COMPUTER STUDIES OF MICROSEISM STATISTICS WITH APPLICATIONS TO PREDICTION AND DETECTION

by

JAMES NELSON GALBRAITH, Jr.
S.B., Massachusetts Institute of Technology (1958)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June, 1963

Signature of Author

Department of Geology and Geophysics

Certified by Thesis Supervisor

Accepted by Chairman, Departmental Committee on Graduate Students
ABSTRACT

Computational experiments have been performed on seismic data digitized from the records obtained by the Air Force during the Logan and Blanca underground nuclear shots, by Dr. Bruce Bogert in New Jersey and by the Wichita Mountain Seismic Observatory.

The experiments indicate that microseismic noise of about .3 cps frequency is associated with the oceans but the higher frequencies are not. Attempts to identify definite wave types, such as Rayleigh and Love waves, and to follow wave packets from station to station failed, but the failure illustrated the complexity of the microseisms and points out the necessity of a statistical study.

For the statistical studies the microseisms were considered to be stochastic time series. It was found that the probability densities of the amplitudes were Gaussian and were not independent. Spectral analysis showed the typical microseism spectrum to have a maximum at about .3 cps and often other strong bands at 1.4 and 2 cps.

The microseism time series are approximately stationary and can be described as a moving average operation. Thus they can be generated by a convolution of a minimum phase wavelet with a white light series. The wavelet is found for typical data by factorization of the power spectrum and the white light series is obtained by convolution of the inverse minimum phase wavelet with the noise data. Tests on the white light
series indicate that its probability density is approximately Gaussian and that it is approximately independent. Hence non-linear operators or filters are not particularly useful in microseism studies.

Cross correlation and cross spectra between different components of data at the same station, like components at different stations and array data have been computed. It was not possible to identify individual wave types or directions of travel with any degree of certainty.

Prediction studies of microseisms have been done to try to improve the signal to noise ratio during the first motion interval. The mean squared error technique and the spectrum factorization technique have been used. The spectrum factorization is found to be superior because long operators can be more readily obtained. However, one can predict at best about 50% of the energy which is not sufficient to produce a significant improvement in the signal to noise ratio. Indications are that other prediction techniques will not give much better results.

Artificial microseisms generated by convolution of a typical microseism wavelet with Gaussian white has been used in a computer simulation of a detection system. The system is an energy detector which detects events in microseismic noise. The system is studied in terms of false alarm rate and failure to detect rate. Overall system effectiveness is given in terms of false alarms per hour as function of signal to noise ratio for a 95% probability of detection success. The system characteristics are found to be essentially invariant when the inputs are band pass filtered. The simple band pass filter can in some cases give significant signal to noise ratio improvement.

Details of the statistical tests and computer programs are given along with an approximate solution to a non-linear water wave problem related to microseism generation. The solution, which uses DeVorkin's representation scheme, is for arbitrary initial conditions and shows that sum and difference frequencies of all the frequencies present initially will be generated.

Title: Associate Professor of Geophysics
ACKNOWLEDGEMENTS

I wish to express my sincere thanks to Professor S. M. Simpson, Jr., for his help, ideas and computer programs which were so necessary in the preparation of this thesis. Valuable aid and criticism were also freely given by Professor Theodore R. Madden, Dr. Enders A. Robinson and Dr. Donald DeVorkin.

I am also grateful to R. A. Wiggins, R. Greenfield, J. F. Claerbout and Mrs. Jacqueline Simpson for their assistance and the use of their computer programs.

I wish to thank Mrs. Elizabeth Studer, Mrs. Irene Hawkins, Joseph Procito and Karl Gentili for their assistance in performing innumerable tasks necessary for the completion of this thesis. I am grateful to Mrs. Myrna Kasser and my wife, Joan, for typing the preliminary copy of the thesis, and owe especial thanks to Mrs. Jane McNabb for the preparation of the final copy.

The data was digitized with the aid of Wolf Research and Development Corporation and Research Calculations. The computation was done in part at the M.I.T. Computation Center with the help and cooperation of Michael Saxton of the IBM Liaison Office and in part at the M.I.T. Cooperative Computing Laboratory with the valuable assistance of Anthony Sacco.

Acknowledgement is extended to Geoscience, Inc. for the use of computer programs for detection simulation studies. I wish to acknowledge the Advanced Research Projects Agency who sponsored this work as part of contract AF 19(604)7378.
TABLE OF CONTENTS

INTRODUCTION
- Need to study noise
- Definition of microseisms
- Source of microseisms
- Outline

1. BASIC STATISTICAL STUDIES

1.1 Empirical Data
- Data sources - noise before and noise after events
- Logan and Blanca digitization procedure

1.2 Elementary Properties
- Microseism amplitude studies
- Rayleigh and Love wave experiments
- Apparent stationarity
- Mean and variance
- Amplitude distribution and normality test

1.3 Correlation and Spectral Properties
- Description of random functions - correlation and spectrum
- Digitization and aliasing
- Spectral estimation - Daniell window and variance of estimate
- Spectrum and Benioff response

1.4 Mathematical Generating Model for Microseisms
- Stationary time series - moving summation and decomposition
- Autoregression, probability density and Edgeworth series
- Normality - chi-squared test
- Independence test
- Mathematical model
- Generation of artificial microseisms

1.5 Cross-Series Properties
- Cross-correlation, cross power and coherency
- Daniell window and M/N ratio
- Cross spectra of different components at the same station
- Cross spectra of like components at different stations - linear phase shifts

2. PREDICTION OF MICROSEISMS

2.1 Prediction by Minimization of the Mean Squared Error
- Prediction and the first motion interval
Mean squared error technique for three dimensional case
Predictability and the percent reduction
Prediction computations

2.2 Prediction and Spectrum Factorization 128
Comparison of prediction techniques
Decomposition
Minimum error and percent reduction in terms of the wavelet

2.3 Summary Comments on Prediction 140
Independence of white light series
Independence and Gaussian white light - example
Non-linear operators

3. AUTOMATIC DETECTION OF SIGNALS IN MICROSEISMIC NOISE 145

3.1 Detection System 145
Description - inputs and outputs

3.2 False Alarm Rate - FALARA 148
Generation of input noise
False alarm rate studies

3.3 Failure Rate - FAILRA 154
Description of system
Failure rate studies

3.4 Automatic Detection with Filtering 161
Band pass filters and the signal to noise ratio
Effect of filter on system characteristics

4. SUMMARY 170

APPENDICES

A. Water Wave Problem 174
B. Normality Test Flow Graph 187
C. Expansion of Empirical Probability Density Functions about
 the Normal Density in Terms of Moments 189
D. Independence and Dependence Measures 193
E. Factorization of the Power Spectrum 205
F. Construction of Three White Light Series with Specified
 Coherencies 213
G. Program Listings 217

BIBLIOGRAPHY

BIOGRAPHICAL NOTE
INTRODUCTION

Need to Study Noise

The disarmament talks at Geneva and the need for a surveillance network to detect and report the testing of nuclear devices, particularly underground testing, have put new emphasis on the field of Seismology. Government support in this area has made possible much research into the nature of seismic disturbances and instrumentation for detecting them. The present thesis was supported by the Advanced Research Projects Agency under the Vela Uniform Project contract AF 19(604)7378. The contract covers the digitization of the paper records from the Logan and Blanca shots of the 1958 Hardtack series, investigation of ways to improve the signal to noise ratio, particularly in the first motion interval, and investigation of the properties of bomb and earthquake signals.

Definition of Microseisms

Essential to the problem of signal detection and signal to noise ratio improvement is an understanding of the natures of both the signal and the noise. This thesis will deal mainly with the properties of the noise. A definition of what is meant by noise is necessary since in many cases what is noise to one man is signal to another. In the context of this thesis any ground motion not associated with definite bomb or earthquake signals, motion which is present at all times, will be considered noise and will be called microseisms or microseismic noise.

The study of microseisms dates back about 100 years to the pendulum measurements of an Italian monk, Bertelli (Haq, 1954). Only very
qualitative conclusions which generalized the data could be made, but it was obvious from study of Bertelli and others that the surface of the earth was in a state of oscillation. This "sea" of elastic waves came under the scrutiny of other observers who were interested in the causes of the disturbances. Wiechert (1905) suggested that microseisms were generated by the impact of surf on a steep coast. Gutenberg (1912) noted a correlation of microseisms with 4 to 8 second periods with surf and wind direction. Ramirez (1940) studied the physical properties of microseismic waves, the velocity, direction of travel and particle motion, with a tripartate or triangular arrangement of three component instruments. He found that the properties of these waves were fairly consistent with those of Rayleigh and Love waves.

Sources of Microseisms

Observers noted that the microseisms and sea waves seemed to be connected, and, in some cases, the periods of the sea waves were twice the period of the microseisms. However, the idea that sea waves produced microseisms was hard to justify theoretically since pressure variations due to travelling water waves die out exponentially with depth and are nearly zero within a wave length. Miche (1944) showed that there is a pressure fluctuation under a standing wave which is unattenuated with depth (for incompressible fluids), and its frequency is twice that of the sea wave. Longuet-Higgins (1950) realized that this was what was needed to explain the observations. He also showed that the mechanism could account for the energy of the observed microseisms. The presence of an unattenuated double frequency variation is demonstrated by Longuet-
Higgins in a small parameter expansion approximation to the solution of the non-linear equations for the pressure variations at the bottom of a layer of water with a rigid lower boundary and a standing wave on the top. Another method of approximation for this type of problem using a representation scheme for the solution of non-linear equations worked out by DeVorkin (1963) is given in Appendix A. It illustrates that the sum and difference frequencies of all frequencies present initially are expected to develop.

The microseisms with periods from 4 to 12 seconds are generally attributed to ocean waves and recourse to the theory of Longuet-Higgins can be made for their explanation although there is still controversy on the matter. The data which has been used in this thesis was recorded with a Benioff short period instrument so that only the shortest period oceanic microseisms come through. Microseisms of higher frequency than the oceanic band are usually attributed to wind and meteorological factors or are thought to be cultural noise. Typical noise sources are swaying trees and buildings, storms, city traffic, heavy machinery, power plants, trains etc.

This brief allusion to the history of the study of microseisms does not give a feeling for the enormous amount of work which has been done in this area. (See Haq, 1954, for a fuller account and references.) A great deal of the work has been concerned with microseism generation mechanisms, surface wave propagation and particle motion, and studies of the direction of propagations and their relation to storms. Nearly all of these studies consider microseisms as a signal. This thesis for the most
part considers microseisms as noise. The main object is to treat the microseisms from a statistical point of view and try to describe them so that something can be done about them rather than with them. To this goal, the tools of statistical analysis have been brought forward and applied with the aid of high speed digital computers.

We shall see that a few examples which treat the microseisms as signals will suffice to point out the need for a more general description of the noise. It is obvious that that time series analysis can be applied to the study of microseisms, but stronger and more useful statements can be made about the time series if it can be shown that they are stationary or, better still, ergodic. We must therefore test the microseisms to see if they fall into one or more of these special categories of time series. Spectral analysis, probability studies and independence tests are some of the techniques which aid in the classification of microseisms.

The proper mathematical description of microseisms can also be the key to the optimum prediction problem, and will permit the study of the predictability of microseisms. We shall see that prediction can be used in some cases to reduce the noise level and therefore, if a signal is also present, improve the signal to noise ratio. The amount of improvement is of course dependent on the predictability of the noise.

A good mathematical model of microseismic noise will also permit us to generate the noise artificially. This artificial noise is extremely useful when long sections of continuous noise are required, and is therefore necessary when we simulate by computer a system to detect events in microseismic noise.
Outline

The thesis is divided into four chapters. The first deals with the basic statistics of the data on which the present studies are based. It includes a description of the data and how it was recorded as well as amplitude studies, auto and cross spectra, empirical probability density functions, and a mathematical model for noise generation.

Chapter two discusses the prediction of the noise by different methods and then applies this to the problem of the determination of the direction of first motion of a signal in the noise. Improvement with non-linear predictors is also considered.

In chapter three an automatic system for the detection of signals in microseismic noise is proposed and the results of a computer simulation of this system are given in terms of detection probabilities and false alarm rates for filtered and unfiltered inputs.

Chapter four is a summary which restates the major conclusions. Details of some analyses and the computer programs used are left for the Appendices.
1. BASIC STATISTICAL STUDIES

1.1 Empirical Data

Data Sources - Noise before and Noise after Events

The data which forms the basis for most of the computational studies described in this thesis are the seismic records of the Logan (5 KT) and Blanca (19 KT) underground nuclear shots of the 1958 Hardtack series (Romney, 1959). These were recorded by the U. S. Air Force at 28 temporary stations set up across the United States as shown in Figure 1.1.1. The instruments used were short period Benioffs with galvanometer periods (Tg) of .20 seconds. Most stations were equipped with a vertical instrument (up-down) and two horizontals, a "toward-away" and a "right-left". These designations are with respect to an observer standing at the shot point looking at the station. The vertical and horizontal instrument responses are the same and are shown in Figures 1.1.2 and 1.1.3 (Geotechnical Corp., 1961). The paper records from these shots were provided by the Air Force and were digitized at 20 samples per second. In no case were the paper records for an entire drum revolution provided so that the greatest time interval of continuous record available was on the order of a few minutes. For this reason the noise records which have been digitized are labeled "Noise Before" and "Noise After" with the appropriate shot, distance from shot and component. Noise before refers to the trace on the paper record which is just above the signal trace, and is therefore one drum revolution...
time before the shot. Noise after is the trace just below the signal trace. A copy of one of the original paper records which was digitized is shown in Figure 1.1.4, and a plot of the corresponding digitized record is shown in Figures 1.1.5 to 1.1.7. Figures 1.1.5 to 1.1.7 have been plotted by computer program using the oscilloscope attached to the IBM 7090 computer at the M.I.T. Computation Center. These graphs, and many of the others appearing in later sections, have been plotted as histograms. In several cases, particularly the spectral computations, the values plotted are averages or estimates over some range so that there is no justification for interpolation and the histogram is the preferred method of presentation.

Logan and Blanca Digitization Procedure

The records were broken up into sections and each section was digitized separately. This procedure can lead to some error since each section could have a linear trend. This was compensated for by removing the best fitting (in the least squares sense) segmented line from the entire record, where each segment is the length of a section.

The digitization accuracy is good to a few percent, and the gain values supplied with the original records are quite good, but the actual ground motion values may be off by as much as 15 percent.

Other digitized data has been provided by Dr. Bruce Bogert of the Bell Telephone Laboratories, who has a short period vertical Benioff at Cherry Hill Park, New Jersey, and by United Electro Dynamics, Inc., who have digitized the records from the WMSO station in Oklahoma. Dr. Bogert's Benioff has a response similar to that of the Hardtack instruments, but its
low frequency cut off is somewhat higher (Bogert, 1961), Figure 1.1.8. The WMSO station is a linear array of vertical Benioffs with the same response as the Hardtack instruments.

A list of our record numbers appropos to this thesis and the event and station to which they correspond, is given in Table 1.1.1.
<table>
<thead>
<tr>
<th>RECORD NUMBER</th>
<th>DESCRIPTION</th>
<th>SAMPLES/SEC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>NOISE BEFORE LOGAN 1902 KM, LEFT</td>
<td>20</td>
</tr>
<tr>
<td>1001</td>
<td>NOISE AFTER LOGAN 1902 KM, LEFT</td>
<td>20</td>
</tr>
<tr>
<td>1002</td>
<td>NOISE BEFORE LOGAN 1902 KM, UP</td>
<td>20</td>
</tr>
<tr>
<td>1003</td>
<td>NOISE AFTER LOGAN 1902 KM, UP</td>
<td>20</td>
</tr>
<tr>
<td>1004</td>
<td>NOISE BEFORE LOGAN 1902 KM, TOWARD</td>
<td>20</td>
</tr>
<tr>
<td>1005</td>
<td>NOISE AFTER LOGAN 1902 KM, TOWARD</td>
<td>20</td>
</tr>
<tr>
<td>1006</td>
<td>NOISE BEFORE LOGAN 2111 KM, LEFT</td>
<td>20</td>
</tr>
<tr>
<td>1007</td>
<td>NOISE AFTER LOGAN 2111 KM, LEFT</td>
<td>20</td>
</tr>
<tr>
<td>1008</td>
<td>NOISE BEFORE LOGAN 2111 KM, UP</td>
<td>20</td>
</tr>
<tr>
<td>1009</td>
<td>NOISE AFTER LOGAN 2111 KM, UP</td>
<td>20</td>
</tr>
<tr>
<td>1010</td>
<td>NOISE BEFORE LOGAN 2111 KM, TOWARD</td>
<td>20</td>
</tr>
<tr>
<td>1011</td>
<td>NOISE AFTER LOGAN 2111 KM, TOWARD</td>
<td>20</td>
</tr>
<tr>
<td>1026</td>
<td>NOISE BEFORE BLANCA 1610 KM, LEFT</td>
<td>20</td>
</tr>
<tr>
<td>1027</td>
<td>NOISE AFTER BLANCA 1610 KM, LEFT</td>
<td>20</td>
</tr>
<tr>
<td>1028</td>
<td>NOISE BEFORE BLANCA 1610 KM, UP</td>
<td>20</td>
</tr>
<tr>
<td>1029</td>
<td>NOISE AFTER BLANCA 1610 KM, UP</td>
<td>20</td>
</tr>
<tr>
<td>1030</td>
<td>NOISE BEFORE BLANCA 1610 KM, AWAY</td>
<td>20</td>
</tr>
<tr>
<td>1031</td>
<td>NOISE AFTER BLANCA 1610 KM, AWAY</td>
<td>20</td>
</tr>
<tr>
<td>204</td>
<td>CHERRY HILL PARK 4, NOISE</td>
<td>9.0909</td>
</tr>
<tr>
<td>233</td>
<td>CHERRY HILL PARK 31, NOISE</td>
<td>9.0909</td>
</tr>
<tr>
<td>301</td>
<td>WMSO L9, NOISE BEFORE CALIF. E.Q. JUNE 20, 1962</td>
<td>20</td>
</tr>
<tr>
<td>303</td>
<td>WMSO L7, NOISE BEFORE CALIF. E.Q. JUNE 20, 1962</td>
<td>20</td>
</tr>
<tr>
<td>305</td>
<td>WMSO L5, NOISE BEFORE CALIF. E.Q. JUNE 20, 1962</td>
<td>20</td>
</tr>
<tr>
<td>307</td>
<td>WMSO L3, NOISE BEFORE CALIF. E.Q. JUNE 20, 1962</td>
<td>20</td>
</tr>
<tr>
<td>309</td>
<td>WMSO L1, NOISE BEFORE CALIF. E.Q. JUNE 20, 1962</td>
<td>20</td>
</tr>
</tbody>
</table>
RESPONSE CURVE
BENIOFF SEISMOGRAPH
VARIABLE-RELCUTANCE SEISMOETER
THE GEOTECHNICAL CORPORATION
DALLAS, TEXAS

T = 1.0 SEC.

T = 0.20 SEC.

T = 70 SEC.

MAGNIFICATION FACTOR

Period in Seconds

Figure 1.1.2
OVERALL PHASE RESPONSE
OF SEISMIC SYSTEM

Figure 1.1.3
FIG. 1.1.5
Figure 1.1.8
1.2 Elementary Properties

We shall briefly consider the microseisms as a signal in a few somewhat naive computational experiments which will suffice to make apparent the need for a more general approach to the study of microseisms which can be provided by statistical techniques.

The first experiment, which is concerned with microseism amplitudes, has some bearing on microseism sources and the results are in agreement with those obtained by others. The second set of experiments deals with the identification of wave types, specifically Rayleigh and Love waves, in the microseisms. As we shall see this set of experiments failed badly because of the simplicity of the model which is used and the complexity of the microseisms themselves.

Microseism Amplitude Studies

Some studies have been made on the amplitudes at two frequencies of the noise from the Logan and Blanca records to determine the change in amplitude with distance from an ocean. If the microseisms, at the frequencies in question, are of oceanic origin, there should be a definite decrease in amplitude with distance from the coast. The frequencies and amplitudes were estimated directly from the paper records. The approximate frequency values were obtained by counting peaks over a minute or more of record. On almost all the records, the noise appeared to have two distinct frequencies, one at about .3 cycles/second, and the other near 2 cycles/second. Approximate peak amplitudes were measured on the records and averaged over several cycles of the frequency of interest. An attempt was made to choose an average noise trace before the shot.
A plot was then made of amplitude versus distance from the Atlantic or Pacific coast (whichever was closer) for both frequencies. These graphs appear in Figures 1.2.1 and 1.2.2 for Logan and Blanca respectively.

We can see from these figures that for low frequency the noise decreases for inland stations, but for the higher frequency there is no systematic trend. The increase in amplitude of the low frequency component at about 1400 km from a coast may be due to microseisms from the Gulf of Mexico. These rather rough quantitative results are as expected, since the low frequencies are usually assumed to be caused by ocean waves and the high frequencies are attributed to local sources, and are not correlated with the distance from the coast.

It is interesting to note that the rough computation of the frequencies involved is supported by detailed spectral analysis. Figures 1.3.6 to 1.3.9 show spectra of some of the noise and it can be seen that the important frequencies are at about .3 cps, 1.4 cps and 2 cps for the Logan and Blanca records.

Rayleigh and Love Wave Experiments

Much of the energy in microseismic noise has been attributed to surface waves of the Rayleigh and Love wave types. Studies by several observers mentioned in the introduction have indicated the presence of these waves in the 4 to 8 second period range. The spectrum of noise from Logan, Blanca and Cherry Hill Park records which appear in Figures 1.3.6 to 1.3.9 show spectral lines with most of the energy concentrated in fairly narrow bands. The low frequency peak, as was mentioned before, is a bit artificial, since it is the high frequency end of the oceanic
microseism band with the low end cut off by the Benioff response. We might well suppose that this peak is composed of Rayleigh waves. The higher frequency lines may also be Rayleigh waves but of a non-oceanic origin. The Cherry Hill Park records in Figure 1.3.9 are remarkably similar, with rather narrow bands, even though they were taken three months apart, and one would like to investigate the important frequencies to identify wave types. Unfortunately, there are no horizontal recordings available and thus no study of this nature can be done. However, the Logan and Blanca records are three component and some attempt has been made at wave type identification. The spectra of these records, Figures 1.3.6 to 1.3.9, show in general more energy in the horizontal components at high frequency than in the vertical component. This suggests that the higher frequency noise, 1.4 cps and 2 cps, may be Love waves, and the possibility that the lower frequency energy is due to oceanic microseisms is still present.

Rayleigh waves are a special combination of P waves and S-V waves which confine all particle motion to a plane defined by the vertical and the direction of travel of the waves. For a single frequency the particle motion is retrograde elliptical. Assuming, therefore, that we have a single Rayleigh wave of a single frequency, we can resolve the horizontal components of motion into a new coordinate system which is rotated with respect to the original seismometer coordinate systems such that all horizontal motion is along one axis, the X" axis. This axis then determines the direction of travel of the wave, but not the sense of the direction. The sense can be determined from the resolved horizontal, X", and the vertical, Z", components. Since the particle motion
is retrograde elliptical, X'' must lead Z'' by 90° for the wave to be travelling in the positive X'' direction. A plot of X'' against Z'' should be an ellipse with its X'' intercept almost $2/3$ of its Z'' intercept.

Records 2000, 1002 and 1004, the noise before the Logan shot 1902 km from the shot point, form a three component set and therefore can be checked in the manner described for a Rayleigh wave component. All three records were band pass filtered with a filter of width .08 cps centered at .255 cps. This frequency corresponds to the maximum of the spectrum and is possibly attributable to Rayleigh waves from oceanic sources. The two horizontal components were plotted against each other and a line fitted to the plot. The plot was fairly scattered so that the fit of the line was quite poor. The horizontal to vertical component power ratio after rotation was only 5 which is not correct for Rayleigh waves. If the plot fell exactly on a straight line the ratio after rotation would be zero. The indication is that the plot was not even close to a straight line. The resolved horizontal component was then plotted against the vertical and an ellipse was fitted to the resulting curve. This plot was the best fitting ellipse superposed is shown in Figure 1.2.7. The ellipse in this figure is a very poor fit and it is not possible to reconcile these results with the single Rayleigh wave hypothesis. This does not mean that the low frequency peaks are not Rayleigh waves. Presence of two or more Rayleigh waves from different sources could explain the lack of a linear relationship between the horizontal components and the poorly fitting ellipse to the horizontal versus vertical plot. We might note, however, that some of the motions shown in Figure 4.2.1 are relatively elliptical, but with
tilted axes. Examination of the spectra (Figures 1.3.6 to 1.3.8) shows relatively more power in the vertical at .255 cps than we would expect on the Rayleigh wave hypothesis, but this could be explained by a mismatch of seismometer characteristics.

A test for the presence of Love waves was also performed on this data. The peak at about 2 cps was of interest here, since there was relatively more power in the horizontal than in the vertical. For a single Love wave we would again expect that a plot of the horizontal components would fall on a straight line. This was not the case, however, for a band width of about .08 cps centered at 2.05 cps. It is most probable that either Love or Rayleigh waves from a single source do not occur, or the band width used is too wide to see them. Cross correlation experiments could be most useful here, since the equivalent band width is the Daniell window width and the phase at each window width may be easily checked. For Rayleigh waves, we expect the horizontal to be in phase, but 90° out of phase with the vertical. For Love waves the horizontal should again be in phase, but there should be very little energy in the vertical component.

The failure of these two experiments does not eliminate the possibility of the existence of Rayleigh and Love waves at the frequencies considered, but it does illustrate the complicated nature of the noise. The suggestion is, therefore, that the structure of the microseisms is too complex to be handled by simple deterministic models. Rather than introduce more complicated models which require an enormous amount of labor to fit to the data, we shall consider the microseisms as stochastic time series and treat them from the statistical point of view.
Apparent Stationarity

The majority of the results of time series analysis are applicable to stationary time series, that is, series whose probability densities are not dependent on absolute time. If in a time series the probability, \(P_{X_1}(X_1; t_1) \) \(\Delta X_1 \), that \(X_1 \) is in the interval \((X_1, X_1 + \Delta X_1) \) at time \(t_1 \) is the same for all \(t \), and if the probability \(P_{X_1,X_2}(X_1, X_2; t_1, t_2) \) that at time \(t_1 \), \(X_1 \) is in the interval \((X_1, X_1 + \Delta X_1) \) and at time \(t_2 \), \(X_2 \) is in the interval \((X_2, X_2 + \Delta X_2) \) is dependent only on the time separation \(\tau = t_2 - t_1 \) and not on absolute time, the time series is said to be wide sense stationary. If all higher densities \(P_{X_1,X_2,...,X_n}(X_1, X_2, ..., X_n; t_1, t_2, ..., t_n) \) are also independent of absolute time and dependent only on \(\tau = t_j - t_i \) the series is strictly stationary.

It is obvious that microseism records are not stationary over long periods of time since microseism activity is strongly influenced by meteorological conditions. Over short periods of time, however, when there have been no great changes in the generating mechanisms for microseisms, the records can be considered stationary. For our purposes we need only be concerned with stationarity over the few hours necessary to record the shot signal and noise before and after the signal. We now consider an ensemble or group of time series lined up one beneath the other each with the same first and second probability densities. We arbitrarily label time on these series so that a vertical line strikes each time series at the same time. The ensemble can be constructed by breaking up a long time series into smaller pieces and considering each piece as a member of the ensemble. In the case of microseismic noise, the noise before and the noise after the event can be considered as two members of the ensemble. We wish then to see if the probability densities
are approximately the same for these ensemble members. We can do this computing directly the probability densities, but this becomes a lengthy process for the second density, $P_{\tilde{\xi}_1, \tilde{\xi}_2}(x_1, x_2; \tau_1, \tau_2)$ and it is worse for the higher densities. If we are only interested in wide sense stationarity we can consider time and ensemble averages and, assuming that the ensemble is ergodic, equate these averages. The ensemble average of $\tilde{\xi}_{i1}$ at time t_1 and $\tilde{\xi}_{i2}$ at time t_2 is

$$Ave = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\tilde{\xi}_1, \tilde{\xi}_2}(x_1, x_2; \tau) \, dx_1 \, dx_2, \quad \tau : t_2 - t_1$$

The time average is

$$Ave = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(t) \, f(t + \tau) \, dt$$

We note that the time average is the autocorrelation and that the Fourier transform of the autocorrelation is the power density spectrum (see section 1.3). Hence, under the ergodic hypothesis, the constancy of the spectral density in time reflects the wide-sense stationarity of the time series. Spectral density computations have been performed on the noise before and noise after the shot and the results are shown in Figures 1.3.6 to 1.3.8. One can easily see that the general character of the spectrum does not change much over a period of time representing two drum revolutions of the Benioff. This strongly suggests that the microseisms are, for our purposes wide-sense stationary.
Mean and Variance

Time series analysis simplifies to some extent if the series have zero mean and unit variance. The digitized records had the best least squares fitting segmented mean line removed, but this does not guarantee that the mean is zero. The mean is, however, quite small and can usually be considered zero. It can easily be computed and subtracted off if necessary. The variance of the records is not unity and no scaling has been done to make it so.

Amplitude Distribution and Normality Test

The amplitude distribution of the records can easily be computed and, given the mean and standard deviation (square root of the variance), the corresponding normal distribution can be found and compared with the empirical amplitude distribution. Appendix B gives a flow graph of the necessary steps in the comparison of the distributions and the programs necessary. Appendix G contains listings of the programs. The comparison is done by finding the values along the x axis which divide the appropriate normal density (given mean and standard deviation) into sections of equal area (equal probability). A count is then made of the number of amplitude values which fall into each section. The chi square comparison measure is then

$$\chi^2 = \sum_{i=1}^{L} \frac{(N_i - pN)^2}{pN}$$

where there are L sections and N amplitude data points, $p = 1/L$, and N_i is the number of points which fall in the i^{th} section. There are $L-3$
degrees of freedom since the mean and standard deviation are used to determine the appropriate Gaussian. The chi square measure thus defined is chi square distributed and its expected value depends only on (Cramer, 1946). The probability \(P(\chi^2) \) of exceeding \(\chi^2 \) is the quantity of importance in comparison. Acceptance regions for \(\chi^2 \) are generally set so that \(P(X) > .1 \) or \(.01 \). Comparisons were made between empirical and normal probability densities for all the Logan and Blanca noise records listed in Table 1.1.1. The chi square test was used as a measure of goodness of fit and the results are shown in Table 1.4.1 in section 1.4. The probability of exceeding \(\chi^2 \) varies considerably and for the records shown only six or seven can be considered normally distributed for this test. Figures 1.2.3 and 1.2.4 show some of the empirical frequency ratio plots and Figures 1.2.5 and 1.2.6 show typical computer output from the normalcy and independence tests. It can be seen from these figures that even though some of the densities fail the \(\chi^2 \) test, they look fairly Gaussian and to a rough approximation may be considered normal.

(Note: If the alternate method of test for normality which is given in section 1.4 is used, all records are found to be Gaussian.)

The independence tests are discussed further in section 1.4 and in Appendix C. It is sufficient to say here that the amplitudes are not independent.
BLANCA Noise Amplitude Vs. Distance From Atlantic or Pacific Coast.

- Low Frequency
- High Frequency

Distance in Kilometers

Figure 1.2.1
LOGAN Noise Amplitude Vs. Distance From Atlantic or Pacific Coast.

- Low Frequency
- High Frequency

Figure 1.2.2
Figure 1.2.3 Frequency Ratios of Microseism Amplitudes
Figure 1.2.4 Frequency Ratios of Microseism Amplitudes
ANALYSIS OF AMPLITUDE DISTRIBUTION FOR RECORD 1005

COMPARISON OF ACTUAL DISTRIBUTION AND NORMAL DISTRIBUTION

NUMBER OF RANGES = 57
LENGTH OF SERIES = 3321
DEGREES OF FREEDOM = 54
MEAN OF SERIES = -0.22500189E-05
STANDARD DEVIATION = 0.14274400E-02

HIGHER CENTRAL MOMENTS
THIRD MOMENT = -0.19685886E-09
FOURTH MOMENT = 0.12106580E-10
FIFTH MOMENT = -0.12533012E-14
SIXTH MOMENT = 0.11494952E-15

EXPECTED COUNT = 58.2632

CHI-SQUARE = 0.62046965E-02
PROBABILITY OF EXCEEDING CHI-SQUARE = 0.21316E-00

POKER COUNT TEST RESULTS

<table>
<thead>
<tr>
<th>HAND TYPE</th>
<th>ACTUAL COUNT</th>
<th>EXPECTED COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUST</td>
<td>35</td>
<td>196.01280</td>
</tr>
<tr>
<td>1 PAIR</td>
<td>138</td>
<td>334.65599</td>
</tr>
<tr>
<td>2 PAIR</td>
<td>81</td>
<td>71.71200</td>
</tr>
<tr>
<td>3 OF A KIND</td>
<td>117</td>
<td>47.80800</td>
</tr>
<tr>
<td>FULL HOUSE</td>
<td>20</td>
<td>5.97600</td>
</tr>
<tr>
<td>STRAIGHT</td>
<td>95</td>
<td>4.78080</td>
</tr>
<tr>
<td>4 OF A KIND</td>
<td>105</td>
<td>2.98800</td>
</tr>
<tr>
<td>5 OF A KIND</td>
<td>73</td>
<td>0.06640</td>
</tr>
</tbody>
</table>

MEAN SQUARE CONTINGENCY = 0.27838460E-01
DEPENDENCY MEASURE = 0.30931623E-00

PROBABILITY DISTRIBUTION

NUMBER OF VALUES IN EACH OF 100 EquALLY SPACED RANGES FROM
-0.47553504E-02 TO 0.45647645E-02, 3321 VALUES IN ALL

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>24</td>
<td>24</td>
<td>35</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
<td>48</td>
<td>41</td>
<td>42</td>
<td>49</td>
<td>51</td>
<td>65</td>
<td>63</td>
<td>65</td>
</tr>
<tr>
<td>73</td>
<td>55</td>
<td>71</td>
<td>66</td>
<td>86</td>
<td>74</td>
<td>92</td>
<td>70</td>
<td>67</td>
<td>98</td>
</tr>
<tr>
<td>77</td>
<td>74</td>
<td>89</td>
<td>89</td>
<td>79</td>
<td>89</td>
<td>73</td>
<td>88</td>
<td>76</td>
<td>77</td>
</tr>
<tr>
<td>88</td>
<td>78</td>
<td>71</td>
<td>63</td>
<td>73</td>
<td>60</td>
<td>59</td>
<td>50</td>
<td>49</td>
<td>44</td>
</tr>
<tr>
<td>40</td>
<td>33</td>
<td>26</td>
<td>37</td>
<td>28</td>
<td>23</td>
<td>15</td>
<td>15</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>10</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Figure 1.2.5
ANALYSIS OF AMPLITUDE DISTRIBUTION FOR RECORD 1026

COMPARISON OF ACTUAL DISTRIBUTION AND NORMAL DISTRIBUTION

NUMBER OF RANGES = 59
LENGTH OF SERIES = 3581
DEGREES OF FREEDOM = 56
MEAN OF SERIES = -0.37916552E-07
STANDARD DEVIATION = 0.13271835E-02

HIGHER CENTRAL MOMENTS
THIRD MOMENT = -0.84812047E-10
FOURTH MOMENT = 0.97164132E-11
FIFTH MOMENT = -0.29763772E-14
SIXTH MOMENT = 0.86117256E-16

EXPECTED COUNT = 60.6949

CHI-SQUARE = 0.10006174E 03
PROBABILITY OF EXCEEDING CHI-SQUARE = 0.15617E-03

POKER COUNT TEST RESULTS

<table>
<thead>
<tr>
<th>HAND TYPE</th>
<th>ACTUAL COUNT</th>
<th>EXPECTED COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUST</td>
<td>38</td>
<td>211.36320</td>
</tr>
<tr>
<td>1 PAIR</td>
<td>159</td>
<td>360.86399</td>
</tr>
<tr>
<td>2 PAIR</td>
<td>133</td>
<td>77.32800</td>
</tr>
<tr>
<td>3 OF A KIND</td>
<td>111</td>
<td>51.55200</td>
</tr>
<tr>
<td>FULL HOUSE</td>
<td>8</td>
<td>6.44400</td>
</tr>
<tr>
<td>STRAIGHT</td>
<td>84</td>
<td>5.15520</td>
</tr>
<tr>
<td>4 OF A KIND</td>
<td>112</td>
<td>3.22200</td>
</tr>
<tr>
<td>5 OF A KIND</td>
<td>71</td>
<td>0.07160</td>
</tr>
</tbody>
</table>

MEAN SQUARE CONTINGENCY = 0.23302333E 01
DEPENDENCY MEASURE = 0.25891481E-00

PROBABILITY DISTRIBUTION

NUMBER OF VALUES IN EACH OF 100 EQUALLY SPACED RANGES FROM -0.48722361E-02 TO 0.41697387E-02. 3581 VALUES IN ALL.

