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Abstract

The technique of ultrasonic modeling is used to demonstrate the imaging of subsurface

deep-water multiples in typical marine seismic environment, using a ray-based Kirch-

hoff 2D pre-stack depth migration. Two separate experiments are carried out in an

ultrasonic modeling water-tank. The first represents a two-layer structure separated

by a plane interface dipping 10 degrees. The model is constructed using neoprene over

aluminum. The recording geometry consists of an ocean-bottom hydrophone (O.B.H)

and a line array of 72 sources. The image produced by combining the primary and the

water multiple reflections is much better than that obtained using the primary reflec-

tion alone. The effect of post-critical reflections is studied. In a second experiment, a

three-layer model with a fault is imaged with a water bottom streamer configuration.

Joint migration of primaries and multiples improve the image. For both models, syn-

thetic seismograms are computed and migrated. These are compared with the results

of ultrasonic experiments in order to illustrate the resolution and reliability of the

ultrasonic acquisition. Characteristics of ultrasonic modeling such as scaling factor,
transducers, signal-to-noise ratio, modeling materials are studied and implemented in

the actual experiments.
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Chapter 1

Imaging with deep water multiples

1.1 General introduction

In a typical marine seismic survey, primary and water-multiple reflections usually

overlap. Predictive deconvolution allows one to recover the primary wavefield, pro-

vided that the geologic structures are simple (nearly flat beds). More generally, ve-

locity analysis, such as hyperbolic r-p velocity filtering (Mitchell and Kelamis, 1990)

allows one to better separate primary and multiple wavefields, and the latter might

also be processed.

In deep-water, the primary and multiple reflections are separated enough to make

a direct analysis of the water-multiple wavefield possible. Reiter et al. (1990) show

that the multiple wavefield can be processed when recorded by an ocean-bottom hy-

drophone (O.B.H) in soft marine sediments. The theoretical basis of such an analysis

is described in the next section.

In this study, the multiple imaging scheme developed by Reiter et al. (1990) is

applied to water-tank ultrasonic modeling data with a dual purpose:

- To test the deep-water multiple imaging technique for the delineation of typical

geological structures, and evaluate its advantages.



- To validate ultrasonic modeling as a reliable and useful technique for obtaining

complete wavefield seismic data.

Time computation in three-dimensional (3D) complete-wavefield modeling tech-

niques, such as finite difference, complexity due to inhomogeneity and anisotropy

are nowadays the key issues in producing reliable synthetic seismograms. Hence,

the ultrasonic technique can be a valuable alternative, provided that it can gener-

ate in a short time high quality data from models, which faithfully portray a given

geological structure. This requirement involves proper scaling, receiver and source

characteristics, material and model construction, and are discussed in the next chap-

ter. Although 3D water-tank modeling is the main focus in this thesis, most of the

discussion can be applied to 3D and 2D solid modeling.

None of the two issues mentioned above take place for our purpose since simple

2D1/2 models are implemented. However, it is important that an adequate acquisition

scheme be realized. In particular, the ultrasonic set-up must faithfully portray the

kinematic of the problem, i.e., the receiver position has to be scaled correctly to a

true O.B.H.

Two models have been used:

- A simple two-layer model with the interface dipping 10 degrees and an O.B.H

receiver.

- A fault unconformity, three-layer model with a water-bottom streamer.

The corresponding synthetic models have been generated for comparison. Chapter 3

and 4 discuss the main results.

1.2 Multiple imaging scheme

For the first water-multiple, two sets of data are included, as shown in figure 1-1:

- The receiver multiple,



- The source multiple.

When a receiver is at the surface of the water, the receiver multiple and source

multiple rays which have the same travel-time come from two different image points.

Their amplitudes are of the same order and one cannot differentiate them in the data

(figure 1-2). In that case, the multiple information is useless.

On the other hand, in the case of an ocean-bottom receiver, the ratio between the

source multiple amplitude and the receiver multiple equivalent travel-time amplitude

is R/(1+R) at normal incidence where R is the reflection coefficient of the water

bottom layer (figure 1-3). This ratio ranges over 0 and 0.5 and is usually very small.

The bottom layer most often is a highly porous sedimentary layer with a P velocity

ranging from 1600 m/s to 2200 m/s and density from 1.1 to 1.4 g/cc. For these

values, R is between 0.08 and 0.35 and R/(1+R) between .075 and .26. Therefore,

most energy in the first water multiple data set come from the receiver multiple. In

terms of a ray-based migration scheme:

- Migrating along the receiver multiple path gives a strong image with a small artifact

due to the source multiple energy.

- Migrating along the source multiple path gives a poor image blurred by a strong

artifact due to the receiver multiple energy.

In the first case, the reflectors are well imaged whereas in the second case, they

are not. Reiter et al. (1990) have illustrated this with a simple dipping interface.

Consequently, reflectors can be accurately imaged by migrating the multiple data

only along the receiver multiple path. Advantages of the method are:

- The improvement of the signal-to-noise ratio by the addition of both primary and

multiple images.

- The lateral extension of the image due to the coverage of the receiver multiple rays

(figure 1-4).



- If the point of a reflector (e.g nearly flat) is impinged by both rays, the receiver

multiple ray angle of incidence ,G with that reflector is larger than the primary

ray angle O, (figure 1-5). When O8 is close or greater than the critical angle, the

reconstruction of the reflector by the migration routine is deteriorated due to

the phase shift of the post-critical reflected wave. This is discussed in chapter 3.

In a more general case, the angle consideration implies that a receiver multiple

image is less affected by the head waves, converted waves, and layer multiples

waves than the primary image within the same imaging zone.

- The receiver multiple ray amplitude is slightly larger than the primary ray ampli-

tude for deep reflectors. Indeed, for the O.B.H, the contribution of the bottom

reflection for the incoming multiple ray is (1+R) greater than the primary (fig-

ure 1-3). The geometric spreading factor is not included here but the water

column path difference has no significant effect in the amplitude ratio for deep

reflectors.

The second water multiple (figure 1-6) does not provide the advantage that the

first receiver multiple does because two sets of water multiples have similar amplitudes

but their equivalent travel-time rays impinge two different image points.

1.3 Application

The use of a digitally recorded in-situ O.B.H (Koelsch et al., 1982) is an experimen-

tal set-up. On the other hand, the technology of water bottom streamers and hy-

drophones (e.g. HC20021, classical seismic 2000 meters depth capability hydrophone)

is available. The multiplexing and digital technology can be easily used to transmit

the seismic signals via a standard streamer cable or a 7-conductors Schlumberger

cable as it is done for the multilock V.S.P tool2 . Direct advantages of ocean-bottom

Itrademark I.F.P - Geomecanique
2 trademark I.F.P - C.G.G



recording are:

- Improvement of the signal-to-noise ratio, mainly due to the low level ambient noise.

- The ability to record large source-receiver offset data, providing for the possibility

of converted waves processing.

- The possibility of processing the first water-multiple reflections as shown above,

either directly in deep water or with a velocity analysis scheme to separate

primary and multiple wavefield.

For example, Reiter et al. (1990) succeeded in imaging very deep reflectors, blurred

in the conventional C.M.P surface data gather.

Other challenges are the supplementary use of well-coupled ocean bottom seis-

mometers (O.B.S) to provide velocity information in addition to the hydrophone

data, and the implementation of very long movable streamers, as it has been done in

the ultrasonic experiment of chapter 4.

1.4 Computer programs

1.4.1 Depth migration program

The imaging of the primary and multiple data has been performed by a ray equation

based 2-D pre-stack Kirchhoff depth migration code written by Reiter. The image

zone is defined by a set of dense space-image points. The velocity model above

the reflector to be imaged is assumed to be known. In the multi-layer case, the

program can be run iteratively and at each step, the velocity model can be improved

by entering the updated spatial coordinates of the reflector previously imaged. A

fan of rays are shot from the image points to the source and to the receiver, and

the Green's functions are calculated. Any ray path can be chosen in this approach

and it provides the capability of migrating any water-multiple path. Once done, an



interpolation routine is used to calculate the Green's functions at each image point.

The primary or multiple data are then extrapolated along the receiver path and

imaged at the source path travel-time.

1.4.2 Synthetic seismogram modeling program

Ray tracing and computation of the synthetic seismogram have been performed by

the 2D code SEIS3 developed by Cerveny et al. (1977), including a 3D geometric

spreading and absorption factor. A cubic-spline interpolation routine is used to define

the interfaces. Discontinuities are allowed. P and S layer velocities and densities allow

a true plane wave computation of the reflection coefficient. Synthetic seismograms are

generated from the convolution of the reflection serie with a zero-phase wavelet defined

by a harmonic function modulated by a Gaussian envelope. Vertical or horizontal

components can be plotted. In our O.B.H and multiple source configuration, receiver

and source are reciprocally inverted. It turns out that the cosine-like directivity

pattern of a vertical receiver in the synthetic time section is similar to the directivity

pattern of the transmitter in the ultrasonic time section and further comparison

between amplitudes is possible (cf figure 2-11 and chapter 3).
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Chapter 2

Ultrasonic modeling

2.1 Introduction

This chapter describes the main characteristics of the three-dimensional (3D) water-

tank ultrasonic facility. The parameters chosen for our experiments are optimum

for scaling earth structures and are more generally discussed for setting up different

types of experiments. Additional comments, figures, tables, details of computations

and new ideas are including in the appendices.

