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Abstract

The South Pacific Superswell contains a disproportionate number of volcanic

islands and is characterized by a long-wavelength topographic swell, a negative geoid

anomaly, and slower than average seismic velocities within the upper mantle. Assuming

that these regions of slow seismic velocity correspond to hot, buoyant material deriving

convection in a viscous mantle, the requirement that they produce a positive depth

anomaly but a negative geoid anomaly places strong constraints on the viscosity structure

of the mantle beneath the South Pacific. We examine viscosity profiles which have been

previously determined using global long-wavelength geoid data, but none adequately

satisfies the geoid and topography in the Superswell. The presence of slow seismic

velocities in the uppermost mantle suggests that hot, and therefore less viscous material

lies beneath the lithosphere. To explore the possibility that the uppermost mantle is less

viscous beneath the Superswell, we search for variants of global viscosity models which

satisfy the data.

We have developed an algorithm for inverting seismic velocity, depth anomalies,

and geoid directly for the radial viscosity structure of the mantle for a limited spatial

region. We form an iterative scheme to determine the viscosity solution which minimizes

the misfit to the data, yet is closest in a least-squares sense to a reference viscosity model,

such as that derived from global modeling of long wavelength geoid. This technique

performs well in tests using synthetic data; in most cases, the procedure determines a

known viscosity profiles to within 15%.

We perform inversions with the observed geoid and topography data for the

Superswell for eleven different reference viscosity models. Seventeen viscosity solutions

are obtained and grouped into five classes of viscosity models. Although these models

predict similar misfits to the data, they predict substantially different geoid fields and

only two solutions are consistent with both sets of data. One solution possesses a low

viscosity zone between 100 and 400 km depth, with a factor of 12 increase in viscosity at

the top of the transition zone, and again at 670 km. The other model contains a low

viscosity layer between 670 and 1000 km depth. Although both models satisfy the geoid

and topography data equally well, we prefer the first model because the depth of the low

viscosity layer coincides with the depth of the strongest seismically-inferred temperature

variations, providing a physical explanation for the lower viscosities.
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Chapter 1: Introduction

The seafloor beneath most of the world's oceans deepens away from mid-ocean

ridges in a predictable manner; its depth is related to the square root of the lithospheric

age [Parsons and Sclater, 1977; Stein and Stein, 1992]. While this model is consistent

with seafloor depths and heat flow measurements throughout most of the world's ocean

basins, the lithosphere beneath French Polynesia deviates from the predictions of this

model. The seafloor is too shallow compared to the 125-km-thick plate model of Parsons

and Sclater [1977], and the geoid is too negative. In addition, seismic models indicate

slower than average shear wave velocities e.g. Su et al. [1994], and absolute plate

velocities reach a global high over this region [Minster and Jordan, 1978; DeMets et al.,

1990]. Based on these observations, the lithosphere and/or asthenosphere beneath French

Polynesia appears to be anomalous with respect to other oceanic regions of similar age.

McNutt and Fischer [1987] termed this region the South Pacific Superswell and

attributed its anomalous properties to an unusually thin 75-km-thick thermal lithosphere.

While a thin lithosphere is consistent with the observed depth anomalies, the large

number of hotspot islands, and the slow seismic velocities, this model cannot account for

the negative geoid anomaly. An uplifted lithospheric plate compensated by thermally

expanded rock at depth produces a geoid high. The negative geoid signal from the

compensating mass is smaller than the geoid high created by surface uplift, creating a net

positive geoid anomaly. Thus, the observed negative geoid anomalies are not consistent



with a thinned lithosphere [McNutt and Judge, 1990]. In addition, recent determination

of effective elastic plate thickness in the Marquesas and Society Island chains indicates

that the thickness of the thermal lithosphere is closer to 125 km than 75 km [Filmer et al.,

1993].

McNutt and Judge [1990] noted that the Superswell is characterized by a negative

geoid/topography admittance at wavelengths between 2500 and 5000 km. The presence

of a low viscosity layer at the base of the lithosphere can produce such an admittance. If

hotter than average mantle underlies the lithosphere, buoyancy stresses cause uplift of the

surface. A low viscosity layer attenuates this upward force, creating an uplift smaller

than if the low viscosity layer was not present. The negative geoid signal from the hot

(lower density) material in the upper mantle outweighs the positive geoid signal from the

surface uplift and creates a net geoid low [Richards and Hager, 1984]. McNutt and

Judge [1990] compared geoid and topography response functions for different viscosity

structures and found that negative admittances can occur if a layer of decreased viscosity

at least several hundred kilometers thick lies at the base of the lithosphere and coincides

with a region of elevated temperature. While this model is consistent with the

observations, comparison of response functions alone cannot yield strong constraints on

the viscosity structure.

Better estimates of radial viscosity structure can be achieved by comparing

observed geoid and topography to that predicted by different viscosity models. These

calculations require an additional piece of information: estimates of mantle temperature

or density anomalies. Thermodynamic equations using laboratory-derived constants

provide a theoretical scaling relationship between seismic velocity and density. Thus,

seismic velocity models provide first-order estimates of density anomalies within the

mantle. With an a priori knowledge of density variations and an assumed model of

mantle rheology, the convectively-maintained geoid and dynamic topography can be

predicted numerically. Comparisons of these predicted fields to those observed yield



plausible viscosity structures. Several global viscosity models have been suggested based

on this type of analysis [Hager and Clayton, 1989; Hager and Richards, 1989; Forte and

Peltier, 1991; King and Masters, 1992; Forte et al., 1993; King, 1993; Cazenave and

Thoraval, 1994]. The preferred viscosity profiles from these studies are shown in

Figure 1.1. The solutions exhibit some similar characteristics, such as a nearly constant

viscosity lower mantle at least 10 times more viscous than the upper mantle. Each of

these models contains a viscosity jump at 400 km depth, the top of the transition zone.

Some models have a low viscosity zone just above the transition zone (HR, HCW4, CT,

K2), and other models exhibit a low viscosity layer within the transition zone itself

(MODSH, MDLSH, SH425, K1). All of these models correctly predict a positive

topography anomaly in the region of the Superswell, but the sign and pattern of the

predicted geoid varies between models (Figure 1.2). Models Kl, K2, and MODSH

produce a positive geoid over the Superswell, where a negative geoid is observed.

Models MDLSH and SH425 produce a negative geoid, but with very little amplitude

(approximately 1 meter). Only models HR, HCW4, and CT, which all have a distinct low

viscosity zone between 100 and 400 km depth produce negative geoid and positive

topography anomalies of comparable magnitude to those observed. They do not

completely match the observed data, however. The patterns of the predicted fields only

adequately match those observed.

It is not surprising that these global viscosity models do not provide an acceptable

fit to the geoid and topography data in the South Pacific. These models were derived

using global geoid data at wavelengths of greater than 5000 km. We wish to explain

geoid and topography observations at wavelengths of 3000-5000 km beneath the South

Pacific. The goal of this study is to determine a viscosity profile which is consistent with

the anomalous observations of the Superswell. What is not determined from this forward

modeling exercise, however, is whether minor variants of one or more of these global

models would provide an acceptable fit to the Superswell data.