<table>
<thead>
<tr>
<th>VALUES</th>
<th>1*</th>
<th>2*</th>
<th>0*</th>
<th>0*</th>
<th>0*</th>
<th>0*</th>
<th>3*</th>
<th>0*</th>
<th>0*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>2*</td>
<td>4*</td>
<td>7*</td>
<td>1*</td>
<td>3*</td>
<td>5*</td>
<td>10*</td>
<td>1*</td>
<td>8*</td>
</tr>
<tr>
<td>9*</td>
<td>13*</td>
<td>9*</td>
<td>12*</td>
<td>18*</td>
<td>11*</td>
<td>13*</td>
<td>9*</td>
<td>21*</td>
<td>31*</td>
</tr>
<tr>
<td>23*</td>
<td>27*</td>
<td>29*</td>
<td>32*</td>
<td>38*</td>
<td>32*</td>
<td>48*</td>
<td>37*</td>
<td>54*</td>
<td>65*</td>
</tr>
<tr>
<td>51*</td>
<td>69*</td>
<td>62*</td>
<td>94*</td>
<td>87*</td>
<td>101*</td>
<td>88*</td>
<td>81*</td>
<td>90*</td>
<td>91*</td>
</tr>
<tr>
<td>110*</td>
<td>94*</td>
<td>97*</td>
<td>111*</td>
<td>127*</td>
<td>101*</td>
<td>117*</td>
<td>81*</td>
<td>115*</td>
<td>95*</td>
</tr>
<tr>
<td>60*</td>
<td>84*</td>
<td>70*</td>
<td>77*</td>
<td>69*</td>
<td>63*</td>
<td>56*</td>
<td>54*</td>
<td>43*</td>
<td>67*</td>
</tr>
<tr>
<td>52*</td>
<td>52*</td>
<td>36*</td>
<td>30*</td>
<td>34*</td>
<td>30*</td>
<td>42*</td>
<td>27*</td>
<td>30*</td>
<td>15*</td>
</tr>
<tr>
<td>23*</td>
<td>18*</td>
<td>21*</td>
<td>11*</td>
<td>15*</td>
<td>8*</td>
<td>17*</td>
<td>2*</td>
<td>5*</td>
<td>5*</td>
</tr>
<tr>
<td>5*</td>
<td>5*</td>
<td>1*</td>
<td>2*</td>
<td>4*</td>
<td>1*</td>
<td>1*</td>
<td>3*</td>
<td>1*</td>
<td>1*</td>
</tr>
</tbody>
</table>

Figure 1.2.6
Figure 1.2.7 Results of Rayleigh Wave Experiment on Records 1000, 1002 and 1004 with Best Fitting Ellipse.
1.3 Correlation and Spectral Properties

Description of Random Functions - Correlation and Spectrum

The description of the spectrum of a random function, such as microseismic noise as recorded on a seismogram, cannot be adequately done by simple Fourier transformation since the Fourier transform specifies the phase spectrum and immediately particularizes the function thus setting it aside from all the other possible realizations of the random process. In order to treat all the members of the ensemble simultaneously we must make use of the Wiener theorem for autocorrelation. The autocorrelation, \(\psi(\tau) \), of a continuous time function \(f(t) \) is defined as

\[
\psi(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(t) f(t + \tau) \, dt
\]

With a change of variables \(\tau = t - \tau \) we can see that \(\psi(\tau) = \psi(-\tau) \). The Wiener theorem then states that the power density spectrum \(\Phi(\omega) \) of \(f(t) \) is the cosine transform of \(\psi(\tau) \) (Lee, 1960).

\[
\Phi(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \psi(\tau) \cos \omega \tau \, d\tau
\]

We see that the autocorrelation has the effect of bringing all the phases down to zero thus throwing away the phase information which pins down a particular member of the ensemble.

The continuous infinite theory has its counterpart in discrete finite time, but with some modification and some problems.
Digitization and Aliasing

Digitization or division into discrete time puts some restriction on the description in the frequency domain. One must pay the price for throwing away the information between the digitized points and that price, as specified by the sampling theorem, is that one can only see frequencies which are less than or equal to half the sampling rate. If there are n samples per second we can only distinguish up to \(n/2 \) cycles per second, the Nyquist frequency, which corresponds to a radian frequency of \(\omega = \pi \). If the data actually contain a frequency higher than \(n/2 \) cps., say \(n/2 + \Delta \), this frequency will be folded down to \(n/2 - \Delta \), since \(\cos(n+\Delta) = \cos(n-\Delta) \), and this process is called aliasing. Thus if there are frequencies present higher than \(n/2 \) cps, the spectral estimate at frequency \(f \), \((0 < f < n/2)\), is made up of frequencies \(f, 2(n/2)f, 4(n/2)f, \ldots, M(n/2)f, M \) even, and the spectrum loses meaning. One can avoid this problem by sampling often enough to include all frequencies or by low pass filtering before digitization.

Spectral Estimation - Daniell Window and Variance of Estimate

The fact that the data is known for a finite length of time requires an assumption about the data outside of the interval in which it is known since the autocorrelation \(\Phi(\tau) \) involves this time. One usually assumes that the data is zero outside this interval and the autocorrelation must therefore go to zero when \(\tau \) equals the interval length. This is the complete transient (Wiener) autocorrelation
\[\varphi(\tau) = \frac{1}{N} \sum_{i=0}^{N-1} x_i x_{i+\tau} \], \quad \tau = 0, \pm 1, \pm 2, \ldots, \pm (N-1) \]

where there are \(N \) data points, \(x_1, x_2, \ldots, x_N \). Some methods of estimating the autocorrelation such as the Tukey estimation try to compensate for the fact that the data is zero outside \(i = 1, \ldots, N \) by adding weighting factors

\[\varphi(\tau) = \frac{1}{N-1|\tau|} \sum_{i=0}^{ \min(M,N/2) } x_i x_{i+\tau} \], \quad \tau = 0, \ldots, \pm M \]

where \(M \) is less than \(N \) (e.g. \(M = N/3 \)). The higher lag terms (\(\tau \) large) are thus given more weight to compensate for the smaller number of terms in the summation. This will, of course, result in a biased estimate.

In any case the computed spectrum, \(\Phi_c(\omega) \), is an estimate of the true \(\Phi(\omega) \) and can be thought of as a convolution of some weighing function \(W(\omega) \) with the true spectrum

\[\Phi_c(\omega) = \Phi_T(\omega) \ast W(\omega) \]

where the asterisk denotes convolution. \(W(\omega) \) is then called the spectral window (Blackman and Tukey, 1958). Ideally the spectral window is rectangular and the convolution process will then move it along the true spectrum and the estimate at \(\omega_K \), \(\Phi_c(\omega_K) \) will be an unweighted average of the true spectrum \(\Phi_T(\omega) \) from \(\omega_K - \frac{h}{2} \) to \(\omega_K + \frac{h}{2} \).
where \(2A\) is the window width. Since convolution in one domain is multiplication in the other, the Fourier transform of \(\Phi_T(\omega) * W(\omega)\) is \(\Psi_T(\tau) \cdot W(\tau)\) where \(\Psi_T(\tau)\) is the true autocorrelation.

The spectral estimate which has been used to compute the spectra and cross spectra shown in this thesis is the Daniell estimate. The Daniell method uses the complete transient (Wiener) autocorrelation of the time function \(X_t, t = 1, \ldots, N\)

\[
\Psi(\tau) = \frac{1}{N} \sum_{t=1}^{N-1} X_t X_{t+\tau}, \quad \tau = 0, 1, \ldots, (N-1)
\]

The Daniell spectral estimate \(\Phi_D(\omega)\) is then

\[
\Phi_D(\omega) = \frac{1}{2\pi} \sum_{\tau=-\frac{(N-1)}{2}}^{\frac{(N-1)}{2}} \Psi(\tau) \frac{\sin \frac{\tau \pi}{N}}{\frac{\tau}{N}} \cos \omega \tau
\]

where \(\frac{\sin(\pi \tau/N)}{\pi \tau/N}\) is the Daniell weighting function.

We note that the spectral window is not simply the Fourier transform of the Daniell weight since \(\Psi(\tau)\) is not the true autocorrelation. We can, however, compute the spectral window if we choose a time function \(X_t\) for which we know \(\Phi_T(\omega)\) (Simpson et al, 1961b). If the time function \(X_t\) is \(N\) points of a sine wave \(\sin \omega_r t\) we know that \(\Phi_T(\omega)\) is a delta function \(\delta(\omega_r)\) so that the spectral estimate becomes

\[
\Phi_D(\omega) = \Phi_T(\omega) * W(\omega)
\]

\[
\Phi_D(\omega) = \delta(\omega_r) * W(\omega) = W(\omega - \omega_r)
\]

Hence we compute the transient autocorrelation \(\Psi(\tau)\) from the \(N\) points
of the sine wave, weight this with the Daniell weighting function and take the cosine transform as indicated in equation (1.3.1) to obtain the overall spectral window for the computational process. This has been done (Simpson et al 1961b, Appendix K) for \(\omega_r = \pi/2 \) which leads to an \(X_t \) of \(X_t = ..., 1, O, -1, O, 1, ..., \) and a correspondingly simple autocorrelation function. It can be seen that the Daniell estimate has parameters \(M \) and \(N \), and therefore spectral windows were computed for several different \(M \) and \(N \) values. A few examples of the windows have been included in Figure 1.3.1 to 1.3.4 (Simpson et al, 1961b). These figures show that the windows are always non-negative, they tend to get squarer as the \(M/N \) ratio decreases and they are essentially non-oscillatory. The variance, \(\sigma_d^2 \), of the Daniell estimate has been worked out by E. A. Robinson (Simpson et al, 1961b, 1962a) and is

\[
\sigma_d^2 = \frac{\pi}{2N\hbar^2} \int_{\omega_0-h}^{\omega_0+h} \Phi_D^2(\omega) \, d\omega
\]

where \(\hbar = \pi/M \) and \(N \) is the number of data points. As an approximation to this we have used

\[
\sigma_A^2 = \frac{\pi}{2N\hbar^2} \left[\Phi_D^2(\omega) \, 2\hbar \right]
\]

\[
\sigma_A = \sqrt{\frac{M}{N}} \Phi_D(\omega)
\]
Figure 1.3.5 shows a plot of the Daniell spectrum (solid line) of a typical noise record with dotted line denoting the approximate standard deviation, σ_A, plotted above and below the solid line. The spectra are plotted as histograms since the value at any one frequency is an estimate averaged over the spectral window width. We note that M is the number of spectral estimates between $\omega = 0$ and π. One can then see that the N/M ratio is an estimate of the number of cycles of a sine wave which the data affords and therefore an increase in N/M ratio (decrease in M/N) means that one is looking at more cycles and can therefore make a better estimate of the frequency. This is, of course, just the uncertainty principle.

Spectrum and Benioff Response

It is important to remember that the data was recorded on a Benioff seismometer and that the spectrum we see is observed through the eye of the Benioff. The apparent spike at low frequency, .25 cps, is artificial since the Benioff cuts off the lows. The sharp cut off on the low frequency side of the major low frequency feature in the spectrum of Figure 1.3.5 and other spectra in Figures 1.3.6 to 1.3.9 is a result of the seismometer response and is not a real phenomenon. We notice from Figure 1.3.2 that there is essentially no energy at frequencies greater than 2.5 cps so that, with our sample rate of 20 samples per second, there is no problem with aliasing of frequencies.
Figure 1.3.1
Figure 1.3.2

OVERALL SPECTRAL WINDOW OF DANIELL METHOD

WEIGHTING PARAMETER M = 18

36 DATA POINTS

PERCENTAGE OF VALUE AT MIDPOINT

MULTIPLY INDICATED UNITS BY 10

PAGES 1

ANG FREQ INCS OF PI/M FROM MIDPOINT →

PAGE 1

EXPLODED VIEW OF SPECTRAL WINDOW TAIL

WEIGHTING PARAMETER M = 18

36 DATA POINTS

PERCENTAGE OF VALUE AT MIDPOINT

PAGES 1

ANG FREQ INCS OF PI/M FROM MIDPOINT →
Figure 1.3.4

Overall Spectral Window of Daniell Method

Weighting Parameter M = 18
900 Data Points

Percentage of Value at Midpoint
(Multiply Indicated Units by 10)

Ang. Freq. Incs. of Pi/M from Midpoint

Exploded View of Spectral Window Tail

Weighting Parameter M = 16
900 Data Points

Percentage of Value at Midpoint

Ang. Freq. Incs. of Pi/M from Midpoint

1/5
Figure 1.3.5

Spectrum of Record 1000 with standard deviation plotted above and below the spectral estimate.
Figure 1.3.7
Power Density Spectra of Records 1006 to 1011
Figure 1.3.8
Power Density Spectra of Records 1026 to 1031
Figure 1.3.9 Power Density Spectra of Records 204 and 233 (CHP 4 and CHP 31). (Note: The spectra have different frequency scales.)
1.4 Mathematical Generating Model for Microseisms

Stationary Time Series - Moving Summation and Decomposition

We have seen that microseismic noise can be considered at least as a wide sense stationary time series. With an additional assumption of an absolutely continuous spectral distribution (Doob, 1953) we can consider that the time series is generated by a moving average or moving summation which is written as a convolution. That is, the time series x_t can be generated by convolution of an uncorrelated or purely random series, r_t, with a weighting function w_t.

$$x_t = \sum_{i=-\infty}^{\infty} w_i \cdot r_{t-i}$$

Since r_t is at least uncorrelated and may be purely random, it is obvious that the autocorrelation of x_t will simply be the autocorrelation of w_t. Hence the spectral properties of x_t are defined by the wavelet w_t. If the power density spectrum, $\Phi(\omega)$, of the time series or, equivalently, of w_t can be factored

$$\Phi(\omega) = B(\omega) \overline{B(\omega)}$$

and $B(\omega)$ has no poles or zeros in the lower half plane then

$$B(\omega) = \sum_{\kappa=0}^{\infty} b_\kappa e^{i\omega}\kappa$$

and

$$w_\kappa = b_\kappa, \quad w_\kappa = 0 \text{ for } \kappa < 0$$
(See Appendix E, Spectrum Factorization) b_k is one sided and invertable and is called the minimum phase wavelet. The considerations

1. $\Phi(\omega) = 0$ almost nowhere

2. $\int_{-\pi}^{\pi} \log \Phi(\omega) d\omega > -\infty$

3. $\int_{-\pi}^{\pi} \Phi(\omega) d\omega < \infty$

must be met for b_k to exist (Robinson, 1956). These conditions are discussed further in Appendix E.

If we assume that the above conditions are met for microseismic noise, we can choose a simple mathematical model for microseism generation. We can consider that microseisms can be produced by passing a train of white light (uncorrelated) impulses through a system whose transfer function is $B(\omega)$. In block diagram form:

\[
B(\omega) = \sum_{k=0}^{\infty} b_k e^{i(\omega)k}
\]

$B(\omega)$ corresponds to a realizable system since b_k is a one sided wavelet.

Spectrum factorization computations using the method of Kolmogorov as
described in Appendix E have been carried out on real microseismic noise. Figures 1.3.6 to 1.3.8 show the spectra and Figures 1.4.1 to 1.4.5 show some of the minimum phase wavelets and inverse minimum phase wavelets for several of the Logan and Blanca noise records.

Autoregression, Probability Density and Edgeworth Series

Since the inverse minimum phase wavelet, \(a_\kappa \), exists, we can represent the noise \(X_t \) as the autoregressive process

\[
X_t = \sum_{\kappa=0}^{\infty} a_\kappa X_{t-\kappa}
\]

where \(f_t \) is the white light series, and \(a_\kappa \) can be found from \(b_\kappa \) by polynomial division (See POLYDV in Appendix G).

\[
A(\omega) = \sum_{\kappa=0}^{\infty} a_\kappa e^{i\omega \kappa} = B^{-1}(\omega) = \frac{1}{\sum_{\kappa=0}^{\infty} b_\kappa e^{i\omega \kappa}}
\]

Taking the \(Z \) transform, \(Z = e^{i\omega} \)

\[
\sum_{\kappa=0}^{\infty} a_\kappa Z^\kappa = \frac{1}{\sum_{\kappa=0}^{\infty} b_\kappa Z^\kappa}
\]

Hence the white light series \(f_t \) for the process can be found by convolution of \(a_\kappa \) with \(X_t \). This computation has been done for most of the Logan and Blanca noise records and statistical tests have been made on the resulting white light series, \(f_t \). The probability density of \(f_t \) for these records has been compared to the normal density using the steps
outlined in Appendix B. In most cases the comparison measure resulted in the probability of exceeding chi-squared being so small that it was very unlikely the density of $\frac{\partial}{\partial x}$ was exactly normal. The numerical results summarized in Table 1.4.1 show that only four of the records pass the χ^2 test. The empirical densities, however, look so very nearly Gaussian (see Figures 1.4.6 to 1.4.12) that it seems likely that they can be expressed in terms of the Gaussian density with only small correction terms. (Note that we use the terms "Gaussian" and "normal" interchangeably throughout this section. Cramer (1951) gives the Edgeworth series expansion for the probability density $f(x)$

$$f(x) = C_0 \phi(x) + \frac{C_1}{1!} \phi'(x) + \frac{C_2}{2!} \phi''(x) + \ldots + \frac{C_n}{n!} \phi^{(n)}(x) + \ldots$$

where $\phi(x)$ is the Gaussian, $\phi'(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$, and the superscripts denote differentiation. The C_n depend on the moments. The details of the applicability of the expansion and the computation of the moments and the C_n appear in Appendix C. The first seven C_i's, C_0 to C_6, have been computed and the corresponding densities have been compared with the empirical density using the chi-squared measure of goodness of fit.

Normality - Chi-Squared Test

Table 1.4.2 shows the results of the Chi-squared test of the comparison of the probability density of the white light series with the normal density and the higher approximations given by the Edgeworth series. The method of computation of the Chi squared value used here differs somewhat from the method mentioned in Appendix B. In Appendix B
we ignore the fact that the series undergoing the test is bounded and, after dividing up the normal density into \(N \) regions of equal area (probability), we count the number of data points which fall into each region. The approximation involving the terms in the Edgeworth series, including the normal approximations were compared directly to the empirical density, computed for \(r \) subregions over the interval in which the data fell. There was not attempt at division into regions of equal probability. For this case, where the chi squared value is computed directly from the probabilities, chi squared is

\[
\chi^2 = \sum_{i=1}^{r} \left(\frac{P_{A_i} - P_{E_i}}{P_{A_i}} \right)^2 N
\]

where \(P_{A_i} \) is the probability that a value falls in the ith range using the approximation given by the Edgeworth series, \(P_{E_i} \) is the empirical probability density for the same range, \(N \) is the number of data points which were used to compute the empirical density, and \(r \) is the number of sub-regions used in forming the empirical density. There may be some bias in this method of computation if \(P_{A_i} \) and \(P_{E_i} \) are very small. For this reason the sub-regions are grouped together so that for every grouping the quantities \(P_{A_i} N \) and \(P_{E_i} N \) are both at least five. (This rule of thumb is given in Wadsworth and Bryan, 1961). The grouping will reduce the number of degrees of freedom so that it becomes

\[
NDF = S - m - 1
\]
where \(m \) is the highest moment used in the Edgeworth series and \(S \) is the total number of sub-groupings. \(S \) is in general less than \(r \). We note that this method compares the empirical density and the approximation about the normal density only over the region where the data actually exists and does not assume that the data is unbounded.

In computing \(P_{A_i} \) it was necessary to calculate at least five equally spaced points across the sub-region and integrate using Simpson's Rule. The estimate of the integral using just the center point was not accurate enough. (We note here that \(P_{F_i} \) is a probability density and thus must be normalized such that its integral is equal to one.)

We see from Table 1.4.2 that, using the above method of comparison, most of the white light series are actually Gaussian (first approximation of Edgeworth series), and all can be fitted quite well using the third approximation or less. It is not disturbing that the fit gets poorer in some cases for higher approximations, since the series used is asymptotic and may oscillate.

Figures 1.4.6 to 1.4.12 show the empirical density as a solid line histogram and the Edgeworth approximation as a dotted line. The first approximation is the normal, the second approximation involves the third moment since \(C_0 = 1, C_1 = 0 \), the third involves up to the fourth moment, etc. We can therefore say that the probability density of is, in most cases, Gaussian.

Independence Tests

The \(F_r \) are necessarily uncorrelated since the convolution of \(X_t \) with
has removed all the linear dependence. It is not necessary that the T_t series be purely random or, equivalently, independent (unless the T_t are normally distributed, see section 2.3). Independence tests are somewhat difficult because one has to show that the joint probability density for all T_t factors in order to prove independence.

$P_{T_1, T_2, \ldots, T_n}(x_1, x_2, \ldots, x_n) = P_{T_1}(x_1) P_{T_2}(x_2) \cdots P_{T_n}(x_n)$

Two tests for independence have been used on the T_t from microseismic noise. The poker count test (Appendix D) is based on the fact that we can compute the a priori probabilities of occurrence of poker hands of various values from the assumption of independence of the series from which the hands are drawn. In this case the hands are assumed drawn from an infinite supply of integers with values 0 to 9 and hence the removal of a number does not change the probability of its occurrence. In the performance of the poker count test, the T_t must be integers from 0 to 9 with equal probability, so the series with nearly Gaussian density must be mapped into a series with rectangular density. This mapping will not make the series dependent if it is independent and vice versa. Proof of this statement and the steps necessary for the poker count test are given in Appendix D. We may note that the poker count test is concerned with the joint density of up to five variables. The other test, the dependence measure related to the mean square contingency test, is also treated in Appendix D. It is simply a numerical measure of the factorization of the joint density of two random variables.
The measure, which we call the dependency, is zero is the variables are independent, and non-zero otherwise. Tests of numerical data are somewhat difficult since in almost no case will the dependency actually come out zero although it may be quite small. In order to see how small the dependency measure must be to indicate dependence, the test was run on the Rand random digits (Rand Corporation, 1955). These digits were generated by an independent process and are therefore suitable for testing purposes. A graph of the result of this test for different series lengths appears in Appendix D. For a length of 2500 the average dependency was about .0035. For dependent series such as the amplitude of the microseisms the dependency was about .25. The dependency value for the white light series, were between .0907 and .0039 and are tabulated along with the tests on the amplitudes in Table 1.4.1. Some output from the tests is shown in Figures 1.4.13 and 1.4.15. In some cases the dependency value was as low as that of the Rand digits and in others it was somewhat higher but not orders of magnitude higher. The figures mentioned above also show the results of the poker count test. In most cases a chi-squared comparison of the results is in the .1 or .05 acceptance region. The poker count test was also run on the Rand random digits. For these the chi-squared value was quite low and well within the acceptance region.

Mathematical Model

The independence tests performed on are certainly not exhaustive since the poker test treats up to fifth joint density and the mean square contingency treats only the second joint density. The results are
surprisingly good, however, particularly when we consider the error in the computation of the \(r_t \) series introduced by the spectral estimation procedure, spectrum factorization, polynomial division and convolution. It is therefore claimed that the \(r_t \) series is essentially independent and the microseism generating model is now an independent white light series into a minimum phase system.

A purely random series \(r_t \) is ergodic and stationary. Further, the process of moving summation (convolution) is ergodic (Robinson, 1956, p. 116). Ergodicity, for our purposes, means that the time averages and ensemble averages are equal with probability one (see also Section 1.2). Hence the estimation of the moments of the series by time averages for the expansion of the density in terms of the Gaussian is justified.

In summary, we have shown that microseismic noise can be considered stationary and ergodic with a nearly Gaussian probability distribution. The model for the generation is an independent white light series convolved with a minimum phase wavelet.
Generation of Artificial Microseisms

We are now in a position to generate microseismic noise artificially. The Rand random digits which are independent and equally likely were summed in groups of ten and the mean subtracted out to give, by the central limit theorem, zero mean normal variates. These variates are the Gaussian white light input to the minimum phase system. They are Gaussian because of the central limit theorem as mentioned above, and white because the independence of the variates guarantees that only the zero lag of the autocorrelation has a non-zero value and hence insures that all frequencies will be present in the same amount. The minimum phase system response, can be computed from real data by spectrum factorization (Appendix E). The artificial noise is then generated by convolution of the minimum phase wavelet with the Gaussian white light series. Figure 1.4.16 shows real and artificial microseismic noise with the same r.m.s amplitude plotted one above the other. It is difficult, if not impossible, to tell the difference between the two with the eye alone. The identification of the two traces has been deliberately omitted from the figure. The upper trace is actually the artificial noise. Since we have been able to show that microseismic noise can be decomposed into a white light series and a wavelet, and that the white light is fairly independent and nearly Gaussian, our mathematical model is quite good, and thus our artificial microseisms are quite representative. In order to tell the difference between real and artificial microseisms we would have to decompose the series into a wavelet and white light and test the probability density against the normal density. If it is normal and not just "nearly" normal, the noise is
artificial. It is possible to overcome this difficulty by mapping the Gaussian series into a series with a probability density representative of the real noise, but this labor does not seem justified by the slight variation of the probability density from the Gaussian.

The chief use of the generating model is in the detection simulation studies in Chapter 3. Several hours of consecutive noise are needed for these studies and only a few minutes of it is available from our records. Using the model discussed above we can generate the necessary amount of noise artificially and it will be typical of microseisms and nearly indistinguishable from them.

It is also possible to generate three component artificial noise. The bind here would appear to be in simulating the coherency between the various components. However it has been shown (Simpson et al, 1962) that one can generate pairs of white light series with controlled coherency at zero phase. A simple extension of this to three series with controlled coherencies is given in Appendix F. One can therefore specify the coherencies between pairs of the three series, generate three white light series with these coherencies, and convolve each of the series with a different wavelet to obtain three component simulated coherent microseismic noise.
TABLE 1.4.1

SUMMARY OF RESULTS OF NORMALITY AND DEPENDENCY TESTS ON AMPLITUDE SERIES AND WHITE LIGHT SERIES.

<table>
<thead>
<tr>
<th>RECORD</th>
<th>PROB. EXCEED.</th>
<th>CHI SQUARE</th>
<th>DEPENDENCY</th>
<th>LENGTH OF SERIES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AMPLITUDE</td>
<td>WHITE LIGHT</td>
<td>AMPLITUDE</td>
<td>WHITE LIGHT</td>
</tr>
<tr>
<td>1000</td>
<td>.66435</td>
<td>0000</td>
<td>.25336</td>
<td>00976</td>
</tr>
<tr>
<td>1001</td>
<td>.01293</td>
<td>0000</td>
<td>.26546</td>
<td>00935</td>
</tr>
<tr>
<td>1002</td>
<td>.0000</td>
<td>01522</td>
<td>.47489</td>
<td>03863</td>
</tr>
<tr>
<td>1003</td>
<td>.0000</td>
<td>00305</td>
<td>.50919</td>
<td>05031</td>
</tr>
<tr>
<td>1004</td>
<td>.28699</td>
<td>0000</td>
<td>.28226</td>
<td>01525</td>
</tr>
<tr>
<td>1005</td>
<td>.21316</td>
<td>00004</td>
<td>.30931</td>
<td>01378</td>
</tr>
<tr>
<td>1006</td>
<td>.01426</td>
<td>09632</td>
<td>.22233</td>
<td>00820</td>
</tr>
<tr>
<td>1007</td>
<td>.00289</td>
<td>32880</td>
<td>.20035</td>
<td>00397</td>
</tr>
<tr>
<td>1008</td>
<td>.0000</td>
<td>00004</td>
<td>.27856</td>
<td>00830</td>
</tr>
<tr>
<td>1009</td>
<td>.0000</td>
<td>01919</td>
<td>.28603</td>
<td>01051</td>
</tr>
<tr>
<td>1010</td>
<td>.0000</td>
<td>00350</td>
<td>.24385</td>
<td>01144</td>
</tr>
<tr>
<td>1011</td>
<td>.00113</td>
<td>00048</td>
<td>.27526</td>
<td>00731</td>
</tr>
<tr>
<td>1026</td>
<td>.00015</td>
<td>0000</td>
<td>.25891</td>
<td>00483</td>
</tr>
<tr>
<td>1027</td>
<td>.0000</td>
<td>0000</td>
<td>.25699</td>
<td>00677</td>
</tr>
<tr>
<td>1028</td>
<td>.00051</td>
<td>0000</td>
<td>.24425</td>
<td>00520</td>
</tr>
<tr>
<td>1029</td>
<td>.0000</td>
<td>0000</td>
<td>.27333</td>
<td>09075</td>
</tr>
<tr>
<td>1030</td>
<td>.00252</td>
<td>00197</td>
<td>.25838</td>
<td>02333</td>
</tr>
<tr>
<td>1031</td>
<td>.12048</td>
<td>0000</td>
<td>.24759</td>
<td>00618</td>
</tr>
</tbody>
</table>

PROBABILITY OF EXCEEDING CHI SQUARE LISTED AS .0000 IS ACTUALLY LESS THAN .000032, BUT NOT ZERO.
Table 1.4.2

Edgeworth Series Results

<table>
<thead>
<tr>
<th>Record</th>
<th>Probability of Exceeding Chi-Squared</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>One</td>
<td>Two</td>
</tr>
<tr>
<td>1000</td>
<td>.00063</td>
<td>.44294</td>
</tr>
<tr>
<td>1001</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>1002</td>
<td>.0</td>
<td>.52057</td>
</tr>
<tr>
<td>1003</td>
<td>.87704</td>
<td>.99999</td>
</tr>
<tr>
<td>1004</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>1005</td>
<td>.0</td>
<td>.02302</td>
</tr>
<tr>
<td>1006</td>
<td>.93772</td>
<td>.04635</td>
</tr>
<tr>
<td>1007</td>
<td>.23902</td>
<td>.95413</td>
</tr>
<tr>
<td>1008</td>
<td>.99949</td>
<td>.34555</td>
</tr>
<tr>
<td>1009</td>
<td>.0</td>
<td>.09997</td>
</tr>
<tr>
<td>1010</td>
<td>.99999</td>
<td>.32270</td>
</tr>
<tr>
<td>1011</td>
<td>.99999</td>
<td>.81863</td>
</tr>
<tr>
<td>1026</td>
<td>.0</td>
<td>.00043</td>
</tr>
<tr>
<td>1027</td>
<td>.99995</td>
<td>.0</td>
</tr>
<tr>
<td>1028</td>
<td>.02309</td>
<td>.04340</td>
</tr>
<tr>
<td>1029</td>
<td>.28383</td>
<td>.0</td>
</tr>
<tr>
<td>1030</td>
<td>.77600</td>
<td>.99999</td>
</tr>
<tr>
<td>1031</td>
<td>.31825</td>
<td>.0</td>
</tr>
</tbody>
</table>

Degrees: Refers to the number of degrees of freedom for the lowest approximation number for which the probability of exceeding Chi-Squared is greater than .01.
Figure 1.4.5
Figure 1.4.6 Empirical Probability Density of White Light Series of Record 1000 With First Five Edgeworth Series Approximations.
Figure 1.4.7 Empirical Probability Density of White Light Series of Record 1001 With First Five Edgeworth Series Approximations.
Figure 1.4.8 Empirical Probability Density of White Light Series of Record 1006 With First Five Edgeworth Series Approximations.
Figure 1.4.9 Empirical Probability Density of White Light Series of Record 1007 With First Five Edgeworth Series Approximations.
Figure 1.4.10 Empirical Probability Density of White Light Series Of Record 1008 With First Five Edgeworth Series Approximations.
Figure 1.4.11 Empirical Probability Density of White Light Series of Record 1026 With First Five Edgeworth Series Approximations.
Figure 1.4.12 Empirical Probability Density of White Light Series of Record 1027 With First Five Edgeworth Series Approximations.
Figure 1.4.13
ANALYSIS OF WHITE LIGHT SERIES OBTAINED BY CONVOLVING THE INVERSE OF THE MINIMUM PHASE WAVELET OF RECORD 1000 WITH THE ORIGINAL RECORD

COMPARISON OF ACTUAL DISTRIBUTION AND NORMAL DISTRIBUTION

NUMBER OF RANGES = 51
LENGTH OF SERIES = 2702
DEGREES OF FREEDOM = 48
MEAN OF SERIES = -0.10384890E 03
STANDARD DEVIATION = 0.75864953E 05

HIGHER CENTRAL MOMENTS
THIRD MOMENT = 0.91304071E 14
FOURTH MOMENT = 0.17391028E 21
FIFTH MOMENT = -0.10809396E 25
SIXTH MOMENT = 0.17594533E 32

EXPECTED COUNT = 52.9804

CHI-SQUARE = 0.11462693E 03
PROBABILITY OF EXCEEDING CHI-SQUARE IS LESS THAN 0.00032

POKER COUNT TEST RESULTS

<table>
<thead>
<tr>
<th>HAND TYPE</th>
<th>ACTUAL COUNT</th>
<th>EXPECTED COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUST</td>
<td>146</td>
<td>159.40800</td>
</tr>
<tr>
<td>1 PAIR</td>
<td>240</td>
<td>272.16000</td>
</tr>
<tr>
<td>2 PAIR</td>
<td>66</td>
<td>58.32000</td>
</tr>
<tr>
<td>3 OF A KIND</td>
<td>73</td>
<td>38.88000</td>
</tr>
<tr>
<td>FULL HOUSE</td>
<td>5</td>
<td>4.86000</td>
</tr>
<tr>
<td>STRAIGHT</td>
<td>7</td>
<td>3.88800</td>
</tr>
<tr>
<td>4 OF A KIND</td>
<td>3</td>
<td>2.43000</td>
</tr>
<tr>
<td>5 OF A KIND</td>
<td>0</td>
<td>0.05400</td>
</tr>
</tbody>
</table>

MEAN SQUARE CONTINGENCY = 0.88167071E-01
DEPENDENCY MEASURE = 0.97963411E-02

PROBABILITY DISTRIBUTION

NUMBER OF VALUES IN EACH OF 100 EQUALLY SPACED RANGES FROM -0.53663570E 06 TO 0.43644589E 06. 2702 VALUES IN ALL.

<table>
<thead>
<tr>
<th>VALUES</th>
<th>0.</th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>7.</th>
<th>8.</th>
<th>9.</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>9</td>
<td>12</td>
<td>18</td>
<td>11</td>
<td>24</td>
</tr>
<tr>
<td>0.5</td>
<td>29</td>
<td>37</td>
<td>54</td>
<td>60</td>
<td>72</td>
<td>80</td>
<td>90</td>
<td>95</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>0.6</td>
<td>145</td>
<td>164</td>
<td>164</td>
<td>159</td>
<td>148</td>
<td>141</td>
<td>145</td>
<td>131</td>
<td>119</td>
<td>130</td>
<td>87</td>
</tr>
<tr>
<td>0.7</td>
<td>65</td>
<td>68</td>
<td>38</td>
<td>44</td>
<td>38</td>
<td>30</td>
<td>27</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>0.8</td>
<td>16</td>
<td>11</td>
<td>5</td>
<td>12</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
ANALYSIS OF WHITE LIGHT SERIES OBTAINED BY CONVOLVING THE INVERSE OF THE MINIMUM PHASE WAVELET OF RECORD 1006 WITH THE ORIGINAL RECORD

COMPARISON OF ACTUAL DISTRIBUTION AND NORMAL DISTRIBUTION

NUMBER OF RANGES = 51
LENGTH OF SERIES = 2682
DEGREES OF FREEDOM = 48
MEAN OF SERIES = 0.17902389E 03
STANDARD DEVIATION = 0.71888679E 05

HIGHER CENTRAL MOMENTS
THIRD MOMENT = -0.47103929E 14
FOURTH MOMENT = 0.22192675E 21
FIFTH MOMENT = -0.62127688E 26
SIXTH MOMENT = 0.67908355E 32

EXPECTED COUNT = 52.5882

CHI-SQUARE = 0.61046970E 02
PROBABILITY OF EXCEEDING CHI-SQUARE = 0.96320E-01

POKER COUNT TEST RESULTS

<table>
<thead>
<tr>
<th>HAND TYPE</th>
<th>ACTUAL COUNT</th>
<th>EXPECTED COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUST</td>
<td>130</td>
<td>158.22720</td>
</tr>
<tr>
<td>1 PAIR</td>
<td>263</td>
<td>270.14399</td>
</tr>
<tr>
<td>2 PAIR</td>
<td>69</td>
<td>57.88800</td>
</tr>
<tr>
<td>3 OF A KIND</td>
<td>46</td>
<td>38.59200</td>
</tr>
<tr>
<td>FULL HOUSE</td>
<td>8</td>
<td>4.82400</td>
</tr>
<tr>
<td>STRAIGHT</td>
<td>13</td>
<td>3.65920</td>
</tr>
<tr>
<td>4 OF A KIND</td>
<td>7</td>
<td>2.41200</td>
</tr>
<tr>
<td>5 OF A KIND</td>
<td>0</td>
<td>0.05360</td>
</tr>
</tbody>
</table>

MEAN SQUARE CONTINGENCY = 0.73803157E-01
DEPENDENCY MEASURE = 0.82003506E-02

PROBABILITY DISTRIBUTION

NUMBER OF VALUES IN EACH OF 100 EQUALLY SPACED RANGES FROM -0.73412665E 06 TO 0.48402021E 06. 2682 VALUES IN ALL.

```
| 1s | 0s |
| 0s |
| 0s |
| 0s |
| 0s |
| 0s | 2s | 4s | 5s | 2s | 6s | 1s | 1s | 1s | 22s|
| 47s| 47s| 87s| 82s| 98s | 126s| 149s| 160s| 206s| 220s|
| 205s| 178s| 172s| 156s| 143s| 116s| 98s | 82s | 55s | 32s |
| 41s| 31s | 15s | 12s | 8s | 7s | 2s | 3s | 4s | 4s |
| 2s | 0s | 0s | 0s | 0s | 0s | 1s | 0s | 0s | 0s |
| 0s | 0s | 0s | 0s | 1s | 0s | 0s | 0s | 0s | 1s |
```
Figure 1.4.15
ANALYSIS OF WHITE LIGHT SERIES OBTAINED BY CONVOLVING THE INVERSE OF THE MINIMUM PHASE WAVELET OF RECORD 1026 WITH THE ORIGINAL RECORD

COMPARISON OF ACTUAL DISTRIBUTION AND NORMAL DISTRIBUTION

NUMBER OF RANGES = 55
LENGTH OF SERIES = 3082
DEGREES OF FREEDOM = 52
MEAN OF SERIES = 0.29668643E 02
STANDARD DEVIATION = 0.49980906E 05

HIGHER CENTRAL MOMENTS
THIRD MOMENT = 0.36927477E 14
FOURTH MOMENT = 0.41691343E 20
FIFTH MOMENT = 0.39579482E 25
SIXTH MOMENT = 0.22342489E 31

EXPECTED COUNT = 56.0364

CHI-SQUARE = 0.15871704E 03
PROBABILITY OF EXCEEDING CHI-SQUARE IS LESS THAN 0.00032

POKER COUNT TEST RESULTS

<table>
<thead>
<tr>
<th>HAND TYPE</th>
<th>ACTUAL COUNT</th>
<th>EXPECTED COUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUST</td>
<td>143</td>
<td>181.84320</td>
</tr>
<tr>
<td>1 PAIR</td>
<td>307</td>
<td>310.46399</td>
</tr>
<tr>
<td>2 PAIR</td>
<td>90</td>
<td>66.52800</td>
</tr>
<tr>
<td>3 OF A KIND</td>
<td>53</td>
<td>44.35200</td>
</tr>
<tr>
<td>FULL HOUSE</td>
<td>4</td>
<td>5.54400</td>
</tr>
<tr>
<td>STRAIGHT</td>
<td>12</td>
<td>4.43520</td>
</tr>
<tr>
<td>4 OF A KIND</td>
<td>6</td>
<td>2.77200</td>
</tr>
<tr>
<td>5 OF A KIND</td>
<td>1</td>
<td>0.06160</td>
</tr>
</tbody>
</table>

MEAN SQUARE CONTINGENCY = 0.43508112E-01
DEPENDENCY MEASURE = 0.48342347E-02

PROBABILITY DISTRIBUTION

NUMBER OF VALUES IN EACH OF 100 EQUALLY SPACED RANGES FROM -0.27321346E 06 TO 0.35513622E 06. 3082 VALUES IN ALL.