In general, values between 100Khz and 1Mhz are a reasonable maximum frequency

for the frequency range used in 3D ultrasonic modeling. This corresponds to wave-

lengths from 3mm to 30mm in materials whose velocity is 3000m/s. Below 100Khz,

costly large tank and large models are needed. Beyond 1Mhz, source and receiver

characteristics are difficult to scale correctly, and the required resolution increases

the difficulties of setting up the experiment. In addition, acoustic properties and

homogeneity of materials may vary from the values at the scaled frequency. Conse-

quently, the scaling factor defined as ratio of field dimensions to laboratory dimensions

typically ranges from 1000 to 10000 for the usual seismic frequency range of about

100Hz.

This range can be kept for 3D solid modeling but is divided by a factor 4 in the



2D solid modeling.

2.2 Water tank

The water-tank (figure 2-1) is made of stainless steel and measures 40" long by 24"

wide by 20" high and equipped with two bridges. Transducers are attached to these

bridges and can move along the three axes. The resolution in x, y is 0.0025" and

0.001" in z. Motion is provided by six step motors controlled by a step-motor SLO-

SYN indexer whose output current can be switched by a switch-control unit HP3488,

which is controlled by a PC computer.

Proper leveling and stability of the tank are important. In particular, the sharp

step motion of the bridges produces vibrations which may cause either improper posi-

tioning of transducers or slight movement of the model in the tank. It is recommended

to rigidly anchor the tank. Although not implemented in the E.R.L water tank, the

other recommended tank devices include the ability to rotate around the z axis, a

water-level controlled unit to prevent level changes due to evaporation during long

runs, and a water filtering unit whose parameters must be optimized to reduce air

bubbles.

2.3 Acquisition devices

The block diagram in figure 2-1 shows the acquisition devices:

- A Panametrics ultrasonic pulser excites the transmitter with a voltage pulse of

typically 200Volts RMS and 1ys pulse width. Ultrasonic excitation is discussed

in appendix C for resolution wavelet improvement purpose. The pulse repetition

must be chosen to be compatible with the averaging-speed capability of the

oscilloscope and taking into account the noise. The experimentalist must choose

the repetition rate as a function of the time it takes for the signal-generated noise



to die down and the water-tank to return to its normal background condition.

We have used a pulse repetition of 8Hz.

- A low noise (typically 0.8yV pp equivalent-input), AC, high impedance (5 M2)

preamplifier manufactured by S.E.A. It amplifies the receiver signal 17db gain

and has a 40Khz-30Mhz bandwidth (3db points).

- A Panametrics 5660B preamplifier with a switchable 40 or 60db gain is used as an

amplifier. It has an equivalent input noise of 5.O1 V pp and a 20Khz-2Mhz 3db

bandwidth.

- An adjustable DATA1000 DC amplifier from -26db to +26db gain by 6db or 8db

steps with a 0-22Mhz 3db bandwidth.

- A Krohn-Hite 3202R band-pass filter whose low-pass and high-pass frequencies are

adjustable from 10Hz to 2Mhz with a 120db/decade roll-off slope either with a

max-flat or RC filtering setting.

- An oscilloscope DATA6000 12 bits resolution and 10Mhz maximum sampling rate.

Averaging speed is limited to around 20 Hz (depending on the configuration),

which can be small in some cases.

- A signal generator HP3314 which triggers the pulser and the oscilloscope and fixes

the pulse rate.

- A PC computer controls the oscilloscope, the data acquisition and the transducer

motions via a GPIB interface. It stores the data and plots them on a HP7550

plotter. This last feature allows a preliminary display of the recorded wavefield

for changing of acquisition parameters, if necessary.

This acquisition system allows for faithful recording of low-level (on the order of

2pV pp) ultrasonic signals with 72db dynamic range and a 40Khz-2Mhz 3db band-

width.



2.4 Transducers

This section deals with essential features of ultrasonic transducers regarding adequate

scaling and wavelet quality. Those topics are discussed for piezoelectric transducers,

although they can also be applied to other types of ultrasonic transducers. Once

transducers properties are understood, a choice is made and the best available trans-

ducer is described.

2.4.1 General comments

The "diameter" of a seismic volume source (e.g air-gun) is of the order of im and

that of the hydrophone about 5cm. When correctly scaled (by about a factor of

1000), the ultrasonic transmitter and receiver diameters would be 1mm and 50pm,

respectively. None of the ultrasonic wave generation devices are able to meet these size

requirements. For piezoelectric transducers, a basic computation is done (appendix B)

to link the minimum source transmitting power and the minimum receiving sensitivity

to fulfill the desired signal-to-noise ratio. The frequency response, the directivity

pattern, and the scattering target strength of the transducer are the other essential

parameters.

2.4.2 Frequency response

It is clearly dependent of the principle to generate or record ultrasonic waves. In

order to understand the frequency characteristics of piezoelectric transducers, it is

necessary to review briefly the piezoelectric effect (appendix A), vibration modes and

transducer construction.

Vibration modes

The type of wave (shear or compressional, S or P transducer) depends on the piezo-

electric properties of the ceramic, the polarization direction, and the natural mechan-



ical modes of vibration. All these modes contribute to the mechanical response of an

applied voltage, heaviside-like function and consist of the ultrasonic impulse response

of the ceramic itself with free boundary conditions. In reality, the boundary condi-

tions are determined by the mechanical impedance contrast between the ceramic and

environmental materials. Assigning these impedance contrasts determine the mode

of vibration, usually the first one of the type chosen and the damping. Indeed, ex-

tensive theoretical computations are performed by transducer designers to make one

single mode dominant and to increase the damping coefficient in order to create a

broad-band frequency response.

All the piezoelectrically-generated ultrasonic wavelets are not minimum phase.

This fact might involve relaxation processes, but I have not analyzed it in any details.

Four ceramic piezoelectric types are usually built :

Thin disk : The thickness is much smaller than the diameter. If compressional

or shear modes occur along the disk axis z, then high frequency P or S waves

are generated and recorded. If flexural modes is chosen, low frequency P waves

result (e.g bimorph disk).

Thick disk : The thickness is of the same order as the diameter. Compressional

and shear modes along z, as well as radial modes, can occur. Focusing the

design on one broad-band natural frequency is harder but has the advantage of

generating intermediate frequencies for the same diameter as a thin disk.

Cylinder : Radial modes mainly occur and give relatively low frequency P waves.

Sphere : Radial modes occur and give relatively low frequency P waves.

Backing

Assigning adequate boundary conditions for the disk geometry is quite easy since the

vibration occurs only along one axis. The technique of backing consists of choosing

a high absorbing material whose acoustic impedance is close to that of the ceramic.



Using the classic mechanical analogy, backing is a way of adding a dash-pot (the

backing material) to a spring (the ceramic). Backing materials are usually made of

a high density metal powder and epoxy composites, and the high absorption is due

to the "heavy" particles of metal scatterers. Adequate proportioning gives the best

results. The backing material may also be the same unpoled piezoelectric material,

provided that it has a low Q.

For cylindrical or spherical vibration, the backing idea is not easy to implement

and nothing is usually done. The resolution quality of the signature depends mainly

on the value of Q for the piezoelectric material.

Design

Figure 2-2 sketches two design types of transducer capable of water immersion:

- A thin disk ceramic transducer, commonly called an immersion transducer, is

mainly composed of a thick backing layer, ceramic, and a matching layer in

contact with the medium (water), whose thickness is optimized to one-quarter

medium wavelength.

- A spherical ceramic transducer, commonly called a hydrophone, whose contact

with the medium is realized by a rubber enclosure whose acoustic impedance is

equivalent to that of water.

Pulse shapes

Centered around their chosen natural mode, ceramic disk-type transducers have a

broad-band response, and the smaller the ratio of thickness-to-diameter, the better

the response. Cylindrical and spherical ceramic types have a narrow band response.

The response of the two transducers described above are compared in figure 2-3. The

signal and the amplitude spectrum of an immersion transducer (Panametrics V301

with a natural frequency of 500Khz) are more broad-band than those of a hydrophone



(ITC 1089 with a natural frequency of 350Khz). In both cases, the transmitter and

the receiver are of the same type and the recording is done in the far-field on the

main axis of the directivity pattern.

2.4.3 Directivity pattern

Two zones, commonly called far-field (Fraunhofer diffraction) and near-field (Fresnel

diffraction), come out from directivity pattern analysis. When considering the con-

tribution of all the elementary diffracting point sources or receivers of the transducer,

the far field analysis takes only the first order difference in path in the phase term

and assumes equal amplitude. In water for example, a transducer of volume V gives

a pressure wave at a distance ro from its center equal to:

= J () A ep(ik(ro + Sr)) (2.1)= v r vp(z =I ro

On the other hand, the near-field incorporates high-order terms in the phase and

eventually in the amplitude and the appropriate order to be included depends on the

distance to the point considered.