The relationship between viscosity structure and the surface geoid and topography

is non-unique, increasing the difficulty of determining an appropriate viscosity structure.

Most previous studies have relied on forward modeling techniques. A drawback to

forward modeling is that only a finite number of viscosity models can be evaluated. It is

likely that only models which fit the prevailing wisdom will be tested, and models which

are very different which may be equally viable will be overlooked. An alternative is to

use inverse techniques. The models which are tested during the inversion are determined

by the mathematics of the problem, reducing the effect of human bias on the outcome.

However, the inversion must be carefully parameterized to insure that it searches a large

region of the solution space so that an accurate global solution is found, not a local

solution.

King and Masters [1992] inverted spherical harmonic coefficients of the geoid to

invert for 11 layers of constant viscosity. Their inversion resulted in viscosity models

different from those suggested previously by forward-modeling studies. Most forward

modeling studies suggested viscosity structures with a low viscosity layer above the

transition zone, while the viscosity models suggested by King and Masters [1992]

indicate a low viscosity layer within the transition zone (Figure 1.1).

In this study, we formulate an inverse procedure to constrain the viscosity

structure in the upper mantle within a limited geographic region. Since this is a regional

study, we cannot invert for spherical harmonic coefficients of geoid and topography; we

must formulate the problem in spatial coordinates. We take previously-determined

viscosity models as representative of average viscosity structures and search for

variations of these models which better satisfy the regional data. This technique is

applied to the South Pacific Superswell, where the topographic swell and the geoid low

tightly constrain the viscosity of the upper mantle.



Figure Captions

Figure 1.1. Globally representative viscosity profiles which serve as reference models in

our inversion. All of these models have been determined using long-wavelength

(1 5 8) global geoid data. a) model W4 from Hager and Clayton [1989]; b) preferred

viscosity model from Cazenave and Thoraval [1994]; c) preferred model of Hager

and Richards [1989]; d,e) two suggested models from King [1993]; f,g,h) three

viscosity models from King and Masters [1992], determined using different seismic

velocity models; i,j,k) models SS1, SS2, and SS3 determined from forward modeling

of geoid and topography data of the Superswell [McNutt and Evans, 1993].

Figure 1.2. Predicted and observed topography (top) and geoid (bottom) for two

reference viscosity models. Grayscale indicates observed data and contours

represent predicted data. Solid contours represent positive values, dashed contours

represent negative values, and the thick solid line indicates the zero contour. Black

squares mark the locations where the predicted fields are calculated. The dark gray

region in the left side of the geoid map represents the region where seafloor age, and

therefore the geoid anomaly is not constrained. a) Predicted data for reference

model HCW4 [Hager and Clayton, 1989]. The pattern of topographic high and

geoid low roughly coincide with the patterns in the observed data, suggesting that a

variation of this model may be successful in fitting the data. b) Predicted data for

reference model K1 [King, 1993]. Although the pattern of the observed topography

is generally matched, this model predicts a geoid signal of the opposite sign than that

observed.
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Chapter 2: Methods

2.1 Relating Viscosity To Surface Observables: The Forward Problem

Both dynamic topography and the geoid evince internal forces. Since the geoid is

a gravitational equipotential, it contains information about internal density structure of

the Earth. If we consider convection within a spherical shell, the theoretical geoid

anomaly is the sum of the effects from internal density variations and the induced

deformations of the top and bottom boundaries. The relationship between density and

the geoid is not straightforward, however. The magnitude and even the sign of the

theoretical geoid anomaly strongly depends on the variations in viscosity. Thus, the

observed patterns in dynamic topography and the geoid place constraints on viscosity in

the mantle.

On convective time scales, the mantle behaves as a viscous fluid. We characterize

the mantle as an incompressible Newtonian fluid with a radially-varying viscosity. We

assume that seismic velocity models provide first-order estimates of the lateral density

contrasts within the mantle which drive convection. Surface deformations are calculated

by simultaneously solving the Stokes equation of motion, the continuity equation, and the

constitutive relation for a Newtonian fluid:

-Vp + 7V2 u + pVU = 0 (2.1)

V.u=0 (2.2)

= -pI+2 2r (2.3)



p is pressure, q is viscosity, u is the velocity vector, p is density, U is the gravitational

potential, a and E are the stress and strain rate tensors and I is the identity matrix [Hager

and O'Connell, 1981; Hager and Richards, 1989].

Since the mantle is a spherical shell, it is convenient to cast the problem in

spherical coordinates and expand the velocity and stress in terms of spherical harmonic

functions. Both poloidal and toroidal terms are required to fully represent velocity and

stress fields. However, coupling of poloidal and toroidal fields only occurs in the

presence of lateral variations in viscosity [Hager and Clayton, 1989], which we assume

are negligible, therefore we ignore poloidal terms in our analysis. The toroidal terms of

the velocity field and stress tensor are given by:

>u(r,#) y2 m 0, 0) =B v (r, )4 (2.4)
J1 Yi Yim(0)r+y2  I (.

L (2.5)o(r,8, ) = aY (0, ) ^+ + Y1(0, 0) (2.5)

Y,(O,4) is a spherical harmonic function of degree I and order m defined in terms of

colatitude 0 and longitude 0:

IsinmO, -l<m<O
Yr,(0, ') = Pz,(cos) fcosm, O<m<l (2.6)

Its derivatives are abbreviated

y dYm and Yr 1dYm (2.7)
S- 0 I m sin 8 d

[Hager and Clayton, 1989]. When the three governing equations (2.1-2.3) are written in

spherical coordinates and terms are separated by degree and order, they can be

transformed to a 6 by 6 system of differential equations of the form:

2Y =-1 Ay (2.8)
dr r

where the vector y contains radially dependent coefficients of the velocities, stresses, and

the gravitational potential. This system may be simplified by defining an effective radial



stress 6' = af +p U, and solving for the potential coefficients separately. The

solutions for the velocity and stress then become decoupled from the solutions for the

potential and equation (2.8) is reduced to a 4 by 4 system in which:

y = [y ly" r&r, ra] T (2.9)

-2 1(1 + 1) 0 0

-1 1 0 1/(2

12 t -61(1+ 1)1 1 1(l + 1)

-6 p 2[21(1+1)-]177 -1 -2]

[Judge, 1986; Hager and Clayton, 1989]. Note that the A24 term, relating the radial

derivative of tangential velocity to tangential stress is 1/ 17, making this system of

equations non-linear in viscosity. To simplify calculations, variables are non-

dimensionalized as follows:

pogaT,a 2

u~I=P ga 2  = poga T a um (2.11)

r = ar' 7 = 771"

where po is the density at the reference temperature To, a is the coefficient of thermal

expansion, a is the radius of the Earth, 77o is a reference viscosity and g is the average

gravitational acceleration at the surface [Judge, 1986]. In subsequent equations, primes

are dropped for notational convenience and variables are considered non-dimensional

unless otherwise specified. Green's function solutions are found by introducing a unit

density anomaly at a radius r. At this point, radial and tangential velocities and shear

stress are continuous, but the radial stress exhibits a jump due to the density perturbation.

