tr>
<td>MATERIALS COST</td>
<td>13765.34</td>
</tr>
<tr>
<td>TOTAL COSTS</td>
<td>83955.25</td>
</tr>
<tr>
<td>AVERAGE ROUGHNESS FOR YEAR</td>
<td>141.58</td>
</tr>
</tbody>
</table>

AVERAGE VERTICAL ACCELERATION FOR YEAR = 0.46
Year = 6

Total Coverages for Year by Percent Increase = 2045.65

- Accumulated coverages = 9800.25
- Remaining = 23.16
- RUFS = 164.75
- PRUFF = 141.56

Cracking and Patching, after maintenance = 214.46

- Rut Depth after maintenance = 34.60

Yearly Costs

<table>
<thead>
<tr>
<th>Description</th>
<th>Discounted Costs</th>
<th>Actual Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor Costs</td>
<td>12801.30</td>
<td>19331.27</td>
</tr>
<tr>
<td>Equipment Costs</td>
<td>2274.45</td>
<td>3413.32</td>
</tr>
<tr>
<td>Materials Cost</td>
<td>2972.29</td>
<td>4460.57</td>
</tr>
<tr>
<td>Total Costs</td>
<td>18128.02</td>
<td>27205.14</td>
</tr>
</tbody>
</table>

Accumulated Costs

<table>
<thead>
<tr>
<th>Description</th>
<th>Discounted Costs</th>
<th>Actual Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor Costs</td>
<td>72537.69</td>
<td>93500.94</td>
</tr>
<tr>
<td>Equipment Costs</td>
<td>12007.96</td>
<td>16509.42</td>
</tr>
<tr>
<td>Materials Cost</td>
<td>16737.61</td>
<td>21574.74</td>
</tr>
<tr>
<td>Total Costs</td>
<td>102033.25</td>
<td>131585.00</td>
</tr>
</tbody>
</table>

Average Roughness for Year = 157.70

Average Vertical Acceleration for Year = 0.55
YEAR = 7

TOTAL COVERAGES FOR YEAR BY PER CENT INCREASE = 2250.21
ACCUMULATED COVERAGES = 12050.45
KCMU = 25.48 RUFF = 183.18 PRUFF = 157.70
CUMULATIVE MAINTENANCE = 330.46 KD BEFORE MAINTENANCE = 41.30
CRACKING AND PATCHING AFTER MAINTENANCE = 260.86 RUT DEPTH AFTER MAINTENANCE = 41.30

YEARLY COSTS

<table>
<thead>
<tr>
<th>DISCOUNTED COSTS</th>
<th>ACTUAL COSTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABOR COSTS</td>
<td>20230.52</td>
</tr>
<tr>
<td>EQUIPMENT COSTS</td>
<td>3572.16</td>
</tr>
<tr>
<td>MATERIALS COST</td>
<td>4668.06</td>
</tr>
<tr>
<td>TOTAL COSTS</td>
<td>28470.68</td>
</tr>
</tbody>
</table>

ACCUMULATED COSTS

<table>
<thead>
<tr>
<th>DISCOUNTED COSTS</th>
<th>ACTUAL COSTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABOR COSTS</td>
<td>113731.44</td>
</tr>
<tr>
<td>EQUIPMENT COSTS</td>
<td>20081.53</td>
</tr>
<tr>
<td>MATERIALS COST</td>
<td>26242.80</td>
</tr>
<tr>
<td>TOTAL COSTS</td>
<td>160055.63</td>
</tr>
<tr>
<td>AVERAGE ROUGHNESS FOR YEAR</td>
<td>175.33</td>
</tr>
</tbody>
</table>

AVERAGE VERTICAL ACCELERATION FOR YEAR 0.65
YEAR = 8

Total Coverages for Year by Percent Increase = 2475.23

Accumulated Coverages = 14525.68

- Aging = 28.03
- PRUFF = 203.26
- PRUFF = 175.33
- WAFF = 301.86
- RD. BEFORE MAINTENANCE = 48.58

Cracking and Patching, After Maintenance = 309.26

RUT Depth After Maintenance = 48.58

Distances

<table>
<thead>
<tr>
<th>DELLCP</th>
<th>DELRD</th>
<th>SMP</th>
<th>SMS</th>
<th>CMPR</th>
<th>FIXRD</th>
<th>FTP</th>
<th>FTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5532.90</td>
<td>7.28</td>
<td>1660.70</td>
<td>1660.79</td>
<td>0.00</td>
<td>0.00</td>
<td>0.30</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Yearly Costs