It is easier to understand directivity as a radiation pattern. However, the far-field

wave can be assimilated as a plane wave, and the reciprocity theorem suggests that

the directivity pattern is the same for both receiver and transmitter. On the other

hand, near-field features are more specific to the wave emission.

We are interested in the far-field features as seismic signals are usually recorded

in the far-field. However, the experimentalist should know the near-field size or

transition zone to avoid any surprises in his experiment.

The directivity pattern of three types of transducers are discussed:

Thin and thick disk : They act in a piston-like fashion and the far-field wavefield

is evaluated by the contribution of all infinitesimal source points of the disk.

The resulting well-known theoretical directivity pattern is a first-order Bessel



function of the wavenumber k and the radius of the disk a (see e.g Hueter,

1955):

J(kasinO)
D(O) = 2kasinO

This function is plotted at two frequencies in figure 2-4 for the immersion trans-

ducer Panametrics V301 (500 Khz natural frequency and 1" diameter) and indi-

cates the directivity feature and the strong frequency dependence. These results

were tested experimentally (figure 2-5). The side lobes were not resolved in the

experimental curve because we used a pair of V301 as source and as receiver.

The near-field/far-field transition is given by

1 d2  A 1 d2

Y [1 - ()2] _ (2.3)4 A d 4A

where A = L is the wavelength and d the diameter of the disk.

For the V301 transducer, this transition is about 0.5" at 125Khz and 2" at

500Khz.

Cylinder : It consists of four lobes (hydrophone B&K 8103 in figure 2-6) whose

angle nodes depend on the length-to-diameter ratio of the cylinder and whose

values on the wavelength-to-diameter ratio.

Sphere : It is theoretically omnidirectional, although transducer design induces

a frequency-dependent node at the cable output (hydrophone ITC 1089 of figure

2-7)

2.4.4 Transducer applications

Thin disk immersion transducers provide a high frequency, high resolution wavelet

and directivity. They are extensively used in non-destructive testing as transmitters

and receivers because of those features. Omnidirectional hydrophones are mainly

used as receivers in underwater acoustic applications.



2.4.5 Backscattering

In laboratory studies where wavelengths are comparable to ultrasonic transducer di-

mensions, scattering from the transducer need to be considered. The backscattering

effect is illustrated in figure 2-8 for a source, and a similar phenomenon occurs for

a receiver. For example, figure 2-9 shows the multiple reflections from a face-to-face

V301 transmitter V301 receiver configuration. The backscattered energy depends on

the size, shape, and acoustic impedance of the scatterer, the angle of incidence and

the frequency of the incoming wave. A large number of cases can be found in the

seismic acquisition scheme, and we will not develop any rule or formulae. We can

simply say that the effect can be significant when the source or the receiver is a large

disk type immersion transducer and the rays are nearly perpendicular to transducer

surface. In the case of hydrophones, the scattering effect is omnidirectional but it is

weak because of the shape and that the acoustic impedance of the rubber around the

transducer is close to the water impedance.

2.4.6 Choice of transducers

The choice of transducers depends on the type of ultrasonic experiment. In classical

marine seismic acquisition modeling, a reasonable size and directivity pattern have

to be evaluated, taking into account the acoustic power requirement and the fre-

quency response of the source. A small size, omnidirectional hydrophone is desirable

as the receiver. We find that a tiny hydrophone fulfills the sensitivity requirement

(appendix B). The small piezoelectric receiver operates below its resonant frequency

and therefore the receiving frequency response in a subresonant mode is quite good.

2.4.7 Transmitter

The transmitter used in these experiments is a thin disk type immersion transducer

(Panametrics V323) built from a ceramic disk of 1/4" diameter. We use a frequency



range 0-400 Khz. In spite of its high natural frequency (2.25Mhz), its transmitting

power at 250Khz has been evaluated to be about 115db re 1lPa/V, i.e., slightly

under the threshold computed in appendix B. It has a broad-band signature and

when used in the subresonnant mode, its signature (figure 2-11), evaluated by the

receiver hydrophone, is quite good (the slight ringing is produced by the receiver).

The theoretical directivity pattern is plotted in figure 2-10 for a frequency of

250 Khz, which is the medium frequency in our experiment. The figure shows that

amplitudes do not vary by more than a factor of 2 between 0 and 45 degrees.

At 250 Khz, the near-field/far-field transition zone is equal to 1.7 mm, and its small

size prevents any strong backscattering energy. Because this transducer is backed, it

radiates in one single half-space, and the ghost reflection is not produced when the

transmitter is set at the surface.

2.4.8 Receiver

The receiver used is a tiny hydrophone manufactured by S.E.A whose active element

is a 0.4mm diameter PZT44 ceramic. Its sensitivity has been evaluated to be about

-240db re 1V/pPa, making it sensitive enough to keep the equivalent electronic noise

of its matching preamplifier below the natural ultrasonic noise (appendix B). Its

directivity pattern is quite omnidirectional and its tiny size makes any backscattering

and near-field effects negligible from the ceramic itself. This last feature is quite

important when using it as an O.B.H very close to the water bottom, as it could be

set within 1mm. However some backscattering energy can show up from the 1" long

conical shape of the hydrophone body. Its frequency response has been evaluated to be

quite flat with a slow slope in the low frequency range. However, low-level scattering

energy coming from the close environment of the ceramic remains a shortcoming

(figure 2-11) but it is not critical in our experiments because of its level.



2.4.9 Signal to noise optimization

It was found that the natural ultrasonic noise in the water tank is nearly white, with

an increase in the low frequency range and at some particular frequencies, which may

be caused by internal resonance of the tank and the bridges (appendix B). Although

this is a weak contribution, this last coherent noise may be annoying because it does

not weaken easily when stacking. The global ultrasonic noise in the tank is high,

compared to the level we could have expected. For example, it is about 50 db greater

than the molecular agitation level at 1 Mhz (which dominates at that frequency in

the ocean). The coating of an absorbing material ( like vax whose Q ~ 1 ) may reduce

the noise in the tank.

In appendix B, the receiving sensitivity computation shows that the SEA hy-

drophone with -240db re 1V/pPa fulfills the requirement. Taking advantage of the

72db dynamic range of the oscilloscope, we can rely on two parameters : transmitting

power of the source and averaging. Keeping the advantages of the source mentioned

above leads to optimize the averaging value. Hence, when we want high quality

data and see weak signals, 1000 stacking may be necessary, but in most acquisition

schemes, such a 72db signal-to-noise ratio is not required, and more practical values

(32-128) are adequate for averaging.

2.5 Models

3D models have to represent what is to be modeled with materials whose acoustic

properties are close to the real rocks. It is desirable that the welded contact as-

sumption be fulfilled for layered models, and the effect of the bonding agent layer (as

pointed out by Toks6z (1964) and Schwab (1968) for 2D layers) be evaluated. On the

other hand, a simple assembly of individual materials is a more flexible solution (the

water acts as the coupling agent), which may, in some cases, be sufficient when the

transmission of shear waves has no interest and when the reflection of P and S waves



are similar to the welded-layer model.

2.5.1 Modeling materials

A table of acoustic properties of the suitable and easily available materials is provided

in appendix E. They can be classified according to:

Metals : Their high velocities make them ideal for simulating rock basement.

Aluminum is the most appropriate, because it is close to high velocity rock

such as granite, dolomite or limestone and has density (2.7 g/cc) similar to those

rocks. Lead may be interesting to simulate a semi-infinite medium because of

its low acoustic velocities, its high density and its low hardness (for shaping

purposes).

Plastics : Their P velocity of the order of 2500m/s and density around 1.5 make

them close to those of some rocks such as shale or highly porous sandstones.

They can be machined easily within 0.1 to 1 milles flatness and polished up to

number 16.

Epoxies : Their acoustics properties fall in a narrow range. They are useful as

bonding agents provided that their viscosity is low (typically 100 cps) and that

their curing time at room temperature is long. They can be also used for making

layers.

Composites : They have a larger range of acoustical properties. Specifically, ma-

terials such as aluminum and other powdered metals and ceramics can be cast

into an adhesive to develop the composite. By varying the relative amounts

of adhesive (resin) and additives, it is possible to control the properties of the

model. Furthermore, the adhesive composite can be cast. The distribution of

dense inclusions in an epoxy matrix influences not only the density and seismic

waves velocities, but also the attenuation. The particles act as scatterers in the

composite. The larger the particle size, the greater the attenuation.



Rubber : Neoprene and polyurethane have good acoustic properties to model sed-

iments. The values of Q are around 50. They can be machined to produce a

smooth surface (within the 0.5mm range). Other rubbers, like silicone rubber

are only suitable in specific applications due to their low P velocity (of the order

of 1000m/s).

2.5.2 Multi-layer models

Epoxies and composites described above are quite suitable for making multi-layer

models. However, a major inconvenience when preparing epoxies and composites is

the formation of small air bubbles, which develop during the mixing of the compound.

Indeed, a small amount of air bubbles in the material decreases velocities significantly.