These boundary conditions as well as free-slip conditions at the surface and the CMB are

applied and equation (2.8) is solved analytically through the use of propagator matrices

[Hager and Clayton, 1989]. Expressions for the surface and CMB deformations are

derived by expanding the stresses at the surface and the CMB in a Taylor series and

matching the stresses across the boundaries. By calculating the predicted boundary



deformation as a function of the radius of the density anomaly, we obtain response

functions of the surface and CMB deformations, H,'(r) and Hb'(r). These response

functions, or kernels, characterize the amount of boundary deflection due to a unit density

anomaly of degree I at radius r. Examples of these kernels for two different viscosity

structures are shown in Figure 2.1. The integrated product of the kernels and the non-

dimensionalized density structure yields spherical harmonic coefficients for the surface

topography and the geoid:

him = fPo Hst(r, 7(r)) 3pm (r) dr (2.12)
(Po - Pw) rc

41Ga2 1
Nim = 2+ f G (r, 1(r)) SPlm(r) dr (2.13)

21+1

where

G'(r) = Hs(r)- r1+2 + 1+2Hb(r) (2.14)

If we assume that density anomalies are linearly related to the seismic anomalies, then

p. (r) - 36vS(r) (2.15)
dlnv,

where 6v-(r) is a non-dimensional shear velocity anomaly. d1np/dln vs is the density-

velocity scaling relation which we take to be a constant. As indicated in equation (2.14),

the geoid kernel, G'(r), contains the effects of the surface boundary deformation, the

driving density anomaly, and the core-mantle boundary deformation on the surface geoid.

These kernels are functions only of the boundary conditions and relative viscosity

variations throughout the mantle; they are not dependent on the absolute viscosity.

Since we perform a regional study, we cannot compare the observed and predicted

geoid and topography in the spectral domain; the comparison must be made in the spatial

domain. Therefore, we expand the spherical harmonic coefficients for geoid and

topography given in (2.12-2.13)



N(0,0) N (77(r)) Yn(,) (2.16)
h (e, ) = m=-1 hn (i7(r))

to obtain predicted geoid and topography values in the spatial domain. To prevent

aliasing, we limit the expansion to harmonic degrees corresponding to wavelengths

smaller than the greatest dimension of the region. The expansion is also limited at the

short wavelengths by the resolution of the seismic velocity data. For the case of the

Superswell, this limits the expansion in (2.16) to I = 8-12.

2.2 Formulation of the Inverse Problem

The relationship between viscosity structure and geoid and topography is non-

unique. Theoretically, there exist an infinite number of solutions which predict the same

surface observables. Fortunately, not all mathematically feasible solutions make sense

physically. Some solutions may exhibit a large amount of detailed structure, such as

large oscillations in viscosity with depth, which are difficult to reconcile with our

seismological and mineralogical understanding of the mantle. In addition, detailed

viscosity models invite over-interpretation of the data. Since we do not have the

resolving power to accurately determine a complex viscosity structure, it is sensible to

select the simplest solution which satisfies the data. In formulating the inverse problem,

we have chosen to determine a viscosity model which satisfies the data, yet is closest to a

globally representative viscosity profile. This added constraint provides us with solutions

which are consistent with our global knowledge of mantle structure, yet allow for

significant variation to yield a viscosity profile which satisfies the data for the region of

interest.

We determine a viscosity structure which minimizes the rms misfit of the model

predictions to the data, subject to an outside constraint. A common constraint is the

requirement that the model be smooth [Constable et al., 1987]. However, smoothness is

not necessarily a desired quality for radial viscosity. Seismic studies indicate density



discontinuities at 400 km and 670 km depth within the upper mantle. These

discontinuities are believed to be phase changes of mantle minerals induced by

temperature and pressure. Since sharp changes in seismic velocity and density are

observed, these discontinuities are likely to be accompanied by rather sharp changes in

viscosity. Rather than searching for the smoothest possible viscosity model, we choose

the constraint that our solution be as close as possible to previously determined global

viscosity model.

We follow Constable et al. [1987] in our methods and represent viscosity as a

model vector m of length N. The data vector, d, consists of geoid and topography

observations at a series of M observation points, d= [N,...,NM,hl, ... ,hM . These

vectors are related via a nonlinear forward functional d = F [m], given in (2.16). In our

inversions, we seek the viscosity solution m subject to the constraints that the misfit of

the model predictions to the data, X 2 , is within an acceptable tolerance and that m is a

close as possible to an assumed viscosity profile m', such as those derived from global

analyses. The misfit of the model predictions to the data is given by

X2 = JWd - WF [m]1 2 (2.17)

W is a diagonal weighting matrix whose elements are the inverse of the uncertainties

associated with each measurement, W = diag({ ,,2 2M, ,,}. We wish to minimize

this misfit subject to the constraint that our model m be as close as possible to an a priori

model m'. The constraint, Im -m 112, is multiplied by a Lagrange multiplier and added

to the quantity to be minimized, X2. This new functional, U, is stationary where the

derivative of the functional is zero. If y - is the Lagrange multiplier the new functional

becomes:

U= m-m* 112 +l1 Wd-WF[m] j2} (2.18)

Inspection of equation (2.18) shows that the functional U contains the two quantities to be

minimized. The first term represents the constraint that the solution be close to a



reference model. The term within the brackets represents the rms misfit of the model to

the data. We set V,U = 0 to find the stationary point, this yields the solution vector m.

For a linear forward functional, the solution becomes:

m= [(WJ)TWJ+p]-' (m* +(WJ) T Wd) (2.19)

where J is the Jacobian, given by

= Fi[m] (2.20)

Since the relationship between the model viscosity and the data is non-linear, the

Jacobian J depends upon the solution vector m and a direct solution of the problem is not

possible. Instead, we linearize the problem, solve for an approximate solution, and iterate

until a satisfactory solution is found. We assume that the functional F is differentiable,

and therefore

F [A] = F [ml]+J[A] (2.21)

to first order, for sufficiently small vectors A = m2 -,. J1 denotes the Jacobian

evaluated for model m. Substituting this approximation into equation (2.18), we obtain

U= m2 -m 2+-1 W(d - F [m]+ Jim)- WJm2 112 (2.22)

If we define the term in parenthesis as dj, then (2.22) becomes analogous to (2.18).

Again VmU is set to zero and we obtain the solution vector m 2:

m2 = [(WJ 1)rwJ1 + ]-1 (m + (WJ)T Wd) (2.23)

y is still a free parameter in this equation. The value of M determines the trade-off

between how well m2 satisfies the data and how much it differs from m*. Inspection of

(2.22) indicates that if p is large, then the data misfit term becomes small and m2 is close

to m'. Conversely, if p is small, m2 satisfies the data well. but can vary substantially

from m*. We wish to find the minimum perturbation of mi sufficient to satisfy the data.

To do so, we generalize (2.23) to form an iterative scheme.



mk+1 = [(WJk)TWJk +] (jpm* + (WJk)T Wa) (2.24)

For a fixed value of 4, we calculate a solution, mk+l; this solution becomes the starting

model for the subsequent iteration. Iteration continues until the misfit reaches a

minimum. We then increment p and repeat the process, obtaining a series of solutions for

different values of p. The solution corresponding to the largest y (closest to the reference

model m') which has an rms misfit within an acceptable tolerance, is our preferred

solution (Figure 2.2).

