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ABSTRACT

We consider a parallel random access machine (PRAM) in which information is communicated via

a shared memory. We strengthen a lower bound of Cook, Dwork and Reischuk for the time required

to compute the Boolean "OR" function under some additional restrictions on the type of algorithms

allowed. Then, we consider a related model in which a limited number of simultaneous writes is
allowed and provide an algorithm for computing the Boolean OR" which is optimal within the

class of non-adaptive" algorithms.
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I. A LOWER BOUND FOR A RESTRICTED CLASS OF ALGORITHMS.

Consider a parallel random access machine in which concurrent reads but no concurrent writes

are allowed (CREW-PRAM). (The reader is refered to [1-2] for a precise definition of this model.

In fact the exact nature of the model used does not really matter, as long as simultaneous writes are

prohibited.) Cook, Dwork and Reischuk [1-2] have proved that the time to compute the Boolean

"OR" function of n arguments is at least A log b n, where b = (5 + 211/2)/2 , 4.8 and A is a positive

constant. We prove below that under some additional restrictions on the allowed algorithms, the

lower bound may be improved to A log, n, where a = 2 + 31/2 - 3.732.

We start with a few definitions. Let . = {0, 1}, let n be a positive integer (which will be fixed

from now on) and let f: n" , be some function. For any I = (x,...,xc,)E , let us denote

by I(j) the input (l,...,,n) E En satisfying yi = xi, Vi # j, and yj = 1 - xz. We say that f is
n-sensitive somewhere if there exists an input I E ]E such that for every j E 1,..., n} we have

f(I(j)) f(I). By letting I = (0,...,0), we notice that the Boolean "OR" function is n-sensitive

somewhere.

We say that an index i E {1,...,n} influences processor p at time t with input I E F" if the

state of processor p in the beginning of the t-th stage of the computation, given that the input is

I, is different from the state of the same processor at the same time when the input is I(i). We

also define a corresponding concept of an index i influencing a memory cell c with input I in the

obvious way.

Let K(p, t, I) (respectively, L(p, t, I)) be the set of indices which influence processor p (respec-

tively, cell c) at time t with input I and let K(p, t) = UIErn K(p, t, I), L(p, t) = UIEn L(p, t, I).

An algorithm on the CREW-PRAM which computes f is called proper if it has the following

two properties:

a) For any processor p and any time t, the cell (if any) read by p at time t is the same for all
IE En.

b) For any cell c and any time t, there exists an input I(t,c) E n such that L(p,t,I) c

L(p,t,I(t,c)), VI E En.

Properness is the additional condition to be imposed on the class of algorithms that we study in

this section. These conditions may seem restrictive; however, any parallel algorithm that has been

proposed for the Boolean "OR" function (including the algorithms in [1-2]) does satisfy them, with

I(t,c) = (0,...,0).)

Theorem 1: A proper computation on a CREW-PRAM of a n-sensitive somewhere function

requires at least A log, n time, where a = 2 + 31/2 ~ 3.7 and A is a positive constant.

Proof: We define Pt and Ct by the following recursions:

Pt+ = Pt + Ct , Po . (1)
Ct+l = Ct + 2Pt+l , C = 1. (2)
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From these recursions, we easily obtain that Ct > A(2 + 3 1/2)t, where A is a positive constant.

We will show by induction that IK(p,t)l < Pt and IL(c,t,I)I < Ct, for all p, t, I, c. These
inequalities are trivially true for t = 0 and we henceforth assume that they are valid for some t.

Step 1: Since for the PRAM model each processor may read at most one cell at each time and by

part (a) of the properness assumption, it follows that for any t, p, there exists some cell c(p, t) such

that K(p,t + 1, I) K(p,t, I) + L(c(p,t), t, I), VI. Therefore, using part (b) of the properness

assumption and the induction hypothesis,

IK(p,t + 1)1 = I UI K(p,t + 1, I) < I UI K(p, t, I) I+ I UI L(c(p,t), t, I)

< IK(p, t)I + IL(c(p, t), t, I(t, c(p, t))) < Pt + Ct = Pt+1.

Step 2: Let t, I and a cell c be fixed. We distinguish two cases:
a) If, with input I, some processor p writes into cell c at time t+l, then, for that particular processor

p we have L(c,t + 1, I) c K(p,t + 1, I), from which we obtain L(c,t + 1, )1 < IK(p,t + 1, I)l <

Pt+I < Ct+l, as desired.

b) Assume now that, with input I, no processor writes into c at time t + 1. We define Y(c, t + 1, I)

as the set of indices i E {1,...,n} such that, with input I(i), some processor writes into cell c at

time t+ 1. We then obtain IL(c,t+ 1, I)l < IL(c,t, I)l + IY(c,t+ 1, I)l < Ct + IY(c,t+ 1, I). Thus,

it only remains to show that IY(c,t + 1, I) I < 2Pt+1 .

Let r = IY(c,t + 1, 1)1 and let Q1, ... ,Qk be the set of processors for which there exists some

i E Y(c,t + 1, I) such that processor Qj writes into cell c at time t + 1. Clearly, 0 < k < r. For

j = 1, ... , k, let Yj be the set of indices i E Y(c,t + 1, I) such that, with input I(i), processor Q3
writes into c at time t + 1. Let r = IYjl. Obviously, we have r = 1 r.

Let Xij = IYi n K(Qj,t + 1)|. If every element of Yi belongs to K(Qj, t + 1), then Xij = ri.

If this is not the case, let a be an index in Yi which does not belong to K(Qi, t + 1). With input

I(a), processor Qi writes into cell c (at time t + 1). Let b be an arbitrary element of Yj. Processor

Qj writes into c with input I(b) and, since a 0 K(Qj, t + 1), processor Qj also writes into c with

input I(a)(b). (Here I(a, b) stands for the input I, with the entries at positions a and b reversed.)