To avoid this problem, low-viscosity epoxies, a care in the mixing and curing processes

and the use of a vacuum pump are recommended. Because of the difference in thermal

expansion coefficient between the material to be assembled, it is also recommended

to choose epoxies which slowly cure at room temperature. Gravitational separation

provides the potential for developing two layers in a low-viscocity epoxy powdered-

metal compound. The metal particles homogeneously settle at the bottom developing

an interface between the composite material and the epoxy. Except for the edges of

the model, where surface tension acts due to the mold, the interface is relatively plane

and smooth. Gravitational effect can be also used when making layers with composites

materials already prepared. If these materials do not have too low a viscosity, the

composites, which have a different density, cure and do not mix together, forming a

natural welded interface.

For example, a typical four-layer model can be made using:

1) Aluminum to represent the basement

2) A thin epoxy bonding layer (e.g EPO-TEK)

3) A high density composite material



4) A low density composite material that will bond with the previous layer during

the curing process

5) A thin epoxy bonding layer

6) A neoprene block.

The shape of the modeling block (multi-layer or single-layer) can be studied to

take advantage of the spreading of the rays and limit the edge effects. Tatham et al

(1983) provide an excellent example of such model formation.

2.6 Scale factor

To scale sampling intervals from the model tank to field data acquisition, pratical

factors are multiples of 6000. In our water tank, the stepping motor increments are

given in fraction of inches. In field systems, the hydrophone or geophone separations

are given in feet. For a scale factor of 6000, the resolution is then 1.25 ft in x, y and

0.5 ft in z in field recording. For example, one can choose 25 or 50 ft for the spatial

sampling.
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Chapter 3

Dip interface imaging of a

two-layer model

3.1 Introduction

This ultrasonic model is designed to test the concept of using receiver multiples

explained in chapter 1 along with the primary reflections to image a dipping interface.

Such a test with complete wavefield ultrasonic data provide a more realistic evaluation

of the method than the ray-based synthetic seismograms generated on comparison

purpose.

3.2 Description of the set-up

The modeling set-up is shown in figure 3-1. This shows source and receiver geometries

and the model in the tank. The solid model consists of an aluminum block with a 70

shore neoprene layer. The aluminum-neoprene interface has a dip of 10 degrees. The

machining of the neoprene was good enough to match the perfectly flat aluminum

surface within 0.2mm. No bonding agent has been used but water acts as the coupling

agent between the aluminum and the neoprene. Because the P velocity of neoprene



(1600 m/s) and the water velocity (found to be here 1520 m/s) are close, the main

difference, relative to a perfect bonding may be the transmission of shear waves into

the aluminum and the polarity of the converted waves inside the neoprene. In such

a case, these differences do not affect our purpose, since we are mainly interested in

P reflections. The S.E.A hydrophone was less than 1mm from the water bottom. All

dimensions given in the model have a 1% to 2% tolerance.

The synthetic model is shown in figure 3-2. P-wave velocities are estimated with

1% accuracy and S-wave velocities with 3% accuracy. Q estimates are correct within

a factor of two (Selfridge, 1985). We did not measure the attenuation independently.

The scale factor of 20000 (figure 3-3) is chosen to convert physical dimensions from

water tank model to real deep-water case. According to this, scaled frequencies are

in the low range of the usual seismic band. It is obvious that decreasing the scaling

factor (e.g four times) scales the frequencies in the usual seismic band and put the

water depth at 400 meters.

The fact that the real model was 10 degrees inclined for the modeling convenience

(figure 3-1), and that the synthetics were calculated according to the model shown

in figure 3-2, does not deteriorate the comparison between the ultrasonic and the

synthetic seismograms, since the waves of interest are far from the edges and the

directivity pattern of the source makes the edge reflections small.

The modulus and the phase of the complex reflection coefficients are plotted in

figure 3-4 and 3-5 for the two interfaces. They are real for precritical reflection and

transmission P1 - P2 and indicate the true relative displacement for all the body

waves. Beyond the first critical angle, their complex values incorporate evanescent

waves and do not help in the seismogram analysis. The phase is defined at 7r, which

means that a phase shift of +rr at the critical angle does not appear explicitly in the

phase curve.

The reflection and transmission coefficients show the following results:

- For the water-neoprene interface, the reflection coefficient R at normal incidence



is 0.156 and decreases slightly with an increase in angle. At 40 degrees, it

goes through a zero and after that, becomes negative. The critical angle of 70

degrees is too large enough to appear in our synthetic seismograms which are

calculated for a limited source-receiver separation. Notice that 40 degrees is the

angle where transmitted P and S waves have the same transmission coefficients.

In particular, the transmitted shear waves become of interest beyond 15 degree.

- For the neoprene-aluminum interface, the reflection coefficient R at normal inci-

dence is 0.78 and the critical angle is about 15 degrees.

3.3 Raw data

3.3.1 Ultrasonic data

The transducers chosen for modeling were described in the previous chapter. The

main parameters are indicated in figure 3-6 and some comments are given below:

- The gain to get 1.4V pp full scale is about 90db (77db + Y scale amplification=4).

This corresponds to an output SEA hydrophone voltage of about 50AV full

scale, i.e., about 60 times the value of the noise. To obtain this, averaging is

necessary and we used a 1024-fold stack to get high quality data. According to

a Vi law, the signal-to-noise ratio full scale becomes 1920, i.e., 66db, which is

close to the 72db dynamic range of the oscilloscope. Hence, we can affirm that

the time section is nearly noise free. The sensitivity of the SEA hydrophone is

about -240db re 1V/pPa and the 50pV represents about 50Pa full scale pressure.

The time required to record 72 source positions with 1024-fold averaging is 4

hours with 1 hour dedicated to the real-time HP plot (figure 3-7). This may

appear long but it is due to the limitation of the DATA 6000 oscilloscope (cf

chapter 2), the optional HP plot, and the exaggerated averaging requirement

for this particular case.



- The 50 khz low cut-off frequency is intended to remove most of the low frequency

noise, particularly the surface wave noise (appendix B).

- The spatial anti-aliasing condition is:

c
Ax < ( (3.1)

2Fmo(sinam,,x)

where:

- Ax is the spatial sampling of 1/8".

- Fm is the high cut off frequency of 400Khz.

- amax is the maximum take-off angle from the source.

- c the velocity of the water.

This condition is fulfilled for ama, < 370. In that experiment, it is fulfilled for

the primary and multiple rays, but not for the direct arrival.

The acquisition delay time of 961is is scaled to 1.92s. In the time section of

figure 3-8 (a), for the first left-viewed offset, the primaries start at T = 2.6 sec and

multiple reflections occurs at T = 4.6 sec. The section shows the reflected waves

(hyperbola) and clearly show the head waves, after the critical angle. Note that at

the critical angle, the +r phase shifted post-critical reflection cancels the head wave.

This destructive interference produces a well-resolved node. In the case of water-

surface multiple, the head wave appears at a greater source offset, which illustrates the

characteristic described in figure 1-5. The multiple reflection is the receiver multiple

and the small source multiple is not obvious. It may be hidden by the waves closely

following the receiver multiple, and this feature will be elucidated in the next section.

The first water multiple, further labeled WWW at 3.2 sec, and the second at 5.2 sec,

separate enough from the reflections to portray the deep-water case.

A number of waves traveling at the water velocity, mainly after the direct water

arrival, are due to the diffraction model edge and the hydrophone body backscattering



of the receiver, and they are more energetic when we use the omnidirectional source

ITC1089 (appendix G). The FK filtered data section of figure 3-9 (a) uses a fan filter

rejection 0-1550m/s and a low-pass filter of the scaled high cut-off frequency of 20Hz,

because the FK plot indicates that the direct arrival is aliased (The reflections are

not aliased). That filtered section improves the picture without changing its main

aspect. Hence, the unfiltered raw data have been migrated.

The first arrival has been used to determine the true water velocity of 1520 m/s

and the accurate water depth of 1540 meters. Those values have been entered in the

synthetic model. The water depth is particularly important for superposing primary

and multiple images correctly because a depth inaccuracy produce only a shift in the

primary depth section, whereas it produces a threefold shift in the multiple image.

Deconvolved data

In order to deal with a zero-phase wavelet, the ultrasonic data have been deconvolved

according to the procedure explained in appendix F. In spite of the good resolving

power of the ultrasonic wavelet, we obtain higher resolution with a suitable shorter

deconvolved wavelet and the deconvolution operator-generated noise keeps a weak

value. The high frequencies in figure 3-8 (b) of the deconvolved raw data section are

due to deconvolution noise. The filtered section is shown in figure 3-9 (b).

3.3.2 Synthetic data

The synthetic rays, calculated using the model and parameters given in figure 3-2,

are shown in figure 3-10. The rays corresponding to the three main waves involved in

the imaging scheme are plotted, and clearly demonstrate the lateral extension of the

receiver multiple image as previously mentioned in chapter 1. Their amplitudes are

plotted on a partial synthetic section (figure 3-11), and show the dominance of the

receiver multiple over the source multiple. The wavelet is a 10Hz zero-phase Gaussian

envelope-modulated cosine function. The wave labels indicate the layers where they



have traveled, coming from the source first. W means water and N neoprene.