A limitation of the current formulation of the inversion is that the prediction of

data (2.12-2.13) involves only six terms, one corresponding to each layer of viscosity.

The geoid and topography kernels vary rapidly with radius for degrees 8-12 and viscosity

structures with large contrasts in viscosity (Figure 2.1b). The kernels are sampled only

three times in the uppermost mantle where they are highly variable. Thus it is difficult to

determine the depth and the magnitude of the geoid kernel peak and the depth of the rapid

fall-off of the topography kernel, which are very sensitive to the depth and magnitude of

viscosity contrasts. Therefore, much of the detail of the kernels, as well as the radial

variation in seismic velocity is lost. This makes it difficult to determine the difference in

predicted data between viscosity profiles which contain large contrasts in viscosity

between layers. Methods to remedy this situation are discussed in Chapter 5.



Figure Captions

Figure 2.1. Normalized response functions for surface topography, core-mantle

boundary deformation and the geoid for two radial viscosity profiles. Kernels for

three harmonics are shown: degree 8 (solid line), degree 10 (dashed line), and degree

12 (dot-dash line). a) model HCW4; b) model MODSH. The depth and magnitude

of a low viscosity layer produces much larger differences in the geoid kernels than in

the topography kernels. This indicates that geoid observations place a tighter

constraint than topography data on acceptable viscosity models.

Figure 2.2. Schematic illustration of best-fit viscosity solution. The best solution

corresponds to the largest value of p for which X
2 is a minimum. This provides a

solution which is closest to the reference model, m', yet satisfies the data.
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Chapter 3: Data

3.1 Topography

A successful viscosity model must be consistent with the observed dynamic

topography. Oceanic topography has two major components: short-wavelength

topography which is compensated by variations in crustal thickness, elastic plate flexure,

and long-wavelength dynamic topography which is compensated by density anomalies

below the lithosphere. We isolate the dynamic component of topography by removing

the effects of two sources of crustal thickness variations: seafloor cooling and hotspot

volcanism. Bathymetry is obtained on a 5 arc-minute grid from the ETOPO-5

topographic database [National Geophysical Data Center, 1988] (Figure 3.1a). The

component of topography due to seafloor cooling is removed by subtracting the depth

which the seafloor has subsided since it was formed at the mid-ocean ridge. Midler et al.

[1993] have compiled a digital grid of seafloor age data (Figure 3.2) based on a self-

consistent set of isochrons determined from magnetic lineations, plate tectonic

reconstructions, and fracture zones. Once the age of the lithosphere is known, the

estimated amount of seafloor subsidence (in meters) can be calculated from the empirical

relationship determined by Parsons and Sclater [1977]:

d 2500 + 350-J4/ O<t<70Ma

d 6400 - 3200e- ' 62 t > 70Ma (3.1)

The difference between the ETOPO-5 bathymetry and the predicted subsidence is the

depth anomaly, and represents the topography of the ocean floor relative to



"normal" oceanic lithosphere. Figure 3.1 illustrates the observed topography of French

Polynesia and the depth anomaly after the effect of seafloor cooling has been removed.

The most apparent features are the large number of islands and seamounts in this region

due to mid-plate volcanism. A broad topographic swell is also apparent in the

topography, but even more evident in the topography anomaly. Since lithospheric age

increases to the west, the depth of the seafloor should gradually deepen due to

lithospheric cooling. Instead, the depth gradually increases, increasing the discrepancy

between the observed bathymetry and predicted depths, resulting in a distinct positive

depth anomaly which can be seen in Figure 3.1c.

Most of the short wavelength topography which remains is a result of mid-plate

volcanism. This volcanic topography must be separated from the dynamic component of

the topography. Volcanic edifices are compensated by a crustal root, causing a

downwarping of the crust-mantle boundary, the Moho. Dynamic topography, however, is

compensated by hot, low-density material beneath the lithosphere, resulting in an upward

deflection of the Moho. Since the crust-mantle boundary is an intrinsic density interface,

geoid observations can distinguish whether positive topography is accompanied by a

positive or negative deflection of the Moho. We use a linear filtering technique

developed by McNutt and Shure [1986] to separate the components of topography which

are compensated within the lithosphere and below the lithosphere.

If the lithosphere behaves as a thin elastic plate, then it is straightforward to

predict the surface topography and geoid resulting from either crustal thickness variations

or sub-surface loading. The observed geoid and topography are the sum of the two

effects. The fact that these two phenomena deflect the Moho in opposite directions can

be used to separate short-wavelength island topography from long-wavelength dynamic

topography. It can be shown (see McNutt and Shure [1986] for derivation) that the

predicted swell topography is given by :



W,(k,k,) = gk PO Ll+k4-P Po) 2

S(P O)(3.2)

-(Po-p) + (P. -PO)kj4 }-2 I R(kk)

N,(k,k,)= - G(p- Pw) 1 e42 H(kx,,k,)
gk 1+k 4a

where a is the flexural parameter; kx and ky are horizontal wavenumbers, k = k Z ; + k

Po, Pw, Pm are densities of the volcanic rock, water, and mantle; G is the universal

gravitational constant; g is gravitational acceleration; zt and zm are the average depth of

topography and the Moho; and H, N, and W1 are the Fourier transforms of the topography,

geoid, and swell topography. NR is the reduced geoid anomaly, N-N, where N is the

geoid predicted if one incorrectly assumes that all topography is due to thickening of the

crustal layer.

Figure 3.3 shows such a separation of topography for the Society Islands. The

short wavelength topography due to the islands (Figure 3.3b) has been isolated from the

longer wavelength topography due to sub-lithospheric forces (Figure 3.3c). Note that the

gradual increase in topography surrounding the islands which is apparent in the

topography anomaly is not present in the island topography; the seafloor surrounding the

islands in Figure 3.3b is virtually flat. This indicates that the swell topography has been

accurately removed. We perform this calculation for four island groups within the

Superswell: the Marquesas, Society, Cook-Austral, and the Tuamoto Island chains.

Island signatures in the bathymetry are subtracted from the topography anomaly,

providing an estimate of dynamic topography.

Since we perform a regional inversion, our data are limited spectrally to spherical

harmonic degrees 8 through 12. We therefore filter the dynamic topography to

wavelengths between 3300-5000 km before it is input into the inversion (Figure 3.4).

Many corrections have been applied to the topography data, so it is difficult to determine

the uncertainty in our estimate of dynamic topography. Based on an analysis by
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Smith [1993], we adopt a nominal error of 50 m in the ETOPO-5 data in this region. We

estimate that the uncertainty in the estimated dynamic topography is approximately

150 m, and this value is used in the weighting matrix W (2.17) for our calculation.

Although there may be a high uncertainty in the magnitude of dynamic topography, the

topography must exhibit a positive swell beneath these islands. This requirement that the

sign of the topography be positive provides a constraint on the viscosity structure itself.