<table>
<thead>
<tr>
<th>VALUES</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>3</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>18</td>
<td>13</td>
<td>24</td>
</tr>
<tr>
<td>27</td>
<td>36</td>
<td>32</td>
<td>55</td>
<td>68</td>
<td>99</td>
<td>96</td>
<td>117</td>
<td>155</td>
<td>140</td>
</tr>
<tr>
<td>175</td>
<td>189</td>
<td>154</td>
<td>179</td>
<td>186</td>
<td>163</td>
<td>172</td>
<td>150</td>
<td>124</td>
<td>108</td>
</tr>
<tr>
<td>103</td>
<td>89</td>
<td>70</td>
<td>56</td>
<td>60</td>
<td>29</td>
<td>24</td>
<td>12</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Figure 1.4.16

Real and Artificial Microseismic Noise
1.5 Cross-Series Properties

The availability of simultaneous three component seismic noise records from different stations affords opportunity for cross correlation and cross-spectral analyses. Techniques similar to those of autospectral analysis have been worked out and programmed for high speed digital computers. The major computational difference is the need for a sine transform in addition to the cosine transform since the cross correlation is not in general an even function. Knowing the sine and cosine transforms of the cross correlation it is easy to compute the magnitude cross power and phase spectra, and it is also useful to compute the coherency. The development of the usual expression for coherency can be done quickly for transients and then carried over to discrete time for our case.

Cross Correlation, Cross Power and Coherency

For two transients \(x(t) \) and \(y(t) \) the cross correlation is

\[
\Phi_{xy}(\tau) = \int_{-\infty}^{\infty} x(t) y(t+\tau) dt
\]

The cross power spectrum is then the Fourier transform

\[
\Phi_{xy}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi_{xy}(\tau) e^{i\omega \tau} d\tau = \frac{1}{2\pi} \int_{-\infty}^{\infty} x(t) y(t-\tau) e^{i\omega \tau} dt d\tau
\]

with the change of variables \(r = t+\tau \) this becomes

\[
\Phi_{xy}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt \int_{-\infty}^{\infty} y(r) e^{i\omega r} dr
\]
hence
\[\Phi_{xy}(\omega) = 2\pi \overline{F_x(\omega)} F_y(\omega) \quad (1.5.1) \]

where \(F_x(\omega) \) is the Fourier transform of \(x(t) \), \(F_y(\omega) \) the Fourier transform of \(y(t) \), and the bar denotes complex conjugation. The auto-power spectra are found to be, by similar treatment,

\[\Phi_{xx}(\omega) = 2\pi F_x(\omega) \overline{F_x(\omega)} \]
\[\Phi_{yy}(\omega) = 2\pi F_y(\omega) \overline{F_y(\omega)} \]

The coherency is then usually defined as

\[\text{Coh}_{xy}(\omega) = \frac{\left| \Phi_{xy}(\omega) \right|}{\sqrt{\Phi_{xx}(\omega) \Phi_{yy}(\omega)}} \]

\[= \frac{\left| F_x(\omega) F_y(\omega) \right|}{\sqrt{F_x(\omega) \overline{F_x(\omega)} F_y(\omega) \overline{F_y(\omega)}}} = 1 \]

This definition is not particularly useful since \(\text{Coh}_{xy}(\omega) \) is always
one. If the cross-correlation is weighted by some function, such as the Daniell weighting function (Section 1.3), the coherency is not necessarily one and has some meaning as a measure.

We define the normalized cross power vector $N(\omega)$

$$N(\omega) = \frac{\Phi'_{xy}(\omega)}{\sqrt{\Phi_{xx}(\omega) \Phi_{yy}(\omega)}}$$

where $\Phi'_{xy}(\omega)$ now takes into consideration the weighting function $W(\tau)$.

$$\Phi'_{xy}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(t) y(t+\tau) dt \ e^{i\omega\tau} W(\tau) d\tau$$

$$\Phi'_{xy}(\omega) = F_x(\omega) \overline{F_y(\omega)} * W(\omega)$$

where $W(\omega)$ is the Fourier transform of $W(\tau)$ and the asterisk denotes convolution. $\Phi'_{xy}(\omega)$ is in general complex, hence $N(\omega)$ is truly a vector. The coherency is then defined

$$\text{coh}_{xy}(\omega) = |N(\omega)|$$

Daniell Window and M/N Ratio

The treatment is almost identical for discrete time. The complete transient cross correlation for the two series X_t and Y_t each of points is
and the cross power spectrum with the Daniell weighting function is

\[\Phi_{xy}(\tau) = \frac{1}{2N-1} \sum_{t=-(N-1)}^{N-1} x_t y_{t+\tau}, \quad \tau = 0, \pm 1, \ldots, \pm (N-1) \]

\[
\Phi_{xy}^\prime(\omega) = \frac{1}{2\pi} \sum_{\tau=-(N-1)}^{N-1} \Phi(\tau) \left(\frac{\sin \left(\frac{\pi \tau}{M} \right)}{\frac{\pi \tau}{M}} \right) e^{i \omega \tau}
\]

We shall take \(\omega = n \omega_0 \) with \(\omega_0 = \pi / M \) where \(M \) is the Daniell parameter, and \(n = 0, 1, 2, \ldots, M \). We have seen in Section 1.3 that, for \(N / M \) large, the Daniell window is nearly rectangular. With \(\omega_0 = \pi / M \) the windows for neighboring spectral estimates \(K \omega_0 \) and \((K+1) \omega_0 \) overlap by about 50%. The Daniell window averages the sine and cosine transforms over the window width and consequently averages the cross power vector, \(N(\omega) \). We see, therefore, that \(|N(\omega)| \), the coherency, is less than or equal to one. If the \(N(\omega) \) vector changes direction rapidly over the band \(\omega \pm \frac{\pi}{M} \) the vector averaging will tend to cancel out and the coherency will be low, and if the vector direction is not changing or changing only slightly, the coherency will be high. Thus the coherency as we use it is a measure of how rapidly the cross power phase is changing. If the records being cross correlated are identical, the phase spectrum is zero and the coherency is one. (Actually the coherency may be slightly less than one since the Daniell window is not quite
If the records are different, the coherencies will be low unless there are some bands of frequencies where the phase remains relatively constant.

Cross Spectra of Different Components at the Same Station

Figures 1.5.1 to 1.5.3 show the results of the cross spectral computations between different components at the same station. The graphs in the figures are identified individually with the two record numbers of the data used, the indices of the first and last points of the data for each record and the Daniell parameter, M. In most cases, no computation has been done for frequencies above five cps. The recordings at any one station were made within a fraction of a wavelength of any wave of interest so that no compensation need be made for linear phase shifts due to spatial separation.

Figure 1.3.1 shows the cross-spectra of the components of the noise recorded before the Logan shot 1902 km from the shot (records 1000, 1002 and 1004). The only really prominent feature of this set of computations is the low frequency spike which is the tail end of the well-known oceanic microseisms. The Benioff instrument cuts off fairly sharply at low frequencies so that this spike is somewhat artificial in that its low frequency side is simply instrument cutoff, but that sharpness of the higher frequency side must be a real phenomenon. The phase spectrum does not show the expected 90° phase shift for Rayleigh waves, but this may be explained by the fact that the instrument characteristics are changing rapidly here and are hence possibly non-uniform from instrument to instrument. None of the frequencies with fairly high coherency seem to
have phases corresponding to any known wave type. We note that the phases have been plotted to fall between $+\pi$ and $-\pi$.

Figure 1.5.2 shows the cross-spectra of the components of the noise before the Logan shot 2111 km from the shot point (Records 1006, 1008 and 1010). The 1008-1010 set of graphs have high coherence and power at 1.9 cps, but the phase is $-\pi$ which does not pin down any wave type. The peak at 2.1 cps has a phase closer to -90° which could conceivably be a Rayleigh wave. The 1006-1010 set of graphs has reasonably coherent peaks at .6, 1.4 and 1.9 cps. The .6 and 1.4 cps peaks are nearly in phase and could, therefore, be Love waves. The 1.9 cps peak is another of the many bands which are fairly coherent but have phase relationships which are not indicative of any particular wave type.

Figure 1.5.3 shows the cross spectra of the noise recorded before the Blanca shot 1610 km from the shot (records 1026, 1028 and 1030). There are possible Rayleigh waves at 1 and 2 cycles per second, but the coherencies are somewhat low.

Figure 1.5.4 shows the auto spectra of the records used in the cross spectral computations. They are included for convenient reference.

It seems that, in view of the above results, the model of a single band of surface waves from one direction is entirely too simple. It is much more likely that there are many surface waves of several frequencies coming from several sources. For a few stations quite close to the coast it may be possible to complicate the model to take care of surface waves from a few directions, and produce some believable results. However, the stations for which we have good noise data are very far inland, nearly equi-distant from the Atlantic and Pacific coasts. Thus, sources from the
Atlantic, Pacific, Gulf and Great Lakes may produce microseisms which will be recorded with nearly the same amplitude at these inland stations. On top of this we have local sources which confuse the issue considerably. The higher frequency bands at 1.4 and 2.0 cps were seen in the last two sections to have no particular directional properties and to have no simple amplitude dependence on distance from water wave sources. We conclude that there are of local origin and may be isotropic. Even a fairly complicated model taking into account many sources may not fit the data too well, and would certainly require a lot of labor to use.

Cross Spectra of Like Components at Different Stations - Linear Phase Shifts

The coherency measure used causes some difficulty if the two series are shifted in time, since a time shift will result in a linear phase shift. For example, $e^{i\omega t}$ has zero phase at time $t=0$ but at a later time the phase is ωt. If the time shift is large, the phase changes over the small band of frequencies $\omega \pm \pi/\Delta\omega$ will be large and will tend to reduce the coherency estimate. If meaningful coherency values are to be obtained one must line up the records properly in time before computing the cross correlation. This procedure assumes that the relative time shift is known and this is not always the case. For three component records at one station there is no difficulty since a line up in absolute time is all that is necessary. However, if one is trying to follow a wave packet across considerable distance by cross correlation and coherency measures, difficulties arise. If the records are lined up in absolute time, the relative time of the maximum of the cross correlation may give an idea of the arrival time differences, but the coherency will not
necessarily be large in the range of the frequencies which comprise the wave packet. If the records are shifted the amount, τ, indicated by the maximum of the cross correlation and then cross correlated, the coherency in the frequency region which caused the maximum will certainly become larger, but there may have been features in the original record other than the wave packet which caused the maximum. Hence we have still not identified the wave packet or its relative time shift.

The magnitude of the time shift for any particular wave packet will of course depend on the velocity, V, of the packet, on the distance between the stations, X, and on the direction of travel of the wave relative to a line between the stations. The time shift can therefore vary from $t=0$, if the waves are travelling perpendicular to the line between the stations, to $t=X/V$, if the waves are parallel to the line. The problem is complicated by the existence of many waves of different frequency of waves of the same frequency travelling in different directions. In even the simple case of a single wave packet dispersion may disrupt the coherence.

There is another scheme to find the appropriate time shifts which is a bit more promising than the cross correlation method. If the cross correlation is computed and not weighted by the Daniell factor, the sine and cosine transforms will not average the cross power vector over the Daniell window width. The cross power vectors can then be rotated by phase shifts corresponding to known time shifts in the frequency range of interest and averaged in this range. This is done for several time shifts and one looks for the time shift corresponding to the largest resultant of the averaged vectors. This should be close to the shift
necessary to maximize the coherency in the band of frequencies when the Daniell window is used.

Some time shifting experiments have been done using data from two different stations. Cross correlation and cross spectral computations have been carried out on like components at different stations using the methods described above. Figure 1.5.5 shows the complete cross correlation of records 1000, the noise before the Logan shot 1902 km from the shot point, and record 1006, the noise before the Logan shot 2111 km from the shot point. The two records were lined up in absolute time before the computation. If most of the energy was travelling in one direction we would expect the cross correlation to have a pronounced maximum, but not necessarily for zero lag. There is no such maximum in Figure 1.5.5. (The correlation is the transient cross correlation and so dies off to zero at the ends.) If the energy were coming directly from one station to the other at about 3 km/sec it would take about 70 seconds or 1400 data points. The correlation covers from minus to plus 2999 lags and should show a maximum if one were present. It is, of course, possible that a maximum occurs for one frequency and that it is masked by the presence of other frequencies. To check this for the more energetic bands, the data was band pass filtered before correlation. Figures 1.5.6 and 1.5.7 show the cross correlation for pass bands centered at 1.4 cps and 2.0 cps. The results are perhaps a bit disappointing but not totally unexpected. The cross correlation for the 1.4 cps band is exceedingly sinusoidal. This can, of course, happen if the band is too narrow, but we expect something more like the figure for the 2 cps pass band which
shows a beating between the frequencies present. It is not possible to pick a maximum on either of these figures with any certainty. If the energy is contained in such a narrow band as the 1.4 cps correlation indicates, the signal is not random enough for coherency to have any meaning.

Some time shifting was also done to maximize the coherency by looking for a linear trend in the phase. Figures 1.5.8 and 1.5.9 show cross spectral results for records 1000 and 1006 for several different time shifts. The frequencies about 1.4 and 2.0 cps were checked for a linear trend and appropriate shift made. The coherency was increased at these frequencies for the time shift indicated. The shifts were +1.5 seconds (that is, record 1000 has been shifted such that its absolute time origin, T, lines up with absolute time $T + 1.5$ seconds on record 1006) and -2.5 seconds. In view of the cross correlation results, it does not seem that these time shifts, even though they increase the coherency, have any particular physical interpretation in terms of velocity and direction of travel of particular waves. If the 1.4 and 2.0 cps are from local sources (and there must be many of these local sources across the country to explain the occurrence of the spectral lines at different stations) we would not expect the time shifts to have any significance since the lines are narrow and the sources isotropic. With such narrow band signals we can expect the coherency to be high for shifts which are integer multiples of the wave period. We can see that time shifting experiments are not particularly fruitful for the narrow band signals or for the bands when the instrument characteristics change so rapidly with frequency that a mismatch between instruments is probable. The experiments are more suitable for long period records where local sources play a smaller part.
Some cross spectral computations were also done on some data from the WMSO linear array. Simultaneous sections of noise were used with no time shifting. The noise from the first instrument in the array was cross correlated with the noise from several other instruments in the array. The results are shown in Figures 1.5.10 to 1.5.15. Again we see that at the frequencies with high coherence the phase is not changing rapidly. Figures 1.5.10 and 1.5.11 have a Daniell parameter of 400 and a slightly different frequency scale from Figures 1.5.13 and 1.5.14 which have a Daniell parameter of 200. The smaller Daniell parameter will take averages over wider bands and the resulting coherencies and phases will not be quite as jagged as those for a Daniell parameter of 400. Auto spectra are shown in Figures 1.5.12 and 1.5.15. When the coherency is high, we tend to say that the waves at that frequency are travelling at right angles to the array and there is no linear phase shift to disrupt the coherency computation. The phase spectra also show in some cases linear trends over bands of frequencies which are of course accompanied by low coherencies. A time shift would bring up the coherency and indicate the direction of travel of the source waves for these bands.

A much more sophisticated analysis of array data is needed before any reliable results can be stated. Simulation studies of the sort described in Chapter 3 would be of interest with the array recordings time shifted (delayed) to minimize the noise and thus utilize the directional properties of the array. Similar studies could also be done with data from a two dimensional array.
Figure 1.5.1 Cross Spectra of Different Components at the Same Station
Figure 1.5.2 Cross Spectra of Different Components at the Same Station
Figure 1.5.3 Cross Spectra of Different Components at the Same Station
Figure 1.5.4 Auto Spectra
Figure 1.5.5 Complete Transient Cross Correlation of Records 1000 and 1006
Figure 1.5.6 Complete Transient Cross Correlation of Records 1000 and 1006
Band Pass Filtered at 1.4 Cycles Per Second
Figure 1.5.7 Complete Transient Cross Correlation of Records 1000 and 1006
Band Pass Filtered at 2.0 Cycles Per Second
Figure 1.5.8 Cross Spectra of Records 1000 and 1006 For Indicated Time Shifts
Figure 1.5.9 Cross Spectra of Records 1000 and 1006 For Indicated Time Shifts
Figure 1.5.10 Cross Spectra of Array Elements
Figure 1.5.11 Cross Spectra of Array Elements
Figure 1.5.13 Cross Spectra of Array Elements
Figure 1.5.14 Cross Spectra of Array Elements
Figure 1.5.15 Auto Spectra of Array Elements
2. PREDICTION OF MICROSEISMS

2.1 Prediction by Minimization of Mean Squared Error

Prediction and the First Motion Interval

Elementary considerations of the possible differences between the signals from earthquakes and the signals from underground explosions were based on the obvious differences in the source mechanisms. An explosion should give an initial compression whereas an earthquake, being a shearing source, should give compressions or rarefactions depending on the position of the observer relative to the fault plane and the direction of slip along the plane. A group of recording stations around a source should therefore all record initial compressive first motion for an explosion, but would vary if an earthquake were the source. Granting the first motion criterion is legitimate, there is still the problem of identifying the first motion on the record when the signal is corrupted by noise. The problem is somewhat simplified by the fact that, even though its pulse may be small, the first motion is followed by stronger P waves which are easily discernible in the noise. These P waves therefore allow us to say approximately where in time the first motion pulse arrived. If we could by some means predict what the noise would be in a small interval preceding the strong P waves and subtracted the predicted noise from the signal plus noise, we would be left with the uncorrupted signal and could make definite statements concerning the direction of first motion. Figure 2.1.1 illustrates this idea with the assumption of perfect prediction of the noise.
In general, of course, we cannot predict perfectly, but a good prediction could possibly increase the signal to noise ratio to a point where there would no difficulty in picking out the first motion direction. We will therefore wish to express the predictability of the noise in terms of signal to noise ratio improvement. Evaluation of the effectiveness of the scheme can be done by prediction studies of the noise alone without reference to any particular signal. The only parameter we need is time length over which we must predict. This will be called the prediction distance and it will be denoted by K in the following analysis.

We wish to form a linear operator which will predict the "future" of a record, X_i, from its "past" and possibly from the past of other related records (e.g. three components at one station). We note that even though we are not necessarily operating in real time it is necessary that we use only the past as a basis for prediction since the past is noise alone and the future is signal plus noise. We shall present the analysis for the formation of a linear operator operating on three records to predict one of the three. The expressions will reduce simply to the case of self prediction, the prediction of one record from itself. The analysis has been done (Wadsworth et al, 1953) for the two dimensional case and the simple extension to three dimensions is given here.

The requirement that the record X_i be predicted from itself and from Y_i and Z_i can be stated by the regression function (Wadsworth et al, 1953).

$$\hat{X}_{i+K} = d + \sum_{s=0}^{M} a_s X_{i-s} + \sum_{s=0}^{M} b_s Y_{i-s} + \sum_{s=0}^{M} c_s Z_{i-s}$$
where \hat{y}_{i+k} is the predicted value of the X_i time series k time units ahead. One time unit is simply the sampling period and is .05 seconds for the Logan and Blanca records. The X_i are the actual noise values and a_5, b_5, and c_5 constitute the linear operator which must be determined. The criterion used in this determination is the Wiener mean squared error criterion where we wish to minimize the sum of the mean squared error between the actual and predicted X_i series. This means, of course, that we have to know what the future is of the noise above. Hence a long series of pure noise is arbitrarily divided into past and future and the operator formed. The operator, under the assumption of stationarity of the time series, can then be used on the portion of the noise preceding the first motion to predict the noise in the first motion interval.

Mean Squared Error Techniques for Three-Dimensional Case

The sum of the squared error is taken over the operator interval length from $i+k=N$ to $i+k=N+n-1$ a duration of n time units. Thus we minimize I where

$$I = \sum_{i=N-k}^{N+n-1-k} (X_{i+k} - \hat{X}_{i+k})^2$$

$$I = \sum_{i=N-k}^{N+n-1-k} \left[X_{i+k} - (d + \sum_{s=0}^{M} a_s x_{i-s} + \sum_{s=0}^{M} b_s y_{i-s} + \sum_{s=0}^{M} c_s z_{i-s}) \right]^2$$
with respect to d, a_s, b_s and c_s. This is done by setting the partial
derivatives with respect to d, a_s, b_s and c_s equal to zero for all S.
The resulting set of $3M+4$ equations for the $3M+4$ operation coef-
ficients is

$$
n d + \sum_s \left[a_s \sum_i x_{i-s} + b_s \sum_i y_{i-s} + c_s \sum_i z_{i-s} \right] = \sum_i x_{i+k}$$

$$
d \sum_i x_{i-r} + \sum_s \left[a_s \sum_i x_{i-s} x_{i-r} + b_s \sum_i y_{i-s} x_{i-r} + c_s \sum_i z_{i-s} x_{i-r} \right] = \sum_i x_{i-r} x_{i+k}$$

$$
d \sum_i y_{i-r} + \sum_s \left[a_s \sum_i x_{i-s} y_{i-r} + b_s \sum_i y_{i-s} y_{i-r} + c_s \sum_i z_{i-s} y_{i-r} \right] = \sum_i y_{i-r} x_{i+k}$$

$$
d \sum_i z_{i-r} + \sum_s \left[a_s \sum_i x_{i-s} z_{i-r} + b_s \sum_i y_{i-s} z_{i-r} + c_s \sum_i z_{i-s} z_{i-r} \right] = \sum_i z_{i-r} x_{i+k}$$

for $r = 0$ to M.

where summations over i are from $i = N-k$ to $i = N+M-1-k$, and summa-
tions over S are from $S = 0$ to $S = M$. We write this as the matrix
equation

$$RA = B$$

(2.1.1)
where R is a $3M+4$ by $3M+4$ symmetric correlation matrix, each element depending essentially on different lags of the auto and cross correlations of x_i, y_i, and z_i. A is the $3M+4$ by L solution matrix where each column of A is the prediction operator $(\alpha_5^\kappa, \alpha_6^\kappa, b_6^\kappa, c_5^\kappa, \ldots, c_{M}^\kappa, d^\kappa)$ for different prediction distance κ, and κ takes on L different values. A is obtained by inversion of the R matrix.

$$A = R^{-1} B$$

B is an L by $3M+4$ matrix, where each column of B is the right hand side of the equation for a different κ. The matrix equation can be partitioned as shown below.
If we denote the auto correlation or Toeplitz matrix by

\[
\begin{bmatrix}
 r_0 & r_1 & r_2 & \cdots & r_n \\
 r_n & r_0 & r_1 & \cdots & r_{n-1} \\
 r_{n-1} & r_n & r_0 & \cdots & \vdots \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 \vdots & \vdots & \vdots & \cdots & r_0
\end{bmatrix}
\]

where \(r_j \) is the auto correlation for the \(j \)th lag we see that the diagonal submatrices of \(R \) in equation (2.1.1) are not quite auto correlation matrices because the terms along diagonals of the submatrices are summed over different intervals. If the operator interval length, \(n \), is large, the diagonal submatrices are only very slightly different from auto correlation matrices and approach this as \(n \to \infty \).

If we take the one dimensional zero mean case (\(b_j = c_j = 0 \)) with \(n \) large, the problem becomes the same as that treated by Levinson (1949).

Predictability and the Percent Reduction

A measure of how well the prediction operator performs its task is the percent reduction, \(R_p \). This quantity is defined (Wadsworth et al, 1953) as

\[
R_p = 100 \left(1 - \frac{I_m}{I_o} \right)
\]

where \(I_m \) is the value for \(I \) for the operator used and \(I_o \) is a measure of the sample variance over the same interval:

\[
I_o = \sum_i \left(x_{i+k} - \bar{x} \right)^2
\]
If we think of $I_0 - I_m$ as a measure of the variance of the prediction we can see that the percent reduction is a measure of the amount of power which can be predicted. In terms of the signal to noise ratio, if we take S as a general signal and N the noise, then before filtering we have

$$\left(\frac{S}{N} \right)_{\text{Before}} = \frac{S}{\sqrt{\frac{1}{n} I_0}}$$

and after filtering

$$\left(\frac{S}{N} \right)_{\text{After}} = \frac{S}{\sqrt{\frac{1}{n} I_m}}$$

Hence

$$\left(\frac{S}{N} \right)_{\text{After}} = \sqrt{1 - \frac{RP}{100}} \left(\frac{S}{N} \right)_{\text{Before}}$$

Prediction Computations

In order to test the predictability, then, one must take a section of noise record, divide it into past and future and form the R and B matrices given in equation (2.1.1). The R matrix is inverted and R^{-1} is multiplied by B. The columns of the resulting A matrix are the operators or filters for different prediction distance K. N predictions for a given K are made by moving the operator along the real data for successive points. The prediction error, I_m for this K can then be
formed and, with \(I_0 \) for the same \(n \) points, the percent reduction can be computed. This is done for each operator so that the percent reduction as a function of \(\kappa \) can be obtained.

This procedure has been programmed for the IBM 709-7090 computers. Computation has been done for one dimension with several \(M \) values with \(\kappa = 1 \) to 30 and for three dimensions with \(M = 30 \) also for \(\kappa = 1 \) to 30. The results of the one dimensional experiments are shown in Figures 2.1.2 to 2.1.4. The percent reduction should increase with increasing length of operator (\(M \) value) and does in all cases computed. For an infinite length operator the percent reduction must decrease monotonely with \(\kappa \) (Robinson 1954, p. 148) which does not occur in the cases shown. This is obviously due to the short operator lengths used in the computations, and we can be sure that higher percent reduction would be obtained with longer operators. The spectra of the records (Figures 1.3.6 to 1.3.9) show that most of the energy is crowded into a few narrow bands, the lowest frequency being about 1 cps. It would be best to have operator lengths covering a few wave lengths of the major frequency components which in this case would be about three seconds or at least 60 terms. The method of solution for the operators then involves inversion of a 60 by 60 matrix which starts to suffer from round off error.

We note that in all cases the percent reduction falls off rapidly at first and then has one or more plateaus. The Cherry Hill Park records remain fairly predictable out to three seconds, maintaining a percent reduction of about 50. This is attributed to the narrowness of prominent spectral lines of these records. (A spike in the frequency domain represents
a sine wave and can be predicted exactly with a two term operator.)

If a typical wave length of the first motion is established at 1 second the corresponding prediction distance for the C.H.P. records would be 10 units. This would give a signal to noise ratio improvements of 1.4 and 1.3 for C.H.P. 31 (record 237) and C.H.P. 4 (record 204) which is not significant.

The Logan 1902 records show a plateau effect in the percent reductions but the initial fall is more pronounced than in the C.H.P. records. The vertical is the most predictable component and a 20 term operator gives a signal to noise improvement of only about 1.3 for 1 second (20 units).

We have seen that the predictability in the one dimension or self prediction case is not particularly significant. However, one might expect that the use of information from more than one component would do somewhat better if the components used are related. The analysis for three components has been shown and was programmed for the IBM 709-7090 computers.

The percent reduction for M values of 5, 10, 15 and 20 (corresponding to operator lengths of 16, 31, 46 and 61) for the prediction of the vertical component, Logan 1902 km, record 1002 from itself and the two horizontals is shown in Figure 2.1.5. Comparison of this figure with Figure 2.1.3, the self prediction results, shows an almost imperceptible improvement by using all components.

As mentioned above, the predictability is almost certain to be better if longer operators are used. With the above method of solution the
increase of operator length becomes impossible because the machine core is rapidly used up and significant additional time is needed for the computation. Therefore another method must be applied to obtain the longer operators or the idea of prediction must be discarded as impractical. Such a method does, however, exist and is treated in the next section, 2.2.
Figure 2.1.1 Concept Behind Least Squares Prediction Operator Experiments.
Predictability of Record 1000
Operator Fitted on 1500 Points
M = Number of Operator Terms
Predictability of Record 1002
Operator Fitted on 1500 Points

$M = \text{Number of Operator Terms}$

Figure 2.1.3
Predictability of Record 1004
Operator Fitted on 1500 Points
M = Number of Operator Terms

Figure 2.1.4
Predictability of Record 204
Operator Fitted on 1125 Points
M = Number of Operator Terms

Figure 2.1.5
Predictability of Record 233
Operator Pitted on 540 Points
$M = \text{Number of Operator Terms}$

Figure 2.1.6
Predictability of Record 1002
From Records 1000, 1002, 1004
Operator Fitted on 1500 Points

$M = \text{Number of terms operating of each record}$

Figure 2.1.7
2.2 Prediction and Spectrum Factorization

Comparison of Prediction Techniques

We have seen in the last section that the mean squared error technique was not a practical method of prediction in the form in which it was used because of the large amount of computer space and time required. The program for prediction using the mean squared error technique was written almost entirely in FORTRAN and, due somewhat to the inefficiency of FORTRAN, the time required to obtain a 60 term self-prediction operator was about 10 minutes on the IBM 7090. The spectrum factorization method requires the spectrum as an input but the time needed to compute a 500 term wavelet is only 2 minutes on the 7090. Since the timing of both methods increases as the cube of the operator length, it is easy to see that there are tremendous advantages to the spectrum factorization method. The computation of the complete transient autocorrelation of 3000 data points and Daniell spectrum of 500 terms takes only about 2 minutes if high speed techniques are used (Simpson et al, 1961b). The Levenson (1949) technique has been programmed for the 709-7090 computers by Ralph Wiggins, but the work presented here was done before this program was available. The timing of the Levenson technique program increases as the square of the operator length but is about the same as the spectrum factorization program for a 500 term operator. The factorization method yields the minimum phase wavelet from which, as we shall see, the percent reduction can be obtained directly. The Levenson technique, on the other hand, gives the prediction operator directly, and we must compute this operator for unit prediction distance and invert it to obtain the wavelet. The choice
between the two methods might well depend on whether one wants to actually do prediction or just find the percent reduction. An iteration technique for the multi-dimensional problem has been worked out by E. A. Robinson (personal communication), and it will be quite a bit faster than the three-dimensional technique described in the last section. The program for this has not been completed at the time of this publication.

Decomposition

The spectrum factorization method is much more fruitful than the mean squared error technique and the theory behind it is intimately related to the contents of section 1.4. In that section we showed that we could consider microseismic noise as a stationary ergodic time series and that, with a few additional considerations, we could assume that microseisms were generated by a white light (essentially independent) series convolved with a minimum phase wavelet. The importance of the minimum phase wavelet is that it is one sided, and therefore the expression for the present value of X_t, the microseismic noise, involves only the past values of f_t, the white light series. That is

$$X_t = \sum_{i=0}^{\infty} b_i f_{t-i}$$

where b_i is the minimum phase wavelet. We have seen that if b_i is known we can easily find a_i, the inverse minimum phase wavelet and can therefore write

$$f_t = \sum_{i=0}^{\infty} a_i X_{t-i} \quad (2.2.1)$$
so that all the past ξ_t can be found from all the past χ_t. We can therefore evaluate the expression for the minimum error for the mean squared error criterion (Robinson, 1954).

The minimum error is

$$I_{\text{MIN}} = E \left(\chi_{t+\kappa} - \hat{\chi}_{t+\kappa} \right)$$

where $\chi_{t+\kappa}$ is the true value of the series at time $t+\kappa$, $\hat{\chi}_{t+\kappa}$ is the predicted value, and the E means expected value. The true value is, from the above considerations,

$$\chi_{t+\kappa} = \sum_{i=0}^{\infty} b_i \xi_{t+\kappa-i}$$ \hspace{1cm} (2.2.2)

But we know ξ_{t-i} from equation (2.2.1), so that the error in prediction must result from our lack of knowledge of ξ_{t+j} from $j=0$ to κ. Since ξ_t are uncorrelated the best prediction we can do for them is to predict their mean, which is zero. Hence, our best prediction of $\chi_{t+\kappa}$, $\hat{\chi}_{t+\kappa}$, is given by equation (2.2.2) with $\xi_{t+\kappa-i} = 0$ for $t+\kappa-i \geq t$. That is

$$\hat{\chi}_{t+\kappa} = \sum_{i=\kappa}^{\infty} b_i \xi_{t+\kappa-i}$$

This has been shown to be true by Wold (1938), (Robinson, 1954).

Minimum Error and Percent Reduction in Terms of the Wavelet

The minimum error is, therefore,
If the expected value of \(\bar{F}_t^2 \) is one

\[
I_{MIN} = \sum_{i=0}^{K} b_i^2
\]

and we see that the minimum error and hence the percent reduction decreases monotonically with increasing prediction distance \(K \). We can now easily obtain an expression for the percent reduction, \(R_p \), in terms of \(b_i \). We recall that

\[
R_p = 100 \left(1 - \frac{I_{MIN}}{I_0} \right)
\]

where \(I_0 \) is the variance of the sample,

\[
I_0 = E[\bar{F}_t^2] = E\left[\sum_{i=0}^{\infty} b_i \bar{F}_{t+i} \right]^2
\]

\[
= \sum_{i=0}^{\infty} b_i^2 E[\bar{F}_t^2]
\]

Hence

\[
R = 100 \left(1 - \frac{\sum_{i=0}^{K-1} b_i^2}{\sum_{i=0}^{\infty} b_i^2} \right)
\]
where we have made no assumptions regarding the value of $E\left(\frac{X}{T} \right)^2$

Thus we see that if b_i is known we can find the value of R_p for all K without actually computing the prediction, or even the prediction operator. We saw in section 1.4 that it is possible to find b_i, and the process is called spectrum factorization. The derivation of the b_i from the power spectrum is given in Appendix E. We see also in Appendix E that it is possible to find the first M terms exactly. This procedure has been programmed for the IBM 709 and 7090 computers, and the program listing, FACTOR, appears in Appendix G. Appendix E also explains most of the program logic.

We note that the expression for I_0 requires all of the b_i and the program will only give us the first M. For long operators this is not troublesome since the wavelet dies off fairly rapidly. However, the estimate of I_0 using just M terms will be a bit small, and therefore the value of R_p will be a bit small. We could, of course, estimate I_0 from the data without using the b_i since I_0 is just the variance,

$$I_0 = \frac{1}{N} \sum_{i=0}^{N-1} (\chi_i - \bar{x})^2$$

where the mean is zero.

The computation of the minimum phase wavelet, b_i, has been done for 500 terms and the corresponding percent reductions are shown in Figures 2.2.1 to 2.2.6. Included also are some of the minimum phase wavelets and some of the inverse wavelets (Figures 1.4.1 to 1.4.5). The minimum phase wavelets for all the records are quite similar, so it is not
necessary to include all of the graphs.

The percent reductions are now, of course monotonely decreasing and are forced to zero at \(t = 25 \) seconds (not shown in graphs) because is computed from the first 500 terms (25 seconds). Comparison of these figures with the self-prediction of section 2.1 (Figures 2.1.2 to 2.1.4) shows a marked increase in predictability using this technique, as much as 10 in the percent reduction, but the increase is still not large enough to improve the signal to noise ratio in the first motion interval by a significant amount. Comparison of the estimate of \(I_0 \) from the 500-term wavelet with the sample variance estimated from 3000 data points indicates that the percent reductions obtained are off by less than one.
Figure 2.2.1 Percent reductions for prediction distances up to 12 seconds for records 1000, 1002, 1004.
Figure 2.2.2 Percent reductions for prediction distances up to 12 seconds for records 1001, 1003, 1005.
Figure 2.2.3 Percent reductions for prediction distances up to 12 seconds for records 1006, 1008, 1010.
Figure 2.2.4 percent reductions for prediction distances up to 12 seconds for records 1007, 1009, 1011.
Figure 2.2.5 Percent reductions for prediction distances up to 12 seconds for records 1026, 1028, 1030.
Figure 2.2.6 Percent reductions for prediction
distances up to 12 seconds for records 1027, 1029, 1031.
2.3 Summary Comments on Prediction

We have seen in the last two sections that the optimum least squares prediction for short operators and for one and three dimensions are not good enough to improve the signal to noise ratio significantly. Further, we saw that the best predictions possible using the wavelet obtained by spectrum factorization did not yield results of any consequence. The fact that we only had 500 terms of the infinite wavelet is not important since the estimate of the standard deviation using the 500 terms was quite good (within 0.1 percent). We have alternatives of increasing the operator length of the three dimensional prediction, of going to non-linear prediction models, or, of course, of rejecting the technique of prediction of the microseisms in the first motion interval as a useful method of improving the signal to noise ratio. The first alternative, increasing the operator length for the three-dimensional case, does not seem worth trying. The improvement in predictability of the three-dimensional case, over self prediction was seen to be miniscule. Further, the improvement of predictability of long operators over short was not significant. We therefore reject the first alternative.

Independence of White Light Series

It is possible, also, to reject the second alternative, that of non-linear prediction models. We saw, in section 1.4, in the decomposition of the microseisms to a white light series and a minimum phase wavelet, that the white light series could be considered purely random. That is, the \(\xi_t \) were not only uncorrelated, but also statistically independent.
From elementary probability considerations we have

$$P_{\gamma_1, \gamma_2}(x_1, x_2) = P_{\gamma_1}(x_1) P_{\gamma_2|x_1}(x_2|x_1)$$

The joint probability of γ_1 and γ_2 is equal to the marginal probability of γ_1 times the conditional probability of γ_2 given γ_1.