At the critical angle of the neoprene-aluminum interface, the +ir phase shift make

a sharp change in the reflection hyperbola as compared to the ultrasonic data because

the head waves are not generated by the synthetic program. A nearly complete syn-

thetic section in figure 3-12 explain why the source multiple does not appear clearly,

except for small offsets: It is overwhelmed by the receiver multiple converted wave.

Indeed, the source multiple is also distinguishable at low offsets on the ultrasonic

section of figures 3-8 (a) and 3-8 (b).

As previously explained in section 1.4.2, the synthetic seismograms feature a verti-

cal component recording whose directivity pattern looks like the ultrasonic transmit-

ter directivity pattern, and do not make further amplitude comparison out of interest.

The amplitude comparison indicates a fairly good agreement, even if the wavelet char-

acteristics are different. In particular, this means that the specific absorption value

1/Q was chosen adequately.

A synthetic model, featuring a very thin water layer between the neoprene and the

aluminum, produce the section shown in figure 3-13. Comparison with the previous

welded-contact model synthetic section indicates that the phase shift of the converted

waves is the only significant difference. Despite the care in designing the synthetic

model, one cannot distinguish clearly which one best compares with the ultrasonic

section. The difficulty in matching them is due to the small uncertainties in the

velocities, as well as the accuracy for measuring the true model dimensions.

A large difference occurs in the primary converted waves at large offset, but figure

3-14 clearly shows the limitation of the ray-based synthetic program for that O.B.H

configuration: the converted-wave rays do not behave correctly near the receiver.



3.4 Images

The imaging zone in figure 3-15 was chosen according to the ray coverage. In order

to image the neoprene-aluminum interface, the velocity model consists of the water

layer and a semi-infinite neoprene layer.

3.4.1 Dip filter

The migration program features an optional dip filter. So far we know a range of dip

for the reflectors to be imaged, this filter is intended to remove artifacts and smooths

the impulse response of the Kirchhoff operator. In particular, the source multiple

artifact in the receiver multiple imaging may be completely or partially removed. In

the fan ray shot, the incident angle of the receiver and the source rays is calculated

at a defined image point. The dip angle of the reflector is figured out and a cosine

tapered function weights the contribution of the image point in the migration scheme.

For example, a +10 +10 degree filter means that a calculated dip angle of +5 degree

has a weighting of cos(7r/4). This filter will then select the reflectors between a 0 and

20 degree slope. It has been used to improve the images.

3.4.2 Ultrasonic data

The superposition of both coverage rays and dip reflector true position on the depth

section (with a threefold vertical exaggeration through figures 3-16 to 3-18), shows

perfect matching with the primary and receiver multiple images and the poor match

with the source multiple image. The primary image is plotted with a positive polarity,

whereas multiple images are plotted with an inverse polarity in order to account for

the phase shift due to the water-surface reflection. The post-critical information

results in a progressive wavelet phase shift along the reflector. The primary, the

receiver multiple, and the total image are plotted without vertical exaggeration at

the same amplitude scale:



- In figure 3-19 (a), the primary image is added to the receiver multiple image: One

can distinguishes a very tiny upward curvature in the total image at the distance

of the post-critical primary information.

- In figure 3-20 (a), only the precritical information from the primary image is used

and the total image features a flatter reflector.

Figure 3-19 (b) and figure 3-20 (b) show the images obtained by migrating the de-

convolved time section of figure 3-8 (b).

3.4.3 Synthetic data

The imaging of the complete synthetic data section of figure 3-12 does not look as

good in figure 3-21. The sharp phase shift at the critical angle, which was discussed

above, similarly shows up on each individual image. Because that phase shift occurs

at two different points of the reflectors on the primary and receiver multiple image,

the addition does not give a good image of the reflector.

It is obvious that the interpretation of the images obtained by the migration of

the ultrasonic data is much more valuable that those obtained with the ray-based

synthetics seismograms.
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Model No

10 degre dip Neoprene-Aluminium interface

Ultrasonic Marine
experiment acquisition

6200*7600*3100
Dimension of the model 12*14*6 inches meters

Spatial sampling 1/8 inch 63.5 meters

Time sampling 400 nanosec 8 millisec

High cut-off frequency 400 Khz 20 Hz

Low cut-off frequency 50 Khz 2.5 Hz

Record length 200 microsec 4 sec

Scaling factor 20000

Figure 3-3: Scaled parameters.
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Neoprene-Aluminium Model No 1

3D model experiment No 1

* Geometry:

Source line : X

Source intertrace : 1/8"

Nb of source points : 72

Receiver line : O.B.H

Receiver intertrace :

Nb of receiver points : 1

* Source parameters :

Transmitter: Panametrix V323
Pulser : Panametrix 5052PR

Energy setting : 4

Damping setting : 2

* Receiver parameters :

Receiver transducer : Miniature Hydrophone SEA
Preamplifier(s) : SEA + Panametrix 5660B
Total gain in db : 77 db

Bandpass filter : Krohn-Hite 3202R

Low cut-off frequency : 50 Khz + AC on acquisition

High cut-offfrequency : 400 Khz - Max flat -

* Acquisition parameters :

Acquisition unit : Ampli D1000 + Oscillo D6000
Time sampling : 400 nanosec

Time delay : 96 microsec

Number of points acquired : 512
Resolution : 12 bits companded

Y full-scale : 1.4 Volts

Y scale amplification : 4

Averaging : 1024

Figure 3-6: Acquisition parameters.
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Figure 3-8: (a) Ultrasonic raw data time section.
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DECONVOLVED RAW DATA TIME SECTION
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Figure 3-8: (b) Deconvolved ultrasonic raw data time section.
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DECONVOLVED FK Filtered TIME SECTION
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Figure 3-9: (b) FK filtered ultrasonic deconvolved time section.
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PARTIAL SYNTHETIC TIME SECTION
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COMPLETE SYNTHETIC TIME SECTION
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SYNTHETIC TIME SECTION WITH A THIN WATER
LAYER BETWEEN NEOPRENE AND ALUMINIUM
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Figure 3-13: Complete synthetic time section with a very thin water layer between
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Figure 3-16: Primary image from the ultrasonic experiment. The true position of the
layer and the ray coverage are superposed to the depth section plotted in RMS scale
with normal polarity.
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Figure 3-17: Receiver multiple image plotted in RMS scale with inverse polarity.
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Figure 3-18: Source multiple image plotted in RMS scale with inverse polarity.
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Figure 3-19: (a) Migration of the raw data time section. Plot of the primary, the
receiver multiple and the total images with the same scale. The whole primary image
is included in the total image.
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Figure 3-19: (b) Migration of the deconvolved time section. Plot of the primary, the
receiver multiple and the total images with the same scale. The whole primary image
is included in the total image.
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Figure 3-20: (a) Idem as figure 3-19 (a) except that only the precritical information
of the primary image is plotted and included in the total image.
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Figure 3-20: (b) Idem as figure 3-19 (b) except that only the precritical information
of the primary image is plotted and included in the total image.
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Figure 3-21: Images from the complete synthetic section. Complete primary, receiver
multiple and total images.
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Chapter 4

Fault unconformity model;

Conclusion

4.1 Description

The model shown in figure 4-1 consists of three layers. The neoprene block same as

that of chapter 3 is used to simulate the first sedimentary layer and has a 10 degree

dipping interface with the two other layers below. Again this layer was not bonded

for the purpose of convenience. The intermediate layer is made of an epoxy-aluminum

composite material and the half-space is aluminum.

The layer parameters (Vp,Vs,Qp,Qs) and the geometry designed to generate the

synthetic time sections are given in figure 4-2. For the same reasons explained in

chapter 3, the small difference between the laboratory set-up and the synthetic model

does not affect the comparison between ultrasonic and synthetic models.

In this case, instead of a single O.B.H, a water bottom streamer with 24 channels

is used. The scale factor of 12000 (figure 4-3) is chosen this time to scale laboratory

model dimensions in inches to those corresponding to the real earth equivalent in feet.



4.2 Raw data

4.2.1 Ultrasonic data

The data acquisition parameters are given in figure 4-4. The experimental procedure

is similar to that of the previous chapter and is not discussed again. A stacking value

of 64 is chosen to keep the acquisition time (10 hours without any real-time HP plot)

reasonable. Water level was precisely measured and no change due to evaporation

during the experiment was detected. Because of limited averaging, the signal-to-noise

ratio is 52db full scale, and lower than that of the case described in chapter 3.

The acquisition delay time of 50ps scales to 0.6 sec. Three raw data time sections

are shown in figure 4-5 (a) and the deconvolved sections in figure 4-5 (b). Among

the 24 receivers, numbers 1,13,24 are plotted. It can been seen that some traces are

missing: over the 1152 traces recorded, the 9 missing are due to some temporary

oscilloscope malfunctions. It is easier to identify the arrivals on the deconvolved

sections. We label the events with the following convention:

- R1 is the primary reflection from the neoprene-composite interface.

- R2 is the primary reflection from the composite-aluminum interface.

- D1 is the primary diffraction from the upper corner of the fault.

- D2 is the primary diffraction from the lower corner of the fault.

- M1 is the receiver multiple reflection from the neoprene-composite interface.