3.2 Geoid

Geoid measurements provide one set of observational constraints on an acceptable

viscosity model. We obtain geoid data by combining satellite altimeter profiles from the

ERS-1, Geosat, and Seasat missions [Sandwell and Smith, 1992]. We adopt a nominal

error in the geoid of 50 cm. This is the error estimate for the geoid which we use in

determining the matrix W (2.17).

The observed geoid field contains information about variations in density within

the lithosphere and throughout the mantle. We wish to isolate the geoid component

related to mantle density anomalies, so the effect of density variations within the

lithosphere must be removed. The effect of seafloor cooling can be assessed by modeling

the lithosphere as a moving plate undergoing conductive cooling. Since plates move

perpendicular to mid-ocean ridges as they cool, the system is relatively homogeneous

parallel to the mid-ocean ridge and can thus be approximated as a two-dimensional

phenomenon. The geoid height, N, relative to that of the mid-ocean ridge is given by:

N =apTa 2 1- 12 (-)n+(- exp U (3.3)
4; R L n 1 n a

with

Pn =  R2 +n2 - R], R=2ua

where a is the coefficient of thermal expansion, c is the thermal diffusivity, Pm and Tm

are the density and temperature at the base of the plate, a is the plate thickness, t is the
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plate age and, u is the plate velocity [Parsons and Richter, 1980]. This predicted geoid is

shown if Figure 3.5b. Although the sum in equation (3.3) contains an infinite number of

terms, the geoid can be determined to sufficient accuracy by retaining only the first five

terms.

3.3 Seismic Velocity

Seismic velocity anomalies provide estimates of density anomalies within the

mantle that drive convection. We use the shear wave heterogeneity model SH12/WM13

of Su et al. [1994], which is determined using waveform data of long-period seismograms

and SS-S and ScS-S differential travel times. The model is parameterized geographically

by spherical harmonic coefficients up to degree and order 12, and radially throughout the

mantle by Chebyshev polynomials to degree 13. We average the velocity anomalies to

represent the mean velocity pattern within each of the radial layers in the viscosity model

vector m. The averaged anomalies are scaled to equivalent density variations and are

included in the prediction of geoid and topography (2.15).

Since we perform a regional inversion, we must limit our input data to spherical

harmonic degrees 8 through 12. Unfortunately, this is at the upper limit of resolution of

the seismic model. Since spectral power decreases rapidly with increasing harmonic

degree, the seismic model may not be well determined at these wavelengths. Resolution

tests performed by Su et al. [1994] indicate that the resolving power of the inversion used

to generate SH12/WM13 is rather good in the upper mantle. Synthetic seismic data was

calculated based on a hypothetical velocity structure containing only a single harmonic.

The horizontal resolution of the velocity solution was good and 90% of the amplitude of

the synthetic signal was recovered at depths less than 1300 km up to I = 12. The

resolution at these depths depends upon the spatial distribution of SS and SS-S travel time

residual measurements, as well as the travel paths of body waves. In the vicinity of the

Superswell, there are very few SS-S bounce points, however the distribution of SS



absolute travel times is quite good. These data sets provide sparse sampling of the mantle

above 500 km, but good sampling between 500 and 1500 km depth. However, waveform

data of surface waves provide good coverage at shallow depths. Resolution tests show

that horizontal resolution in the South Pacific is quite good above 500 km and below

1000 km depth, but slightly poorer at depths between 500 and 1000 km [Su et al., 1994].

3.4 Data Parameterization

With the exception of density interfaces and abrupt changes in mineralogy, the

viscosity within the earth's mantle is likely to vary continuously with radius. To simplify

the mathematics, calculations of mantle dynamics approximate a continuous viscosity

structure as a series of layers of uniform viscosity. A large number of thin layers better

describes a continuously varying viscosity; however, each layer of viscosity adds another

free parameter to the problem. Small changes in viscosity in adjacent layers can offset

one another and produce nearly identical geoid and topography, thereby increasing the

difficulty of constraining the actual viscosity profile. In an attempt to minimize this

effect, we limit our model to six radial shells with boundaries at 100, 400, 670, 1000,

1300, and 2890 km depth. While the designation of these shells is somewhat arbitrary,

we have placed boundaries at depths of seismically-determined density contrasts (e.g. 400

and 670 km) where viscosity is likely to exhibit large discontinuities, and at depths used

in previous viscosity studies (e.g. 1000, 1300 km) to facilitate the inclusion of these

viscosity models in our inversion. In addition, we have placed most of the radial shells in

the upper mantle since the geoid and topography at I = 8-12 are not very sensitive to

viscosity variations below 1300 km at the wavelengths of interest (3300 to 5000 km).

This can easily be seen by comparing the magnitudes of the surface topography and geoid

kernels below 1300 km to those in the upper mantle (Figure 2.1).

Geoid and dynamic topography are parameterized as a vector of discrete values at

25 geographical points spaced every 12" between 200" to 260" E longitude and every 10"

between -50" to 5" latitude. Although this provides only a modest number of data points,
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it is sufficient spacing to identify the patterns of interest in the geoid and topography

fields, and the number of data (50) remain small enough to maintain the stability of the

inversion. Initially, we attempted the inversion with 64 latitude, longitude points (128

data) and 15 layers of viscosity. However, this provided too many degrees of freedom

and the inversion was unstable. With 50 data and 5 layers of viscosity, the inversion

shows stability in tests with synthetic data.



Figure Captions

Figure 3.1. a) Observed bathymetry as determined from the ETOPO-5 data set [National

Geophysical Data Center, 1988], 500 m contours. b) Bathymetry predicted by the

seafloor cooling model of Parsons and Sclater [1977], using ocean floor age data of

Miller et al. [1993], 500 m contours. c) Depth anomaly obtained by subtracting the

predicted bathymetry from that observed; 500 m contours. The broad topographic

high which characterizes the Superswell is evident between 200" and 220* longitude.

It is more pronounced in the depth anomaly because the seafloor deepens to the west

more slowly than "normal" oceanic lithosphere of the same age.

Figure 3.2. Map of seafloor age in the South Pacific from Muller et al. [1993].

Lithospheric age increases from approximately 10 Ma at the eastern edge of the of

this region (240" longitude) to 60 Ma at the western edge (200'). The signature of

seafloor cooling is substantial in both the bathymetry and the geoid and must be

removed. The dark gray areas represent regions where sufficient data of seafloor age

is not available. Contours are drawn at 5 Ma intervals. Triangles indicate the

locations of hotspots.

Figure 3.3. Separation of the observed depth anomaly into two components for the

Society Island chain: a) Observed depth anomaly, 500 m contours; b) Topography

due to crustal thickness variations and elastic plate flexure, 500 m contours; c) long-

wavelength portion of the topography which is supported by sub-lithospheric forces.

Figure 3.4. Grayscale represents the observed depth anomaly (Figure 3.1 c). Contours

represent our estimate of dynamic topography. The observed bathymetry has been

corrected for seafloor cooling, crustal thickness variations and elastic plate flexure

and has been filtered to wavelengths of 3300 km - 5000 km to yield dynamic

topography. Note that the region of highest topography coincides with the peak in

the dynamic topography. Solid lines represent positive contours, dashed lines signify

negative values, and the thick solid line indicates the zero contour; 1000 m contours.