Therefore, processor Qi does not write into c with input I(a)(b), which shows that b E K(Q, t + 1).

Therefore, in this case we have Yj c K(Qi,t + 1) and Xji > ri. So, in either case we have

Xij + Xji > min{ri, rj}.

Let Z = maxi{ri + j-=l, j i Xi}.

Lemma: Z > r/2.

Proof of the Lemma: Let Uii = 1 and Uij = Xji/rj, for j & i. Thus, Uij + Ui > 1, for i j.

Now,
k k

rZ= r max { Ujrj} > U3 rir =
j=l i,j=
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k k

rir,rj(Ui + Uji)+ E r > Er rj + E r =
i<j i=1 i<j /=1

1 1k 12

2 2

which completes the proof of the Lemma. -

We conclude that there exists some processor Qi such that r/2 < ri + 1, ji Xji Y(c,t +

1, I) n K(Qi,t + 1)1 < K(Qi,,t + 1) < Pt+l. Consequently, Y(c,t + 1, I)l = r < 2Pt+1, which
concludes the inductive proof of the inequality IL(c, t + 1, I) I < Ct+1 .

The proof of the theorem is completed by using the fact that at the time that the computation

terminates, there must exist some cell c and an input I such that IL(c,t, I)l = n, this being a

consequence of the assumption that the function f being computed is n-sensitive somewhere. 

II. ALGORITHMS WITH A LIMITED NUMBER OF SIMULTANEOUS WRITES.

We now consider a slightly different model of computation. In particular, we assume again a

PRAM model but we allow simultaneous writes, provided that at any time at most m processors

may write simultaneously into the same cell, where m is a given constant. The results that follow
are true no matter how write-conflicts are handled and for this reason we do not need to be more

specific. We only assume that if a number of processors attempt to write the same value into a

cell, this value is written correctly.

With this model it is rather hard to obtain lower bounds for general classes of algorithms, or

even if we restrict to proper algorithms. For this reason, we impose a further restriction. We will

consider only non-adaptive algorithms which are defined by the property that for any given time

t and any memory cell c, the union, over all inputs I of the sets of processors who write into c at

time t with input I, is bounded by m.

If m = 1, we have the PRAM model of the previous section, for which [1-2] have presented

a non-adaptive algorithm which computes the Boolean "OR" function of n arguments in time

A logb n, where b = (1 + 51/2) and which is optimal, within the class of non-adaptive algorithms.

We extend these results to the case where m simultaneous writes are allowed.

Algorithm (for computing the OR" of n variables): Let M(i) denote the contents of the i-th

memory cell and let Y(i) be a Boolean variable residing in the memory of the i-th processor,

initialized at zero. Assume that the inputs X(1),...,X(n) are initially placed in the first n memory

cells. At each time t, each processor i executes the following instructions:

a) Y(i) - Y(i) V M(i + Pt)

b) If i > (m - 1)Pt+l + Ct and Y(i) = 1 then

for k=O to m - 1 do M(i - kPt+l - Ct) - 1.

Here, the quantities Pt and Ct are defined by the recursions:
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Pt+ = Pt + Ct; Po = ; (3)

Ct+ = Ct +mPt+1; Co=1. (4)

It is easy to see that this is a non-adaptive algorithm and that every cell is written by at most m

processors so that our requirement is met.

Claim: At any time t, we have

Y(i) = X(i) v ... v X(i + Pt - 1),
M(i) = X(i) ... v X(i + Ct - 1).
Proof of the Claim: This is obviously true for time t = 0. Suppose it is true at time t. Then,

Y(i) - Y(i) V M(i + Pt) = (Vi+P't-1X(k)) V (i+Pt+Ct-1X(k))=

i+Pt+ -X(k),

where we have used equation (3). Also,

M(i) M(i) V Y(i + Ct) Y(i + Pt+ + Ct) V ... Y(i + ( - 1)Pt+l + Ct) =

X(i) v ... v X(i + mPt+l + Ct) = X(i) v ... X(i + Ct+l),

where we have used equation (4). -

By solving the recursions for Ct and Pt we see that Ct ~ b(m)t, where

b(m) = [(m + 2 + (m2 + 4m) 1'/ 2 )/2]. (5)

Therefore, the time required for this algorithm to compute the "OR" of n arguments is approxi-

mately logb(,) n. Notice that b(m)/m converges to 1, as m --+ oo.

Next we show that the above algorithm is optimal within the class of non-adaptive algorithms.

Theorem 2: Any non-adaptive algorithm which computes a n-sensitive somewhere function, with

at most m simultaneous writes allowed, requires at least A logb(,) n steps, with b(m) defined in

(5).
Proof: The proof differs from the proof of Theorem 1 only in case (b) of step 2. We thus consider

only this case and we keep the notation of that proof. Let A(c, t + 1) denote the set of processors

who can write into cell c at time t + 1. By our assumptions, IA(c,t + 1)1 < m. Furthermore,

Y(c,t + 1, I) C UpEA(C,t+l) K(p,t + 1, I).

Therefore,

IY(c,t + 1) < IA(c,t + 1)1max K(p,t + 1,I) < mPPt+l.

We then use the inequality IL(c, t+1, I)1 < IL(c, t, I)l + Y(c, t+ 1, I) , to obtain Ct+l < Ct +mPt+.

Therefore, for any time t and for any input I, at most Ct b(m)t input indices may influence

the contents of a memory cell. The result follows because there exists some input I for which the
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output cell at termination time is influenced by n input indices (this being a consequence of the

assumption that we are computing a somewhere n-sensitive function). ·
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