If γ_1 and γ_2 are independent

$$P_{\gamma_1, \gamma_2}(x_1, x_2) = P_{\gamma_1}(x_1) P_{\gamma_2}(x_2)$$

$$P_{\gamma_2|x_1}(x_2|x_1) = P_{\gamma_2}(x_2)$$

We can repeat this for many γ_i and obtain

$$P_{\gamma_1, \gamma_2, ..., \gamma_n}(x_{n+1}|x_1, x_2, ..., x_n) = P_{\gamma_{n+1}}(x_{n+1})$$

Thus from the definition of independence we see that the knowledge of $\gamma_1, \gamma_2, ..., \gamma_n$ give no information about γ_{n+1}. In a prediction problem where $\gamma_1, \gamma_2, ..., \gamma_n$ are the past values and γ_{n+1} the future values of a time series and the γ_i are independent, we have no information about γ_{n+1} except its probability density $P_{\gamma_{n+1}}(x_{n+1})$, which we know from the assumption of stationarity. Any prediction scheme using any of the γ_i will avail us nought, but $P_{\gamma_{n+1}}(x_{n+1})$.

The best least squares prediction which one can do in the case of independence is to predict the expected value of γ_{n+1}, the mean, which a linear predictor can do. Therefore, if random noise can be considered as an independent white light series convolved with a minimum phase wavelet, the best prediction one can do is linear prediction, since the non-linear predictor will only bring in higher order correlations which give no new information.
Weiner (1946) states that linear prediction is optimum in the case where the noise series can be reduced to a Gaussian white light series by convolution with a operator. The reason for this can be seen from the following analysis of the joint probability density for independent and dependent variables.

Independence and Gaussian White Light - Example

Let ζ_1 and ζ_2 be normally distributed independent random variables. Then the joint density of ζ_1 and ζ_2 is

$$P_{\zeta_1, \zeta_2}(\zeta_1, \zeta_2) = \frac{1}{2\pi \sigma_1 \sigma_2} \exp \left[-\frac{\zeta_1^2}{2\sigma_1^2} - \frac{\zeta_2^2}{2\sigma_2^2} \right]$$

where σ_i is the standard deviation of ζ_i. Now we define y_1 and y_2 as a linear combination of ζ_1 and ζ_2

$$y_1 = a \zeta_1 + bx_2$$
$$y_2 = c \zeta_1 + dx_2$$

(2.3.1)

and therefore

$$P_{\eta_1, \eta_2}(y_1, y_2) dy_1 dy_2 = P_{\zeta_1, \zeta_2}(x_1, x_2) dx_1 dx_2$$

or

$$P_{\eta_1, \eta_2}(y_1, y_2) = |J| P_{\zeta_1, \zeta_2}(x_1, x_2)$$

where $|J|$, the magnitude of the Jacobian for this transformation, is

$$J = ad - bc$$

Solving (2.3.1) for x_1 and x_2:
\[x_1 = \frac{a}{f} y_1 - \frac{b}{f} y_2 \]
\[x_2 = \frac{a}{f} y_2 - \frac{c}{f} y_1 \]

Hence joint density for the dependent variables \(\eta_1 \) and \(\eta_2 \) is

\[
P_{\eta_1, \eta_2}(y_1, y_2) = \frac{|J|}{2\pi \sigma_1 \sigma_2} \exp \left[-\left(\frac{\sigma_1^2 a^2 + \sigma_2^2 c^2}{2 \sigma_1^2 \sigma_2^2} \right) y_1^2 - \left(\frac{\sigma_1^2 b^2 + \sigma_2^2 d^2}{2 \sigma_1^2 \sigma_2^2} \right) y_2^2 - \left(\frac{\sigma_1^2 a^2 b^2}{2 \sigma_1^2 \sigma_2^2} \right) y_1 y_2 \right]
\]

We note the expected values of the following quantities.

\[
\begin{align*}
\mu_1 &= E(y_1) = a^2 \sigma_1^2 + b^2 \sigma_2^2 \\
\mu_2 &= E(y_2) = c^2 \sigma_1^2 + d^2 \sigma_2^2 \\
\mu_{12} &= E(y_1 y_2) = ac \sigma_1^2 + bd \sigma_2^2
\end{align*}
\]

Thus

\[
P_{\eta_1, \eta_2}(y_1, y_2) = \frac{|J|}{2\pi \sigma_1 \sigma_2} \exp \left[-\frac{\mu_1 y_1^2 - \mu_{12} y_1 y_2 + \mu_2 y_2^2}{2 \sigma_1^2 \sigma_2^2} \right]
\]

If \(\mu_{12} \), the correlation of \(y_1 \) and \(y_2 \), is zero, the cross term in the exponential is zero and \(P_{\eta_1, \eta_2}(y_1, y_2) \) factors. This can be extended for \(P_{\eta_1, \eta_2, \ldots, \eta_n}(y_1, y_2, \ldots, y_n) \) and we see that in general if the correlation coefficients are zero the joint density of \(n \) variables factors. Hence for the Gaussian, linear independence implies statistical independence. (Davenport and Root, 1950).
We thus see the reason behind Wiener's statement that linear prediction is optimum if it reduces the series to Gaussian White light. We need actually only show, therefore, that the white light series, ξ_t is Gaussian in order to reject the adoption of a non-linear predictor. We saw in section 1.4 that, for microseisms, ξ_t was Gaussian in many cases, and was in general nearly Gaussian. We can fall back on the independence tests for these non-Gaussian cases which showed that we could consider ξ_t independent. The independence of ξ_t forces us to drop the notion of non-linear prediction and hence forces us to reject the technique of prediction for signal to noise ratio improvement in the first motion interval.
3. AUTOMATIC DETECTION OF SIGNALS IN MICROSEISMIC NOISE

3.1 Detection System

Description - Inputs and Outputs

A detection system to automatically detect signals in microseismic noise has been designed and a computer program has been written to simulate the system. The system and programs have been developed by S. M. Simpson, Jr., for Geoscience, Inc. A flow chart of the computer simulation of the system appears in Figure 3.1.1. The signal plus noise input is rectified by squaring or by taking the absolute value and this rectified waveform is averaged. The averaged rectified wave form then enters a network which decides if there is a signal present or not, and sets an alarm if there is a signal. The system variables are the type of rectification, the averaging time, the hesitation time and the alarm level. The averaging time is the length of time over which the rectified waveform is averaged before going to the decision network. Averaging over some length of time is necessary to reduce false alarms due to an occasional high noise amplitude, but the length must not be much greater than the expected length of the signal, since the average would be too small to trigger the alarm. The hesitation time is the length of time that the rectified averaged input must remain above the alarm level before an alarm is sounded. This also tends to cut down alarms which might be caused by noise spikes. The alarm level is the ratio of the value which averaged rectified wave must reach for an alarm to the r.m.s. amplitude of the noise.
It is, therefore, the signal to noise ratio at which the system can operate. For example, if the alarm level is 1.75, an alarm will not be sounded until the average rectified waveform reaches 1.75 times the r.m.s. noise amplitude.

The system as it stands is an event detector. It tells whether or not an event has occurred, but makes no statement as to the nature of the signal which triggered the alarm. Such a system could be used in an automatic nuclear surveillance network to control the collection of data. Only data near the time of an alarm would be recorded, and these alarms could be studied for source type. An alternate procedure would be to collect all data and just study the portions corresponding to alarms.

In order to rate the effectiveness of this system, it is necessary to study the false alarm rate and failure to detect rate as a function of the system parameters. The next few sections give the results of false alarm and failure rate studies on the computer simulated system for raw and filtered signals and noise.
Figure 3.1.1 Computer Simulation Flow Chart
3.2 False Alarm Rate - FALARA

Generation of Input Noise

The false alarm rate of the detection system can be obtained by using a pure noise input rather than a signal plus noise input and counting the number of times an alarm is sounded as a function of the system parameters. A large amount of noise representing many hours of sequential microseisms is necessary to carry out the study. Since only a few minutes of consecutive microseism noise is available from our digitized noise library, the microseisms must be generated artificially. We have seen in section 1.4 that this could be done to a good approximation using a minimum phase wavelet from real data and Gaussian white noise. Thus, the artificial microseisms, \(X_t \), shown in the upper trace of Figure 1.4.16, are generated by the convolution

\[
X_t = \sum W_i Y_{t-i}
\]

where \(W_i \) is the wavelet and \(Y_t \) is the Gaussian white noise. The wavelet used in these studies was computed from record 1002, the vertical component of the noise before the Logan shot 1902 km from the shot point. The Gaussian white noise is generated from the Rand random digits by summing non-overlapping groups of ten digits. The central limit theorem tells us that the resulting sequence will have an approximately normal distribution.

A 500 term minimum phase wavelet was computed and every other point was then deleted. This left a 250 point wavelet with an equivalent
digitization rate of 10 points per second. The deletion is not unreasonable since there is almost no power above 5 cps. This wavelet was then convolved with 85,249 points of Gaussian white noise to yield 85,000 points of artificial microseisms which correspond to 2.22 hours of noise.

False Alarm Rate Studies

The computer program FALARA (FAlsed Alaram RAte) has been written by S. M. Simpson to simulate the detection system with pure microseismic noise input. For each set of system parameters the simulation was continued until either 100 alarms were sounded or all 85,000 points of noise were used. A flow chart of the simulation for the false alarm rate is shown in Figure 3.2.1 along with the system parameters used. As can be seen from this figure, two different types of rectification were used with five averaging times, ten alarm levels and five hesitation times. The false alarm rate is computed in units of alarms per hour. The results are shown in Figures 3.2.2 and 3.2.3 where the false alarm rate is plotted against the alarm level for several averaging times and for both types of rectification. Each figure is for a different hesitation time. Curves are included for only part of the results, but these are sufficient to indicate over-all trends in the system.

It is obvious that a desirable system should have very few false alarms for a low alarm level. We see from the figures that the curves with both low false alarm rate and low alarm level are relatively insensitive to hesitation time. For a given hesitation time the curves show that a long averaging time is desirable. These qualitative results are just as expected. The noise amplitudes change fairly rapidly and the
high noise values, which are of short duration, are what trigger the alarm. Consequently the curves for short averaging time are affected by the hesitation time whereas the curves for long averaging time are only slightly changed. We note that for given averaging and hesitation times the curves for rectification by squaring are always better. We also see that the curves for high averaging times are fairly close together, which indicates that very little improvement will be obtained with averaging times greater than 10 seconds.
Figure 3.2.1 False Alarm Rate Flow Chart
False Alarm Rate For Unfiltered Noise
Hesitation Time = 0 Seconds
Rectification:
- Squaring
- Absolute Valuing

Figure 3.2.2
False Alarms Per Hour
Averaging Times (Seconds)
Alarm Level

Figure 3.2.2
False Alarm Rate For Unfiltered Noise
Hesitation Time = 1.5 Seconds
Rectification:
- Squaring
- Absolute Valuing
3.3 Failure Rate - FAILRA

Description of System

The failure rate of the detection system is somewhat more difficult to obtain than the false alarm rate. Both signal and noise are required along with several signal to noise ratios. In the simulation of the system, the signal, scaled to give the required r.m.s. signal to noise ratio, and a block of noise are added together to give the input waveform. This is rectified and averaged and sent to the decision network where the alarm is announced if triggered. Figure 3.3.1 shows a flow chart of the computer program FAILRA (FAILure RAte), written by S. M. Simpson, with the system parameters used to obtain the failure rate.

The artificial microseismic noise used for the false alarm rate determination was used for the failure rate studies. For the signal it was necessary to pick out a representative bomb record with a fairly high signal to noise ratio so that the noise occurring with the signal was negligible compared to the microseismic noise added later. The record chosen was the vertical component of the signal from the Blanca shot recorded at 1398 km from the shot point (record 58, see Figure 3.3.2). Every other point of the first 600 points of this record were used thus giving 30 seconds of signal. The signal to noise ratios used were 1.78, 2.07, 2.37, 2.67, 2.97, 3.26, 3.56, 4.0, 4.45 and 5.34.

Failure Rate Studies

The system simulation was carried out for a hesitation time 1.5 seconds, both types of rectification, five averaging times, ten alarm
levels and all above signal to noise ratios. For each set of system parameters the detection was tried 101 times and the number of successes and failures noted. In graphs showing the results, Figures 3.3.2 and 3.3.3, the success probability is plotted against alarm level for different averaging times. Each figure gives the curves for a different signal to noise ratio. The complete set of results is not given since the success probabilities for signal to noise ratios greater than 3.26 are nearly all equal to one.

The curves show that the long averaging times are successful over a smaller range of alarm levels than the short averaging times for a given signal to noise ratio, and they stop being successful at an alarm level approximately equal to the signal to noise ratio. This is not surprising since the long averaging time will average the signal alarm but the short averaging time will permit high amplitude pulses to trigger an alarm.

The wider range of success for short averaging times is offset by the unavoidably large false alarm rate which was noted in the last section. The most generally effective system parameters must balance the false alarm rate and the failure rate. In Figure 3.3.4 the overall system effectiveness, taking into account both false alarms and failures, is shown as a graph of signal to noise ratio versus false alarm rate for .95 success probability. The curves were obtained, for a given averaging time, by picking off the alarm levels for .95 probability of success for all signal to noise ratios and then turning to the false alarm rate curves and picking the false alarm rates for the previously obtained alarm levels. The
hesitation time was kept at 1.5 for these curves. We see that, for
smaller signal to noise ratios, rectification by squaring and use of long
averaging times are best. For a signal to noise ratio of 1.78 and 10
second averaging time gives about 10 false alarms per hour, and as the
signal to noise ratio increases the false alarm rate drops sharply so
that the system is quite good at high signal to noise ratios. The large
number of false alarms make the system relatively ineffective for signal
to noise ratios less than 1.78.
Figure 3.3.1 Failure to Detect Flow Chart
Success Probability For
Unfiltered Noise and Signal
Hesitation Time = 1.5 Seconds
Rectification:
- Squaring
- Absolute Valuing
Signal to Noise Ratio = 1.78

Figure 3.3.2
Sucess Probability For
Unfiltered Noise and Signal
Hesitation Time= 1.5 Seconds
Rectification:
 Squaring
 Absolute Valuing

Signal to Noise Ratio = 2.07

Averaging Times (Seconds)

Sucess Probability

0 10 10 7 5 1.5 1.5
0 2 2.5 3 3.5 4 4.5 5 5.5

Alarm Level
Figure 3.3.3
False Alarm Rate Vs. Signal to Noise Ratio at 95% Confidence Level For Signal Detection

Unfiltered Signal and Noise
Hesitation Time = 1.5 Seconds
Rectification:
- Squaring
- Absolute Valuing

Averaging Times (Seconds) 10 10 1.5 1.5

Signal to Noise Ratio

Figure 3.3.4
3.4 Automatic Detector with Filtering

Band Pass Filters and the Signal to Noise Ratio

The last section showed the overall effect of the detection system and indicated that it was not particularly good for signal to noise ratios less than 1.78. If, however, the signal to noise ratio of the raw data can be improved by filtering, the usefulness of the detection system may be increased enormously. Examination of the spectra of the noise records (Figures 1.3.6 to 1.3.9) show that most of the power is between 0 and about .7 cps with a few spikes around 1.4 and 2.0 cps. The vertical records have less energy at the higher frequencies than do the horizontals. If we look at the noise spectra through a window from .7 to 1.8 cps we see only a very small percentage of the total power. The signal, on the other hand, has energy all through this band. If a reasonable percentage of the total signal power appears in this range of frequencies, a simple band pass filter will improve the signal to noise ratio quite a bit.

The programs FAILRA and FALARA can be used again to study the failure and false alarm rates by pre-filtering the signal and noise and the proceeding as in the last two sections. The flow charts in Figures 3.2.1 and 3.3.1 are applicable if "Noise Tape" is changed to "Filtered Noise Tape", and "Signal Tape" changed to "Filtered Signal Tape."

The signal to noise ratio improvement obtained by band pass filtering can be estimated from the spectra of the signal and the noise which are shown in Figure 3.4.1. If the signal and noise were initially scaled to have a one-to-one ratio, and were then band pass filtered to pass .8 to 1.7 cps
we see that nearly all the signal would remain and nearly all the noise would be removed. The signal to noise ratio improvement for this case would be a factor of about 5.

Effect of Filter on System Characteristics

It is important to see if the detection system characteristics change significantly when the filtered signal and noise both have band widths which are narrow compared to the band widths of the raw signal and noise. If the characteristics are relatively invariant with band width, the system can be said to be an energy detector and its effectiveness can be measured in terms of the signal to noise ratio improvement brought about by the filtering, and the system response to unfiltered signals.

The constancy of the system to change in band width was studied by band pass filtering the signal and noise separately and using the programs FAILRA and FALARA to obtain the false alarm rates and failure rates. The signal to noise ratios and alarm levels were computed from the amplitudes of the filtered noise and signal. The results of the study are shown in Figures 3.4.2 to 3.4.6. As in the last two sections, the false alarm rate is shown as a graph of the number of false alarms per hour against alarm level, the failure rate is given by the success probability as a function of alarm level, and the system's effectiveness is shown in a graph of the false alarm rate versus signal to noise ratio. In comparing these graphs to the ones for unfiltered data we see only slight differences. The trends are all the same and the actual curves, particularly those for longer averaging time, are approximately the same. The overall system effectiveness is also about the same for the filtered and unfiltered cases.
In view of the findings from the filtered and unfiltered cases we can say that the system is essentially an energy detector and that the curves obtained for the unfiltered case can be used for the filtered case if we can compute the signal to noise ratio improvement due to filtering. We have seen that for the particular signal and noise used this improvement was enormous and results in an extremely low false alarm rate. With the use of the curves which have been presented one can easily compute the range of signal amplitudes which can be detected reliably if the level of the background noise is known.
Figure 3.4.1 Signal and Noise Auto Spectra
False Alarm Rate For
Filtered Noise, Band Pass .7 to 1.8
Cycles Per Second
Hesitation Time = 0 Seconds
Rectification:

- Squaring
- Absolute Valuing

Figure 3.4.2
False Alarm Rate for Filtered Noise, Band Pass .7 to 1.8 Cycles Per Second
Hesitation Time = 1.5 Seconds
Rectification:

- Squaring
- Absolute Valuing

Figure 3.4.3
Success Probability For Filtered Signal and Noise, Band Pass .7 to 1.8 Cps. Hesitation Time = 1.5 Seconds
Rectification:
- Squaring
- Absolute Valuing
Signal to Noise Ratio = 1.78

Figure 3.4.4

Success Probability

Averaging Times (Seconds) 10 10 5 1.5 1.5

Alarm Level 2 2.5 3 3.5 4 4.5 5 5.5
Success Probability For Filtered Signal and Noise, Band Pass .7 to 1.8 Cycles Per Second
Hesitation Time = 1.5 Seconds
Rectification:
 Squaring
 Absolute Valuing
Signal to Noise Ratio = 2.07

Figure 3.4.5
False Alarm Rate Vs. Signal to Noise Ratio at 95% Confidence Level For Signal Detection
Filtered Signal and Noise Band Pass .7 to 1.8 Cps.
Hesitation Time = 1.5 Seconds
Rectification:
- Squaring ————
- Absolute Valuing — — —

Figure 3.4.6
4. SUMMARY

The seismic data from the Logan and Blanca underground nuclear shots, which was provided by the Air Force, has been digitized and, along with other data contributed by Dr. Bruce Bogert and by United Electro Dynamics, Inc., has been subjected to many computational experiments. In the first of these the microseism data was considered as a signal and the object was to infer the nature of the sources and the wave types involved. We saw that the amplitude of the microseisms at about .3 cps decreased with increasing distance from the coast, but the higher frequency did not display any regular trend. The suggestion is that the low frequency noise is of oceanic origin whereas the higher frequencies are more likely of local origin. It was not possible to pin down Rayleigh and Love waves with any degree of certainty, but their presence was not disproved. The failure of the wave type experiments is attributed to the complex nature of the microseisms. The model used cannot deal with many waves of the same frequency but different directions of travel.

The inadequacy of a simple deterministic model motivated a statistical treatment of microseismic noise. The microseisms are considered as a time series and, under the ergodic hypothesis, the relative constancy of the power density spectrum suggests that the time series is at least wide sense stationary. Studies on the microseism amplitudes show that their probability distribution is Gaussian and that they are dependent.

The power density spectra have been computed using the Daniell technique. The spectra are quite similar in structure over distances of
several hundred kilometers. There is a prominent peak at about .3 cps and in some cases there are peaks at 1.4 and 2 cps. The low frequency peak is interpreted as the high end of the oceanic microseism band which is cut off on the low end by the seismometer response. The higher frequencies are attributed to local causes.

Cross spectra of different components at the same station, like components from different stations, and array data have been computed. Again it is difficult to pick out individual wave types and it is not possible to follow waves from one station to another. This is again attributed to the complex structure of the noise.

Since the microseisms can be considered as a wide sense stationary time series, a mathematical description is possible. The moving summation and autoregressive representations are valid. With the assumption of an absolutely continuous spectral density the spectra can be factored and a minimum phase wavelet found for the moving average representation. The generating model for microseisms is then a white light series into a minimum phase system. Probability studies on the white light series obtained by convolving the inverse minimum phase wavelet with the original data show that the white light is essentially Gaussian and independent.

The minimum phase wavelet is also the predictive decomposition and can be used to compute the predictability of the microseisms. This technique of prediction is found to be faster and easier to handle than the mean square error method, although the Levinson technique is quite good. The predictability of the microseisms is not very great. About half the energy (50 percent reduction) can be predicted for one or two seconds and then the
decrease is fairly rapid. Multidimensional prediction does not give appreciably better results than the one dimensional or self prediction. Thus prediction as a method of noise reduction in the first motion interval is not particularly promising. We can say, however, that our linear prediction is the best we can do, and that non-linear operators will not help. This is because the microseisms can be considered to be generated by Gaussian white noise into a minimum phase system. In this case the white noise is independent and higher correlations give no information about the noise.

The mathematical model enables us to generate artificial microseisms so that long periods of continuous noise are available. These long noise series are required by the computer program which simulates a detection system. Noise above is needed to compute the false alarm rate and signal plus noise is needed for the failure rate. The system effectiveness is plotted on a graph of false alarms per hour as a function of signal to noise ratio for 95% detection probability (5% failure rate). The system characteristics are found to remain approximately constant when a band pass filter is introduced at the input. Thus the system will function as an energy detector and band pass filters can be used to improve the signal to noise ratio. Improvement of a factor of five was found for the particular signal, noise, and filter used.

The emphasis has been on the statistical approach throughout this thesis. There is, of course, plenty of room for additional work of both statistical and deterministic nature on the available data in the same general area as the present work. More complicated models which take into account several wave types and many directions of travel may be
introduced and fitted to the data. New techniques will enable multi-
dimensional prediction studies with long operator lengths, and it would
be interesting to compare results of this sort of study with the long
operator studies of section 2.2.

The cross correlation results on the array data certainly do not
represent exhaustive study. Multi-dimensional prediction experiments
as well as summation of records with variable time lags would be quite
interesting. Three component and array detection system studies by com-
puter simulation would also prove useful.
APPENDIX A

WATER WAVE PROBLEM

Longuet-Higgins (1950) has shown that a standing wave can produce a second order pressure fluctuation which is unattenuated with depth and which has twice the time frequency of the standing wave. Hence it is possible to show that microseisms could be produced in deep water even though the linear theory tells us that the pressure fluctuations die off exponentially with depth. In order that there be enough energy transmitted to the bottom, there must be a "patch" of standing waves which is coherent over a fairly large area and the patch must not move because the motion will cause the pressure oscillations to average out to zero. Therefore the standing waves must meet nearly head on. In fact, it has been shown (Kenyon, 1961) that if the travelling waves meet at an angle \(\Theta (\Theta = 0 \text{, head on}) \), the average pressure on the bottom must be multiplied by

\[
\exp(-2h\nu s \sin \Theta)
\]

where \(h \) is the depth of the water, \(\nu \) the wave number and \(\Theta \) the angle between the travelling wave fronts.

There is a special case of interest when the waves meet at such an angle that the "patch" of standing waves moves with a velocity, \(V_s \), equal to the velocity of propagation of Rayleigh waves, \(V_r \), in the medium. The travelling waves, with velocity \(V_t \), must meet at an angle \(\Theta \) such that

\[
V_t = V_r / \sin(\Theta/2)
\]

In this case there is essentially a resonance and strong microseisms
could build up if the "patch" of water waves remains coherent for a long enough time.

One of the problems considered by Longuet-Higgins was the two dimensional compressible case of a layer of water with a rigid lower boundary and a standing wave at the surface. His solution requires the small parameter expansion technique of handling non-linear problems and illustrates the frequency doubling effect as well as organ pipe resonance. The problem which will be treated here is a good deal simpler in that it considers the incompressible transient problem. This is done to illustrate the energy swapping to the sum and difference frequencies of all frequencies present and uses a representation for non-linear problems devised by DeVorkin (1963). DeVorkin's scheme is particularly useful in that the solution is in terms of kernels which do not depend on the initial conditions. Therefore once the kernels have been found for a given geometry the solution of many problems with different initial conditions can readily be found. The method is also useful for statistical initial conditions.

We consider the two dimensional transient problem of an incompressible irrotational fluid layer of constant thickness, \(h \), over a rigid half space with arbitrary initial conditions on the velocity and surface shape. We assume a velocity potential \(\varphi \). The velocity is therefore \(\vec{v} = -\nabla \varphi \). The continuity equation is then \(\nabla^2 \varphi = 0 \) and the equation of motion is

\[
\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} + g \frac{\hat{n}}{\rho} \nabla \varphi = 0
\]
where Φ is the gravitational potential, ρ is the density (assumed constant) and p the pressure. We factor out a ∇ and obtain

Bernoulli's equation

$$\frac{\partial \Phi}{\partial t} + \nabla \cdot \nabla \Phi + g \gamma + \frac{p}{\rho} = 0$$

where γ is negative downward and $p = 0$ at the surface $\gamma = \eta$.

The free surface condition is

$$\frac{\partial \Phi}{\partial x} \frac{\partial \eta}{\partial x} - \frac{\partial \Phi}{\partial \gamma} + \frac{\partial \eta}{\partial t} = 0 \quad \text{at} \quad \gamma = \eta(x,t) \quad (A-1)$$

Bernoulli's equation becomes at $\gamma = 0$

$$\left. \frac{\partial \Phi}{\partial t} \right|_{\gamma = 0} + \left. (\frac{\partial \Phi}{\partial x})^2 \right|_{\gamma = 0} + \left. (\frac{\partial \Phi}{\partial \gamma})^2 \right|_{\gamma = 0} + g \gamma = 0 \quad (A-2)$$

The solution to the continuity equation which satisfies the condition $\frac{\partial \Phi}{\partial \gamma} = 0$ at $\gamma = -h$ is

$$\Phi(x,\gamma, t) = \sum_{m=-M}^{M} \Phi_m(t) \left[e^{-im \gamma} + e^{imh} e^{im \gamma} \right] e^{-i m x} \quad (A-3)$$

where we have assumed a discrete set of frequencies. DeVorkin's representation scheme applies to total differential equations and hence to the Fourier transform over the spacial frequencies of the boundary equations.

The initial conditions are

for Φ: $F(m,0)$, $m = -M$ to M

for η: $N(m,0)$, $m = -M$ to M
where $F(m,t)$ and $N(m,t)$ are the Fourier transforms of $\psi(t)$ and $\eta(t)$.

We combine these into a single variable

$$\psi_\alpha, \quad \alpha = 1, \ldots, 4m+2$$

where

$$\psi_1 = F(-m,0), \quad \psi_2 = N(-m,0), \quad \psi_3 = F(-m+1,0), \quad \psi_4 = N(-m+1,0), \quad \text{etc.}$$

The representation scheme is then:

$$F(m,t) = \sum_\alpha k^m_{\alpha} \psi_\alpha + \sum_{\alpha \beta} k^m_{\alpha \beta} \psi_\alpha \psi_\beta + \sum_{\alpha \beta \gamma} k^m_{\alpha \beta \gamma} \psi_\alpha \psi_\beta \psi_\gamma + \ldots$$

$$N(m,t) = \sum_\alpha l^m_{\alpha} \psi_\alpha + \sum_{\alpha \beta} l^m_{\alpha \beta} \psi_\alpha \psi_\beta + \sum_{\alpha \beta \gamma} l^m_{\alpha \beta \gamma} \psi_\alpha \psi_\beta \psi_\gamma + \ldots$$

which can be combined to

$$\psi_n(t) = \sum_\alpha R^n_{\alpha} \psi_\alpha + \sum_{\alpha \beta} R^n_{\alpha \beta} \psi_\alpha \psi_\beta + \sum_{\alpha \beta \gamma} R^n_{\alpha \beta \gamma} \psi_\alpha \psi_\beta \psi_\gamma + \ldots \quad (A-4)$$

where

$$\psi_n(t) = F\left(\frac{n-2m-1}{2},t\right) \quad \text{for } n \text{ odd}, \geq 1$$

$$\psi_n(t) = N\left(\frac{n-2m-2}{2},t\right) \quad \text{for } n \text{ even}, \geq 2 \quad (A-5)$$

The R's are thus system functions independent of initial conditions.

The boundary equations (A-1) and (A-2) apply at $\sigma = \eta$ but since
is unknown the equations must be expanded in a Taylor series about
\(\eta = 0 \) in powers of \(\eta \). Expanding to second order only

\[- \dot{\eta} - \frac{\partial \dot{\eta}}{\partial \eta} \eta + \dot{\eta}^2 + \ddot{\eta}^2 + \eta = 0 \]

(A-6)

\[\dot{\eta} \eta_x - \dot{\eta} \eta_y - \frac{\partial \dot{\eta}}{\partial \eta} \eta - \eta_t = 0 \]

(A-7)

where the subscripts denote differentiation.

We take the Fourier transform of these equations to obtain

\[\hat{F}(m) = i \sum_p C(p) \hat{F}(p) N(p) - \sum_p F(p) (m-p) \hat{F}(m-p) + \]

\[- \sum_p p C(p) F(p) (m-p) \hat{C}(m-p) \hat{F}(m-p) + \eta \hat{N}(m) = 0 \]

(A-8)

for equation (A-6) and a similar expression for equation (A-7). In
this transformation we have used the fact that multiplication in one
domain is convolution in the other, and have set the transform of \(\frac{\partial \dot{\eta}}{\partial \eta} \)
equal to \(C(m) \hat{F}(m) \). The dots represent time differentiation.

We note that equation (A-8) contains more than one term with a time
derivative. Poincare's theorem on small parameter expansions does not
guarantee a solution unless the right-hand side contains not time
derivatives. We can, however, consider all the time derivative terms
as an operator, \(\mathcal{H} \), operating on \(\hat{F}(m) \) and then show that the operator
\(\mathcal{H} = \mathcal{I} - \mathcal{A} \) can be inverted if \(\mathcal{A} \) is small. That is, if the operator \(\mathcal{H} \)
cannot in general be inverted, we must demand that it can be expressed
as \(J - \alpha \) where \(\alpha \) is small enough that the Neumann series resulting from the inversion converges. Hence, for many cases we must impose the restriction that the non-linear terms be small compared to the linear ones.

Since \(H \) can be inverted we go ahead and use the representation scheme equating terms of like order and remembering that the equations must hold for arbitrary initial conditions, \(\psi_\alpha \).

The first order equations are from equations (A-6), (A-7) and (A-8), using the notation introduced in equations (A-4) and (A-5),

\[
\begin{align*}
\dot{R}_\alpha^n - q R_\alpha^{n+1} &= 0 \\
\dot{R}_\alpha^{n+1} + \left(\frac{n-J}{2} \right) C \left(\frac{n-J}{2} \right) R_\alpha^n &= 0 ; \quad J = 2M+1
\end{align*}
\]

These can be solved to give

\[
R_\alpha^n = Q_+ \exp[i \gamma(n,J)t] + Q_- \exp[-i \gamma(n,J)t]
\]

for \(n \) odd, where

\[
\gamma(n,J) = \sqrt{q \left(\frac{n-J}{2} \right) C \left(\frac{n-J}{2} \right)}
\]

\[
Q_+ = \frac{q + i \gamma(n,J)}{2 \gamma(n,J)} \int_{n_\alpha} R_\alpha^n
\]

\[
Q_- = \frac{-q - i \gamma(n,J)}{2 \gamma(n,J)} \int_{n_\alpha} R_\alpha^n
\]
where $s_{n,u}$ is the Kronecker delta, and

$$R_{n+1}^n = b_+ \exp\left[i \gamma(n,J) t \right] + b_- \exp\left[-i \gamma(n,J) t \right]$$

for n odd, where

$$b_+ = \frac{-\frac{n-j}{2} C\left(\frac{n-j}{2}\right) - \gamma(n,J)}{2 \gamma(n,J)} s_{n+1,u}$$

$$b_- = \frac{\frac{n-j}{2} C\left(\frac{n-j}{2}\right) + \gamma(n,J)}{2 \gamma(n,J)} s_{n+1,u}$$

The above equations for R_{n} and R_{n+1} are correct for $n \neq J$. For $n = J$, \dot{R}_{n}^n and \dot{R}_{n+1}^{n+1} are zero for all t.

The second order equations, obtained by equating the second order terms in equations (A-6), (A-7) and (A-8) containing the second order kernels and convolutions of the first order terms. The convolutions may easily be performed and the \dot{R}_{n}^n, \dot{R}_{n+1}^{n+1} equations can be considered as a matrix equation. However, due to the simple coupling of the equations only a 2×2 matrix need be considered. The zero spacial frequency, $n = J$, must again be considered as a special case.

The second order equations are

$$\sum_{k\ell} \dot{R}_{k\ell}^n \psi_k \psi_\ell - \frac{1}{4} \sum_{k=1}^{N-1} R_{n+1}^{n+1} \psi_k \psi_\ell = \sum_{p=1}^{P-1} \alpha\left(\frac{p-j}{2}\right)\left[\sum_{k} \dot{R}_{k\ell}^p \psi_k \sum_{k} R_{k\ell}^{n-p} \psi_k \right]$$

$$+ \sum_{p=1}^{P-1} \frac{(n-j)(n-p)}{2} \left[1 - C\left(\frac{n-p}{2}\right)\right] C\left(\frac{n-j}{2}\right) \sum_{k} \dot{R}_{k\ell}^p \psi_k \sum_{k} R_{k\ell}^{n-p+1} \psi_k$$

(A-9)
where $N = 4M+2$ and h and p are odd,

$$
\sum_{\kappa \neq \lambda} R_{\kappa \lambda}^{n+1} \psi_{\kappa} \psi_{\lambda} + \frac{h-J}{2} C \left(\frac{n-J}{2} \right) \sum_{\kappa \neq \lambda} R_{\kappa \lambda}^{n} \psi_{\kappa} \psi_{\lambda} = \\
- \sum_{p=1}^{N-1} \left(\frac{p-J}{2} \right) \left(\frac{n-J}{2} \right) \sum_{\alpha} R_{\alpha}^{p} \psi_{\alpha} \sum_{\kappa} R_{\kappa}^{n-p} \psi_{\kappa}
$$

The equations must hold for arbitrary ψ_{κ} so that

$$
\begin{align*}
\dot{R}_{\kappa \lambda}^{n+1} - q \dot{R}_{\kappa \lambda}^{n+1} &= \sum_{p=1}^{N-1} \left(\frac{p-J}{2} \right) C \left(\frac{n-J}{2} \right) \left[\dot{R}_{\kappa \lambda}^{p} R_{\lambda \kappa}^{n-p} + \dot{R}_{\kappa \lambda}^{p} R_{\kappa \lambda}^{n-p} \right] + \\
+ \sum_{p=1}^{N-1} \left(\frac{p-J}{2} \right) \left(\frac{n-p}{2} \right) \left[1 - C \left(\frac{n-p}{2} \right) \right] \left[C \left(\frac{n-p}{2} \right) \right] \left[R_{\kappa \lambda}^{p} R_{\lambda \kappa}^{n-p+1} + R_{\kappa \lambda}^{p} R_{\kappa \lambda}^{n-p+1} \right]
\end{align*}
$$

and

$$
\begin{align*}
\dot{R}_{\kappa \lambda}^{n+1} + \left(\frac{n-J}{2} \right) R_{\kappa \lambda}^{n} &= \sum_{p=1}^{N-1} \left(\frac{p-J}{2} \right) \left(\frac{n-J}{2} \right) \left[\dot{R}_{\kappa \lambda}^{p} R_{\lambda \kappa}^{n-p} + \dot{R}_{\kappa \lambda}^{p} R_{\kappa \lambda}^{n-p} \right]
\end{align*}
$$

The convolutions are not hard since R_{κ} is diagonal. The last two equations may be written

$$
\dot{R}_{\kappa \lambda}^{n} - q \dot{R}_{\kappa \lambda}^{n+1} = T_{\kappa \lambda}^{n}
$$

$$
\dot{R}_{\kappa \lambda}^{n+1} + \left(\frac{n-J}{2} \right) C \left(\frac{n-J}{2} \right) R_{\kappa \lambda}^{n} = T_{\kappa \lambda}^{n+1} \quad h \text{ odd}
$$

We write this as a matrix equation

$$
\begin{bmatrix}
\dot{R}_{\kappa \lambda}^{n} \\
\dot{R}_{\kappa \lambda}^{n+1}
\end{bmatrix}
+ A
\begin{bmatrix}
R_{\kappa \lambda}^{n} \\
R_{\kappa \lambda}^{n+1}
\end{bmatrix}
=
\begin{bmatrix}
T_{\kappa \lambda}^{n} \\
T_{\kappa \lambda}^{n+1}
\end{bmatrix}
$$
where A is the matrix

$$A = \begin{bmatrix} 0 & -q \\ \frac{(n-j)C(n-j)}{2} & 0 \end{bmatrix}$$

The solution to the equation is, then,

$$\begin{bmatrix} R^n_{KL} \\ R^{n+1}_{KL} \end{bmatrix} = \int_0^t e^{-A(t-\tau)} \begin{bmatrix} T^n_{KL} \\ T^{n+1}_{KL} \end{bmatrix} d\tau$$

Since $R^n_{KL}, R^{n+1}_{KL} = 0$ at $t = 0$. This is simplified considerably if A can be diagonalized. If U is the transformation matrix for this diagonalization then $R^n_{KL} = U S^n_{KL}$ and

$$U \begin{bmatrix} S^n_{KL} \\ S^{n+1}_{KL} \end{bmatrix} + A U \begin{bmatrix} S^n_{KL} \\ S^{n+1}_{KL} \end{bmatrix} = \begin{bmatrix} T^n_{KL} \\ T^{n+1}_{KL} \end{bmatrix}$$

multiplying by U^{-1}

$$\begin{bmatrix} S^n_{KL} \\ S^{n+1}_{KL} \end{bmatrix} + U^{-1}A U \begin{bmatrix} S^n_{KL} \\ S^{n+1}_{KL} \end{bmatrix} = U^{-1} \begin{bmatrix} T^n_{KL} \\ T^{n+1}_{KL} \end{bmatrix}$$

where $U^{-1}A U = D$ is diagonal.