Triangles indicate the locations of hotspots.
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Figure 3.5. a) Observed geoid as determined from Sandwell and Smith [1992], 2 m

contours. b) Geoid predicted by the seafloor cooling model of [Parsons and

Richter, 1980], using the ocean floor age data set of Miller et al. [1993], 2 m

contours. c) Geoid anomaly obtained by subtracting the predicted geoid from that

observed; 2 m contours. A geoid low occurs between 200* and 220" longitude, and

coincides with the location of the topographic high (Figure 3.1). Triangles indicate

the locations of hotspots.
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Chapter 4: Results

4.1 Tests of the Inversion Procedure

Before performing an inversion with the observed data, we test the inverse

procedure by using forward modeled geoid and topography. The use of synthetic data

allows testing of the stability of the inversion and provides indications of possible

limitations of the inversion. We performed over 30 inversions using synthetic data with

various input and reference viscosity profiles. The procedure for identifying the best-fit

solution is described in section 2.2.

Since the problem is non-unique, there are a number of viscosity profiles which fit

the data equally well, which are evidenced as multiple minima in Z2 . We explore a

broad range of values of M (10-12 to 103) to identify best-fit viscosity model. The

inversion produces best results when the viscosity of the reference model is within an

order of magnitude of the true viscosity profile. In these cases the viscosity within a

particular layer is determined to within 15%. Two results are shown in Figure 4.1; the

best-fit viscosity profiles are very close to the true solutions, and are different from the

reference models. In some cases, minima in X2 exist for different values of /, suggesting

that the inversion identifies alternate solutions. When the reference model is close to the

true solution, the differences in these alternate viscosity models are very small, implying

that the inversion finds the same solution more than once. Thus, the inversion appears to

be stable; once a solution is identified, further iterations determine viscosity profiles



increasingly different from the solution (corresponding to an increase in Z2), but that the

initial solution is identified again.

In test cases where one or more layers of the reference model differed from the

true solution by an order of magnitude or greater, the inverse procedure is not as well

behaved. In most of these cases, the inversion was not able to accurately determine the

expected solution. One such example is shown in Figure 4.2. The inversion correctly

increases the viscosity in the third layer relative to that of the second layer, but the

magnitude of this contrast, as well as the contrast between the third layer and the lower

mantle, are underestimated by an order of magnitude. The viscosity profile identified by

the inversion fits the data and is a valid solution. In addition, the pattern and the

amplitude of the predicted geoid and topography agree well with the synthetic data. By

all objective criteria, we cannot determine that this solution is not the "true" viscosity

profile.

These results pose a difficulty in determining the viscosity profile of the mantle

based on observed data. If we use a reference model which is close to the true viscosity

profile, the inversion will likely find the true solution. However, if we use a reference

viscosity profile which is significantly different from the true viscosity, we may identify a

completely different solution. Since the true viscosity is unknown, we have no way to

determine if the reference viscosity is close to it and therefore cannot determine a priori

if the inversion will be within its region of stability. In addition, in the above tests, the

Z 2 goodness-of-fit was not significantly different for the true viscosity profiles and the

alternate solutions found by the inversion. If multiple viscosity solutions have similar

misfits to the data. and the patterns and amplitudes of the predicted fields match the data

well, then we cannot determine objectively which solution is most likely to represent the

true viscosity structure of the Earth's mantle.



4.2 Inversion of Data

We performed several inversions with the observed geoid and topography data

using the viscosity profiles shown in Figure 1.1. Most of these profiles have been

determined by modeling the global geoid field. Models SS 1 - SS3, however, are retained

from our forward modeling of the Superswell [McNutt and Evans, 1993], and are

included to provide reference models with pronounced low viscosity zones to ensure that

the inverse procedure explores this region of solution space. The results of three

inversions are shown in Figure 4.3; most of the data inversions identify two Z2 minima,

which correspond to different viscosity solutions. If the minima in Z2 are comparable,

the viscosity model corresponding to the minima with the larger value of ju is the best-fit

model, because it is closer to the reference model. Several of the alternate solutions

found in these inversions are virtually identical to best-fit solutions for other reference

models. The fact that these solutions are found in separate inversions, using reference

models in which viscosity in a layer differs greater than an order of magnitude shows that

this procedure identifies consistent solutions, and implies that this inversion procedure is

stable.

Seventeen viscosity profiles determined by these inversions represent five distinct

classes of viscosity models, shown in Figure 4.3. These solutions retain the general

character of the reference models used for the inversion, but the viscosity in at least one

layer differs from that of the reference model by at least a factor of 3. This implies that

the solution is not constrained to be too close to the reference model, and a solution

which fits the data well can be identified. The rms misfit to the data for the reference

models used is listed in Table 4.1. Some of these models (e.g. K2, SS1) provide a poor

fit to the data, whereas others reasonably fit the data (e.g. MODSH, MDLSH, SH425).

The five viscosity solutions which we determine, models A through E, and their

corresponding reference models are listed in Table 4.2. In all cases, our solutions provide

misfits to the data which is less than or equal to that of the reference models.



The patterns and magnitudes of the predicted geoid fields differ greatly for these

viscosity solutions. The peak-to-trough amplitude of the predicted geoid for model A is

extremely small, 0.15 m, (Figure 4.5) and it is negatively correlated with the pattern in

the observed geoid. The locations of highs and lows in the geoid predicted by models B

and E are correct, but their peak-to-trough amplitudes considerably underestimate that

observed. Models C and D predict geoid fields which agree well with the pattern of the

data, and under-predict the amplitude of the geoid and dynamic topography the least

(Figure 4.5). Of the five viscosity models identified by the inversion, we conclude that

models C and D are the most consistent with both sets of data.



Table 4.1 Data Misfits for Reference Models

Reference Model Misfit to data, X2

SS1 80.88

SS2 77.52

SS3 61.03

HCW4 63.64

HCW4b 78.89

K1 46.68

K2 383.44

CT 78.73

MODSH 48.13

MDLSH 46.53

SH425 46.88

Table 4.2 Reference Models and Data Misfits

Solution Misfit to data, X2

for Viscosity Solutions

Reference Models

A 49.35 SS1, CT

B 46.72 SS1, SS2, HCW4b, CT

C 46.60 SS3, HCW4

D 46.60 MODSH, MDLSH, SH425

E 46.84 K1, K2



Figure Captions

Figure 4.1. Results from two test inversions using synthetic geoid and topography data.

Left: plot of Z2 vs. y on a logarithmic scale. The asterisk denotes the misfit to the

data of the best-fit viscosity solution which is shown on the right. Right: The

reference viscosity solution used for the inversion (dotted line), the "true" viscosity

profile used to generate the synthetic data (solid line), and the best-fit viscosity

model corresponding to the asterisk in the left plot (dash-dot line). a) Test results

using model SS1 as a reference model and data generated using model SS3. The

best-fit solution exactly coincides with the true solution in all layers except layer 3,

where it is different by about 10%. b) results using model SH425 as a reference

model and model MODSH to generate the data. Again, the best-fit solution nearly

coincides with the true solution in every layer. In both of these tests, the inversion

succeeded in finding the true viscosity model.