Discounted Costs

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor Costs</td>
<td>12282.03</td>
</tr>
<tr>
<td>Equipment Costs</td>
<td>2188.63</td>
</tr>
<tr>
<td>Materials Cost</td>
<td>2834.00</td>
</tr>
<tr>
<td>Total Costs</td>
<td>17284.66</td>
</tr>
</tbody>
</table>

Actual Costs

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor Costs</td>
<td>21102.67</td>
</tr>
<tr>
<td>Equipment Costs</td>
<td>3726.05</td>
</tr>
<tr>
<td>Materials Cost</td>
<td>4869.30</td>
</tr>
<tr>
<td>Total Costs</td>
<td>29698.07</td>
</tr>
</tbody>
</table>

Accumulated Costs

Discounted Costs

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor Costs</td>
<td>17410.25</td>
</tr>
<tr>
<td>Equipment Costs</td>
<td>17201.13</td>
</tr>
<tr>
<td>Materials Cost</td>
<td>23476.65</td>
</tr>
<tr>
<td>Total Costs</td>
<td>58458.06</td>
</tr>
</tbody>
</table>

Actual Costs

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor Costs</td>
<td>25698.07</td>
</tr>
<tr>
<td>Equipment Costs</td>
<td>31142.11</td>
</tr>
<tr>
<td>Materials Cost</td>
<td>31142.11</td>
</tr>
<tr>
<td>Total Costs</td>
<td>198753.69</td>
</tr>
</tbody>
</table>

Average Roughness for Year = 104.63

Average Vertical Acceleration for Year = 0.76
APPENDIX V

Assumptions Concerning Maintenance
Predominately the assumptions dealing with maintenance cost operations used in this thesis follow those outlined in Alexander's Appendix D, Assumptions and Definitions (22). The only substantial deviation from these assumptions (other than those noted in the text) for airfield pavements concerns rut repair.

Assumptions Concerning Rut Repair

1. All patching is done with bituminous cold mix that is obtained by the local maintenance crews from a central location.

2. All costs for preparing and storing the premixed patching material are included in a "price for the material at the central location". The cost of obtaining the material on the airfield of interest is thus dependent only on this source "price" and the cost of transportation.

3. The cost of transporting cold mix from a source to the road section can be found using the same estimates of productivity and consumption used for transporting gravel.

4. The percent of liquid asphalt used in the cold mix is 6% of the aggregate weight. (AC = 0.06)

5. The rut filling operation is assumed to be mechanical with a motorgrader spreading the material. Placing and compacting patching material for rut repair requires the following expenditures of labor and equipment per cubic meter:
 a) 1.0 hours of common labor \((\text{CRF1} = 1.0) \)
 b) 0.7 hours of dump truck \((\text{CRF2} = 0.25) \)
 c) 0.25 hours of motorgrader \((\text{CRF3} = 0.2) \)

Those assumptions which are not taken directly from Alexander (22) are preceded by an asterisk ().
d) 0.2 hours of roller \((CRF4 = 0.2)\)
e) 0.2 hours of distributor \((CRF5 = 0.2)\)

6. Since only the deeper ruts will be filled, the average rut depth will be reduced each time ruts are repaired.

7. Assume that the depth of ruts are normally distributed. For this distribution the reduction in mean rut depth \((FIXRD)\) will be approximately one-half of fraction of ruts filled \((FRF)\).

\[FIXRD = 0.5 \times (FRF) \times (RD) \]

*8. Assume that the shape and size of the average rut filled will be as follows \((63,78)\):

Volume of patching material required for one kilometer of runway or taxiway:

\[
CMPR = \frac{4 \times FRF \times 1.6 RD \times 7.3m \times 1000m}{100 \text{ cm/m}} \\
= 467.2 \times FRF \times RD \quad (A-V-1)
\]