Then

$$\begin{bmatrix} S^n_{KL} \\ S^{n+1}_{KL} \end{bmatrix} = \int_0^t e^{-D(t-\tau)} U^{-1} \begin{bmatrix} T^n_{KL} \\ T^{n+1}_{KL} \end{bmatrix} d\tau$$

and

$$\begin{bmatrix} R^n_{KL} \\ R^{n+1}_{KL} \end{bmatrix} = \int_0^t U e^{-D(t-\tau)} U^{-1} \begin{bmatrix} T^n_{KL} \\ T^{n+1}_{KL} \end{bmatrix} d\tau$$
For the matrix \(AU \) and \(U^{-1} \) are

\[
U = \begin{bmatrix}
-\sqrt{\frac{(n-J)(n-J)}{2}} & \sqrt{\frac{(n-J)(n-J)}{2}} \\
& \\
\end{bmatrix}
\]

\[
U^{-1} = \begin{bmatrix}
\frac{1}{\sqrt{\frac{(n-J)(n-J)}{2}}} & -\frac{1}{\sqrt{\frac{(n-J)(n-J)}{2}}} \\
\sqrt{\frac{(n-J)(n-J)}{2}} & \frac{1}{\sqrt{\frac{(n-J)(n-J)}{2}}} \\
\end{bmatrix}
\]

the term \(e^{-D(t-\tau)} \) becomes

\[
\begin{bmatrix}
\exp(-D_{nn}(t-\tau)) & 0 \\
0 & \exp(-D_{n+1,n+1}(t-\tau))
\end{bmatrix}
\]

and the solution for \(R_{\kappa \ell}^n \), \(n \neq J, J+1 \) is then

\[
\begin{bmatrix}
R_{\kappa \ell}^n \\
R_{\kappa \ell}^{n+1}
\end{bmatrix} = \int_0^t \begin{bmatrix}
x+y \\
-x-y
\end{bmatrix}
\begin{bmatrix}
\frac{1}{\sqrt{\frac{(n-J)(n-J)}{2}}} (x+y) \\
-x-y
\end{bmatrix} \begin{bmatrix}
T_{\kappa \ell}^n \\
T_{\kappa \ell}^{n+1}
\end{bmatrix} d\tau
\]

where

\[
x = \exp(i \gamma(n)(t-\tau))
\]

\[
y = \exp(-i \gamma(n)(t-\tau))
\]
For the zero spacial frequency, which is the frequency of interest for deep water microseism generation, \(n = J, J^+ \), we have from equation (A-11):

\[
\dot{R}_{k \ell}^{J+} = 0, \quad R_{k \ell}^{J} = 0
\]

In equation (A-10) we note a symmetry in \(\kappa \) and \(\ell \) so that we need only consider half of the right-hand side from which we determine half the solution for \(R_{k \ell}^J \). We call this half of the solution \(R_{k \ell}^J \) and the entire solution is thus

\[
R_{k \ell}^J = R_{k \ell}^J + R_{k \ell}^J
\]

We can determine \(C(m) \) from equation (A-3) by setting \(\varphi = 0 \) after differentiation.

\[
C(m) = \tan h(mh)
\]

The solution \(R_{k \ell}^J \) is then

\[
R_{k \ell}^J = \int_0^\frac{\kappa-J}{2} \left\{ \frac{\kappa-J}{2} \tan h\left(\frac{\kappa-J}{2} h\right) \left[\dot{R}_{k \ell}^J R_{k \ell}^{J-k} \right] \sum_{J, J-k} + \frac{(\kappa-J)}{2} \left[(1+\tan h(\frac{\kappa-J}{2}h))\tan h(\frac{J-k}{2}h) \right] \left[R_{k \ell}^J R_{k \ell}^{J-k+1} \right] \sum_{J, J-k+1} \right\} d\gamma
\]

where the \(R_{\alpha}^J \) are functions of \(\gamma \). We substitute in for the and integrate to obtain terms of the form:
\[R'_{\kappa \ell} = \frac{\kappa - J}{2} \tan h \left(\frac{\kappa - J}{2} h \right) \int \gamma(\kappa) \left\{ \frac{a + b \cdot \exp[i(\gamma(\kappa) + \gamma(\kappa - J - 1))t]}{\gamma(\kappa) + \gamma(\kappa - J - 1)} \right. \]

\[+ \frac{a - b \cdot \exp[i(\gamma(\kappa) - \gamma(\kappa - J - 1))t]}{\gamma(\kappa) - \gamma(\kappa - J - 1)} \right\} + \text{const. + other terms in } \exp[\pm i(\gamma(\kappa) \pm \gamma(\kappa - J - 1))t] \]

To see what frequencies are present we look at the frequency of one term, e.g. the first term above. This term, \(T_1 \) is

\[T_1 = \int \exp \left[i \left(\gamma(\kappa) - \gamma(\kappa - J - 1) \right) \right] t \]

where \(\gamma(\kappa) \) is

\[\gamma(\kappa) = \sqrt{\frac{\kappa - J}{2} q \tan h \left(\frac{\kappa - J}{2} h \right)} \]

We assume that \(h \) is large (deep water) and we have

\[\gamma(\kappa) \approx \pm \frac{\kappa - J}{2} \sqrt{q h} \]

and

\[\gamma(\kappa - J - 1) \approx \pm \frac{\kappa + 1}{2} \sqrt{q h} \]

The frequencies present are then
\[\omega_K = \gamma(\kappa) - \gamma(J - \kappa - i) = \left(\pm \frac{\kappa - J}{2} \pm \frac{\kappa + i}{2} \right) \sqrt{q \hbar} \]

which are the sum and difference frequencies of all frequencies present.

If we start with just a few frequencies we generate many more due to the nonlinearity of the problem. A study of the energy flow from one frequency to another is possible with the representation scheme used, but is quite tedious. We have shown here only part of the second order kernel, \(R_{\alpha \beta} \) which is itself quite cumbersome, and the higher order kernels are even worse. The only saving grace is that once the kernels are found the problem is solved for arbitrary initial conditions.
APPENDIX B
NORMALITY TEST FLOW GRAPH

Input - X(I) series, I=1,LX

Compute mean

\[X_{\text{MEAN}} = \frac{\sum_{I=1}^{LX} X(I)}{LX} \]

Compute standard deviation

\[\text{STDEV} = \left[\frac{\sum_{I=1}^{LX} (X(I) - X_{\text{MEAN}})^2}{LX} \right]^{1/2} \]

Define NRANGE

\[NRANGE = \sqrt{LX} \]

(This is an arbitrary definition. NRANGE should be small enough so that at least 5 values of X(I) fall in each range.)

Find the X values which divide the normal density with mean XMEAN and standard deviation STDEV into NRANGE ranges of equal probability. Use SUBROUTINE NOINT2.

Returns LRANGE (=NRANGE-1) values for range limits, RANGE(1).

First range is (-\infty, RANGE(1)), 1st range is (RANGE(LRANGE), \infty).

Count number of values falling in each range. Use SUBROUTINE FRQCT2.

Returns fixed point count of number in each range in vector ICOUNT(I).
Chi Square test

\[\chi^2 = \sum_{i=1}^{NRANGE} \frac{(ICOUNT(i) - P \times Lx)^2}{(P \times Lx)} \]

Number of degrees of freedom=NRANGE-3. Use SUBROUTINE CHISQR.

Compute probability of exceeding \(\chi^2 \). Use SUBROUTINE KIINT1.

See APPENDIX G for program listings.
APPENDIX C

EXPANSION OF EMPIRICAL PROBABILITY DENSITY FUNCTIONS ABOUT THE NORMAL DENSITY IN TERMS OF MOMENTS

It is possible to expand a probability density about the normal density if the moments higher than the mean and variance are known. It is not, however, guaranteed that the expansion will converge in all cases. If \(F(x) \) is the probability distribution, and \(f(x) \),

\[
f(x) = \frac{dF(x)}{dx}
\]

is the density and \(\phi(x) \) is the normal density,

\[
\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}
\]

then the expansion in terms of the derivatives of the normal density, the Edgeworth series, is

\[
f(x) = C_0 \phi(x) + \frac{c_1}{1!} \phi'(x) + \frac{c_2}{2!} \phi''(x) + \ldots \quad (C-1)
\]

and will converge if the integral

\[
\int_{-\infty}^{\infty} e^{-x^2/u} dF(x)
\]

converges and if \(f(x) \) is of bounded variation in \((-\infty, \infty)\) (Cramer, 1946). For our purposes we need not worry too much about the convergence. We only wish to see if we can approximate the distribution fairly well with just a few terms of the expansion.
It is now possible to obtain the coefficient C_n in terms of the moments. Remembering that the normal density, $\varphi(x)$, is the "generating function" for Hermite polynomials

$$\left(\frac{d}{dx} \right)^n e^{-x^2/2} = (-1)^n H_n(x) e^{-x^2/2} \quad (C-2)$$

where $H_n(x)$ is the nth order Hermite polynomial, and that the Hermite polynomials are orthogonal with respect to $\varphi(x)$

$$\int_{-\infty}^{\infty} H_m(x) H_n(x) \varphi(x) \, dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} H_m(x) H_n(x) e^{-x^2/2} \, dx = \begin{cases} n! & \text{for } m=n \\ 0 & \text{for } m \neq n \end{cases} \quad (C-3)$$

we can now solve for the C_n.

Substituting $\varphi(x) = (-1)^n H_n(x) \varphi(x)$ into equation (C-1) we have

$$f(x) = C_0 H_0(x) + C_1 \frac{(-1)^1}{1!} H_1(x) + C_2 \frac{(-1)^2}{2!} H_2(x) + \cdots + \frac{C_n(-1)^n}{n!} H_n(x) \quad (C-4)$$

Multiplying both sides by $H_m(x)$ and integrating we have, because of (C-3),

$$C_m = (-1)^m \int_{-\infty}^{\infty} H_m(x) f(x) \, dx \quad (C-5)$$

Since $H_m(x)$ is a polynomial and $f(x)$ is a probability density
the integral is simply a sum of moments. The moments (central moments) are \(\mu_k \) where

\[
\mu_k = \int_{-\infty}^{\infty} (x - \mu)^k f(x) \, dx
\]

(C-6)

and \(\mu \) is the mean. The unit normal density (zero mean, unit standard deviation) was assumed in this derivation so that \(f(x) \) must be the function of the standardized variable \(\frac{x - \mu}{\sigma} \) where \(\sigma \) is the standard deviation. This means that the \(r+\)th moment of the standardized variable is \(\frac{\mu_r}{\sigma^r} \). Hence \(C_0 = 1 \), \(C_1 = C_2 = 0 \), \(H_3(x) = x^3 - 3x \), and so from (C-5), \(C_3 = -\frac{\mu_3}{\sigma^3} \). The rest of the \(C_n \) may be obtained from the \(H_n(x) \) in the same manner. Thus

\[
\begin{align*}
C_4 &= \frac{\mu_4}{\sigma^4} - 3 \\
C_5 &= -\frac{\mu_5}{\sigma^5} + 10 \frac{\mu_3}{\sigma^3} \\
C_6 &= \frac{\mu_6}{\sigma^6} - 15 \frac{\mu_4}{\sigma^4} + 30
\end{align*}
\]

The moments may be estimated from the data by averaging so that the integral (A-6) need not be performed.

The computation of the approximations using up to \(C_6 \) has been programmed by Roy Greenfield. (See SUBROUTINE PRBFIT in APPENDIX G.)

The expressions for the approximations which must be evaluated are
\[f_1(x) = \left[1 + \frac{\mu_3}{6 \sigma^3} (x^3 - 3x) \right] \phi(x) \]

\[f_2(x) = f_1(x) + \left[\left(\frac{\mu_4}{24 \sigma^4} + \frac{1}{8} \right) (x^4 - 6x^2 + 3) \right] \phi(x) \]

\[f_n(x) = f_{n-1}(x) + \left[\frac{c_n}{n!} (-1)^n H_n(x) \right] \phi(x) \]

Care must be taken that the \(\chi^2 \)s are the values of the standardized variables.
APPENDIX D

INDEPENDENCE AND DEPENDENCE MEASURES

Poker Count Test for Independence

Given a series of equally likely integers from zero to nine it is possible, under the assumption that the numbers are independent, to compute the probable number of non-overlapping groups of five numbers which fall into each of eight categories. These categories are similar to those of a poker game where each group of five is considered a hand and each hand has a certain value. The analogy to the poker game is not completely accurate since the "card" values are 0 to 9 rather than ace to king, and it is possible to have five of a kind. Also the series, which takes the place of the card deck, has many more than 52 numbers in it, and removal of a number does not decrease its later probability of occurrence. The eight categories or hand types with their respective probabilities are (Durand, 1962, personal communication):

<table>
<thead>
<tr>
<th>Hand</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bust</td>
<td>.2952</td>
</tr>
<tr>
<td>1 pair</td>
<td>.5040</td>
</tr>
<tr>
<td>2 pair</td>
<td>.1080</td>
</tr>
<tr>
<td>3 of a kind</td>
<td>.0720</td>
</tr>
<tr>
<td>Full house</td>
<td>.0090</td>
</tr>
<tr>
<td>Straight</td>
<td>.0072</td>
</tr>
<tr>
<td>4 of a kind</td>
<td>.0045</td>
</tr>
<tr>
<td>5 of a kind</td>
<td>.0001</td>
</tr>
</tbody>
</table>

These probabilities are exact. The decimals terminate at the fourth place. In assigning a hand to one of the categories the order of the digits within the group of five does not matter.
If the series of numbers is independent, then it is expected that the number of each type of hand will be approximately the probability for that hand times the total number of hands. Both this test and the mean square contingency test require a mapping of the given series into an integer series. The poker count test requires that the ten digits have equal probability. Hence the probability density of the original series is transformed into a rectangular density and the original series is mapped into an integer series with values from zero to nine with each integer having probability .1. Figure D-4 shows the steps necessary in the poker count test and APPENDIX G contains program listings.

Transformation of Probability Densities

Suppose \(P_f(x) = f(x) \) is the probability density (frequency function) of a random variable \(f \). The distribution function is then

\[
Q(x) = \int_{-\infty}^{x} f(y) \, dy = F(x)
\]

The change of variable, \(y = F(x) \) is known as the "probability transformation" (Wadsworth and Bryan, 1960).

The probability density \(P_\eta(y) \) can be found as follows:

\[
P_\eta(y) \, dy = P_f(x) \, dx
\]

\[
P_\eta(y) = P_f(x) \frac{dx}{dy} = \frac{f(x)}{f(x)} = 1
\]
The variable Y is thus rectangularly distributed and, since $F(x)$ is defined from 0 to 1, $0 \leq y \leq 1$.

For the joint distribution, $P_{\gamma_1, \gamma_2}(x_1, x_2)$, using the same transformation, we have

$$P_{\gamma_1, \gamma_2}(x_1, x_2) = P_{\gamma_1}(x_1) P_{\gamma_2|x_1}(x_2|x_1)$$

where $P_{\gamma_2|x_1}(x_2|x_1) dx_2 dx_1$ denotes the compound probability that $x_2 < \gamma_2 < x_2 + dx_2$ given that $x_1 < \gamma_1 < x_1 + dx_1$.

Using the same transformation, $y = F(x)$, we have

$$P_{\gamma_1, \gamma_2}(y_1, y_2) dy_1 dy_2 = P_{\gamma_1}(x) P_{\gamma_2|x_1}(x_2|x_1) dx_1 dx_2$$

The Jacobian for this transformation, J, gives

$$J = \left[\begin{array}{cc}
\frac{dx_1}{dy_1} & \frac{dx_2}{dy_1} \\
\frac{dx_1}{dy_2} & \frac{dx_2}{dy_2}
\end{array} \right] = \left[\begin{array}{cc}
\frac{1}{f(x)} & 0 \\
0 & \frac{1}{f(x)}
\end{array} \right]$$

$$J = \left[\frac{1}{f(x)} \right]^2$$

$$P_{\gamma_1, \gamma_2}(y_1, y_2) = \frac{P_{\gamma_1}(x) P_{\gamma_2|x_1}(x_2|x_1)}{[f(x)]^2}$$

$$P_{\gamma_1, \gamma_2}(y_1, y_2) = \frac{P_{\gamma_2|x_1}(x_2|x_1)}{f(x)}$$
If ξ_1 and ξ_2 are independent then
\[P_{\xi_2 \mid \xi_1}(x_2 \mid x_1) = P_{\xi_2}(x_2) = \xi(x) \]
and
\[P_{\xi_1 \xi_2}(y_1, y_2) = 1 \]

The result is that if ξ_1 and ξ_2 are independent, then γ_1 and γ_2 are also independent, and if ξ_1 and ξ_2 are dependent, then γ_1 and γ_2 are also dependent. The compound probabilities will differ by a factor equal to
\[\left| \frac{1}{f(x)} \right| \]
\[P_{\xi_2 \mid \xi_1}(y_2 \mid y_1) = \frac{P_{\xi_2 \mid \xi_1}(x_2 \mid x_1)}{f(x)} \]

If ξ_1 and ξ_2 are independent, then all of the higher probability densities for γ are rectangular. An extension of this can easily be made for any number of random variables, and in particular for five variables as is necessary for the poker count test.

Mean Square Contingency and Dependency Measure

The measure of the degree of dependence of two variables which has been used is related to the mean square contingency (Cramer, 1951).

Suppose that two variables, ξ and γ have densities $P_\xi(x_i)$ and $P_\gamma(y_j)$ and a joint density $P_{\xi \gamma}(x_i, y_j)$ where x_i and y_j are discrete and $i = 1, \ldots, N$, $j = 1, \ldots, M$.

Hence
\[\sum_i P_{\xi \gamma}(x_i, y_j) = P_\gamma(y_j) \]
\[\sum_j P_{\xi \gamma}(x_i, y_j) = P_\xi(x_i) \]
The mean square contingency, φ^2, is defined as

$$\varphi^2 = \sum_i \sum_j \frac{(P_{\varphi \gamma}(x_i, y_j) - P_\varphi(x_i)P_\gamma(y_j))^2}{P_\varphi(x_i)P_\gamma(y_j)}$$

$$= \sum_i \sum_j \frac{[P_{\varphi \gamma}(x_i, y_j)]^2}{P_\varphi(x_i)P_\gamma(y_j)} - 1$$

If and only if the variables are independent

$$P_{\varphi \gamma}(x_i, y_j) = P_\varphi(x_i)P_\gamma(y_j)$$

and $\varphi^2 = 0$.

Since

$$P_{\varphi \gamma}(x_i, y_j) = P_\varphi(x_i)P_\gamma(y_j | x_i) = P_\gamma(y_j)P_{\varphi | \gamma}(x_i | y_j)$$

and all probabilities are less than or equal to one,

$$P_{\varphi \gamma}(x_i, y_j) \leq \left\{ \begin{array}{c} P_\gamma(y_j) \\ P_\varphi(x_i) \end{array} \right\}$$

thus

$$\sum_{i,j} \frac{P_{\varphi \gamma}^2(x_i, y_j)}{P_\varphi(x_i)P_\gamma(y_j)} \leq q$$
and

$$\varphi^2 \leq \varphi - 1$$

where \(\varphi \) is the smaller of \(N \) and \(M \), the limits of the summation. Therefore the quantity \(\psi^2 / (\varphi - 1) \), which we will call the dependency, may be used as a standard measure of dependence since

$$0 \leq \frac{\psi^2}{\varphi - 1} \leq 1$$

There is, of course, some difficulty in using this or any measured dependence on numerical data. Numbers generated by independent random processes will not in general give a zero value for the dependency. The question arises, therefore, as to the interpretation of the number resulting from the dependency test. Since it is uncertain how large the dependency can be and the series still remain independent, a number of tests were run on independent random numbers. The numbers were obtained from the Rand Corporation on punched cards and are the same as the numbers which appear in the book, 1,000,000 Random Digits (Rand Corporation 1958). These numbers were generated by an independent process.

The numbers were run through both the poker count test and the dependency test. Three different lengths of series were used, 3000, 2500 and 2000, and each was repeated 8 times so that a mean and variance could be computed. The results of the dependency test are shown in Figure D-1. Straight lines have been dotted in to indicate the mean and standard deviation changes with series length. There is no reason to suspect that
their values actually fall on a straight line, in fact one would suspect that the line would curve off concave upward on the right and concave downward to the left. These tests were carried out for a lag of one, that is the random variables took on values of \(X_n \) and \(X_{n+1} \) of the series of digits.

Since it is important that the denominator not be zero, the series of real data were mapped into integer series from 1 to 10 with rectangular densities. This was, of course, not necessary with the Rand random digits, since they were already equally likely integers. However, one was added to each Rand digit so that the series would be from 1 to 10 rather than 0 to 9. This was necessary only for ease and speed of computation of the second probability density. Figures D-2 to D-5 show flow graphs of the steps necessary to compute the empirical probability density and perform the probability transformation, the poker count test and the mean square contingency test. APPENDIX G contains the listings of the programs used in these operations.
Dependency of Rand Random Digits
Mean of Dependency Value With
Standard Deviation
For Different Data Lengths. Eight
Samples For Each Length.

Data Length
Figure D-1
Empirical Probability Density Flow Graph

Inputs - X(I) series, I=1,LX

NDIV number of ranges

Find maximum, XMAX, and minimum, XMIN, of X series.

Compute range limits for NDIV equally spaced ranges from

\[\text{RANGE}(I) = XMIN + (I-1) \frac{(XMAX-XMIN)}{NDIV}, \quad I=1, \text{NDIV}+1 \]

NDIV is somewhat arbitrary. It should be much smaller than LX, the length of the X series. We have used NDIV=100 with LX 2500.

Count number of values of X(I) falling in each of the NDIV ranges.

Use SUBROUTINE FRQCT2.

NOTE - FRQCT2 assumes that the NDIV+1 range limits define NDIV+2 ranges. The count vector, ICOUNT(I), I=1,NDIV+2, must therefore be altered such that ICOUNT(2)=ICOUNT(2)+ICOUNT(1), and ICOUNT(NDIV+1)=ICOUNT(NDIV+1)+ICOUNT(NDIV+2). The correct counts are then in ICOUNT(2) to ICOUNT(NDIV+1). This may then be normalized to give the frequency ratio or probability density, PROB(I).

\[\text{PROB}(I) = \frac{\text{ICOUNT}(I) \ NDIV}{(LX \ (XMAX-XMIN))} \]

Figure D-2
Probability Transformation Flow Graph

Rectangularize Probability Density

Inputs - PROB(I), I=1,NDIV, The probability density normalized such that

\[
\sum_{I=1}^{NDIV} \text{PROB}(I) \Delta x = 1; \quad \Delta x = \frac{(\text{XMAX} - \text{XMIN})}{\text{LX}}
\]

\text{XMIN} = \text{Minimum value of original time series}

\text{XMAX} = \text{Maximum value of original time series}

\text{NPROB} = \text{Number of ranges of equal probability desired.}

Need not equal \text{NDIV}

\text{X(I),I=1,LX, the time series}

Find X limits which divide the empirical density into \text{NPROB} ranges of equal probability, \text{XLIMIT(I)}, I=1,NPROB+1.

(Linear interpolation where necessary) Use SUBROUTINE GRUP2

Map \text{X(I)} series into \text{IX(I)} series (integer series such that for \text{XLIMIT(J)} \text{X(I)} \text{XLIMIT(J+1)}, \text{IX(I)}=\text{J-1+IXLO}

where \text{IXLO} can be adjusted to give desired d.c. level.

Use SUBROUTINE MPSEQ1

Result is integer series \text{IX(I)}, I=1,LX with \text{NPROB} different values from \text{IXLO} to \text{IXLO+NPROB-1} with equal probability, 1/\text{NPROB}

Figure D-3
Inputs - \(X(I), I=1, LX \) time series

\(LX \) length of series

Compute empirical probability density. See Figure D-2 for flow graph of this procedure.

Perform probability density transformation to map \(X(I) \) series into \(IX(I) \) series with

\[0 \leq IX(I) \leq 9 \]

See Figure D-3 for flow graph of this procedure with \(IXLO=0 \).

Take \(IX(I) \) series in non-overlapping groups of 5, \(IX(I), I=1, \ldots, 5 \), \(IX(I), I=6, \ldots, 10 \), etc and consider these as poker hands.

Evaluate the poker hands and count number of each type.

(Types - bust, 1 pair, 2 pair, 3 of a kind etc.) Total number of hands is \(LX/5 \) rounded down. USE SUBROUTINE POKCT1.

Compare with theoretical count for independent series.

(See a priori probabilities on first page of this APPENDIX.)
Mean Square Contingency and Dependency Test Flow Graph

Inputs - X(I), I=1,LX time series

LX length of series

Compute empirical probability density. See Figure D-2 for flow graph of this procedure.

Perform probability density transformation to map X(I) series into IX(I) series with 1 ≤ IX(I) ≤ JHIGH, where JHIGH ≤ 25.

(Requirement of SUBROUTINE PROB2 used below.)

Note - If poker count test is also done the mapped series used there can be used here if one is added to every IX value.

JHIGH will be 10 for this case.

(See Figure D-3 for transformation and mapping flow graph.)

Compute second probability density, P(I,J) for lag of one.

Use SUBROUTINE PROB2. (Gives joint probability that IX(I)=L and IX(I+1)=M for I=1, LX-1, and M and L ≥ 1, ≤ JHIGH.)

Compute mean square contingency and dependency.

\[\text{M.S.C.} = \sum_{I=1}^{\text{JHIGH}} \sum_{J=1}^{\text{JHIGH}} \frac{[P(I,J)]^2}{P(I)P(J)} - 1 \]

where

\[P(I) = \sum_{J=1}^{\text{JHIGH}} P(I,J) \neq 0 , \quad P(J) = \sum_{I=1}^{\text{JHIGH}} P(I,J) \neq 0 \]

DEPENDENCY = M.S.C. / (JHIGH-1)

USE SUBROUTINE MSCON1.

Figure D-5
APPENDIX E

FACTORORIZATION OF THE POWER SPECTRUM

The problem of spectrum factorization in the frequency domain was solved by Kolmogorov (1941). The treatment here is similar to Robinson (1956).

Given a power density spectrum, \(\tilde{\Phi}(\omega) \), it is possible to factor it such that

\[
\tilde{\Phi}(\omega) = \mathcal{B}(\omega) \overline{\mathcal{B}(\omega)}
\]

where

\[
\mathcal{B}(\omega) = \sqrt{\tilde{\Phi}(\omega)} e^{i\Theta(\omega)}
\]

That this factorization is possible is quite obvious and, in fact, an infinite number of such factorization exist. The trivial case is \(\Theta(\omega) = 0 \). There is, however, one important case, and that is when \(\mathcal{B}(\omega) \) has no poles or zeros in the lower half of the \(\lambda \) plane (\(\lambda = \omega + i\sigma \)) (Lee, 1960). In this case \(\mathcal{B}(\omega) \) corresponds to the transfer function of a physically realizable system, that is, a system which does not have output before it has input. A pole in the lower half of the \(\lambda \) plane transforms to the negative time axis and can therefore be considered a "source" for negative time. If \(\mathcal{B}(\omega) \) has poles in the lower half plane, its Fourier transform \(\mathcal{B}(t) \) will only be non-zero for \(t \geq 0 \), and \(\mathcal{B}(t) \) then said to be one-sided in positive time. If \(\mathcal{B}(\omega) \) also has no zeros in the lower half plane, then its inverse \(\mathcal{B}(\omega) \) will have no poles in the lower half plane and its Fourier transform will also
be one-sided. \(B(t) \) is then called the minimum phase wavelet. The factorization problem is the problem of finding \(B(t) \) from \(\tilde{\Phi}(\omega) \) and can be solved as follows.

If we take the \(Z \) transform, i.e. \(Z = e^{i\omega} \), of \(B(\omega) \) to obtain \(B(z) \), we have mapped the lower half of the place into the interior of the unit circle and we now consider \(B(z) \) a polynomial in \(z \).

That is \(B(\omega) \) is the Fourier transform of some time function \(b(t) \) and as such has the form

\[
B(\omega) = \sum_{s=-\infty}^{\infty} b_s e^{-i\omega s}
\]

and the \(Z \) transform becomes

\[
B(z) = \sum_{s=-\infty}^{\infty} b_s z^s
\]

and \(B(z) \) must have no poles or zeros inside the unit circle.

There are certain restrictions on \(\tilde{\Phi}(\omega) \), namely

1. \(\tilde{\Phi}(\omega) = 0 \)

2. \(\int_{-\pi}^{\pi} \log |\tilde{\Phi}(\omega)| d\omega > -\infty \)

3. \(\int_{-\pi}^{\pi} \tilde{\Phi}(\omega) d\omega < \infty \)

which must be met if \(B(z) \) is to exist. If condition (1) is not met, then the integral (2) will not converge. Condition (2) is equivalent to the Paley-Wiener criterion (Robinson, 1954, p. 149) and is a requirement for the existence of a moving average and an autoregressive representation.
of the time series. Condition (3) states that the power must be finite and is just a stability requirement.

If these requirements are fulfilled, then the logarithm of \(B(z) \) will be analytic for \(|z| < 1\).

\[
\log B(w) = \frac{1}{2} \log \Phi(w) + i \Theta(w)
\]

or

\[
\log B(z) = U(z) + i V(z)
\]

Hence the problem of obtaining the minimum phase wavelet is now one of finding the imaginary part, \(V(z) \), of a function analytic inside the unit circle given the real part, \(U(z) \), on the circle. This is also the potential theory problem of finding the field inside of a region given the sources on the boundary. The function \(\log B(z) \) can be expressed as a power (Taylor) series in its region of analyticity.

\[
\log B(z) = \sum_{n=-\infty}^{\infty} a_n z^n
\]

Expanding \(\log B(z) = \log B(re^{i\omega}) \) in a Fourier series

\[
\log B(re^{i\omega}) = U(re^{i\omega}) + i V(re^{i\omega})
\]

\[
= \sum_{k} a_k e^{i\omega k}, \quad a_k = c_k + id_k
\]

\[
U(re^{i\omega}) = \text{Re} \left[\sum (c_k + id_k) r^k e^{i\omega k} \right]
\]

\[
= \text{Re} \left[\sum (c_k \cos \omega k + id_k \cos \omega k + ic_k \sin k \omega - d_k \sin k \omega) r^k \right]
\]

\[
= \sum (c_k \cos \omega k - d_k \sin k \omega) r^k
\]
However
\[u(re^{i\omega}) = \frac{1}{2} \log \Phi(\omega) \quad \text{at} \quad r = 1 \]
and \(\Phi(\omega) \) is an even function, i.e.
\[\Phi(\omega) = \Phi(-\omega) \]
since
\[\Phi(\omega) = \sum_{s} \phi_{s} \cos \omega s \]
Therefore \(\frac{1}{2} \log \Phi(\omega) \) is also even

and \(a_{\infty} = 0 \)

Hence \(a_{\infty} = c_{\infty} \)

and
\[\frac{1}{2} \log \Phi(\omega) = \sum a_{\kappa} \cos \kappa \omega \]

and
\[a_{\kappa} = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} \log \Phi(\omega) \cos \kappa \omega \, d\omega \]

The wavelet \(b_{S} \) is then determined from
\[
\mathcal{B}(z) = \sum_{S=-\infty}^{\infty} b_{S} z^{S} = \exp \left[\sum_{\kappa=-\infty}^{\infty} a_{\kappa} z^{\kappa} \right] = \exp \left[\sum_{\kappa=-\infty}^{\infty} \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} \log \Phi(\omega) \cos \kappa \omega \, d\omega \right] \]

The following method, suitable for programming purposes, for getting the \(b_{S} \) was first given in MIT G.A.G. Report 9 (1956) and was repeated in Simpson et al (1962a).

The \(b_{S} \) will have to be cut off after some \(S \) value, say \(S = m \).

It is shown below that the first \(m+1 \) terms of \(b_{S} \) (the first \(m+1 \) points in the wavelet) may be obtained exactly from the first \(m+1 \) \(a_{\kappa} \)'s.
Expanding

\[\sum_{s=0}^{\infty} b_s z^s = e^{\chi_0} \left[1 + \frac{2\chi_1}{1!} z + \left(\frac{2\chi_2}{2!}\right)^2 z^2 + \ldots \right] \left[1 + \frac{2\chi_2}{1!} z^2 + \left(\frac{2\chi_2}{2!}\right)^2 z^4 + \ldots \right] \]

\[\times \left[1 + \frac{2\chi_3}{1!} z^3 + \left(\frac{2\chi_3}{2!}\right)^2 z^6 + \ldots \right] \left[\ldots \right] \ldots \]

\[\times \left[1 + \frac{2\chi_m}{1!} z^m + \left(\frac{2\chi_m}{2!}\right)^2 z^{2m} + \ldots \right] \left[\ldots \right] \ldots \]

Matching like powers of \(z \) we find

\[b_0 = e^{\chi_0} \]

\[b_1 = e^{\chi_0} (2\chi_1) \]

\[b_2 = e^{\chi_0} \left(\frac{2\chi_1}{2!} \right)^2 + \frac{2\chi_2}{1!} \]

etc.

In general, if we are interested in obtaining \(b_0, \ldots, b_m \), we may drop terms in any polynomial with exponents \(\geq m \) and we may drop all polynomials whose first power of \(z \) is \(\geq m \). We also do not care about any cross terms whose \(z \) exponents are \(\geq m \).

We disregard \(e^{\chi_0} \) for the time being and consider the problem as follows:
\[
\sum_{s=0}^{m} b_s z^s = \text{(First } m+1 \text{ terms of)} P_1(z) P_2(z) \ldots P_n(z)
\]
(this is just another way of grouping the terms).

Where

\[P_i = 1 + c_{i1} z + c_{i2} z^2 + \ldots + c_{im} z^m\]

and

\[C_{ij} = \begin{cases}
\left(\frac{2a_i}{1}\right)\left(\frac{2a_i}{2}\right)\left(\frac{2a_i}{3}\right)\ldots\left(\frac{2a_i}{j/i}\right) & \text{for } j = k_i \\
0 & \text{for } j \neq k_i
\end{cases}\]

\[C_{i0} = 1\]

\(\kappa\) is a positive integer. Considering \(b_s\) and \(c_{is}\) as time functions we may now consider the problem as one of partial convolution. Let \(F\) stand for "First \(m+1\) terms of." Then

\[b = F(c_1 \ast c_2 \ast c_3 \ldots \ast c_m)\]

and

\[b = F(c_1 \ast F(c_2 \ast F(c_3 \ast \ldots \ast F(c_{m-1} \ast c_m))))\ldots\]

Let \(b^{(m)} = c_m\)

\[b^{(m-1)} = F(c_{m-1} \ast c_m) = F(c_{m-1} \ast b^{(m)})\]

\[b^{m-2} = F(c_{m-2} \ast F(c_{m-1} \ast c_m)) = F(c_{m-2} \ast b^{m-1})\]

\[b^{(1)} = F(c_1 \ast b^2) = b\]
Examination shows that \(b^{(l-1)} \) may be obtained from \(b^{(l)} \) by the following formula representing partial convolution

\[
b^{(l-1)} = \sum_{i=0}^{S} C_{l-1, S-1} b^{(l)}
\]

where \(S = 0, 1, 2, \ldots, m \).

Further examination shows that \(b^{(m)} \), where \(M = 1 + \text{integral part of } \frac{m}{2} \), may be written down by inspection

\[
\begin{align*}
b_0^{(m)} &= 1 \\
b_1^{(m)} &= 0 \\
b_2^{(m)} &= 0 \\
& \quad \vdots \\
b_M^{(m)} &= C_m, m \\
b_{m+1}^{(m)} &= C_{m+1, m+1} \\
& \quad \vdots \\
b_m^{(m)} &= C_m, m
\end{align*}
\]

This can be seen by noting first that \(b_0^{(l)} = 1 \) for all \(l \) and \(b_1^{(l)} = 0 \) for \(1 < S < L \) and that the \(C_{LS} \) for \(m/2 < L \leq m \) have only two terms in them. As the partial convolution proceeds, the \(b_0 \) terms pickup the diagonal terms in the \(C_{ij} \) matrix, and there are no other contributions to the next \(b_S^{(l)} \) until \(L > m/2 \).