Figure 4.2. Results of a test inversion using synthetic data, as in Figure 4.1. The

reference model used is HCW4b and the model used to generate the synthetic data is

HCW4. Note that the best-fit solution found by the inversion does not approximate

the true solution. The difference in viscosity between the reference and true

solutions in the third layer is greater than an order of magnitude. Tests such as this

show that if the difference between the reference and true solutions is greater than an

order of magnitude. then the inverse procedure has difficulty locating the true

solution.

Figure 4.3. Results of an inversion using the observed geoid and topography data. The

solid line represents the reference viscosity model used in the inversion, the dash-dot

line is the solution corresponding to the asterisk in the data misfit plot, and the dotted

line corresponds to the circle in the data misfit plot. The horizontal dashed line in

the left plot indicates the misfit to the data of the reference model. a) Results of data

inversion using model SS3 as the reference model. Two different solutions with

comparable 2' are found, both of which have a misfit to the data much less than the

reference model. b) Results of a data inversion using model SS2 as a reference

model. One solution is found, and X2 is much lass than that of the reference model.



Figure 4.4. Seventeen viscosity solutions were identified by inverting the data using

eleven different reference models. Several of these solutions were nearly coincident,

and they are grouped into five distinct classes of viscosity models shown here. Three

models are shown on the left: model A (solid line), model B (dashed line), and model

C (dash-dot line). On the right, model D is represented by a solid line, and model E

by a dashed line. Models D and E have been offset horizontally for clarity; these

viscosity profiles represent relative changes in viscosity, not the absolute viscosity.

Although all of these models predict similar values of Z 2 , only models C and D

satisfy both geoid and topography data.

Figure 4.5. Predicted and observed topography (top) and geoid (bottom) for the five

viscosity solutions. Grayscale indicates observed data and contours represent

predicted data. Solid contours represent positive values, dashed contours represent

negative values, and the thick solid line indicates the zero contour. Contours are

500 m for topography and 1 m for geoid unless otherwise noted. Black triangles

mark the locations where the predicted fields and the misfit to the data are calculated.

a) Predicted data for model A. The general pattern and sign of the topography are

matched, but the geoid is of opposite sign and very small magnitude (0.05 m

contours). b) Predicted data for model B. The patterns of the topography and geoid

are relatively well matched, but the magnitude of the geoid is rather small (4 m

peak-to-peak). c,d) Predicted data for models C and D. The patterns of both the

geoid and topography are well matched, and their amplitudes are reasonable. These

topography solutions represent our preferred solutions. e) Predicted data for

model E. The patterns in the topography and geoid are roughly coincident with the

observed, but the magnitude of the predicted geoid is rather small.
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Topography: model D
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Chapter 5: Discussion

In calculating the geoid and topography kernels via equations (2.4-2.5), we have

assumed that the mantle behaves as an incompressible, Newtonian fluid in which

viscosity is radially symmetric. These assumptions are not strictly true, and the validity

of these approximations should be addressed.

This study, and most previous studies [Hager and Clayton, 1989; Hager and

Richards, 1989; King and Masters, 1992; Kogan and McNutt, 1992] have assumed that

the mantle is incompressible for mathematical simplicity. However, it is known that

gravity increases from 9.8 m s-2 to 10.7 m s-2 from the surface to the core-mantle

boundary, and that density increases by a factor of two throughout the mantle

[Dziewonski and Anderson, 1981]. Compressible geoid kernels are up to 10% larger in

peak-to-peak magnitude than incompressible geoid kernels, but this difference decreases

with increasing harmonic degree [Forte and Peltier, 1991]. At degrees 8 through 12, this

difference is roughly 5% [S. Panasyuk, personal communication], and therefore should

not significantly effect our results.

In formulating this problem, we have explicitly assumed that a density contrast of

a given degree and order can produces velocities and stresses only at the same degree and

order. If this assumption holds, the different harmonic terms represented in (2.4-2.5) can

be separated and solved for independently. The separation of harmonic terms holds only

if viscosity is truly a function of radius only. If lateral variations in viscosity result from



a temperature- or stress-dependent rheology, then a pure harmonic density contrast

induces flow for several spectral terms [Richards and Hager, 1989; Cadek et al., 1993].

Then, the terms in (2.4-2.5) remain coupled and must be solved simultaneously.

Viscosity is known to vary laterally within the mantle; in searching for variations

to a global average viscosity structure, we explicitly assume that lateral variations in

viscosity occur. The scale at which these variations are significant is unknown. We

assume that within the region of examination, lateral variations of viscosity are small in

magnitude. The upper mantle beneath the Superswell is not likely to possess large

variations in viscosity. This are is underlain by oceanic upper mantle which is devoid of

subduction zones, thus horizontal changes in chemistry should be minimal. If lateral

variations in viscosity within our region are non-negligible, mode coupling between

density, geoid and dynamic topography will occur.

Laboratory studies of polycrystalline silicates suggest a non-linear stress-strain

relation at high temperatures and pressures. Therefore a non-linear stress-dependent

rheology may be appropriate for the mantle. Cadek et al. [1993] have performed mantle

convection calculations predicting geoid fields for both linear and non-linear (n = 3)

rheologies. They find that the strongest coupling of the geoid field occurs at three times

the harmonic degree of the density perturbation. For example, a degree 2 density

structure couples strongest with the degree 6 geoid, inducing a signal which is 26% of the

amplitude of the degree 2 geoid [Cadek et al., 1993]. Since the spectral power of the

geoid falls off rather quickly [Lerch et al., 1994], the relative amount of degree 8-12

geoid structure which is induced by degree 3 and 4 density structure could be substantial.

However, numerical experiments indicate that the overall effect of a non-linear rheology

is to increase the amplitude of the geoid, without strongly effecting the spatial pattern

[Cadek et al., 1993]. Given the present uncertainties in mantle density structure, seismic

to density scaling relations and possible viscosity structures, the errors involved in

assuming a Newtonian rheology are small in comparison [Cadek et al., 1993].



Another simplifying assumption in our calculations is that density variations

within the mantle are linearly related to variations in shear wave velocity. However, this

scaling relationship is not well determined. Since this value enters as a multiplicative

factor in (2.15), there is a tradeoff between the value of this parameter and the magnitude

of viscosity variations. dlnv,/dlnp varies laterally within the upper mantle, reflecting

chemical differences between subducted slabs and oceanic and continental upper mantle.

Temperature and pressure changes with depth also cause this parameter to vary with

depth.

Room-temperature laboratory measurements of silicate minerals can provide

estimates of this value, but it cannot be accurately determined at appropriate temperatures

and pressures. Previous calculations of viscosity have estimated this parameter using

laboratory measurements [King and Masters, 1992], correcting these measurements with

temperature and pressure derivatives of mineral properties [Forte and Peltier, 1991], and

performing a linear least-squares inversion of geoid data [Hager and Clayton, 1989;

Forte et al., 1993]. We have chosen to adopt a constant value of this parameter in our

calculations. Since we limit our analysis to a region which encompasses oceanic upper

mantle only, lateral variations of ln v/ldlnp due to chemistry should be minimal. In

addition, we limit our analysis to the upper portion of the mantle where depth-related

pressure and temperature induced variations should also be small.