- M2 is the receiver multiple reflection from the composite-aluminum interface.

Receiver 1

R1 and D1 start at 1.0 sec and overlap on the apex of the hyperbola; R2 at 1.15 sec;

M1 at 1.95 sec; M2 at 2.2 sec.



Receiver 13

R1 starts at 0.9 sec; D1 at 1.0 sec; R2 at 1.1 sec; M1 at 1.9 sec; M2 at 2.15 sec.

Receiver 24

R1 starts at 0.8 sec; D1 at 1.05 sec; R2 at 1.05 sec; M1 at 1.85 sec; M2 at 2.1 sec.

Comments

D2 and the receiver multiple diffractions are difficult to identify. The reason is that

they have smaller amplitudes and that there are lots of converted waves. In the raw

data time sections shown in figure 4-5 (a), the diffraction, which occurs at the apex

of the simple water multiple reflection (previously labelled WWW in chapter 3) at

1.6 sec, is a clear illustration of the hydrophone receiver backscattering. This causes

the obvious anomaly in the deconvolved sections (figure 4-5 (b)) for this event at 1.5

sec.

4.2.2 Synthetic data

For the model shown in figure 4-2, the synthetic seismograms are calculated. The

ray diagrams are shown in figure 4-6 and the synthetic section corresponding to the

receivers 1,13,24 in figure 4-7. In calculated synthetic seismograms, only the primary,

source and receiver multiples reflections and first and second water multiples are

included. The wavelet is a 20Hz zero-phase Gaussian envelope modulated cosine

function. We can identify the waves, characterized in the previous section, except

that diffractions are absent. In particular, we can see the duplication of the primary

and the receiver multiple reflections R2 and M2 due to the fault. The discontinuous

behavior of these duplications is due to the ray computation near the sharp corners

of the fault. However, these synthetic seismograms help us to identify properly the

waves which well show up in the ultrasonic deconvolved time sections (figure 4-5 (b)).



4.3 Images

The imaging zone in figure 4-8 has been chosen according to the ray coverage. We

want to image the composite-aluminum interface in one step. Therefore, the velocity

model consists of the water layer, the true geometry and velocity of the neoprene

layer and a semi-infinite composite material layer. No dip filter has been used.

4.3.1 Ultrasonic data

The model has been superposed to the images which are plotted at true scale (without

any vertical exaggeration). We may expect some small differences due to the toler-

ances in the dimensions and velocities of the true physical model. All the figures show

the primary and the multiple images on the same amplitude scale. The composite

image, sum of the primary and the multiple images, is plotted on an amplitude scale

twice smaller. The figures labelled (a) are the images obtained with the raw data

time sections and those labelled (b) are the images obtained with the deconvolved

sections.

Figures 4-9 show that a single receiver point (number 13) images correctly the

zones covered by the rays arriving at that receiver (figure 4-6). In particular, the lower

part of the fault is well resolved in the primary image. The low-frequency distortion

of the wavelet at the second interface is a natural consequence of the higher velocity

of the second composite layer. The addition of the 24 individual images is shown

in figures 4-10. Although the "flat" part of the interface is clearly delineated, the

fault is not fully imaged. The poor imaging of the fault is caused by the migration of

the other converted waves which align fictitious images along the main slopes of the

dipping neoprene-composite interface and blur the fault image. This clearly appears

when we look at individual images (for one receiver) or at the following figures 4-

11 and 4-12. Indeed, some individual images show the fault better than others do,

i.e., the addition process does not always helps in this case. In particular, the zones



which have a low ray coverage for the 24 receivers tend to disappear in the total

image. Three total images of 8 successive receiver points, given in figures 4.11 and

4.12 illustrate that fact. In particular, the fault is clearly delineated in the primary

image corresponding to the sum of the receiver 9 to 16 (figures 4-11) and the upper

part of the fault is successfully resolved in the receiver multiple image corresponding

to the sum of the receivers 1 to 8 (figures 4-12).

The matching is not perfect between the theoretical boundaries of the interfaces

and the images migrated from the deconvolved sections. This is due to the tolerances

in the dimensions of the ultrasonic model. For example, the interface neoprene-

composite is imaged 50 feet above, which corresponds to 1.25mm in the laboratory

set-up.

Figure 4-13 shows again the failure of the imaging by source multiples.

4.3.2 Synthetic data

The 24 synthetic time sections successfully image the structure as shown in figure

4-14, which is the sum of the 24 individual images. A slight artifact appears at

the sharp corner of the fault. Diffractions from the fault corners are missing in the

synthetic seismograms. But since diffractions image a point, the images do not really

suffer from this ommission.

4.4 General conclusion

4.4.1 Ultrasonic modeling

An important part of this work was devoted toward improving the water-tank ul-

trasonic modeling. The selection of the transducers, with proper characteristics and

good choice of modeling materials have helped in acquiring the high-quality labora-

tory data. Subsequent improvement can be achieved. Specifically:



- The construction or use of a small-diameter thick disk type source transducer

(ceramics are commercially available) featuring a natural frequency of 500Khz.

- The improvement of the tiny receiver hydrophone. The new model, which will

be received after the completion of this thesis, is built according to recommen-

dations suggested to the manufacturer. In particular, a smaller hydrophone

body built with a material whose acoustic impedance is close to the water will

reduce the body backscattering, improve the frequency response and make it

more suitable for laboratory V.S.P experiments. A ceramic with a diameter of

1mm will increase its sensitivity above the threshold (calculated in appendix B)

without deteriorating the directivity pattern in the frequency range of interest.

- The possible use of a point source pulsed laser to generate broad band omnidirec-

tional ultrasound (Hutchins, 1988).

- A more complete study of the modeling material acoustic properties and of the

construction of multi-layer models.

4.4.2 Ultrasonic experiments

High resolution are shown in the ultrasonic time sections. We show that simple

laboratory reliable models can be built. This proves that it is desirable to deal with

a complete wavefield obtained at a low expense, specifically when 3D acquisition is

performed. For example, the post-critical reflection character (with the head wave)

in the first model (chapter 3) and the converted waves in the second model provide

valuable features to interpret the seismograms. Some minor disadvantages, such as

the transducer backscattering, are given evidence. There are only a few additional

steps required before doing reliable 3D solid ultrasonic data acquisition.



4.4.3 Water-multiple imaging

The receiver multiple imaging technique has demonstrated its efficiency. It has clearly

demonstrated the extension of the lateral image, either in the reflector of the first

model (chapter 3) or in the upper corner of the fault in the second model. These

show clearly how, on a O.B.H or a water-bottom streamer, the receiver multiple

migration improves the image over the migration of primary reflections alone.
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Model No 2

Fault - Unconformity 3 layers model

Scaling factor 12000

Figure 4-3: Scaled parameters

Ultrasonic Marine
experiment acquisition

9600*9600*6000
Dimension of the model 6*8*5 inches

feet

Spatial sampling 1/8 inch 125 feet

Time sampling 400 nanosec 4.8 millisec

High cut-off frequency 400 Khz 48 Hz

Low cut-off frequency 50 Khz 6 Hz

Record length 200 microsec 2.4 sec



Fault-unconformity Model No 1

3D model experiment No 2

* Geometry :

Source line : X

Source intertrace : 1/8"

Nb of source points : 48

Receiver line : X

Receiver intertrace :

Nb of receiver points : 24

* Source parameters :

Transmitter : Panametrix V323
Pulser : Panametrix 5052PR

Energy setting : 3

Damping setting : 0

* Receiver parameters :

Receiver transducer : Miniature Hydrophone SEA

Preamplifier(s) : SEA + Panametrix 5660B

Total gain in db : 77 db

Bandpass filter : Krohn-Hite 3202R

Low cut-off frequency : 50 Khz + AC on acquisition

High cut-off frequency : 400 Khz - Max flat -

* Acquisition parameters :

Acquisition unit : Ampli D1000 + Oscillo D6000

Time sampling : 400 nanosec

Time delay : 50 microsec

Number of points acquired : 512
Resolution : 12 bits companded

Y full-scale : 1.4 Volts

Y scale amplification : 2

Averaging : 64

Figure 4-4: Acquisition parameters



RAW DATA TIME SECTIONS
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Figure 4-5: (a) Ultrasonic raw data time section. The receiver points 1,13 and 24 are
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DECONVOLVED RAW DATA TIME SECTION
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Figure 4-5: (b) Ultrasonic deconvolved time section. The receiver points 1,13 and 24
are plotted.
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SYNTHETIC DATA TIME SECTIONS
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Figure 4-9: (a) Migration from the raw data time section for the receiver 13. Primary,

receiver multiple and composite image.
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Figure 4-9: (b) Migration from the deconvolved time section for the receiver 13.
Primary, receiver multiple and composite image.
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Figure 4-10: (a) Migration from the raw data time sections. Sum of the 24 receivers

images.
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Figure 4-10: (b) Migration from the deconvolved time sections.
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Figure 4-11: (a) Migration from the raw data time sections. Primary images. 3 set

are plotted which corresponds to the sum of eight successive receiver points.
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Figure 4-11: (b) Migration from the deconvolved time sections. Primary images. 3
set are plotted which corresponds to the sum of eight successive receiver points.
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Figure 4-12: (a) Migration from the raw data time sections. Receiver multiple images.
3 set are plotted which corresponds to the sum of eight successive receiver points.
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Figure 4-12: (b) Migration from the deconvolved time sections. Receiver multiple
images. 3 set are plotted which corresponds to the sum of eight successive receiver
points.
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Figure 4-13: Migration from the raw data time sections. Source multiple images.
3 set are plotted which corresponds to the sum of eight successive receiver points.