It can be seen that only one column of the \(C_{ij} \) matrix is needed at a
A program has been written for the spectrum factorization problem for 709 or 7090 computers. The program makes sure that \(\tilde{\Phi}(\omega) > 0 \) by setting any value of \(\tilde{\Phi}(\omega) \) which is less than \(10^{-6} \) of the maximum value of \(\tilde{\Phi}(\omega) \) equal to \(10^{-6} \) of the maximum. The Daniell method of spectral estimation guarantees \(\tilde{\Phi}(\omega) > 0 \) but other spectral window such as the Turkey-Hamming window do not have the guarantee. The computation of the \(\alpha \)'s in the computation of the cosine expansion of \(\frac{1}{2} \log_2 \tilde{\Phi}(\omega) \) was done by trigonometric interpolation (Lanczos, 1956) so that the integral need not be computed. The program FACTOR is listed in APPENDIX G.
APPENDIX F

CONSTRUCTION OF THREE WHITE LIGHT SERIES WITH SPECIFIED COHERENCES

We wish to construct three unit variance white light series \(X_t^1 \), \(X_t^2 \), \(X_t^3 \) with controlled coherences

\[
\text{Coh}_{12}(\omega) = \frac{\left| \Phi_{12}(\omega) \right|}{\sqrt{\Phi_{11}(\omega) \Phi_{22}(\omega)}} = \alpha_{12}(\omega)
\]

\[
\text{Coh}_{13}(\omega) = \frac{\left| \Phi_{13}(\omega) \right|}{\sqrt{\Phi_{11}(\omega) \Phi_{33}(\omega)}} = \alpha_{13}(\omega)
\]

\[
\text{Coh}_{23}(\omega) = \frac{\left| \Phi_{23}(\omega) \right|}{\sqrt{\Phi_{22}(\omega) \Phi_{33}(\omega)}} = \alpha_{23}(\omega)
\]

The solution is an obvious extension of the Simpson et al (1962) treatment of constructing a pair of series with controlled coherence. Since \(X_t^1 \), \(X_t^2 \), \(X_t^3 \) are unit variance white light their spectra are

\[
\Phi_{11}(\omega) = \Phi_{22}(\omega) = \Phi_{33}(\omega) = \frac{1}{2\pi}
\]
hence

$$\left| \Phi_{ij}(\omega) \right| = \frac{\alpha_{ij}(\omega)}{2\pi}, \quad 1 \leq i < j \leq 3$$

or for zero phase shift

$$\Phi_{ij}(\omega) = \frac{\alpha_{ij}}{2\pi}$$

We assume that X_t^1, X_t^2, and X_t^3 are broken up to have common and uncorrelated parts

$$X_t^1 = X_t^{c_1} + X_t^{c_3} + X_t^{R_1}$$
$$X_t^2 = X_t^{c_1} + X_t^{c_2} + X_t^{R_2}$$
$$X_t^3 = X_t^{c_1} + X_t^{c_2} + X_t^{c_3} + X_t^{R_3}$$

where all cross correlations

$$\varphi_{c_i c_j}, \quad \varphi_{R_i R_j}; \quad i \neq j$$
$$\varphi_{c_i R_j}; \quad i = 1, 2, 3; \quad j = 1, 2, 3$$
are zero. The autospectra of the χ^i_t series are then
\[
\Phi_{11}(\omega) = \Phi_{C1}(\omega) + \Phi_{C3}(\omega) + \Phi_{R1}(\omega) = \frac{1}{2\pi}
\]
\[
\Phi_{22}(\omega) = \Phi_{C1}(\omega) + \Phi_{C2}(\omega) + \Phi_{R2}(\omega) = \frac{1}{2\pi}
\]
\[
\Phi_{33}(\omega) = \Phi_{C1}(\omega) + \Phi_{C2}(\omega) + \Phi_{C3}(\omega) + \Phi_{R3}(\omega) = \frac{1}{2\pi}
\]

The cross-spectra are
\[
\Phi_{12}(\omega) = \Phi_{C1}(\omega) = \frac{\alpha_{12}(\omega)}{2\pi}
\]
\[
\Phi_{13}(\omega) = \Phi_{C1}(\omega) + \Phi_{C3}(\omega) = \frac{\alpha_{13}(\omega)}{2\pi}
\]
\[
\Phi_{23}(\omega) = \Phi_{C1}(\omega) + \Phi_{C2}(\omega) = \frac{\alpha_{23}(\omega)}{2\pi}
\]

We therefore have
We must first construct the six mutually independent series $\chi_t^{c_i}$, $\chi_t^{r_i}$, $i=1,2,3$ with the power spectra $\Phi_{c_{2}}(\omega)$, $\Phi_{c_{3}}(\omega)$ given above. We then construct the $\chi_t^{c_i}$ series with equations F-2. These series have the coherences $\alpha_{ij}(\omega)$ as shown in equations F-1.
APPENDIX G

PROGRAM LISTINGS

Listings, with descriptions and examples, of some of the more important programs used in the computations in this thesis. The listings are in alphabetical order and include all subroutines appearing in the transfer vectors with the exception of the FORTRAN System routines. An index of these programs and other programs useful in time series analysis appears in Scientific Report Number 4 of Contract AF 19(604)7378 (Simpson et al., 1962b) and complete listings will appear (Simpson, 1963, in press) in book form in the near future. All the programs appearing here are designed to operate under the FORTRAN-II system for the IBM 709-7090 computers.

Throughout the listings the terms FORTRAN INTEGER, FORTRAN II INTEGER, and INTEGER are synonymous and refer to a fixed point integer in the decrement. The terms MACHINE LANGUAGE INTEGER, MACHINE INTEGER and MLI refer to a fixed point integer in the decrement. The terms LSTHN and LSTHN = are equivalent to < and ≤ while GRTHN and GRTHN = are equivalent to > and ≥. It should be noted that expressions which appear in the "ABSTRACT" section of the writeup may deviate from the usual FORTRAN conventions.
CHISQR (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO. 0084

LABEL

CHISQR

SUBROUTINE CHISQR(NBLOCS, ICOUNT, N, CHISQ, IANS)

--- ABSTRACT ---

TITLE - CHISQR

COMPUTES CHI-SQUARE FOR EQUALLY LIKELY PROBABILITY CASE.

CHISQR COMPUTES CHI SQUARE WHEN GIVEN THE DISTRIBUTION COUNT AND THE NUMBER OF EQUALLY LIKELY BLOCKS INTO WHICH THE DATA IS PUT. NUMBER OF BLOCKS = NBLOCKS, N = TOTAL NUMBER OF OBSERVATIONS, ICOUNT = DISTRIBUTION COUNT.

CHISQ = SUM((ICOUNT(I) - N/NBLOCKS)2)/(N/NBLOCKS)**

SUMMED OVER NBLOCKS, WHERE FLOATING OPERATIONS ARE ASSUMED RATHER THAN THE INDICATED INTEGER OPERATIONS.

LANGUAGE - FORTRAN II SUBROUTINE

EQUIPMENT - 709 OR 7090 (MAIN FRAME ONLY)

STORAGE - 1C5 REGISTERS

SPEED -

AUTHOR - J.N. GALBRAITH

--- USAGE ---

TRANSFER VECTOR CONTAINS ROUTINES - NONE

AND FORTRAN SYSTEM ROUTINES - NONE

FORTRAN USAGE

CALL CHISQR(NBLOCS, ICOUNT, N, CHISQ, IANS)

INPUTS

NBLOCS IS NUMBER OF EQUALLY LIKELY BLOCKS.

MUST BE GRTRN 1.

ICOUNT(I) =1...NBLOCS IS THE DISTRIBUTION COUNT, I.E. THE NUMBER OF VALUES IN I-TH EQUALLY LIKELY BLOCK.

MUST BE NON-NEGATIVE

N IS TOTAL NUMBER OF OBSERVATIONS (=SUM(ICOUNT(I))).

MUST BE GRTRN=1.

OUTPUTS

CHISQ IS THE CHI-SQUARE VALUE

IANS = 0 NORMAL

= 1 ILLEGAL NBLOCS

= 2 ILLEGAL N

EXAMPLES

1. **INPUTS** - NBLOCS=3, ICOUNT(1...3)=1,3,5 N=9

OUTPUTS - CHISQ=2.666667 IANS=0

2. **INPUTS** - NBLOCS=1, ICOUNT(1)=1 N=9

OUTPUTS - ERROR IANS=1

3. **INPUTS** - NBLOCS=3, ICOUNT(1...3)=1,3,5 N=0

OUTPUTS - ERROR IANS=2

4. **INPUTS** - NBLOCS=5, ICOUNT(1...5)=1,2,3,4,5 N=15

OUTPUTS - CHISQ=3.333333 IANS=0

DIMENSION ICOUNT(100)

IANS=0

IF(NBLOCS=1) 990,99G,5

IF(N) 992,992,10

P=1/FLOAT(NBLOCS)

EXPNO=P*FLOAT(N)

CHISQ=0
DO 25 I=1,NBLCCS
 DIF=FLOAT(ICOUNT(II))-EXPNO
 CHISQ=CHISQ+DIF*DIF
25 CHISQ=CHISQ/EXPNO
26 RETURN
990 IANS=1
 GO TO 26
992 IANS=2
 GO TO 26
END
COSP

--- ABSTRACT ---

TITLE - COSP WITH SECNDARY ENTRY POINTS SISP AND COSISP

FAST COSINE AND/OR SINE TRANSFORMS FROM 2 OR 4 EVEN-ODD PARTS

COSP COMPUTES COSINE SUMS, CT(J) J=JMIN,...,JMAX, ON TWO INPUT SERIES, SS(I) AND AS(I; I=0,...,L, ACCORDING TO

\[\sum (SS(I) \cdot \cos(I \cdot J \cdot (\pi/M))) \]

EFJ J = JMIN, JMIN+1,..., JMAX

M = INPUT PARAMETER

COS(I*(\pi/M)) I=G,1,...,M IS AN INPUT TABLE

SS(I), AS(I), MAY BE EITHER FIXED OR FLOATING

COSISP COMPUTES BOTH CT(J) AND ST(J) AS DEFINED ABOVE

NOTE THAT THE FUNDAMENTAL FREQUENCY AS DEFINED BY THE INPUT TABLES HAS PERIOD = EVEN NO. OF POINTS = 2M

LANGUAGE - FAP SUBROUTINE (FORTRAN II COMPATIBLE)

EQUIPMENT - 709 OR 7090 (MAIN FRAME ONLY)

STORAGE - 492 REGISTERS

SPEED - 709-FIXED PT 709-FLOATING PT

COSP 34*K*(L+1) 37*K*(L+1) 67*K*(L+1)

WHERE

\[K = JMAX-JMIN+1 \]

(Reduce estimates about 1C PERCENT FOR 709G)

AUTHOR - S.M. SIMPSON, OCT 26, 61

----- USAGE -----

TRANSFER VECTOR CONTAINS ROUTINES - NONE

AND FORTRAN SYSTEM ROUTINES - NONE

FORTRAN USAGE OF COSP

CALL COSP (SSX, ASX, L, COSTAB, M, JMIN, JMAX, TYPE, COSTR)

INPUTS TO COSP
PROGRAM LISTINGS

COSP

COSP

(PAGE 2) (PAGE 2)

- **SSX(I) I=1...L+1 CONTAINS SS(J) J=0,1,...,L FIXED OR FLOATING** 0074
- **COSP** 0075
- **ASX(I) I=1...L+1 CONTAINS AS(J) J=0,1,...,L FIXED OR FLOATING** 0076
 - **EQUIVALENCE (SSX,ASX) IS PERMITTED** 0077
- **L MUST EXCEED 0** 0078
- **COSTAB(I) I=1...M+1 CONTAINS COST(J*PI/M) J=0,1,...,M** 0079
- **COSTAB IS FIXED OR FLOATING** 0080
 - **FOR FIXED POINT IT IS ASSUMED THAT THE BINARY POINT** 0081
 - **IS BETWEEN THE SIGN BIT AND 9IT 1 SO THAT VALUES** 0082
 - **-1.0 SHOULD BE ENTERED AS OCTAL 377777777777** 0083
 - **AND 777777777777 RESPECTIVELY. THE BINARY POINT** 0084
 - **OF SSX AND ASX IS IMMATERIAL, BUT OVERFLOW MAY ARISE.** 0085
- **M MUST EXCEED 0** 0086
 - **JMIN DEFINES LOWEST MULTIPLE OF FUNDAMENTAL DESIRED** 0087
 - **MUST BE GREATER THAN JMIN AND LESS THAN JMAX** 0088
 - **JMAX DEFINES HIGHEST MULTIPLE OF FUNDAMENTAL** 0089
 - **MUST BE GREATER THAN JMIN** 0090
 - **TYPE = 0.0 SIGNIFIES SS,AS, AND COSTAB ARE FIXED PT.** 0091
 - **NOT = 0.0 MEANS SS,AS, AND COSTAB ARE FLTG. PT.** 0092

OUTPUTS FROM CCSP

- **COSTR(I) I=1...JMAX-JMIN+1 CONTAINS CT(J) J=JMIN...JMAX** 0093
 - **AS DEFINED IN ABSTRACT. (PROGRAM EXITS WITHOUT COMPUTATION IF L,M,JMIN,** 0094
 - **OR JMAX ILLEGAL)** 0095

FORTRAN USAGE OF SISP

- **CALL SISP (SAX,AAX,SINTAB,M,JMIN,JMAX,TYPE,SINTR)** 0096
 - **INPUTS TO SISP** 0097
 - **SAX(I) I=1...L+1 CONTAINS SA(J) J=0,1,...,L** 0098
 - **AAX(I) I=1...L+1 CONTAINS AA(J) J=0,1,...,L** 0099
 - **EQUIVALENCE (SAX,AAX) IS PERMITTED.** 0100
 - **L SAME MEANING AS FOR COSP** 0101
 - **SINTAB(I) I=1...M+1 CONTAINS SIN(J*PI/M) J=0,1,...,M** 0102
 - **SAME MEANING AS FOR COSP** 0103
 - **JMIN SAME MEANING AS FOR COSP** 0104
 - **JMAX SAME MEANING AS FOR COSP** 0105
 - **TYPE SAME MEANING AS FOR COSP** 0106
 - **OUTPUTS FROM SISP** 0107
 - **SINTR(I) I=1...JMAX-JMIN+1 CONTAINS ST(J) J=JMIN...JMAX** 0108
 - **SAME MEANING AS FOR COSP** 0109
 - **SAME MEANING AS FOR COSP** 0110
 - **SAME MEANING AS FOR COSP** 0111
 - **SAME MEANING AS FOR COSP** 0112
 - **SAME MEANING AS FOR COSP** 0113
 - **SAME MEANING AS FOR COSP** 0114

FORTRAN USAGE OF CCISP

- **CALL CCISP (SSX,ASX,SAX,AAX,L,COSTAB,SINTAB,M,JMIN,JMAX,TYME,SINTR)** 0115
- **EXAMPLES** 0116
 - **1. USE OF COSP, SISP, COSISP WHEN ALL INPUTS EQUATED, FIXED AND** 0117
 - **FLOATING, ALL FREQUENCIES** 0118
 - **INPUTS** 0119
 - **I(1...4) = 1.0,2.0,3.0,4.0** 0120
 - **COSTAB(1...3) = 1.0,0.0,-1.0** 0121
 - **SINTAB(1...3) = 0.0,1.0,0.0** 0122
 - **ICOSTB(1...3) = OCT377777777777** 0123
 - **000000000000,7777777777777** 0124
PROGRAM LISTINGS

COSP

* Usage call COSP (X, X, L, COSTAB, M, JMIN, JMAX, 1., C1)

* Usage call COSP (IX, IX, L, COSTAB, M, JMIN, JMAX, 1., C1)

* Usage call SISP (X, X, L, SINTAB, M, JMIN, JMAX, 1., S1)

* Usage call SISP (IX, IX, L, SINTAB, M, JMIN, JMAX, 1., S1)

* Usage call COSISP (X, X, X, X, L, COSTAB, SINTAB, M, JMIN, JMAX, 1., C2, S2)

* Usage call COSISP (IX, IX, IX, IX, L, ICOSTB, ISINTB, M, JMIN, JMAX, 1., C2, S2)

Outputs

* C1(1...3) = C2(1...3) = 10., -2., -2.

* S1(1...3) = S2(1...3) = 0., -2., 0.

* IC1(1...3) = IC2(1...3) = 1000., -200., -200.

* IS1(1...3) = IS2(1...3) = 0., -200., 0.

2. PARTIAL FREQUENCY COVERAGE

Inputs

* Same as example 1. except JMIN = 1

Usage

* Same as example 1.

Outputs

* C1(1...2) = C2(1...2) = -2., -2.

* S1(1...2) = S2(1...2) = -2., 0.

* IC1(1...2) = IC2(1...2) = -200., -200.

* IS1(1...2) = IS2(1...2) = -200., 0.

3. USE OF COSISP TO FIND COEFFICIENTS OF TRIGONOMETRICAL SERIES FOR AN EVEN-LENGTH VECTOR

Inputs

* CCSTAB(1...M+1) = COS(J*PI/M), J = 0, 1, ... M

* SINTAB(1...M+1) = SIN(J*PI/M), J = 0, 1, ... M

Length

* L = 2*M-1

Usage

* Call COSISP (X, X, X, X, L, COSTAB, SINTAB, M, 0, M, 1., AA, BB)

* AA(1) = AA(1)/FLOATF(2*M)

* AA(M+1) = AA(M+1)/FLOATF(2*M)

* DO 10 I = 2, M

* AA(I) = AA(I)/FLOATF(M)

* 10 BB(I) = BB(I)/FLOATF(M)

Outputs

* AA(1...M+1) will contain A(0), A(1), ... A(M) as required

* BB(1...M) will contain B(1), ... B(M-1) as required

* BB(M+1) = BB(M+1) = 0.

4. USE OF COSISP TO INVERT COEFFICIENTS OF TRIG SERIES FOR AN EVEN-LENGTH VECTOR

Inputs

* AA(1) and BB(I) are same as outputs of example 3.

Usage

* Call COSISP (AA, BB, BB, BB, M, COSTAB, SINTAB, M, 0, M, 1., XA)

* 12M = 2*M

* DO 20 I = 2, M

* J = 12M + 2 - I

* XA(I) = XA(I)

* 20 XA(I) = XA(I)

* DO 30 I = 1, 12M

* 30 XAB(I) = XA(I) + XG(I)

Outputs

* XAB(1...2*M) will contain X(0, 1, ..., 2*M-1) as required

5. ILLUSTRATION OF FINDING TRIG SERIES

Inputs

* Same as example 1.

Usage

* Same as example 3.

Outputs

* AA(1...3) = 2.5, -1., -0.5

* BB(1...3) = 0., 1., 0.

6. ILLUSTRATION OF INVERTING TRIG SERIES

Inputs

* Same as example 5. with AA, BB, same as outputs from ex 5.

Usage

* Same as example 4.

Outputs

* XAB(1...4) = 1, 2, 3, 4.

7. USE OF SYMMETRIES TO REDUCE TIME IN COMPUTING TRANSFORMS ABOUT
MIDPOINT OF AN ODD-LENGTH SERIES

GENERAL FCRM

\[C(J) = \sum_{I=-M}^{M} (X(I) \cdot \cos(I \cdot J \cdot \pi / M)) \]

\[S(J) = \sum_{I=-M}^{M} (X(I) \cdot \sin(I \cdot J \cdot \pi / M)) \]

INPUTS - THEN REVERSE ALL THE VECTORS AND CHANGE SIGNS OF ASX

OUTPUTS - COSTR(1..7) = \cos(J \cdot \pi / 6) SINTR(1..7) = \sin(J \cdot \pi / 6)

USAGE - CALL COSISP (SSX,ASX,SAX,AAX,3,COSTAB,SINTAB,MO,1,COSTR,SINTR)

PROGRAM FOLLOWS BELOW

NOTATION DIFFERENCES IN PROGRAM NOTES ARE

\[P=L \]

CSS=SSX \ PAS=ASX \ KAA=AAX \ RSA=SAX

L=3 M=6 COSTAB(1..7)=\cos(J \cdot \pi / 6) SINTAB(1..7)=\sin(J \cdot \pi / 6)

INPUTS - THEN REVERSE ALL THE VECTORS AND CHANGE SIGNS OF ASX

OUTPUTS - COSTR(1..7) = \cos(J \cdot \pi / 6) SINTR(1..7) = \sin(J \cdot \pi / 6)

USAGE - CALL COSISP (SSX,ASX,SAX,AAX,3,COSTAB,SINTAB,MO,1,COSTR,SINTR)

PROGRAM FOLLOWS BELOW

NOTATION DIFFERENCES IN PROGRAM NOTES ARE

\[P=L \]

CSS=SSX \ PAS=ASX \ KAA=AAX \ RSA=SAX

L=3 M=6 COSTAB(1..7)=\cos(J \cdot \pi / 6) SINTAB(1..7)=\sin(J \cdot \pi / 6)

INPUTS - THEN REVERSE ALL THE VECTORS AND CHANGE SIGNS OF ASX

OUTPUTS - COSTR(1..7) = \cos(J \cdot \pi / 6) SINTR(1..7) = \sin(J \cdot \pi / 6)

USAGE - CALL COSISP (SSX,ASX,SAX,AAX,3,COSTAB,SINTAB,MO,1,COSTR,SINTR)

PROGRAM FOLLOWS BELOW

NOTATION DIFFERENCES IN PROGRAM NOTES ARE

\[P=L \]

CSS=SSX \ PAS=ASX \ KAA=AAX \ RSA=SAX

L=3 M=6 COSTAB(1..7)=\cos(J \cdot \pi / 6) SINTAB(1..7)=\sin(J \cdot \pi / 6)

INPUTS - THEN REVERSE ALL THE VECTORS AND CHANGE SIGNS OF ASX

OUTPUTS - COSTR(1..7) = \cos(J \cdot \pi / 6) SINTR(1..7) = \sin(J \cdot \pi / 6)

USAGE - CALL COSISP (SSX,ASX,SAX,AAX,3,COSTAB,SINTAB,MO,1,COSTR,SINTR)

PROGRAM FOLLOWS BELOW

NOTATION DIFFERENCES IN PROGRAM NOTES ARE

\[P=L \]

CSS=SSX \ PAS=ASX \ KAA=AAX \ RSA=SAX

L=3 M=6 COSTAB(1..7)=\cos(J \cdot \pi / 6) SINTAB(1..7)=\sin(J \cdot \pi / 6)

INPUTS - THEN REVERSE ALL THE VECTORS AND CHANGE SIGNS OF ASX

OUTPUTS - COSTR(1..7) = \cos(J \cdot \pi / 6) SINTR(1..7) = \sin(J \cdot \pi / 6)

USAGE - CALL COSISP (SSX,ASX,SAX,AAX,3,COSTAB,SINTAB,MO,1,COSTR,SINTR)
224

*SET EXIT
SISP SXD COSP-2,4
SXA LV+1,1
SXA LV+2,2
CLA K10
STA EXIT

*SET ARGUMENT TABLE
CLA 1,4
STA T3
CLA 2,4
STA T4
CLA* 3,4
STD T5
CLA 4,4
STA T6
CLA 5,4
STD T7
CLA 6,4
STD T8
CLA 7,4
STD T9
CLA 8,4
STD T10
CLA 9,4
STA T11
CLA 10,4
STA T12

*SET SISP SWITCHES
CLA KA14 K9
STA Z30
CLA KA9 Z50
STA Z33
CLA KA7 Z100
STA Z56
STA Z66
STA Z76
CLA KA16 Z115
STA Z106
CLA KZ1 ZET SWE
STD Z114
STD Z112
CLA KZ2 ZET SNO
STD Z121A
STD Z122A
TRA Z14

*SET EXIT
COSP SXD COSP-2,4 SET UP EXIT
SXA LV+1,1
SXA LV+2,2
CLA K14
STA EXIT

*SET UP ARGUMENT TABLE
CLA 1,4
STA T1
CLA 2,4
STA T2
CLA 3,4
STA T3
CLA 4,4
STA T4
CLA* 5,4
STD T5
CLA 6,4
STD T6
CLA 7,4
STA T7
CLA 8,4
STD T8
CLA* 9,4
STD T9
CLA* 10,4
STA T10
CLA* 11,4
STO T11
CLA 12,4
STA T12
CLA 13,4
STA T13
SET COSISP
CLA K14 K9
STA Z36
CLA K9 Z50
STA Z33
CLA K6 Z90
STA Z56
STA Z66
STA 276
STA 286
CLA KA15 Z107
STA Z156
CLA Z21 ZET SWE
STA Z114
STA Z112
CLA Z294
STD Z121A
STD Z122A
CLA KA16 Z115
STA Z1098
TRA Z14
*THEN ADDRESSES
CLA T7 SINTAB (OR HASH)
STA 250
STA 253
STA 260
STA 263
*MAKE COMMON SETTINGS FOR COSP, SISP, COSISP AS IF IT WERE COSISP
*FIRST FOR FIXED POINT OR FLOATING POINT
Z14 ZET T11
TRA Z15 FLOATING
CLA MPY FIXED
LDQ A00
TRA Z16
Z15 CLA FMP FLOATING
LDQ FAD
Z16 STD Z151
STD Z151
STD Z171
STD Z181
STD Z191
STD Z252
STD Z62
STD Z72
STD Z82
STD Z92
STD Z54
STD Z64
STD Z74
STD Z84
STD Z94
CLA K16 SMSE
STA 252
STA 262
STA 272
STA 282
CLA K93 SMSSD
STA 255
STA 275
STA 285
STA 295
CLA K4 SMSE
STA 265
STA 285
CLA K4 SMSE
STA 292
CLA K4 SMSE
STA 295
* PROGRAM LISTINGS
• FOR JMIN EVEN SET JE=JMIN+1,JO=JMIN+1,ESTOR=0,OSTOR=1
 * JMIN ODD SET JC=JMIN,JE=JMIN+1,OSTOR=0,ESTOR=1

* CLEAR DUMMY SWITCHES
 * NOW BEGIN LOOPING
 * INITIALIZE Z105 SWITCH, CLEAR SUM REGISTERS, SET TRAVEL SWITCHES
 * FORWARD

* CLEAR DUMMY SWITCHES
 * NOW BEGIN LOOPING
 * INITIALIZE Z105 SWITCH, CLEAR SUM REGISTERS, SET TRAVEL SWITCHES
 * FORWARD
 * CLEAR DUMMY SWITCHES
 * NOW BEGIN LOOPING
 * INITIALIZE Z105 SWITCH, CLEAR SUM REGISTERS, SET TRAVEL SWITCHES
 * FORWARD

* CLEAR DUMMY SWITCHES
 * NOW BEGIN LOOPING
 * INITIALIZE Z105 SWITCH, CLEAR SUM REGISTERS, SET TRAVEL SWITCHES
 * FORWARD

Z20 CLA T9 JPIN
 TMI LV
 CAS T1C
 TRA LV
 TRA LV
 ARS 10
 AL1 18
 IS ODD
 STD JG
 ADD KD1
 STD JF
 STZ OSTOR
 CLA K1
 STA ESTOR
 TRA Z23
 Z21 AL1 18
 IS EVEN
 STD JE
 ADD KD1
 STD JD
 STZ ESTOR
 CLA K1
 STA OSTOR
 Z22 CLA ** (**=KA6 COSP, **=KA9 OTHERWISE)
STZ SWE
STZ SWC
CLA JE
STD Z103
CLA JC
STD Z102
*SET MINUS JE,JO
LDC JE,1
SXD MJE,1
LDC JC,1
SXD MJC,1
*Xr4 will control motion for even harmonic index
*Xr2 will control motion for odd harmonic index
*Xr1 will control motion for data index
*Data index=sine index=cosine index=0
AXT 0,7
Z33 TRA (**=Z100 for COSISP, =Z50 otherwise)
*Loop for forward motion on sine wave for both harmonics
*This part is for even harmonics (Xr4) summed in SMSE
Z50 LDQ **,4 (**=SINTAB)
Z51 NOP (MPY or FMP $5,1 with ** = RAA)
Z52 NOP (ADD or FAD SMSE)
STD SMSE
*This part is for odd harmonics (Xr2), summed in SMSO
Z53 LDQ **,2 (**=SINTAB)
Z54 NOP (MPY or FMP $5,1 with ** = RSA)
Z55 NOP (ADD or FAD SMSO)
STD SMSO
*Now go to cosine sums if COSISP, or avoid if SISP
Z56 TRA (**=Z50 FOR COSISP, ***=Z100 FOR SISP)
*Loop for forward motion on sine wave of even harmonic and
*Reverse motion on sine wave of odd harmonic
*FCR even
Z60 LDQ **,4 (**=SINTAB)
Z61 NOP (MPY or FMP $5,1 with ** = RAA)
Z62 NOP (ADD or FAD SMSE)
STD SMSE
*FCR odd
Z63 CLS **,2 (**=SINTAB)
XCA
Z64 NOP (MPY or FMP $5,1 with ** = RSA)
Z65 NOP (ADD or FAD SMSO)
STD SMSO
Z66 TRA ** (**=Z100 IF COSISP, ***=Z50 IF SISP)
*Loop for reverse motion on sine wave of even harmonic and
*Forward motion on sine wave of odd harmonic
*FCR even
Z70 CLS **,4 (**=SINTAB)
XCA
Z71 NOP (MPY or FMP $5,1 with ** = RAA)
Z72 NOP (ADD or FAD SMSE)
STD SMSE
*FCR odd
Z73 LDQ **,2 (**=SINTAB)
Z74 NOP (MPY or FMP $5,1 with ** = RSA)
Z75 NOP (ADD or FAD SMSO)
STD SMSO
Z76 TRA ** (**=Z100 COSISP, ***=Z90 IF SISP)
*Loop for reverse motion on sine wave for both harmonics
*This part is for even harmonics
Z80 CLS **,4 (**=SINTAB)
XCA
Z81 NOP (MPY or FMP $5,1 with ** = RAA)
Z82 NOP (ADD or FAD SMSE)
STD SMSE
*This part is for odd harmonics
Z83 CLS **,2 (**=SINTAB)
XCA
Z84 NOP (MPY or FMP $5,1 with ** = RSA)
Z85 NOP (ADD or FAD SMSO)
STD SMSO
*Now go to cosine sums if COSISP, or avoid if SISP
Z86 TRA ** (**=Z50 FOR COSISP, ***=Z100 FOR SISP)
*Loop for forward or backward motion on cosine wave
*This part for even harmonics summed in SMSE
Z90 LDQ **.4 (**=COSTAB) 0599
Z91 NCP (MPY OR FMP **.1 WITH =RSS) 0600
Z92 NOP (ADD OR FAD SMCE) 0601
STO SMCE 0602

* THIS PART IS FOR ODD HARMONICS SUMMED IN SMCO 0603
Z93 LDQ **.2 (**=COSTAB) 0604
Z94 NOP (MPY OR FMP **.1 WITH =RAS) 0605
Z95 NOP (ADD OR FAD SMCO) 0606
STO SMCO 0607

*INCREMENT INDEX FOR EVEN HARMONICS (BY +JE FOR FORWARD 0608
* TRAVEL, BY -JE FOR REVERSE TRAVEL) 0609
Z100 TXI **1.4,** (**=JE FORWARD) (**=-JE REVERSE) 0610
*CHECK IF INDEX HAS RUN OFF END (GREATER THAN M FOR 0611
* FORWARD TRAVEL, LESS THAN ZERO FOR REVERSE) 0612
* IF REVERSE TRAVEL X44 GOING NEGATIVE MEANS 0613
* X44 GETS GREATER THAN M, SO SAME TEST APPLIES) 0614
Z101 TXH Z120,4,** (**=M) 0615

*INCREMENT INDEX FOR ODD HARMONICS (**=JO OR -(JO) 0616
* AND MAKE SAME KIND OF END TEST 0617
Z102 TXI **1.2,** (**=JO FORWARD) (**=-JO REVERSE) 0618
Z103 TXH Z110,2,** (**=M) 0619

*INCREMENT DATA INDEX BY 1 AND CHECK FOR END OF DATA 0620
* LOOPSING BACK TO PLACE DETERMINED BY WHETHER COSP OR 0621
* SISP OR COSISP AND FORWARD OR BACKWARD AND EVEN OR ODD 0622
Z104 TXI **1.1,1 (TXL **.1,1,B **=P) 0623
Z105 TXL **1.1,** (TXL **.1,1,B **=P) 0624

* READJUSTMENTS WHEN ODD HARMONIC INDEX RUNS OFF END 0625
* FORWARD OR BACKWARD 0626
Z110 TRA ** (**=Z107 FOR COSP OR COSISP) 0627
* FOR SISP OR COSISP (INITIAL = Z50) 0628
* **=Z50 EVEN AND ODD HARMONICS FORWARD 0629
* **=Z60 EVEN FORWARD, ODD REVERSE 0630
* **=Z70 EVEN REVERSE, ODD FORWARD 0631
* **=Z80 EVEN AND ODD REVERSE 0632
* **=Z115 FOR SISP) 0633

* READJUSTMENTS WHEN EVEN HARMONIC INDEX RUNS OFF END 0634
* WHICH WAY WERE WE GOING 0635

2110 Z113 BACKWARD 0636
CLA K1 0637
STO SWC 0638

* IF FORWARD SET TO GC BACKWARD ON ODD 0639
Z111 SXD TEP3,2 0640
CLA 2K 0641
SUB TEP 0642
PDX 0,2 0643
CLA MJC 0644
STO Z102 0645

* IF COSP GO BACK, IF NOT REMAKE FORK AT Z105 0646
* COSP SISP OR COSISP 0647
Z112 NDP (TRA Z104 OR ZET SWE) 0648
TRA Z112A 0649
CLA K10 (KA10 = PZE Z60) 0650
STA Z1C5 0651
TRA Z104 0652
Z112A CLA KA12 (KA12=PZE Z80) 0653
STA Z105 0654
TRA Z104 0655

* IF BACKWARDS SET TO GC FORWARD ON ODD 0656
Z113 STZ SWC 0657
PXA 0.2 0658
PAC 0.2 0659
CLA JC 0660
STO Z1G2 0661

* IF COSP GO BACK, IF NOT REMAKE FORK AT Z105 0662
* COSP SISP OR COSISP 0663
Z114 NDP (TRA Z104 OR ZET SWE) 0664
TRA Z114A 0665
CLA KA9 (KA9=PZE Z50) 0666
STA Z1C5 0667
TRA Z104 0668
Z114A CLA KA11 (KA11=PZE Z70) 0669
STA Z105 0670
TRA Z1C4 0671

* READJUSTMENT WHEN EVEN HARMONIC INDEX RUNS OFF END 0672
* WHICH WAY WERE WE GOING 0673
Z120 ZET SWE 0674
TRA Z122 0675
*IF FORWARD, REVERSE SWE, READJUST IRA AND DECREM OF TXI 0676
Z121 CLA K1 0677
STO SWE 0678
SXD ETPP,4 0679
CLX 2M 0680
SUB ETPP 0681
PDX 0,4 0682
CLA KJE 0683
STO ZICO 0684
*IS COSP GO BACK, IF NOT REMAKE FORK AT Z105 0685
Z121A NOP (TRA Z102(COSP) ZET SWO (SISP,COSISP)) 0686
TRA Z121B 0687
CLA KA11 (KA11=Z70) 0688
STA Z105 0689
TRA Z102 0690
Z121B CLA KA12 (KA12=Z80) 0691
STA Z106 0692
TRA Z102 0693
* IF BACKWARDS 0694
Z122 STZ SWE 0695
PXA 0,4 0696
PAC 0,4 0697
CLA JE 0698
STO Z100 0699
*IF COSP GO BACK, IF NOT REMAKE FORK AT Z105 0700
Z122A NOP (TRA Z102(COSP),ZET SWO (SISP,COSISP)) 0701
TRA Z122B 0702
CLA KA9 (KA9=Z50) 0703
STA Z105 0704
TRA Z102 0705
Z122B CLA KA10 (KA10=Z60) 0706
STA Z105 0707
TRA Z102 0708
*COSP OR COSISP RESULT STORAGE FOR COSINE TRANSFORMS 0709
*WAS LAST EVEN HARMONIC A DUMMY 0710
Z107 ZET DUME 0711
TRA Z109 0712
*IF NOT STORE SMCE IN COSTR BLOCK 0713
LXA ESTOR,4 0714
CLA SMCE 0715
Z108 STO **,4 (**=COSTR) 0716
*WAS LAST ODD HARMONIC A DUMMY 0717
Z109 ZET DUME 0718
TRA Z109B 0719
*IF NOT STORE SMCE IN COSTR BLOCK 0720
LXA ESTOR,4 0721
CLA SMCE 0722
Z109A STO **,4 (**=COSTR) 0723
Z109B TRA ** (**=Z115 COSISP, **=Z130 COSP) 0724
*COSISP OR SISP RESULT STORAGE FOR SINE TRANSFORMS 0725
*WAS LAST EVEN HARMONIC A DUMMY 0726
Z115 ZET DUME 0727
TRA Z117 0728
*IF NOT STORE SMSE IN SINTR BLOCK 0729
LXA ESTOR,4 0730
CLA SMSE 0731
Z116 STO **,4 (**=SINTR) 0732
*WAS LAST ODD HARMONIC A DUMMY 0733
Z117 ZET DUME 0734
TRA Z130 0735
*IF NOT STORE SMSE IN SINTR BLOCK 0736
LXA ESTOR,4 0737
CLA SMSE 0738
Z118 STO **,4 (**=SINTR) 0739
*RESET FOR NEXT LCP STORAGE 0740
Z130 CLA ESTOR 0741
ADD K2 0742
STO ESTOR 0743
CLA OSTOR 0744
ADD K2 0745
STO OSTOR 0746
*INDEX JE BY TWO AND CHECK IF TOO BIG 0747
CLA JE 0748
ADD KG2
STD JE
CAS TIC
TRAJ 0751
NOP 0752

*IF NEW JE OK, INDEX JO BY TWO AND CHECK ITS SIZE
Z131 CLA JO
ADD KO2
STD JC
CAS T10
TRAJ ZI33

*RETURN TO BEGINNING OF LOOP
ZI32 TRA Z30

*IS JE ALSO TOO BIG
ZET DUPE
TRA LV
TRAI ZI32

*IF JE TOO BIG SET SW
Z133 CLA K1
STO DUPE
TRAI ZI31

*FINAL EXIT
LV LXO COSP-2,4
AXT **2
EXIT TRA

*CONSTANTS, TEMPORARIES, ETC
SWE PZE **
SWO PZE **
JE PZE 0,0,**
MJE PZE 0,0,**
JO PZE 0,0,**
MJO PZE 0,0,**
DUME PZE **
DUMC PZE **
ESTOR PZE **
OSTOR PZE **

SINP PZE **
SMSP PZE **
SMCP PZE **
SUMP PZE 0,0,**

TEMP PZE **
T1 PZE **
T2 PZE **
T3 PZE **
T4 PZE **
T5 PZE 0,0,**
T6 PZE **
T7 PZE **
T8 PZE 0,0,**
T9 PZE 0,0,**
T10 PZE 0,0,**
T11 PZE **
T12 PZE **
T13 PZE **
K0 PZE 0
K1 PZE 1
K2 PZE 2
K10 PZE 10
K14 PZE 14
K1 TRA ZI04
K12 TRA ZI02
K21 ZET SWE
K22 ZET SWO

<table>
<thead>
<tr>
<th>KD1</th>
<th>PZE</th>
<th>0,0,1</th>
<th>0824</th>
</tr>
</thead>
<tbody>
<tr>
<td>KD2</td>
<td>PZE</td>
<td>0,0,2</td>
<td>0825</td>
</tr>
<tr>
<td>KA2</td>
<td>PZE</td>
<td>SMSE</td>
<td>0826</td>
</tr>
<tr>
<td>KA3</td>
<td>PZE</td>
<td>SMCE</td>
<td>0827</td>
</tr>
<tr>
<td>KA4</td>
<td>PZE</td>
<td>SMCE</td>
<td>0828</td>
</tr>
<tr>
<td>KA5</td>
<td>PZE</td>
<td>SMCO</td>
<td>0829</td>
</tr>
<tr>
<td>KA6</td>
<td>PZE</td>
<td>Z90</td>
<td>0830</td>
</tr>
<tr>
<td>KA7</td>
<td>PZE</td>
<td>Z100</td>
<td>0831</td>
</tr>
<tr>
<td>KA8</td>
<td>PZE</td>
<td>Z30</td>
<td>0832</td>
</tr>
<tr>
<td>KA9</td>
<td>PZE</td>
<td>Z50</td>
<td>0833</td>
</tr>
<tr>
<td>KA10</td>
<td>PZE</td>
<td>Z60</td>
<td>0834</td>
</tr>
<tr>
<td>KA11</td>
<td>PZE</td>
<td>Z70</td>
<td>0835</td>
</tr>
<tr>
<td>KA12</td>
<td>PZE</td>
<td>ZH0</td>
<td>0836</td>
</tr>
<tr>
<td>KA13</td>
<td>PZE</td>
<td>KA8</td>
<td>0837</td>
</tr>
<tr>
<td>KA14</td>
<td>PZE</td>
<td>KA9</td>
<td>0838</td>
</tr>
<tr>
<td>KA15</td>
<td>PZE</td>
<td>Z107</td>
<td>0839</td>
</tr>
<tr>
<td>KA16</td>
<td>PZE</td>
<td>Z115</td>
<td>0840</td>
</tr>
<tr>
<td>KA17</td>
<td>PZE</td>
<td>Z120</td>
<td>0841</td>
</tr>
<tr>
<td>KA18</td>
<td>PZE</td>
<td>KA6</td>
<td>0842</td>
</tr>
<tr>
<td>KA19</td>
<td>PZE</td>
<td>Z130</td>
<td>0843</td>
</tr>
<tr>
<td>END</td>
<td></td>
<td></td>
<td>0844</td>
</tr>
</tbody>
</table>
*** PROGRAM LISTINGS ***

COSTBL (SUBROUTINE)

2/15/63 LAST CARD IN DECK IS NO. 0199

FAP

COSTBL

COUNT 200

ENTRY COSTBL (N,COSTAB)
ENTRY SINTBL (N,SINTAB)
ENTRY COSTBX (N,ICOSTB)
ENTRY SINTBX (N,ISINTB)

--- ABSTRACT ---

TITLE - COSTBL WITH SECONDARY ENTRY POINTS SINTBL, COSTBX, SINTBX

* PROGRAM COSTBL GENERATES A HALF-WAVE COSINE TABLE FLOATING POINT,
 SINTBL GENERATES A HALF-WAVE SINE TABLE FLOATING POINT,
 COSTBX GENERATES A HALF-WAVE COSINE TABLE FIXED POINT,
 SINTBX GENERATES A HALF-WAVE SINE TABLE FIXED POINT.
 WHERE THE HALF-WAVE LENGTH IS AN INPUT PARAMETER.