The data sets which are used in the inversion have a large effect on the resulting

solution. The largest source of uncertainty in these calculations is the estimation of

mantle density anomalies. Although the seismic velocity model, SH12/WM13,

performed well in resolution tests, it is represented as a spherical harmonic field and

therefore is limited in small-scale horizontal resolution. The dependence of our solutions

on the velocity model could be tested in a future experiment by using different seismic

velocity models. It is likely that block models, as opposed to spherical harmonic models

will provide more detailed structure for a regional inversion such as this.



The fact that the inversion identifies more than one viscosity model which

adequately fits the data is not surprising. The mathematics of the problem is inherently

non-unique; the observed quantities are integrals based on the function that we wish to

determine (2.15). Of these five solutions determined by the inversion, only two, models

C and D, sufficiently satisfy the data. However, it is unclear whether either of these

models represent the actual viscosity structure of the Earth's mantle.

It is puzzling that viscosity models A through E, whose model predictions have

the same misfit to the data, should predict geoid fields which are very different from each

other. This result appears to be an artifact of calculating the misfit to the data in the

spatial domain. The misfit to the data, X 2 , is a measure of the difference in the

magnitude of the predicted and observed fields at a finite number of points: it does not

measure how well the patterns of the two fields correlate. It is possible for a predicted

geoid or topography field which appears to be "close" to the observed data to have a

higher Z2 than a field which appears to be very different from the observed field. For

example, consider a predicted geoid field which matches the pattern and magnitude of the

observed field, but is shifted in phase. Since the misfit of the data is determined by

measuring the difference of these fields at a finite number of points, the predicted field

may have a high value of Z 2 . A different viscosity model may predict a geoid field

which does not match the observed field in pattern, phase, or amplitude, yet yields a

smaller misfit to the data. An example of such a situation in two dimensions is shown in

Figure 5.1. Thus, X2 is not an accurate measure of the goodness-of-fit between the

predicted and observed data.

Calculating z2 in the spectral domain would assure a better fit between the

patterns of the predicted and observed fields. However, it is unclear how to calculate the

correlation between two spherical harmonic fields in a limited spatial region. The pattern

of peaks and troughs in both the predicted geoid and topography do not exactly coincide

with that of the observed data for any of the viscosity models examined here. Therefore



is it likely that viscosity models in which the overall pattern of the predicted fields more

closely approximates that observed predict a high X2 , and are thus overlooked in the

inversion.

The lack of radial resolution in the prediction of data (2.12-2.13) also contributes

to the difficulty of the inversion in identifying satisfactory viscosity solutions. The radial

resolution of the kernels cannot be increased simply by increasing the number of

viscosity layers in the model, because increasing the number of degrees of freedom in the

inversion makes the Jacobian matrix ill-conditioned and causes the inversion to become

more unstable. This problem can be overcome by increasing the number of radial shells

for the prediction of data, but constraining the viscosity to be constant within several

adjacent shells. This modification would allow more accurate prediction of geoid and

topography data, while retaining the radial resolution of the seismic data, and limiting the

number of effective viscosity layers.



Figure Captions

Figure 5.1. A simple example illustrating why X2 does not provide a good measure of

the goodness-of-fit between predicted and observed data. a) In this example, the

data is represented by a simple sine curve shown by the solid line. Model 1 is shown

by the dotted line; it has the same amplitude and shape as the data, but is shifted in

phase by 13 units. The rms misfit to the data, Z2, for model 1 is 0.32 and is

represented by the shaded area in the figure. b) The data is again shown by the solid

line and model 2 illustrated by the dotted line. Model 2 differs from the observed

data in amplitude, shape, and phase. Yet its misfit to the data, Z2 , is 0.30, which is

less than that of model 1. Model 1 provides a better visual fit to the data, yet model

2 provides the better mathematical fit to the data.
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Chapter 6: Conclusions

This inverse procedure we have developed appears to be promising to determine

variations to reference viscosity models to fit regional geoid an topography data. In

synthetic tests, this procedure is well-behaved if the true viscosity profile is within an

order of magnitude of the reference model. In other words, this technique can accurately

determine a viscosity solution which is a small perturbation to the reference model. If the

reference model is far from the true solution, this procedure will either fail to find a

solution or identify an alternate solution. However, two limitations of this technique

remain. In its current formulation, the radial parameterization used to predict the geoid

and topography is very poor, and much radial resolution is lost in the uppermost mantle

where the geoid and topography kernels are highly variable. This lack of resolution

decreases the difference in the predicted geoid and topography fields for slightly differing

viscosity profiles. This diminishes the ability of the inversion to discriminate between

possible viscosity solutions and most likely precludes the determination of valid viscosity

solutions. In addition, this problem contributes to the inability of the inversion to

determine the correct viscosity solution if it is much different from the reference model.

This limitation is straightforward to remedy, and will be corrected in a continuation of

this study.

A second limitation of this technique is the manner in which the goodness-of-fit

of the model predictions to the data is calculated. As illustrated in Figure 5.1, the rms



misfit, x 2, is not an accurate measure of the goodness-of-fit between the predicted and

observed data. This quantity measures the difference in the magnitudes of the fields, but

does not characterize the differences in the spatial patterns. A more accurate method to

measure the differences between the patterns of these fields would be to calculate the

goodness-of-fit in the spectral domain. However, the geoid and topography are predicted

in terms of spherical harmonic coefficients, and it is unclear how to calculate the

correlation between harmonic coefficients in a limited spatial domain. The result of this

limitation is that some of the viscosity solutions identified do not satisfactorily fit the

data, despite their small rms misfit. In addition, viscosity profiles whose model

predictions fit the data well are likely overlooked due to their deceptively large rms

misfits.

The current formulation of the procedure, identifies two viscosity profiles which

are consistent with the observed geoid and topography data. Due to the non-uniqueness

of this problem, it is not surprising that more than one solution was identified. However,

how do we determine if either solution represents the true viscosity of the Earth's mantle?

Both solutions are consistent with the observed geoid and topography data, seismic

velocity models provide other discriminatory information. The shear wave velocity

anomalies are strongest above 400 km depth, and the pattern of the velocities at depths

between 100 and 400 km correlates most strongly with the pattern in the observed geoid

and topography. Since the magnitude of the seismic velocity variations are greater at

depths of 100-400 km than at depths between 400 and 670 km, it follows that the largest

variation in temperature-induced viscosity variations would occur at the same depth. For

this reason, we favor model C as a preferred solution. We envision hot material at the

base of the lithosphere representing the top of a mantle plume which has impinged on the

lithosphere. The increased temperatures in this region (approximately 300* C) result in

lower viscosities. Since stresses are attenuated in this low viscosity layer, the buoyancy

forces associated with the hot, low density material create a small amount of surface
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uplift. The net geoid anomaly is then negative, since the negative geoid signal from the

buoyant, low density material is greater in magnitude than the positive geoid signal from

the surface uplift. The presence of hot material beneath the lithosphere is also consistent

with the large number of volcanic islands in this region of the seafloor; this material

conductively warms the base of the lithosphere, increasing the probability of volcanic

activity.
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