3.
3.
3.
3 .1

4.1
4.:
4.,'
4.1
4.

5.(

5.4
5.

_ il~____ ____ _I ~ 1 _ __I _ _I_ ~________



I-
A-

IJ

I-

-a.*J
o

SUM PRIM SYNTH 1-24 - POL +1
3.:
3.
3.
3.1
4.(
4.:

4.E
4.-(

5.(
5.:
5.4

3.:

3.'

4.1
4.:

4.1
4.1

5.1
5.:
5.'
5.

3.
3.
3.
3.
4.
4.
4.
4.
4.
5.
5.
5.
5.

1.0 2.0 3.0 4.0 5.0 6.0

PRIM + MULT SYNTH - SOM 1-24

1.0 2.0 3.0 4.0 . 5.0 6.0

DISTANCE

Figure 4-14: Synthetic images. The sum of the 24 receivers points are plotted for the

primary, receiver multiple and composite images.
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Appendix A

Piezoelectricity and transducer

applications

A transducer is a device which converts a certain form of energy into another one.

Transducers are usually reversible. In ultrasonics, mechanical and electrical energy

are involved. Piezoelectricity is one way to achieve this transformation. Let us first

give the following definition because of some confusing uses:

Piezoelectricity : Property of a crystal to develop an electric charge or polar-

isation field proportional to a mechanical stress. This feature is known as the

direct piezoelectric effect. The converse piezoelectric effect is the proportional

strain change when subjected to an applied electric field.

Electrostriction : The deformation produced by an electric field is independent

of the polarity of the field.

Ferroelectricity : The crystal has an internal dipole moment even in the absence

of an electric field. This dipole tends to align itself in an allowed direction closest

to an applied field.

Pyroelectricity : An electric charge is developed proportional to temperature

when the material is heated.



All ferroelectric and pyroelectric crystals are piezoelectric. The two basic equations

of state for piezoelectric materials are the following:

Direct effect :

Di = d 1jT + 4tEE (A.1)

Converse effect :

Sm = dmE + smjTj (A.2)

Where:

D[3,1] is the electric displacement (directly related to electric charges)

E[3,1] is the electric field

T[6,1] is the stress tensor

S[6,1] is the strain tensor

d[3,6] is the piezoelectric constant tensor in Coul/Newton or in m/V

s[6,6] is the elastic stiffness tensor, derived here for E constant

e[3,3] is the dielectric tensor, derived here for T constant

The piezoelectric efficiency depends on the high value of the dielectric and piezo-

electric constants. Consequently, ceramics such as Lead-Zirconate-Titanium (PZT)

or Lead-Metaniobate are the piezoelectric materials mainly used in the transducer

design. On the grounds that genuine zones of polarisation are randomly distributed

in the polycrystalline ceramic, a preliminary process called "poling" is done, with the

application of an important strong electric field, either continuous or intermittent, to

align all the electric moments in the ceramic.

The above equations directly relate electric charge to the stresses. Hence, the

poled ceramics have a capacitive behaviour. More general equivalent circuits including

losses (with resistance) and resonance (with coil), describe the electric behaviour of

the transducer.



Stresses are produced by the application of a voltage between the two face of the

poled ceramic. Hence, the maximum voltage is defined by the maximum dynamic

elastic strength and can be calculated in a straightforward way, given the material

properties.



Appendix B

Transmitter power and receiver

sensitivity

The minimum transmitting power and the minimum receiving sensitivity are com-

puted for a desired signal-to-noise ratio, given an ultrasonic model. The following

quantities are defined:

P : The signal pressure level in Pascal.

T* : The transmitting response amplitude spectrum of the transmitter in pPa/V/Hz

re Im.

T : The transmitting response of the transmitter in pPa/V re Im.

VT : The voltage drop provided to the transmitter (an heaviside function is as-

sumed).

R* : The sensitivity amplitude spectrum of the receiver in V/YPa/Hz.

R : The sensitivity of the receiver in V/ItPa.

VR : The receiver voltage output.

N* : The ultrasonic noise amplitude spectrum in V/pPa/Hz.
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N: The ultrasonic noise level in V/pPa.

Ne* : The equivalent input electronic noise amplitude spectrum in V/Hz.

Ne : The equivalent input electronic noise level in V.

f, : The recorded medium frequency.

b : The recorded bandwidth.

d : The travel distance for a given ray.

I : The ray losses including reflection, transmission, frequency independent scatter-

ing and absorption losses.

sn : The desired signal-to-noise ratio, defined for peak-to-peak signals.

It is easier to deal with the decibel notation and the quantities are labeled with

a preceeding capital L. For example LN = 20log(N) is the noise level in db. The

reference values are lm for the distance, 1IPa for the pressure and 1Hz for the

frequency.

A flat frequency response in the sensitivity of the receiver (figure B-1) and a

40db/decade positive slope in the transmitting frequency response of the transmitter

(figure B-2) are assumed. Similarly, white ultrasonic and electronic noise are assumed,

although this assumption is not quite true (figure B-3). Then

LN = LN* (B.1)

LNe = LNe* (B.2)

LR = LR* (B.3)

1 f +b/2 c2
T 1 f+b/ T*(f)(-)2df = T*(f)(1 + Tb) (B.4)

b Jf,-b/2 f

i.e.,

LT = LT(f 0 ) + LTb (B.5)



where we let:

LTb = 201og(1 + Tb) = 20log[1 + (f - b/2) 3) (B.6)

It is obvious that (B.5) is only valid if the transmitter has the indicated 40 db in-

creasing slope over the whole bandwidth considered. Then the transmitted pressure

level is:

LP = LVT + LT (B.7)

The received pressure level is:

LP = LVT + LT- Ld- Ll (B.8)

And the receiver voltage output is:

LVR = LVT + LT - Ld - Ll + LR (B.9)

The condition to satisfy the signal to noise ratio is:

LVR > max(LN + LR, LNe) + Lsn (B.10)

The equation (B.10) yields first the minimum required receiving sensitivity for a given

equivalent input electronic noise. It should be less than the natural ultrasonic noise.

A noise record (figure B-3) averaged 1000 times in the 0-1 Mhz bandwidth in

the tank with the SEA hydrophone, has shown that the ultrasonic noise amplitude

spectrum is of the order of 1 V/Hz. The SEA hydrophone sensitivity amplitude

spectrum has been evaluated at -240db re 1V/jpPa/Hz (with a slight decrease in the

low frequency range, however). Then, the ultrasonic noise amplitude spectrum is

about 1 Pa/Hz = 120db re 1piPa, 1Hz and the noise level is 120db re 1tPa.

The equivalent input electronic noise of the SEA preamplifier is about 0.4pV/Hz.

Obviously, the SEA hydrophone fulfills the receiving sensitivity requirement, which

is calculated to be -248db re 1V/pPa/Hz sensitivity amplitude spectrum, ie -248db

re 1V/pPa, if we assume a flat response.



The condition (B.10) included in equation (B.9) now yields the transmitting re-

sponse of the source, given a specific ultrasonic experiment. To illustrate this com-

putation, and relate it to our laboratory experiment, we assign the following values:

- VT = 200 V

- d = 0.5m

-t= 100

- sn = 10

- f= 225 Khz

- b = 375 Khz

This gives:

LT = 128 db re 1Pa/V.

Equation (B.6) gives LTb - 7 db and from equation (B.5), the required transmit-

ting power at 250 Khz is then:

LT*(fc) = 121 db re 1Pa/V.

If this requirement is fulfilled, this means that the waves which undergo a ray travel

of 0.5m and global losses of 100, are recorded on a single shot with a signal-to-noise

ratio of 10.



Figure B-1:
ITC 1089) i

Typical receiving sensitivity of a piezoelectric transducer (hydrophone

n logarithmic scale.

Figure B-2: Typical transmitting response
ITC 1089) in logarithmic scale.

of a piezoelectric transducer (hydrophone
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Appendix C

Source wavelet improvement

In a pulser, the electric energy, stored in a capacitor is switched shortly (Thyristor

switch in the Panametrics pulser) to provide a high-voltage short-time pulse. Such

a pulse is shown in figure C-1. During that operation, the ratio between the pulser

capacitance and the transducer capacitance influences the energy transfer and the

source wavelet quality. Ideally, it must be large. Others passive elements can be used

to improve the energy transfer. For example, in the Velonex pulser, an inductive

coupling between the two capacitors is provided. More generally, it may be quite

interesting to further develop a complete coupling device, designed with passive com-

ponents to improve the source wavelet. This device may be a smooth notch filter at

the resonant frequency of the transducer. For example, figure C-2 shows the pulse

shape when the ITC 1089 is connected. In this case, the pulser does not act as a pure

voltage source and is pertubated by the oscillations of the hydrophone signal.