* LANGUAGE - FAP SUBROUTINE (FORTRAN II COMPATIBLE)
 EQUIPMENT - 709 OR 7090 (MAIN FRAME ONLY)
 STORAGE - 128 REGISTERS
 SPEED - ABOUT 2N MILLISEC ON 709, WHERE N = HALF-WAVE LENGTH

* AUTHOR - JON CLAERBOUT

--- USAGE ---

* TRANSFER VECTOR CONTAINS ROUTINES - (NONE)
 AND FORTRAN SYSTEM ROUTINES - COS, SIN

* FORTRAN USAGE OF CCSTBL
 CALL COSTBL(N,COSTAB)

 * INPUTS TO COSTBL
 N DEFINES THE HALF-WAVE LENGTH TO BE N+1
 MUST EXCEED ZERO (PROGRAM EXITS IF N IS NEGATIVE OR ZERO)

 * OUTPUTS FROM CCSTBL
 COSTAB(I) I=1...N+1 CONTAINS TABLE(J) = COS(J*PI/N) J=0,1,...,N
 I.E. COSTAB(I) CONTAINS TABLE(I-1)

* FORTRAN USAGE OF CSINTBL
 CALL SINTBL(N,SINTAB)

 * INPUTS TO SINTBL
 N SAME MEANING AS FOR COSTBL

 * OUTPUTS FROM SINTBL
 SINTAB(I) I=1...N+1 CONTAINS TABLE(J) = SIN(J*PI/N) FOR J=0,1,...,N

* FORTRAN USAGE OF CCSTBX
 CALL COSTBX(N,ICOSTB)

 * INPUTS TO COSTBX
 N SAME MEANING AS FOR COSTBL

 * OUTPUTS FROM COSTBX
 ICOSTB(I) I=1...N+1 IS SAME AS FOR COSTBL BUT DATA IS FIXED POINT

* FORTRAN USAGE OF CSINTBX
 CALL SINTBX(N,ISINTB)

 * INPUTS TO SINTBX
 N SAME MEANING AS FOR COSTBL

 * OUTPUTS FROM SINTBX
 ISINTB(I) I=1...N+1 IS SAME AS FOR SINTBL BUT DATA IS FIXED POINT

* EXAMPLES
 1. GENERAL BEHAVIOR FOR N=4

 * USAGE - N=4
 CALL COSTBL(N,COSTAB)
 CALL SINTBL(N,SINTAB)
 CALL COSTBX(N,ICOSTB)
 CALL SINTBX(N,ISINTB)

 * OUTPUTS - NOTE - THESE NUMBERS ARE GOOD TO 8 OCTAL PLACES.
PROGRAM LISTINGS

- COSTBL

COSTBL (PAGE 2)

- COSTAB(1...5) = 1.0, 0.70711, 0.0, -0.70711, -1.0
- SINTAB(1...5) = 0.0, 0.70711, 1.0, 0.70711, 0.0
- ICCSTB(1...5) = OCT 377777777777, 265011714000, 000000000000, 665011714000, 777777777777
- ISINTB(1...5) = OCT 000000000000, 265011714000, 377777777777, 265011714000, 000000000000

HTR 0

BCI 1, CCSTBL

COSTBL CLA *

STO FL

TRA **+3

COSTBx STZ FL

STZ CCRS

SXD SV+1

CLA KS CS (TSX $COS,4)

STO AL

CLA 2,4 GET COSINS

STA B3

ADD =1 COSTINS+1

STA A

STA B

STA M1

STA B2

STA B4

TRA D

SINTBL CLA *

STO FL

TRA **+4

SINTBx STZ FL

CLA *

STO CCRS

SXD COSTBL-2,4

SXA SV+1

CLA KS IN (TSX $SIN,4)

STO AL

SET UP FIXING LCOPE

CLA 2,4

GET SINS

ADD =1

STA A

STA B

STA B1

STA B2

STA L2

SET UP COMPUTATION LOOP

D CLA 1,4

GET N

TZE SV

TXI SV

STD N

ADD KDI FORM N+1

STD AN

STD RN

CLA N

FLOAT N

ARS 1B

ORA ORF

FAD ORF

STO NFL

CLA =3.14159265

FORM PI/N

FDP NFL

STO INCR

STZ ARG

LOOP

AXT 1,1

COS

SIN

CLA ARG

**AL NCP **

TSX $COS,4

TSX $SIN,4

A STO **+1

+++COSINS+1

+++SINS+1

CLA ARG

FAD INCR

STO ARG

TXI **+1

+1

+1

+1

AN TXL AL+1

+++N+1

ZET FL

FIX IF ZERO

TRA SV

EXIT - NOT ZERO

AXT 1,1
*** PROGRAM LISTINGS ***

PAGE 3

BC CLN ***COSINS+1
B LDQ **,1
 LLS 8
 SSM 0200
 STA RTSH
B1 CLA **,1
 LRS 0000777777777
 STA RTSH
 ANA 0000777777777
 STA 0
 LLS 0
 RTSH
 ARS ** FROM B+4
 B2 STD **,1
 TXL **,1
 BTN TXL **,1
 CLA CORS
 TNZ L1
 CLA =0377777777777
 SET FIRST AND LAST VALUES
 IN TABLE = 1
 B3 STD **
 LXD BN,1
 STD **,1
 STA 5V
 TRA SV
 L1 CLA N
 ARS 18
 LBT IF = 0, N EVEN - EXIT
 TRA **,2
 TRA SV
 CLA N
 ODD - SET MDPT = 1
 ARS 1
 GET (N+1)/2
 ADD
 MD
 CLA =0377777777777
 LXD MD,1
 STD **,1
 SINS+1
 L2 STD **,1
 AXT **,1
 LXD COSTBL-2,4
 TRA 3,N
 MD
 FL
 INCR
 ARG
 GRF
 NFL
 KDS
 KOS
 KTS
 CORS
 MD
 END

FACTCR (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO. 0480
FAP 0001
*FACTCR 0002
COUNT 450 0003
 LBL FACTOR 0004
ENTRY FACTOR (SPECT,N,L,WAVE,B1,B2,C,TRAN,WORK,COST) 0005

-----ABSTRACT-----

TITLE - FACTOR

FACTCR POWER SPECTRUM TO FIND MINIMUM PHASE WAVELET

FACTCR USES THE METHOD OF KOLMOGOROV (REF.- 1. ROBINSON,E.
A., M.I.T. PH.D. THESIS, GEOPHYSICAL ANALYSIS GROUP REPORT
7,1954, 2. SIMPSON ET AL., SCIENTIFIC REPORT NO. 2 OF
CONTRACT AF 19(604)737B,.) TO FACTOR THE POWER SPECTRUM
AND THUS PRODUCE THE MINIMUM PHASE WAVELET.

THE RESTRICTIONS ON APPLICABILITY OF THE METHOD REQUIRE
 THAT THE INPUT SPECTRUM BE NON-NEGATIVE AND NON-ZERO.
HENCE SPECT(I), THE INPUT SPECTRUM, IS CHECKED AND ANY
VALUES WHICH ARE LESS THAN 10**(-6) OF THE MAXIMUM VALUE
OF SPECT(I) ARE SET EQUAL TO 0.0021

FEATURE MAY EASILY BE REMOVED FROM THE SYMBOLIC DECK.

ONE HALF OF THE NATURAL LOG OF THE SPECTRUM IS COMPUTED
AND EXPANDED IN A COSINE SERIES. THE COEFFICIENTS OF THE
EXPANSION ARE COMPUTED BY TRIGONOMETRIC INTERPOLATION
(REF. LANCZOS, APPLIED ANALYSIS) RATHER THAN BY INTEGRATION.
SUBROUTINE COSP IS USED FOR THE CALCULATION, BUT THE
FIRST AND LAST TERMS OF THE SPECTRUM MUST BE WEIGHTED BY
1/2 SO THAT THE COSINE PRODUCTS PRODUCED BY COSP WILL BE
ORTHOGONAL UNDER SUMMATION. THE COEFFICIENTS OF THE COSINE
EXPANSION ARE TRAN(I), I=1,L. THE EXPONENTIAL

L
EXP**(TRAN(1)+ SUM(TRAN(I)*((Z**-(I-1))))
I=2

MUST BE EXPANDED IN A CONTINUED PRODUCT OF POLYNOMIALS IN
Z. THE POLYNOMIALS ARE THEN MULTIPLIED OUT AND GROUPED IN
THE FORM
L
P = SUM (W(I)*((Z**-(I-1))))
I=1

WHERE L IS THE LENGTH OF THE WAVELET, AND W(I) IS THE
desired WAVELET.

PROGRAM NOTES -

THE EXPANSION OF THE EXPONENTIAL AND MULTIPLICATION OF
THE RESULTING POLYNOMIALS MAY BE SIMPLIFIED BY THE
POWELLING CONSIDERATIONS - THE EXPONENTIAL MAY BE
REPRESENTED AS A CONTINUED PRODUCT OF POLYNOMIALS
WHERE THE ITH POLYNOMIAL IS OF THE FORM
L-1
P(I)=(SUM(C(I,J)*((Z**I))+ 1)*EXP**(TRAN(I))
I=1

WHERE
C(I,J)= (TRAN(1)/I)*((TRAN(2)/2)*......*(TRAN(I)/I))
FOR J=K*I
C(I,J)= 0 FOR J NOT =K*I
THE C(I,0) TERMS ARE 1 FOR ALL I.

WE ARE ONLY INTERESTED IN THE FIRST L TERMS OF THE WAVELET
SO WE NEED ONLY CONSIDER TERMS IN THE POLYNOMIALS WITH
EXPONENTS LESS THAN OR =M,M=L-1. WE CAN THEN COMPUTE THE
WAVELET COEFFICIENTS BY PARTIAL CONVOLUTION OF THE
POLYNOMIAL COEFFICIENTS. THAT IS,

WAVE(I)=(C(I,J)*C(I,J)*....C(M,J)
WHERE WAVE(I) IS THE WAVELET, M=L-1, AND THE * SYMBOL
INDICATES CONVOLUTION.

IT WILL BE NOTED THAT IF THE CONVOLUTION IS REPRESENTED
IN STEPS BY
B(N+1)= C(M-1,J)*C(M,J), B(K)=C(K,J)*B(K+1)
BY CAREFUL INSPECTION OF THE FORM OF THE C(I,J) ONE CAN
WRITE DOWN THE BIN) BY INSPECTION FOR N=L/2 (ROUNDED DOWN)
+1. THIS CUTS DOWN THE TOTAL LABOR BY NEARLY 1/2.
B(N)= 1,0,0 ,0, C(N,N),C(N+1,N+1), , C(M,M)
FACTOR SETS UP BIN) AND THEN USES AN INTERNAL SUBROUTINE
TO SET UP C(N-1,J) FOR J=0,M. THE INTERNAL SUBROUTINE
PARCON COMPUTES THE PARTIAL CONVOLUTION WHICH IS BIN-1).
THE NEXT C(I,J) IS SET UP BY GCDM AND THE NEXT BIN-1)
COMPUTED BY PARCON. THIS IS REPEATED UNTIL ALL THE PARTIAL
CONVOLUTIONS HAVE BEEN DONE. THE RESULTING WAVELET IS THEN
SCALED BY EXP**(TRAN(I)).
THE OUTPUT OF PARCON FOR ONE STAGE IS THE INPUT FOR THE
NEXT STAGE SO THAT THE ADDRESSES B1 AND B2 IN THE PARCON
Routines ARE REVERSED BETWEEN STAGES.

LANGUAGE - FORTRAN II Compatible
EQUIPMENT - 709,7090 (MAIN FRAME ONLY)
STORAGE - 303 DECIMAL REGISTERS
SPEED - 2200+94L+16L**2+3L**3+270N+37L*N MACHINE CYCLES

TRANSFER VECTOR CONTAINS ROUTINES - MAXAB, COSTBL, GOSP
AND FORTRAN SYSTEM ROUTINES - LOG, EXP
FORTRAN CALLS - FACTOR(SPECT,NL,WAVE,B1,B2,C,TRAN,WORK,COST)
INPUTS
SPECT(I) I=1,N SPECTRUM FROM ZERO TO PI
N NUMBER OF POINTS IN SPECTRUM
MUST BE GRTHN O.
L LENGTH OF DESIRED WAVELET.
MUST BE GRTHN O. LSTHN= N.
B1(I) I=1,L SPACE FOR PARTIAL CONVOLUTION
B2(I) I=1,L SPACE FOR PARTIAL CONVOLUTION
C(I) I=1,L SPACE FOR COLUMN OF C(I,J) MATRIX
TRAN(I) I=1,L SPACE FOR COSINE TRANSFORM
WORK(I) I=1,N SPACE FOR COMPUTATION OF 1/2*LOG(SPECT). MAY BE THE
SAME AS SPECT IF SPECT CAN BE DESTROYED.
COST(I) I=1,L SPACE FOR COSINE TABLE FOR COSINE SERIES EXPAN-
SICN.

NOTE-
COST MAY BE THE SAME AS EITHER B1,B2,OR C IF THE LENGTH IS L=1
INSTEAD OF L AS NOTED ABOVE.
THE OUTPUT WAVELET MAY ALSO BE THE SAME AS B1,B2,OR C. HENCE
THE MINIMUM STORAGE FOR DATA USING ALL POSSIBLE EQUIVALENCES IS
N*+4*L+1, AND FACTOR COULD BE CALLED BY
CALL FACTOR(SPECT,NL,B1,B2,B2,TRAN,SPECT,B1)
WHERE BI IS OF LENGTH L+1 SINCE IT MUST DO DOUBLE DUTY FOR COST.
NO CHECKS ARE MADE ON THE VALUES OF N AND L. BOTH MUST BE GREATER
 THAN 0, AND L MUST BE LESS THAN OR =N. ILLEGAL VALUES MAY RESULT
 IN INCORRECT WAVELETS OR PROGRAM LOOPS.

OUTPUTS
WAVE(I) I=1,L OUTPUT MINIMUM PHASE WAVELET
SEE NOTE ABOVE FOR EQUIVALENCE ALLOWANCES.
IF THE COSINE TABLE CAN BE USED LATER BY THE CALLING PROGRAM,
FACTOR CAN BE CALLED WITH SEPARATE SPACE FOR COST, AND THE TABLE
WILL BE RETURNED ALSO.

FACTOR(SPECT,NL,WAVE,B1,B2,C,TRAN,WORK,COST)
EXAMPLES

1. **INPUTS** - FOR A CONTINUOUS SPECTRUM

 SPECT = 1.25 + COS(W), W = 0, \(\pi

 THE WAVELET IS

 WAVE = 1.0, 0.5, 0.0, 0.0

 FOR THE DISCRETE CASE THE NUMBERS WILL NOT COME OUT EXACTLY THE SAME DUE TO ROUND OFF AND APPROXIMATION.

 FOR A TEST CASE THE INPUT SPECTRUM CAN BE SET UP WITH A FORTRAN LOOP.

 SPECT(I) = 1.25 + COS(FLOAT(I-1)*W)

 W = \(\pi / \text{FLOAT}(N-1) \)

 WHERE \(N \) IS THE LENGTH OF THE SPECTRUM.

 RESULTS ARE GIVEN BELOW FOR \(N = 500 \).

 OUTPUTS - **WAVE**(1...6) = 1.0, 0.4999, -0.00025, 0.0004, -0.00001, 0.000003

 THE HIGHER TERMS ARE EVEN SMALLER WITH **WAVE**(20) LESS THAN \(10^{-8} \).

```
PIE    0150
BCI    0151
FACTOR 0152
SXA RETURN,1  0153
SXA RETURN+1,2 0154
SXA RETURN+2,4  0155
SXD FACTOR+2,4  0156
CLA 5,4  0157
STA PAR+1  0158
STA BFST  0159
STA LOC2P2  0160
STA LOC3P1  0161
CLA 6,4  0162
STA PAR+2  0163
CLA 1,4  0164
STA MAX+2  0165
ADD ONE  0166
STA LOC1P1  0167
CLA 2,4  0168
STA MAX+1  0169
CLA 9,4  0170
STA WGT+3  0171
STA WGT+5  0172
STA CSP+1  0173
STA CSP+2  0174
ADD ONE  0175
STA ENCI-2  0176
STA WGT  0177
STA WGT+2  0178
MAX TSX $MAXAE,4  0179
PIE ** 0180
PIE BIGSP  0181
PIE INDEX  0182
LDO BIGSP  0183
FMP DEC  0184
STD BIGSP  0185
LXA RETURN+2,4  0186
CLA 1,4  0187
CLA* 2,4  0188
STD ENCI  0189
STD N  0190
LRS 12  0191
CRA CONST  0192
FAD CONST  0193
STD NF  0194
AXT 1,1  0195
LOOP1 CLA **,1  0196
CAS BIGSP  0197
TRA **3  0198
TRA **2  0199
CLA BIGSP  0200
TSX $LOG+4  0201
FDP NF  0202
STQ **,1  0203
TXI **1,1,1  0204
```

FT

FACTOR

PROGRAM LISTINGS
END1 TXL LOOP11,** ***=N 0225
 TXI **11,** L 0226
 WGT CLA ***1,1,1 0227
 FEP TWOD TERM IN SPECTRUM BY 1/2 0228
 STQ ***1 ***=WORK+1 0229
 STQ ***=WORK 0230
 STQ ** ***=WORK 0231
 LXA RETURN+2,4 0232
 CLA 3,4 GET N 0233
 STD L 0234
 STD LL 0235
 STA CST+2 0236
 STA CSP+4 0237
 STA N 0238
 SUB DONE N-1 0239
 STD NN 0240
 CLA 8,4 LOCATION OF TRANS 0241
 STA CSP+9 0242
 CST TXS CSTBL,4 GO TO COSINE TABLE 0243
 PZE NN 0244
 PZE ** COST 0245
 CSP TXS COSP+4 GO TO COSINE TRANSFORM 0246
 PZE ** WORK SPACE FOR SPECTRUM 0247
 PZE ** WORK SPACE FOR SPECTRUM 0248
 PZE NN N-1 0249
 PZE ** COST 0250
 PZE NN N-1 0251
 PZE ZERO JMIN=0 0252
 PZL LL JMAX=L-1 0253
 PZE ONED 1.0 0254
 PZE ** TRANS(COSTR) 0255
 LXA RETURN+2,4 0256
 CLA L 0257
 ARI 1 L/2 0258
 ANA MASK 0259
 ADD DONE L/2+1 0260
 SUB DONE M=L/2+1 0261
 STD M 0262
 CLA DONE 1.0 0263
 BFST STD ***=Bl. 0264
 AXT 1,1 0265
 CLA M 0266
 SUB DONE M-1 0267
 STD END2 0268
 LOOP2 STZ **11,1 CLEAR Bl 0269
 TXI **11,1 0270
 ENDT TXL B-2,1,** ***=M-1 0271
 CLA 8,4 GET LOC. OF TRANS. 0272
 STA LOOP3 0273
 STA COM+2 0274
 CLA L 0275
 STD END3 0276
 LDO M+1 IR1=M 0277
 LOOP3 CLA **11,1 TRAN 0278
 STD **11,1 B1 0279
 TXI **11,1 L IN DECREMENT 0280
 ENDT TXL LOOP31,** L IN DECREMENT 0281
 AXT 1,2 0282
 CLA M 0283
 STD P 0284
 SUB DONE 0285
 STD END23 0286
 AXT 1,1 0287
 CLA 7,4 GET LOCATION OF C 0288
 STA PAR+3 0289
 STA COM+1 0290
 CONV CLA P 0291
 SUB DONE 0292
 STD P 0293
 STD K+2 0294
 COM TXS COM+4 C 0295
 PZE ** TRAN 0296
 PZE ** TRAN 0297

**=WORK+1. WEIGHT LAST
**=WORK+1
**=WORK. WEIGHT FIRST
**=WORK
PAR TSX PARCON,4
PZE ** LOCATION OF B1 0300
PZE ** LOCATION OF B2 0301
PZE ** LOCATION OF C 0302
CLA PAR+1 EXCHANGE 0303
LOQ PAR+2 LOCATIONS 0304
STO PAR+2 OF B1 0305
STQ PAR+2 AND B2 0306
TXI **+1,1,1 0307
TXI **+1,1,1 0308
END23 TXL CONV1,1,** ***M-1 0309
LXA RETURN+2,4 RESET IR4 0310
CLA ** GET M 0311
ARS 18 M IN ADDRESS 0312
LUT LOW BIT TEST 0313
TRA **+ M EVEN, B2 CONTAINS WAVELET 0314
CLA 5,4 M ODD, B1 CONTAINS WAVELET 0315
STA LOCP4 0316
TRA **+3 0317
CLA 6,4 0318
STA LOCP4 0319
CLA **+4 0320
STA LOCP4+2 0321
LDOQ B+,4 TRAN(1) 0322
FMP =+5 0323
TSX $EXP,+4 0324
STO NORM SCALE FOR WAVELET 0325
CLA LL 0326
STD E024 0327
AXT 0,1 0328
LOOP4 LOQ **+,1 B2 OR B1 0329
FMP NORM SCALE FOR WAVELET 0330
STD **+,1 WAVELET 0331
TXI **+1,1,1 0332
END4 TXL LOCP4,1,** ***L-1 0333
RETURN AXT **+,1 RESTORE IR1 0334
AXT **+,2 RESTORE IR2 0335
AXT **+,4 RESTORE IR4 0336
TRA 11,4 0337
L PZE 0 0338
LL PZE 0 L-1 0339
K PZE 0 0340
N PZE 0 0341
NN PZE 0 N-1 0342
M PZE 0 0343
P PZE 0 0344
NF PZE 0 0345
NORM PZE 0 0346
BIGSP PZE 0 0347
INDEX PZE 0 0348
CONST OCT +2330000000000 0349
MASK OCT 777777000000 0350
ZERO PZE 0 0351
ONE PZE 1,0,0 0352
DONE PZE 0,0,1 0353
ONED DEC 1,0 0354
TWO DEC 2,0 0355
DEC DEC +000001 0356
*COCOM -COMPUTES C(P,J) FOR J=0 TO L-1 0357
*CALLING SEQUENCE 0358
* TSX CCCM,4 0359
* PZE LOCATION OF C(P,O) 0360
* PZE LOCATION OF TRAN 0361
* RETURN 0362
COCOM SXA BACK,1 SAVE IR1 0363
SXA BACK+1,2 SAVE IR2 0364
SXA BACK+2,4 SAVE IR4 0365
CLA L GET L 0366
STD ADDR2+2 0367
CLA P GET P 0368
ARS 18 L IN ADDRESS 0369
CHS 0370
ADD 1,4 ADDRESS OF C(P,P) 0371
STA ADDR3 0372
STA ADDR4 0373
CLA 1,4 LOCATION OF C(O) 0374
FACTOR

(PAGE 6)

PROGRAM LISTINGS

(PAGE 6)

```
STA ADDR1
ADD ONE
STA ADDR2
CLS P
ARS 18
ADD 2,4
STA STC1
CLA ONE
1,0
ADDR1 STO **
AXT 2,1
ADDR2 STZ **,1
TXL ADDR2,1,**
STO1 CLA **
TRAN(P)
ADDR3 STO **
STO TEMP1
STO TEMP2
CLA LL
LRS 35
DVP P (L-1)/P
LLS 53
INTO AC
SUB DONE
TZE BACK IF ZERO, NO MORE TO DO
STD END NOT ZERO, SET TO DO (L-1)/P-1 TIMES
CLA P
PDX ,2
SXD END-2,2
AXT 1,1
CLA TWCD
GET 2,2
STO P INITIALIZE R
LOOP LOOP TEMP1
FMP TEMP2
FPD R
ADDR4 STO **,2
***C, C(R+1) COMPUTED.
STO TEMP1 SAVE FOR NEXT C
CLA R GET R
FAD ONE INCUNENT BY 1,0
* STO R RE-SET R
* TXI **,2,**
***P, INCUNENT C STORAGE INDEX
* TXI **,1,**
INCMNENT LOOP COUNTER
END TXL LOOP,1,**
***L-1/P-1, END LOOP CHECK.
BACK AXT **,1
RESTORE IR1
AXT **,2
RESTORE IR2
AXT **,4
RESTORE IR4
TRA 3,4
RETURN
TEMP1 PZE 0,2,0
PZE WILL CONTAIN PARTIAL SUM FOR C(P)
TEMP2 PZE 0,2,0
PZE WILL CONTAIN TRAN(P)
R PZE

*PARCC COMPUTES A PARTIAL CONVOLUTION OF C AND B1
*CALLING SEQUENCE
  TSX PARCC,4
  PZE LOCATION OF B1
  PZE LOCATION OF B2
  PZE LOCATION OF C(X,0)

PARCC SXX EXT,1
SXX EXT+1,2
CLA 2,4
STA REG1
STA REG3
STA REG3+1
ADD ONE
STA REG2
CLA 3,4
LOCATIOn Of C
STA REG5
CLA ONE
1,0
REG1 STO **
B2(1)=1,0
AXT 2,1
CLA L
GET L
STD REG2,2
SUB DONE
STD REG8
REG2 STZ **,1
CLEA R B2(1) TO B2(L)
TXI **,1,1
TXL REG2,1,**
DECREMENT=L
```

TRAN 1.0
C(O) CLEAR C(I) TO C(L)
**=L
TRAN(P) C(P,P)
INTO MQ
(L-1)/P INTO AC
(L-1)/P-1
IF ZERO, NO MORE TO DO
P IN IR2
GET 2,2
INITIALIZE R
TRAN(1)
**=C. C(R+1) COMPUTED.
SAVE FOR NEXT C
GET R
INCREMENT BY 1.0
RE-SET R
**=P. INCREMENT C STORAGE INDEX
INCREMENT LOOP C STORAGE INDEX
END LOOP CHECK.
RESTORE IR1
RESTORE IR2
RESTORE IR4
RETURN
WILL CONTAIN PARTIAL SUM FOR C(P)
WILL CONTAIN TRAN(P)
CONVOLUTION OF C AND B1
"
CLA M
SUB K
PDX 1
SYD REG3+2,1
PDC 2
SYD REG3+3,2
SYD S,1
REG7 AXT 0,2
AXT EXT+2,4
CLA S
STD REG6
CLS S
ARS 18
S=IRI=M-K
ADD 1,* LOCATION OF B1(S)
STA REG4
AXT 0,*
REG5 LDQ **,4
REG4 FMP **,2
REG3 FAD **,1
STD **,1
TXI ++1,4,** (M-K) IN DECREMENT
TXI ++1,2,** -(M-K) IN DECREMENT
REG6 TXL REG5,4,** ***S
REG8 TXL REG7-1,1,** ***L-1
EXT AXT **,1
AXT **,2
AXT **,4
TRA 4,*
S PZE 0
END
* FRQCT1 (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO. 0094
* LABEL
 0001
CFRQCT1
 0002
 SUBROUTINE FRQCT1(IX,NX,IXLO,IXHI,ICT,IANS)
 0003
 0004
 0005
 0006
 0007
 0008
 0009
 0010
 0011
 0012
 0013
 0014
 0015
 0016
 0017
 0018
 0019
 0020
 0021
 0022
 0023
 0024
 0025
 0026
 0027
 0028
 0029
 0030
 0031
 0032
 0033
 0034
 0035
 0036
 0037
 0038
 0039
 0040
 0041
 0042
 0043
 0044
 0045
 0046
 0047
 0048
 0049
 0050
 0051
 0052
 0053
 0054
 0055
 0056
 0057
 0058
 0059
 0060
 0061
 0062
 0063
 0064
 0065
 0066
 0067
 0068
 0069
 0070
 0071
 0072
 0073
 0074
 0075

FRQCT1

* PROGRAM LISTINGS

* FRQCT1

* "FRQCT1"

**

** PROGRAM DESCRIPTION **

** FRQCT1 **

** 2/18/63 **

** Last Card in Deck is No. 0094 **

** SUBROUTINE DESCRIPTION **

** FRQCT1 **

** SUBROUTINE NAME **

** FRQCT1 **

** SUBROUTINE TYPE **

** SUBROUTINE FUNCTION **

** FRQCT1 MAKES A FREQUENCY COUNT OF AN INTEGER SEQUENCE WITH **

** VALUES IN A SPECIFIED RANGE. FOR EACH INTEGER VALUE IN **

** THE INCLUSIVE RANGE IXLO TO IXHI, THE NUMBER OF **

** OCCURRENCES OF THIS VALUE IN THE INTEGER SEQUENCE IS **

** COUNTED. **

** LANGUAGE **

** FORTRAN II SUBROUTINE **

** EQUIPMENT **

** 709 OR 709C (MAIN FRAME ONLY) **

** STORAGE **

** 117 REGISTERS **

** SPEED **

** **

** AUTHOR **

** S. M. SIMPSON **

** --USAGE-- **

** TRANSFER VECTOR CONTAINS ROUTINES - NONE **

** AND FORTRAN SYSTEM ROUTINES - NONE **

** FORTRAN USAGE **

** CALL FRQCT1(IX,NX,IXLO,IXHI,ICT,IANS) **

** INPUTS **

** IX(I) 1...NX IS THE GIVEN INTEGER SEQUENCE **

** IXLO LSTHM OR = IX(I) LSTHM OR = IXHI. **

** NX IS THE NUMBER OF IX VALUES IN THE SEQUENCE, **

** MUST BE GRTHM 0. **

** IXLO IS AN INTEGER **

** LSTHM OR = ALL IX(I) **

** IXLO MAY BE NEG. **

** IXHI IS AN INTEGER **

** GRTHM OR = ALL IX(I) **

** IXHI MAY BE NEG. **

** OUTPUTS **

** ICT(I) 1...NCT IS THE FREQUENCY COUNT WHERE **

** ICT(I) = NUMBER OF MEMBERS OF THE INPUT SEQ = IXLO **

** ICT(2) = NUMBER OF MEMBERS OF THE INPUT SEQ = IXLO+1 **

** ETC. **

** ICT(NCT) = NUMBER OF MEMBERS OF THE INPUT SEQ = IXHI **

** WHERE NCT = IXHI-IXLO+1 **

** IANS = 0 NORMAL **

** = 1 ILLEGAL NX **

** = 2 ILLEGAL IXLO **

** EXAMPLES OF FRQCT1 **

** 1. INPUTS - IXLO=3 IXHI=10 NX=3 IX(1...3)=4,4,4 **

** OUTPUTS - ICT(1...8) = 0,3,0,0,0,0,0,0 IANS=0 **

** 2. INPUTS - IXLO=5 IXHI=12 NX=7 IX(1...7)=5,6,7,8,9,10,11 **

** OUTPUTS - ICT(1...8) = 1,1,1,1,1,1,1,0 IANS=0 **

** 3. INPUTS - IXLO=5 IXHI=12 NX=0 **

** OUTPUTS - ERROR IANS=1 **

** 4. INPUTS - IXLO=13 IXHI=12 NX=7 **

** OUTPUTS - ERROR IANS=2 **

** DIMENSION IX(2),ICT(2) **

** SET UP AND CLEAR ICT(I). **

**
IANS=0
NCT=IXHI-IXLO+1
NSHIFT=IXLO-1
IF (NX) 9991,9991,10
10 IF (NCT) 9992,9992,15
15 DO 20 I=1,NCT
20 ICT(I)=0
C SCAN IX(I) TO MAKE COUNTS (PUT EACH IX IN RANGE 1 TO NCT FIRST).
DO 35 I=1,NX
35 IXI=IX(I)-NSHIFT
IF (IXI) 9992,9992,30
30 IF (IXI-NCT) 35,35,9992
35 ICT(IXI)=ICT(IXI)+1
GO TO 9999
9999 RETURN
9991 IANS=1
GO TO 9999
9992 IANS=2
GO TO 9999
END
FRQCT2 (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO. 0211

*FRQCT2

COUNTER 200

ENTRY FRQCT2 (X, LX, B, LB, ICOUNT, IANS)

-----ABSTRACT-----

TITLE - FRQCT2

FREQUENCY COUNT OF NUMBER OF VALUES OF A SERIES IN GIVEN RANGES.

FRQCT2 MAKES A FREQUENCY COUNT OF A FLOATING POINT, FORTRAN INTEGER, OR MACHINE INTEGER SERIES FOR THE NUMBER OF VALUES LYING IN SPECIFIED RANGES. IT IS USEFUL IN COMPUTING EMPIRICAL PROBABILITY DENSITIES. THERE ARE LB RANGE LIMITS, B(I), I=1, LB, AND HENCE LB+1 RANGES INTO WHICH THE SERIES IS DIVIDED ARE (-INFINITY, B(1)), (B(1), B(2)], (B(2), B(3)], ... , (B(LB-1), B(LB)]. THE INPUT SERIES X(I) MUST BE THE SAME MODE (FLOATING, INTEGER, ETC.) AS THE RANGE LIMITS BECAUSE THE METHOD USES CAS INSTRUCTIONS.

LANGUAGE - FORTRAN II COMPATIBLE

EQUIPMENT - 709 OR 7090 (MAIN FRAME ONLY)

STORAGE - 117 REGISTERS

SPEED -

AUTHOR - J. N. GALBRAITH

****USAGE****

TRANSFER VECTOR CONTAINS ROUTINES - NONE

AND FORTRAN SYSTEM ROUTINES - NONE

FORTRAN USAGE

CALL FRQCT2(X, LX, B, LB, ICOUNT, IANS)

INPUTS

X(I) I=1...LX IS THE GIVEN SERIES.

MAY BE FLOATING, FORTRAN INTEGER, OR MACHINE INTEGER.

LX IS THE LENGTH OF THE X SERIES.

MUST BE GTIHN 0.

B(I) I=1...LB IS VECTOR OF RANGE LIMITS. B(I) GTIHN B(I+1).

RANGES INTO WHICH THE SERIES IS DIVIDED ARE (-INFINITY, B(1]), (B(1), B(2)], (B(2), B(3)], ... , (B(LB-1), B(LB)].

MAY BE FLOATING, FORTRAN INTEGER, OR MACHINE INTEGER, BUT MUST BE THE SAME AS X(I)

LB NUMBER OF RANGE LIMITS.