A frequency sweep of several ps, delivered to the transducer by a frequency gen-

erator and a voltage amplifier, such as B&K 2713, can be an alternative to the ul-

trasonic pulse. An interesting advantage is that the source can provide more energy

with frequency-sweep signal than with a pulse. This reduces the averaging to obtain

a given signal-to-noise ratio. On the other hand, the record length of the oscilloscope

can limit the applicability of the method.
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Figure C-2: Panametrics 5055R electronic excitation output pulse. Energy 4, damp-

ing 2. The ITC 1089 hydrophone is connected.
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Appendix D

Acoustical properties of materials

Without being exhaustive, this table enumerates some of the convenient materials

available for modeling purpose.

The properties of three main bonding epoxies is also shown.
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Material Vp (m/s) Vs (m/s) Density Qp

Metals Aluminum 6270 3080 2.7

Brass 4430 2120 8.1

Lead 2220 700 11.4

Magnesium 5740 3080 1.7

Stainless steel 5790 3100 7.9

Titanium 6070 3125 4.5



Material Vp (m/s) Vs (m/s) Density Q,

Plastics Bakelite 1590 1.4

Delrin 2430 1.42 30

HUVM 2350 1320

Lucite 2650 1340 1.2

Nylon 2280 980 1.1

Nylon 6/6 2620 1070 1.11 30

Polycarbonate 2270 1.2 24

Polyethylene 1950 540 0.9 3

PVC 2310 1080 1.14 12

Teflon 1350 2.2 4

Epoxies Araldite 2620 1.16

DER 738 2500 1020 1.14

Epotek 301 2640 1.08

Composites Devcon F 2790 1460 1.58

Devcon F2 2800 1420 1.64

Devcon F3 2440 1150 1.40

Devcon Plastic steel B 2160 1100 1.89

Devcon WR 2650 1.63

Rubber Neoprene 1600 1000 1.3 50

Polyurethane 1760 1100 1.96 50

Sylgard 184 (Silicone) 1030 1.05
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Bonding agents
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Epoxy Viscosity (cps) Curing condition Nb of mixing parts

DER 736 10 8 hrs at 70'C 4

VERSILOK 50 2 hrs, room temp 2

EPO-TEK 100 12 hrs, room temp 2



Appendix E

Additional comments on the

transmitter

The figure E-2 shows the 48 raw traces and FK filtered time section of the first model

recorded with the hydrophone ITC 1089. The acquisition parameters are listed in

figure E-1. Although more energic and quasi-omnidirectional, this transmitter shows

some disadvantages for this particular case:

- Its wavelet is not as high resolution as the V323 wavelet.

- Its omnidirectional pattern produces the ghost reflection, which is furthermore

angle and frequency-dependent because of the cable output node (figure 2-7),

and it emphasizes the edge reflections of the model.

However, it can be valuable when the following conditions are needed:

- Low averaging to increase data acquisition rate.

- True amplitude as a function of angle because of its nearly omnidirectionnal pat-

tern.

- A large model that requires high source signal amplitude.
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- No specific requirements about the shape of the wavelet.

Typical applications include 3D experiments and tomography.
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Neoprene-Aluminium Model No 1

3D model experiment No 2

* Geometry :

Source line : X

Source intertrace : 1/8"

Nb of source points: 48

Receiver line : O.B.H

Receiver intertrace :

Nb of receiver points : 1

* Source parameters :

Transmitter : ITC1089

Pulser : Panametrix 5052PR

Energy setting : 2

Damping setting : 2

* Receiver parameters :

Receiver transducer : Miniature Hydrophone SEA

Preamplifier(s) : SEA + Panametrix 5660B

Total gain in db : 77 db

Bandpass filter : Krohn-Hite 3202R

Low cut-off frequency : 50 Khz + AC on acquisition

High cut-off frequency : 400 Khz - Max flat -

* Acquisition parameters :

Acquisition unit : Ampli D1000 + Oscillo D6000

Time sampling : 400 nanosec

Time delay: 96 microsec

Number of points acquired : 512

Resolution : 12 bits companded

Y full-scale : 1.4 Volts

Y scale amplification : 2

Averaging : 64

Figure E-1: Acquisition parameters.
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HYDROPHONE SOURCE
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RAW DATA SECTION FK FILTERED SECTION

Scale Factor = 20.000 Starting time = 1.92 sec

Fk Filtering : LP Boxcar 20 hz
+ Fan filter rejection

0 - 1550 m/s

Figure E-2: Raw data and FK filtered time section for the model 1. The ITC 1089 is
the transmitter.
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Appendix F

Deconvolution of the ultrasonic

time sections

F.1 Introduction

The ultrasonic wavelet is not zero-phase and even not minimum-phase. In order to

deal with a zero-phase wavelet as it is usually done with synthetic data, the ultra-

sonic time section has been deconvolved. Although the ultrasonic wavelet (figure

2-11) shows that a high-resolution time section can be achieved, the signature de-

convolution operator allows us also to improve this resolution. Time and frequency

domain deconvolution are briefly reviewed below and the time domain deconvolution

was chosen for our application.

F.2 Time domain deconvolution

F.2.1 Theory

The convolution model is

w(t) = s(t) * r(t) * g(t) + n(t) (F.1)
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where:

- w(t) are the recorded data

- s(t) is the source signature

- r(t) is the impulse response of the recording system

- g(t) is the impulse response of the earth

- n(t) is noise, usually white

The signature signal is recorded and the Wiener filter f(t) is designed. This filter

gives the closest output d'(t) to the desired wavelet d(t) with a least-square fit, when

convolved with the signature s(t). We have:

[d'(t) - d(t)]2nzinimum (F.2)

with

d'(t) = f(t) * s(t) (F.3)

the deconvolution is performed by:

w'(t) = w(t) * f(t) = d'(t) * r(t) * g(t) + f(t) * n(t) (F.4)

In the ideal case where n(t) = 0 and r(t) = d'(t) = 6(t) then:

w'(t) = g(t) (F.5)

A typical algorithm use Topplitz matrix inversion (Ziolkowski, 1984).

F.2.2 Application

The signature chosen to be deconvolved (figure F-1) is a little bit different from

the directly recorded ultrasonic wavelet in water (figure 2-11). Indeed, the receiver

multiple reflection in the time section of the first model (figure 3-8) is used to get
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the signature s(t) to be deconvolved. That choice is made to take into account the

change in the ultrasonic wavelet shape due to the absorption in the neoprene. A

time alignement (such as a NMO) of 50 traces and their sum were implemented in

order to recover the reflected wavelet out of the complexity of the wavefield (figure

F-1). A truncation, justified by the character of the wavelet in figure 2-11 gives finally

the signature choosen. This procedure allows a better deconvolution than with the

wavelet of figure 2-11.

The desired wavelet d(t) is an harmonic function modulated by a zero-phase Gaus-

sian envelope such as the wavelet used in the synthetics seismograms. However, the

Gaussian damping has been increased to take advantage of the deconvolution pro-

cedure. The frequency of the harmonic function is the dominant frequency of the

signature s(t) so that the amplitude spectrum of d(t) does not differ to much from

the amplitude spectrum of s(t). Theoritically, best results, in term of signal-to-noise

ratio, are achieved in such a case. The Wiener operator has a 0.8 sec length and

produce the wavelet output d'(t) (figure F-1) when convolved with the signature s(t).

The signal-to-noise ratio is acceptable although we get some noise 0.4 sec after the

wavelet d'(t).

F.3 Frequency domain

The deconvolution problem involves a spectral division, specifically:

w(w)s*(w) = g(n(w)s*(w)d(w) (F6)
= g(w)d(w) + (F.6)I S G) I' + CM I SP) I' +C(W)

where c(w) is a noise stabilisation factor which could be chosen constant (i.e., white)

or a function of w.
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Figure F-1: Wavelets in the deconvolution procedure.
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Appendix G

Fault-syncline model

This appendix does not deal explicitly with the thesis subject. However, it is included

because it illustrates the resolving power that can be obtained in laboratory modeling.

The ultrasonic model is shown in figure G-1 and consists of an aluminum block whose

the highly polished surface features a fault dipping 45 degree and a half-syncline with

constant second-derivative variations.

The time section in figure G-2 clearly shows the different waves:

- The P head-wave travelling along the aluminum surface.

- The S head-wave, which shows up because the S velocity of the aluminum is greater

than the velocity of the water.

- The diffractions due to the corners of the fault.

- The tie-bow character of the syncline.

- The waves issued from the double reflections of the fault and the syncline part of

the aluminum surface.

After the primaries, the section shows the complex water-multiple wavefield.
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Fault -Synclinal model

Front view

Surface water

, IIIIIIIIIIIIIIIIII II I III lIIIII IIU lIIIIIIU n lllI I al I

Emitter
Panametrix V323

Receiver ( hydro SEA )
positions

2.0"

I -2. I . . I
.<2.0" Scale 1:2

Tank

Figure G-1: Experimental set-up for the fault-syncline model.
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Figure G-2: Raw data time section for the fault-syncline model.
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