MUST BE GTIHN 0.

NOTE - NUMBER OF RANGES =1+ NUMBER OF RANGE LIMITS.

OUTPUTS

ICOUNT(I) I=1...LB+1=NUMBER OF X VALUES IN EACH RANGE OF B.

ICOUNT(1)=NO. X GTIHN B(1), ICOUNT(2)=NO. X GTIHN B(2), ...

GTIHN OR =B(I).

ICOUNT(LB)=NO. X GTIHN B(LB), GTIHN OR =B(LB-1).

ICOUNT(LB+1)=NO. X GTIHN OR =B(LB).

IANS IANS=0. NORMAL

IANS=1. ILLEGAL LX

IANS=2. ILLEGAL LB

IANS=3. WEIRD ERROR

EXAMPLES

1. INPUTS - X(I)= -21.4, -20.15, -15.14, -14.12, -11.8, -8.7, -7.6, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

2. LB=5

EXAMPLES

1. INPUTS - X(I)= -21.4, -20.15, -15.14, -14.12, -11.8, -8.7, -7.6, -6.5, -5.5, -4.5, -3.5, -2.5, -1.5, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

2. LB=5
PROGRAM LISTINGS

OUTPUTS - ICCUNT(1...6) = 1,1,5,11,6, IANS=0

INPUTS - SAME AS EXAMPLE 1. EXCEPT B(1...5)= -21.,-1

OUTPUTS - ICCUNT(1...6) = 0,5,3,5,1,1 IANS=0

INPUTS - SAME AS EXAMPLE 1. EXCEPT B(1)=0. B(2)=.5

OUTPUTS - ICCUNT(1...3) = 8,1,6 IANS=0

INPUTS - SAME AS EXAMPLE 1. EXCEPT LB=0

OUTPUTS - ERROR IANS = 2

INPUTS - SAME AS EXAMPLE 4. EXCEPT LX=0

OUTPUTS - ERROR

SAVE IRS AND CHECK FOR ILLEGAL PARAMETERS

PZE 0
BCL 1,FRC2

FRQCT2 SXA RETURN,1,2
SXAX RETURN+2,4
SXO FRC2-2,4
STZ* 6,4 IANS=0
CLA* 2,4 GET LX
TZE ERR1
TMI ERR1
STO ENC
CLA* 4,6 GET LB
TZE ERR2
TMI ERR2
ARS 1B LB IN ADDRESS
STO LB
ARS 1 LB/2 (IN ADDRESS)
STO LB/HALF
CLA 1/4 ADDRESS OF X
ADD KIPL A(X+1)
STA XACD
STA TESTLC
CLA 3/4 ADDRESS OF B
ADD KIPL A(R+1)
STA BTES1
STA BACD
SUB LB
STA TESTHI
CLA 5/4 ADDRESS OF ICOUNT
ADD KIPL A(ICOUNT+1)
STA STZCNT
STA EQUAL
STA STZCNT
LXO L=1
TXI **1,1,1
SXO ENC+1
AXT 1,4
AXT 1,1
STZCNT STZ **1,1,1,1 ZERO ICCOUNT(1), I=1, LB=1
TXI **1,1,1
END1 TXL STZCNT,1,** ***LB=1
AXT 1,1

LOOP CLA KIPL
STO LBLC INITIAL LBLO=1
CLA LB
STO LBHI INITIAL LBHI=LB
CLA LB/HALF
STO LBCH
INITIAL LBCOM=LB/2
AXT 1,2
TESTL CLA **1 GET X. (**=A(X+1))
BTESI CAS **4 B(1) SEE IF IN LOWEST RANGE
TRA TESTHI
TRA NEXINO
TRA EQUAL
TESTHI CAS ** **=A(B(LB)), SEE IF IN HIGHEST RANGE
SEARCH LXA LBCOM,2
XADD CLA **,1 GET X(IR1)
BADD CAS **,2 COMPARE WITH BL(LBCOM)
TRA GRATER X GREATER, NEW LBLO =LBCOM
TRA NEXINC GOT IT, INDEX ICOUNT(IR2+1)
LESS PXA **,2 X LESS, NEW LBHI =LBCOM
SUB LBLO LBCOM-LBLO=DIF
CAS KIMLI
TRA **,3 DIF GREATER THAN ONE
TRA EQUAL DIF=1, GOT IT, INDEX ICOUNT(IR2)
TRA ERROR IMPOSSIBLE
ARS 1 DIF/2
AND LBCOM NEW LBCOM
STQ LBHI
STO LBCOM
TRA SEARCH

GRATER PXA 0,**,2
SUB LBHI LBCOM-LBHI=-DIF
SPP CAS KIMLI
TRA **,3
TRA NEXINC GOT IT, INDEX ICOUNT(IR2+1)
TRA ERROR IMPOSSIBLE
ARS 1
ADD LBCOM
LDQ LBCOM
STO LBCOM
STQ LBCO
TRA SEARCH
NEXIND TXI

EQUAL CLA **,1,2,1 ***=A(ICOUNT+1)
ADD KIFX
STCCX TST +**,**,2 ***=A(ICOUNT+1)
TXI +**,**,1,1
END TXL LCCP,1,** ***=LX

RETURA AXT **,1
AXT **,7
AXT **,4
TRA 7,4

HIEST LXA L4,2
TRA NEXINC
ERR1 CLA KIFX
STO 6,4
TRA 7,4
ERR2 CLA K2FX
STO 6,4
TRA 7,4
ERROR CLA K3FX
STO 6,4
TRA 7,4

* CONSTANTS AND TEMPORARIES
KIFX PZE 0,0,1
K2FX PZE 0,0,2
K3FX PZE 0,0,3
KIMLI PZE 1,0,0
LB PZE 0
LBHALF PZE 0
LBLO PZE 3
LBCOM PZE 0
LBHI PZE 0
END
PROGRAM LISTINGS

GETROD

* **GETRD1**

--- ABSTRACT ---

TITLE - GETROD

ACCESS ROUTINE FOR RAND CORP. MILLION RANDOM DIGITS FROM TAPE

GETROD1 FURNISHES THE NEXT NX SEQUENTIAL RANDOM DIGITS AS FIXED POINT INTEGERS FROM A SPECIFIED TAPE UNIT.

THE TAPE UNIT CONTAINS THE MILLION DIGITS IN BCD FORM AS LOADED OFF-LINE FROM THE 20000 CARDS CONTAINING THEM.

EACH CARD WITH FORMAT(5011). **GETROD1** KEEPS A BUFFER OF LENGTH 50 TO PREVENT MISSING ANY DIGITS, BUT DOES NOT CHECK FOR THE POSSIBILITY THAT THE SUPPLY IS EXHAUSTED.

LANGUAGE - FORTRAN II SUBROUTINE

EQUIPMENT - 709 OR 7090 (MAIN FRAME PLUS 1 TAPE UNIT)

STORAGE - 229 REGISTERS

SPEED - SLOW, SINCE TAPE IS BCD

AUTHOR - S.M. SIVPSON JR.

--- USAGE ---

TRANSFER VECTOR CONTAINS ROUTINES - (NONE)

AND FORTRAN SYSTEM ROUTINES - (TSI-), (RTN)

FORTRAN USAGE

CALL **GETRD1** ITAPE, NX, IX, IANS

INPUTS

ITAPE IS THE LOGICAL TAPE NO. OF THE RANDOM DIGITS TAPE MUST LIE BETWEEN 1 AND 12 INCLUSIVE

NX IS THE DESIRED NO. OF DIGITS MUST EXCEED ZERO

OUTPUTS

IX(I) I=1...NX WILL CONTAIN THE NEXT NX DIGITS AS FORTRAN FIXED POINT INTEGERS

IANS = 0 NORMAL

= -1 FOR ILLEGAL ITAPE

= 2 NX

EXAMPLES

1. ILLUSTRATING EFFECTS OF SUCCESSIVE CALLS

INPUTS - THE FIRST THREE RAND DIGITS CARDS ARE AS FOLLOWS

C COLUMNS NUMBERS

A R 00000000111111111111122222222223333333444444444444

D 12345678901234567890123456789012345678901234567890

1 1009732537365201358646735487680959091173929274945

2 37542040564894742962480524037206361040208291665

3 30422695319645093032320902560159533476439009366

ASSUME THE CARDS ARE LOADED ON LOGICAL TAPE 9

C **USAGE** - REWIND 9

CALL **GETRD1**(9,19,IX1,IANS1)

CALL **GETRD1**(9,19,IX2,IANS2)

CALL **GETRD1**(9,19,IX3,IANS3)

CALL **GETRD1**(9,29,IX4,IANS4)

CALL **GETRD1**(9,39,IX5,IANS5)

CALL **GETRD1**(9,59,IX6,IANS6)

REWIND 9

CALL **GETRD1**(9,3,IX7,IANS7)

C
PROGRAM LISTINGS

GETRD1

CUTPUTS = IANS1 = IANS2 = ETC = IANS7 = 0 (NO ILLEGALITIES)
IX(1...10) = 1,0,0,9,7,3,2,5,3,3
IX2(1...10) = 7,5,3,0,1,3,5,8,6
IX3(1...1) = 3
IX4(1...29) = 4,6,7,3,5,4,8,7,6,8,0,9,5,9,0,9,1,7,3,9,2,9,2,7,4,9,4,5
IX5(1...1) = 3
IX6(1...55) = 7,5,4,2,0,4,8,0,5,6,4,8,9,4,7,2,9,6,2
IX7(1...3) = 8,9,5 (NOT = 1,0,0 SINCE GETRD1 STILL HAS 44 DIGITS IN ITS BUFFER TO USE UP BEFORE READING FROM TAPE AGAIN)

2. ILLUSTRATING ILLEGAL USAGE

USAGE -
CALL GETRD1(0,1,IX,IANS1)
CALL GETRD1(13,1,IX,IANS2)
CALL GETRD1(9,-3,IX,IANS3)

OUTPUTS -
IANS1 = -1
IANS2 = -1
IANS3 = -2

PROGRAM FOLLOWS BELOW

DUMMY DIMENSION STATEMENT
DIMENSION IX(2)
TRUE DIMENSION STATEMENT
DIMENSION INP(50)
CHECK LEGALITIES OF ITAPE,NX
IANS=-1
IF (ITAPE) 9999,9999,2
IF (ITAPE-12) 4,4,9999
IANS=-2
IF (NX) 9999,9999,10
10 IOUT=0
IANS=0
MORE=NX
ANY DIGITS LEFT IN BUFFER FROM PREVIOUS CALL (IF NO, GO READ 50 DIGITS).
IF (INBUF) 20,40,20
IF YES, CHECK IF REQUEST CAN BE FILLED FROM BUFFER.
20 IF (NX-NBUF) 30,30,24
IT CANT. EMPTY BUFFER AND THEN GO READ MORE DIGITS.
24 DO 26 I=1,NBUF
26 IX(I)=INP(I)
IOUT=NBUF
MORE=MORE-NBUF
GO TO 40
IT CAN BE FILLED FROM BUFFER. SET UP TO DO SO AND EXIT.
30 NBLOK=NBUF
GO TO 66
READ 50 DIGITS
40 READ INPUT TAPE ITAPE,42,((INP(I),I=1,50)
42 FORMAT(50I1)
CHECK IF THIS IS LAST BLOCK OF 50 NEEDED.
IF (MORE-50) 60,60,50
NO. MOVE BLOCK OF 50 AND GO BACK FOR ANOTHER.
50 DO 54 I=1,50
II=I+IOUT

* GETRD1 *

54 IX(II)=INP(I)
ICUT=IOUT+5C
MCRE=P'RE-50
GO TO 40
C
C YES. SET FOR FINAL MOVE.
C
60 NBLOK=50
C
MOVE FINAL BLOCK AND SET UP BUFFER FOR NEXT CALL
C
66 DC 68 I=1,MORE
II=I+ICUT
68 IX(II)=INP(I)
NBUF=NBLOK-MORE
IF (NBUF) 70,9999,70
70 MRPI=MORE+1
DC 74 I=MRPI,NBLOK
II=I-MORE
74 INP(II)=INP(I)
GO TO 9999
9999 RETURN
END
* GRUP2 (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO. 0139
* LABEL
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074

PROGRAM LISTINGS

GRUP2

* GRUP2

* PROGRAM LISTINGS

* GRUP2

* PROCEDURE LISTINGS

GRUP2

* GRUP2

* LABEL

GRUP2

* SUBROUTINE GRUP2 (P, NDELX, DELX, XLO, YLIM, NWANT, IANS)

* TITLE - GRUP2

* DIVIDES THE X AXIS INTO EQUALLY PROBABLE RANGES

C

----ABSTRACT----

C

TITLE - GRUP2

C

Divides the X axis into equally probable ranges

C

C

GRUP1 performs a process known as the probability

C

Transformation whereby a given probability density is

C

Transformed into a rectangular density.

C

The principal input is a histogram-type probability

C

Distribution function p(i), i=1...nDELX, where p(i) =

C

Probability density for the random variable x falling in

C

the i-th range of x values, where all ranges are of equal

C

length DELX, and the lowest range is from xlo to xlo+DELX.

C

GRUP2 divides the X axis into NWANT ranges from XLO to

C

NDELX*DELX+XLO, each range having equal probability DELP.

C

DELP = 1./FLOATF(NWANT). **GRUP2** returns the X values

C

corresponding to the ranges. The division is made by

C

integrating the probability distribution along the x axis.

C

Linear interpolation is made when an integer multiple of

C

1/NWANT lies between sum up to J and J+1 of (P(I)*DELX).

C

LANGUAGE - FORTRAN II SUBROUTINE

C

EQUIPMENT - 709 CR7090 (MAIN FRAME ONLY)

C

STORAGE - 198 REGISTERS

C

SPEED -

C

AUTHOR - J. N. GALBRAITH

C

---USAGE---

C

TRANSFER vector contains routines - none

C

AND FORTRAN system routines - none

C

FORTRAN USAGE

C

CALL GRUP2 (P, NDELX, DELX, XLO, YLIM, NWANT, IANS)

C

INPUTS

C

P(I) I=1...NDELX IS THE PROBABILITY DISTRIBUTION DEFINED

C

FROM XLO TO NDELX*DELX+XLO AND NORMALIZED SUCH THAT

C

THE SUM FROM I=1 TO NDELX OF P(I)*DELX = 1. IF P(I)

C

IS NORMALIZED SUCH THAT SUM (P(I)) LESS THAN 1., AN ERROR

C

MAY OCCUR WITH IANS=-4. IF P(I) IS NORMALIZED SUCH THAT

C

SUM (P(I)) GREATER THAN 1., THE YLIM WILL BE COMPUTED IN THE

C

USUAL MANNER WITH NORMALIZATION ASSUMED = 1.

C

XLO IS LOWEST VALUE OF X FOR WHICH P(I) IS DEFINED.

C

DELX IS THE INCREMENT IN X.

C

MUST BE GREATER THAN ZERO.

C

NDELX IS THE NUMBER OF INCREMENTS.

C

MUST BE GREATER THAN 1.

C

NWANT IS THE NUMBER OF EQUALLY LIKELY DIVISIONS WANTED.

C

MUST BE GREATER THAN 1.

C

OUTPUTS

C

YLIM(I) I=1...NWANT+1 IS THE VECTOR OF X VALUES WHICH

C

CORRESPOND TO EQUALLY LIKELY PROBABILITY DIVISIONS.

C

YLIM(I) = XLO, (YLIM(NWANT+I) = XLO + FLOATF(NDELX)*DELX).

C

IANS = 0 NORMAL

C

=-1 ILLEGAL NDELX

C

=-2 ILLEGAL DELX

C

=-3 ILLEGAL NWANT

C

=-4 WEIRD ERROR (P PROBABLY NOT PROPERLY NORMALIZED)
C EXAMPLES

C 1. INPUTS - ALL P=0, NDELX=1, DELX=0. XLD=0, NWANT=0
C OUTPUTS - ERROR IANS = -1
C 2. INPUTS - SAME AS EXAMPLE 1, EXCEPT NDELX=20
C OUTPUTS - ERROR IANS = -2
C 3. INPUTS - SAME AS EXAMPLE 2 EXCEPT DELX=0.05, NWANT=1
C OUTPUTS - ERROR IANS = -3
C 4. INPUTS - P(1...20) = 1.,.7,.5,1.3,2.,1.9,6.,5.,4.,3.,2.,1.1,5.
1.5,.5,.5,.5,.5,.5.
C OUTPUTS - YLIM(1,...,6) = 0.2125,.35,.68333,.81666,1.
C 5. INPUTS - SAME AS EXAMPLE 4, EXCEPT XLO=20.
C OUTPUTS - YLIM(1,...,6) = 20,.20.2125,.35,.68333,.81666,21.
C IANS=0
C 6. INPUTS - SAME AS EXAMPLE 5. EXCEPT DELX=0.0005
C OUTPUTS - ERROR IANS=-4
C 7. INPUTS - SAME AS EXAMPLE 5 EXCEPT DELX=100.
C OUTPUTS - YLIM(1,...,6) = 20,.20.2,20.4,20.6,20.8,20.20
C IANS=0

DIMENSION P(200), YLIM(200)

C CHECK NDELX
IANS=-1
IF(NDELX=1) 9999,9999,5
C CHECK DELX
5 IANS=-2
IF(DDELX) 9999,9999,10
10 NUM=NWANT-1
IANS=-3
IF(NUM) 9999,9999,20
20 YLIM(J)=XLO
YLIM(NWANT+1)=XLO+FLOAT(NDELX)*DE
DELP=1./FLOAT(NWANT)
PTEST=DELP
ISTART=1
SUM=0
IANS=0
DC 100 J=1,NUM
DC 50 I=ISTART,NDELX
C DELTA=P(I)*DE
SUM=SUM+DELTA
IF(SUM>PTEST) 50,60,70
50 CONTINUE
C IERROR= USED ALL P WITHOUT FINDING ALL YLIM.
GC TO 9777
60 YLIM(J+1)=FLOAT(J)*DELP*XLO
ISTART=1
GO TO 90
C INTERPOLATE
70 SUM=SUM+DELTA
FRACT=(PTEST-SUM)/DELTA
YLIM(J+1)=(FRACT(J+1)*DELP)*DELP*XLO
ISTART=1
90 PTEST=PTEST+DEL
100 CONTINUE
9777 IANS=-4
GO TO 9999
END
KIINT1 (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO. 0128

KIINT1

SUBROUTINE KIINT1 (CHISQ,NDF,PROB, IANS)

----ABSTRACT----

TITLE - KIINT1

PROBABILITY THAT A CHI-SQUARED VARIATE EXCEEDS A VALUE.

KIINTI PRODUCES THE PROBABILITY THAT A CHI-SQUARED VARIATE
WILL EXCEED A GIVEN VALUE. THIS PROBABILITY IS COMPUTED BY
EQUATIONS GIVEN BY YULE AND KENDALL, 1950, THEORY OF
STATISTICS, PAGE 464 (FOOTNOTE) FOR NDF LESS THAN 31,
WHERE NDF = NO. DEGREES OF FREEDOM.

FOR HIGHER NDF THE NORMAL APPROXIMATION IS USED.

WHEN THE NORMAL APPROXIMATION IS USED A TABLE OF THE
NORMAL DISTRIBUTION WHICH APPEARS IN SUBROUTINE NOINTI IS
USED AND, SINCE THIS TABLE HAS ONLY 201 VALUES
CORRESPONDING TO VALUES OF X (UNIT NORMAL) FROM
0.0 TO 4.0, PROBABILITIES LESS THAN 0.00032 ARE SET TO ZERO
AND THOSE GREATER THAN 99968 ARE SET EQUAL TO ONE. THIS
DOES NOT OCCUR IF THE EQUATIONS ARE USED.

LANGUAGE - FORTRAN II SUBROUTINE

EQUIPMENT - 709 OR 7090 (MAIN FRAME ONLY)

STORAGE - 191 REGISTERS

SPEED -

AUTHOR - S.M. SIMPSON

----USAGE----

TRANSFER VECTOR CONTAINS ROUTINES - NOINT1
AND FORTRAN SYSTEM ROUTINES - SQRT, EXP(3
FORTRAN USAGE

CALL KIINT1(CHISQ,NDF,PROB, IANS)

INPUTS

CHISQ IS THE PARTICULAR VALUE OF A CHI-SQUARED VARIATE.
MUST BE GREATER THAN 0.

NDF IS THE NUMBER OF DEGREES OF FREEDOM OF THE VARIATE.
MUST BE GREATER THAN 0.

OUTPUTS

PROB IS THE PROBABILITY THAT THE VARIATE GREATER THAN
CHISQ.

IANS = 0 NORMAL
=1 ILLEGAL CHISQ
=2 ILLEGAL NDF

EXAMPLES

THE AGREEMENT BETWEEN THE PROB VALUE IN THE EXAMPLES AND THE
COMPUTED PROB VALUE IS TO 3 OR FOUR PLACES SINCE 4 PLACE TABLES
WERE USED TO MAKE UP THE EXAMPLES.

1. INPUTS - NDF=1 CHISQ=1. OUTPUTS - ERROR IANS=1
2. INPUTS - NDF=0 CHISQ=1. OUTPUTS - ERROR IANS=2
3. INPUTS - NDF=1 CHISQ=1. OUTPUTS - PROB=.3179 IANS=0
4. INPUTS - NDF=8 CHISQ=2.7330 OUTPUTS - PROB=.95 IANS=0
5. INPUTS - NDF=21 CHISQ=38.932 OUTPUTS - PROB=.01 IANS=0
PROGRAM LISTINGS

KIINT1

C 6. INPUTS - NDF=30 CHISQ=43.773
C CUTFUTS - PROR=.05 IANS=0
C
C 7.** INPUTS - NDF=31 CHISQ=17.0076
C CUTFUTS - PROR=.98 IANS=0
C
C **8.** INPUTS - NDF=3 CHISQ=2.366
C CUTFUTS - PCR=.50 IANS=0
C
C **C INITIALIZE AND CHECK IF NORMAL CURVE APPROXIMATION IS TO BE USED.**
C IANS=1
10 IF(CHISQ)9999,10,10
11 IANS=2
12 IF(NDF) 9999,9999,12
13 CHI=SORTF(CHISQ)
14 IF (NDF-30) 20,20,70
15 IF (NDF=9999) 20,20,70
16 IF (NDF-2*NDFH) 25,25,30
17 P1=3.0
18 IF (NOF-2) 27,27,50
19 P3=0.0
20 GO TO 60

C EVEN. SET P1=3, AND P3=1.0 IF NDF=2.
21 P1=3.0
22 IF (NOF=2) 27,27,50
23 P3=1.0
24 GO TO 60

C ODD. COMPUTE P1, MODIFY P2 AND SET P3=0.0 IF NDF=1.
25 CALL NOINTI(CHI,P1)
26 P1=2.0*(1.0-P1)
27 P2=CHI*P2*.7978848C
28 IF (NDF=1) 35,35,50
29 P3=0.0
30 GO TO 60

C EVALUATE P3 AS A POLYNOMIAL FOR NDF GREATER THAN 2.
31 NLCCPS=NDFH-1
32 P3=1.0
33 IF(NDF=3 (NLOPS=0), P3=1.0
34 IF(NLOOPS) 60,60,52
35 DIV=NDF-2
36 DO 55 I=I,NLOCPS
37 P3=P3*CHISC/DIV+1.0
38 DIV=DIV-2.0
39 GO TO 60

C COMBINE PIECES TO FORM PROB.
40 PROR=P1+P2*P3
41 GO TO 9999

C USE NORMAL APPROXIMATION FOR NDF GREATER THAN 30.
42 CHIMOD=CHI*1.414214-SQRTF(FLOATF(NDF)*2.0-1.0)
43 CALL NOINTI(CHIMOD,P1)
44 PROB=1.0-P1
45 GO TO 9999

9999 RETURN
END

LINTR1

SUBROUTINE LINTR1(XLO, DELX, TABLE, NTABLE, YOFX)

-- Abstract --

LINTR1 interpolates linearly in a table to find a value which lies between the tabulated values. XLO is the argument corresponding to the lowest tabulated value. DELX is the argument difference between tabular values. TABLE is located in TABLE(I). X is the argument and YOFX is the interpolated value. Hence, XTRA = X - XLO - (L-1)*DELX WHERE L IS SUCH THAT XLO+(L-1)*DELX <= X < XLO+L*DELX. DELX is constrained to be positive.

-- Usage --

CALL LINTR1(X, XLO, DELX, TABLE, NTABLE, YOFX)

Inputs

- X is argument for which interpolation is desired.
- XLO, LSTHN = X LSTHN OR = XLO+(NTABLE-1)*DELX.
- XLC = the argument corresponding to the first tabular entry.
- DELX = the argument difference between two successive tabular entries. Must exceed zero, but this constraint is not checked.
- TABLE(I) = table array in which TABLE(J) contains YXLO+DELX*(J-1)).
- NTABLE = the length of the table.

Outputs

- YOFX will contain the linearly interpolated value.

Examples

1. Inputs - X=7.5, XLO=5., DELX=2.5, TABLE(1...9)=1.1, 4.9, 9.9, 16., 25., 36., 49., 64., 81. NTABLE=9

2. Inputs - same as example 1. except X=21.3

3. Inputs - same as example 1. except X=25.

Purpose

- FORTRAN II SUBROUTINE
- 709 OR 709C (MAIN FRAME ONLY)
- 96 REGISTERS
- S. W. SIMPSON

-- Label --

0001

*-- transfers vector contains routines - none

0016

Language

FORTRAN II SUBROUTINE

Equipment

709 OR 709C (MAIN FRAME ONLY)

Storage

96 REGISTERS
C 4. INPUTS - SAME AS EXAMPLE 1. EXCEPT X=13. 0075
C OUTPUTS - YOFX=17.8 0076
C 0077
DIMENSION TABLE(2) 0078
C SET UP. 0079
XM=LCO=X-XLO 0080
20 ILO=XMXLO/DELX+1.0 0081
C INTERPOLATE ONLY IF ILO DOESNT CORRESPOND TO LAST TABULAR ENTRY. 0082
IF (ILO-NTALE) 30,40,30 0083
30 FLILO=ILO-1 0084
DIFX=XMXLO-FLILO*DELX 0085
HI=ILO+1 0086
YOFX=TABLE(FLILO)+(TABLE(HI)-TABLE(FLILO))DIFX/DELX 0087
GC TO 9999 0088
40 YOFX=TABLE(NTALE) 0089
GC TO 9999 0090
9999 RETURN 0091
END 0092
* MAXSN (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO. 0169
* FAP
* MAXSN
COUNT 150
LBL MAXSN
ENTRY MAXSN (LX,X,XMAX1,I)
ENTRY MINSN (LX,X,XMIN1,I)
ENTRY MAXAB (LX,X,XMAX2,I)
ENTRY MINAB (LX,X,XMIN2,I)
*
* ---- ABSTRACT ----
* TITLE - MAXSN: WITH SECONDARY ENTRY POINTS MINSN, MAXAB, AND MINAB
* FIND SIGNED OR UNSIGNED EXTREMAL VALUES OF A VECTOR.
* MAXSN FINDS THE MAXIMUM SIGNED NUMBER, AND ITS INDEX, IN A VECTOR OF NUMBERS (EITHER FIXED OR FLOATING POINT).
* MINSN FINDS THE MINIMUM SIGNED NUMBER.
* MAXAB FINDS THE MAXIMUM OF THE ABSOLUTE VALUES.
* MINAB FINDS THE MINIMUM OF THE ABSOLUTE VALUES.
* LANGUAGE - FAP SUBROUTINE (FORTRAN II COMPATIBLE)
* EQUIPMENT - 709 OR 7090 (MAIN FRAME ONLY)
* STORAGE - 54 REGISTERS
* SPEED - APPROX. 14N MACHINE CYCLES, N = LENGTH OF VECTOR
* AUTHOR - J.F. CLAERBOUT
*
* ---- USAGE ----
* TRANSFER VECTOR CONTAINS ROUTINES - NONE
* AND FORTRAN SYSTEM ROUTINES - NONE
* FORTRAN USAGE FOR MAXSN
* CALL MAXSN (LX,X,XMAX1,I)
* INPUTS
* X(I) I=1...LX IS A VECTOR OF NUMBERS.
* MAY BE FIXED OR FLOATING POINT.
* LX IS FORTRAN II INTEGER.
* MUST BE GRTHN=1.
* OUTPUTS
* XMAX1 IS THE MAXIMUM SIGNED VALUE IN THE X VECTOR.
* I IS THE INDEX OF THE MAXIMUM SIGNED VALUE.
* I.E. X(I) = XMAX1
* FORTRAN USAGE FOR MINSN
* CALL MINSN (LX,X,XMIN1,I)
* INPUTS SAME AS FOR MAXSN
* OUTPUTS
* XMIN1 IS THE MINIMUM SIGNED VALUE IN THE X VECTOR
I IS THE INDEX OF THE MINIMUM SIGNED VALUE.

FORTRAN USAGE FOR MAXAB

CALL MAXAB (LX*X*XMAX2*I)

INPUTS
SAME AS FOR MAXSN

OUTPUTS

XMAX2 IS THE MAXIMUM ABSOLUTE VALUE IN THE X VECTOR.
NOTE THAT XMAX2 MAY BE NEGATIVE.

I IS THE INDEX OF THE MAXIMUM ABSOLUTE VALUE.

FORTRAN USAGE FOR MINAB

CALL MINAB (LXXMIN2*I)

INPUTS
SAME AS FOR MAXSN

OUTPUTS

XMIN2 IS THE MINIMUM ABSOLUTE VALUE IN THE X VECTOR.
NOTE THAT XMIN2 MAY BE NEGATIVE.

I IS THE INDEX OF THE MINIMUM ABSOLUTE VALUE.

EXAMPLES

1. INPUTS
- X(1..10) = [-11, -8, -5, -2, 1, 4, 7, 10, 13, 16]
- LX = 10

Usage
- CALL MAXSN
- CALL MINSN
- CALL MAXAB
- CALL MINAB

OUTPUTS
- XMAX1 = 16
- XMIN1 = -11
- XMAX2 = 16
- XMIN2 = 1

2. INPUTS
- X(1..10) = [-16, -13, -10, -7, -4, -1, 2, 5, 8, 11]
- LX = 10

Usage
- SAME AS EXAMPLE 1.

OUTPUTS
- XMAX1 = 11
- XMIN1 = -16
- XMAX2 = -16
- XMIN2 = -1

3. INPUTS
- X(1..10) = [-16, -13, -10, -7, -4, -1, 2, 5, 8, 11]
- LX = 10

Usage
- SAME AS EXAMPLE 1.

OUTPUTS
- XMAX1 = 11
- XMIN1 = -16
- XMAX2 = -16
- XMIN2 = -1

HTR
BCI
MAXSN CLA
MX
STO USE
TRA
MINSN CLA
STO USE 0122
CLA NOP 0123
STO A=1 0124
CLA SUB 0125
STO A 0126
TRA START 0127
MAXAB CLA MX 0128
STO USE 0129
TRA **+3 0130
MINAB CLA MN 0131
STO USE 0132
CLA SSP 0133
STO A=1 0134
CLA SBM 0135
STO A 0136
START SXA SV,1 0137
SXD MAXSN-2,4 0138
CLA* 1,4 0139
PDX *,1 ARRAY LENGTH TO IR1 0140
CLA 2,4 0141
ADD *=1 0142
STA A+2 0143
STA A 0144
CLA* 2,4 GET TRIAL 0145
STO* 3,4 EXTREMUM 0146
CLA =1 SET CORRECT INDEX FOR TRIAL EXTREMUN 0147
ALS 18 0148
STO INDEX 0149
LOOP CLA* 3,4 0150
HTR 0 EITHER NOP OR SSP 0151
A HTR ***,1 EITHER SUB OR SBM 0152
USE HTR B EITHER TPL OR TMI 0153
CLA **,1 0154
STO* 3,4 0155
SXD INDEX*1 0156
B TIX LOOP*,1,1 0157
CLA INDEX 0158
STO* 4,4 0159
SV AXT **,1 0160
TRA 5,4 0161
NOP NOP 0162
SUB SUB 0,1 0163
SSP SSP 0164
SBM SBM 0,1 0165
MX TPL B 0166
MN TMI B 0167
INDEX BSS 1 0168
END 0169
MPSEQ1 (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO. 0196

* MPSEQ1

* MPSEQ1 (SUBROUTINE) 2/18/63

* TITLE - MPSEQ1

* MAPS A SEQUENCE OF NUMBERS INTO AN INTEGER SERIES

* ---- ABSTRACT ----

* TITLE - MPSEQ1

* MAPS A SEQUENCE X(I), I=1,...,LX INTO AN INTEGER SERIES

* MPSEQ1 MAPS A SEQUENCE X(I), I=1,...,LX INTO AN INTEGER SERIES

* THE MAPPING IS CONTROLLED BY A GIVEN VECTOR OF RANGE LIMITS B(I), I=1,...,LB, WHERE

* B(I) IS MONOTONELY INCREASING FROM B(1) TO B(LB), THUS SPECIFYING LB-I SEPARATE RANGES.

* EACH RANGE IS CONSIDERED CLOSED ON THE LOWER END, OPEN ON THE HIGH END AND THE RANGES ARE INDEXED FROM IXLO+1 TO IXLO+LB-1, WHERE IXLO IS A PARAMETER. IX(I) IS THEN SET EQUAL TO THE INDEX OF THE RANGE TO WHICH X(I) BELONGS, WITH THE FOLLOWING TREATMENT OF EXTREMAL X VALUES:

* IF X(I) IS LESS THAN B(1), IX(I) = IXLO+1

* IF X(I) IS GREATER THAN B(LB), IX(I) = IXLO+LB-1

* NOTE - THE LOGIC USED IS ALMOST IDENTICAL TO THAT OF FRACT2

* LANGUAGE - FAP SUBROUTINE WITH FORTRAN II CALLING SEQUENCE

* EQUIPMENT - 709 OR 7090 (MAIN FRAME ONLY)

* STORAGE - 110 REGISTERS

* SPEED -

* AUTHOR - J. N. GALBRAITH

* ---- USAGE ----

* TRANSFER VECTOR CONTAINS ROUTINES - NONE

* AND FORTRAN SYSTEM ROUTINES - NONE

* FORTRAN USAGE

* CALL MPSEQ1(X,LX,B,LB,IX,IXLO,IANS)

* INPUTS

* X(I) I=1...LX IS THE INPUT SERIES TO BE MAPPED.

* MAY BE FLOATING, FORTRAN INTEGER, OR MACHINE LANGUAGE INTEGER, BUT MUST BE THE SAME MODE AS B(I).

* LX IS LENGTH OF X VECTOR.

* MUST BE GKTHN=1.

* B(I) I=1...LB GIVES INPUT RANGES OF MAPPING INTERVALS.

* MUST BE SAME MODE AS X(I).

* B(I) MUST INCREASE MONOTONELY, IE B(I+1) GKTHN B(I)

* LB IS LENGTH OF RANGE VECTOR.

* MUST BE GKTHN=1.

* IXLO IS LOWER LIMIT OF OUTPUT MAPPING. IXLO+1 = INDEX OF LOWEST RANGE.

* OUTPUTS

* IX(I) I=1...LX IS THE INTEGER MAPPING OF X(I).

* IANS = 0 NORMAL

* = 1 ILLEGAL LX

* = 2 ILLEGAL LB

* = 3 WEIRD ERROR

* EXAMPLES

* 1. INPUTS - LX=0 X(1...16)=-5.,-4.,-3.2,-3.1-2.,-2.10.,-1.1,

* -.5,-.43.5,3.2,2.9,1.11. LB=16 B(1...9)=-4.,-3.,

* -2.,-1.0.,1.2.,3.,4.; IXLO=0

* OUTPUTS - ERROR IANS=1

* 2. INPUTS - LX=16 X(1...16)=-5.,-4.,-3.2,-3.1-2.,-2.10.,-1.1,

* -.5,-.43.5,3.2,2.9,1.11. LB=0 B(1...9)=-4.,-3.,

* -2.,-1.0.,1.2.,3.,4.; IXLO=0

* OUTPUTS - ERROR IANS=1
260

PROGRAM LISTINGS

* MPSEQ1

(PAGE 2)

* MPSEQ1

(PAGE 2)

* 2. INPUTS - X AND B SAME AS EXAMPLE 1 LX=16 LB=0 IXLO=0
* OUTPUTS - ERROR IANS=2
 0075
* 3. INPUTS - X AND B SAME AS EXAMPLE 1 LX=16 LB=9 IXLO=0
* OUTPUTS - IX(1,...,16)=0,0,0,0,0,2,1,4,2,3,7,7,7,7,5,5 IANS=0
 0077
* 4. INPUTS - X, B, LX, AND LB SAME AS EXAMPLE 3 IXLO=12
* OUTPUTS - IX(1,...,16)=12,12,12,12,14,13,16,14,15,19,19,19,18,
 0081
* 17,17 IANS=0
 0083

PIE 0

BCI 1, MPSEQ1

MPSEQ1

SXA RETURN+1,1

SXA RETURN+1,2

SXA RETURN+2,4

STD MPSEQ1-2,4

STZ 7,4 IANS=0

CLA 2,4 GET LX

TZE ERR1

TIM ERR1

STD END

CLA 4,4 GET LB

TZE ERR2

TIM ERR2

ARS 18 LB IN ADDRESS

STD LB

ARS 1 LB/2 IN ADDRESS)

STD LBHALF

CLA 1,4 ADDRESS OF X

ADD KIMLI A(I+1)

STA XADD

STA TESTLC

CLA 3,4 ADDRESS OF B

ADD KIMLI A(B+1)

STA BSTI

STA BADC

SUB LB

STA TESTHI

CLA 6,4 GET IXLO

SUB KFX IXLO-2

STD XLW

CLA 5,4 ADDRESS OF IX

ADD KIMLI A(I+1)

STA IXSTD

AXT 1,1

AXT 1,4

LOOP CLA KIMLI

STD LBLO INITIAL LBLO=1

CLA LB

STD LBHI INITIAL LBHI=LB

CLA LBHALF INITIAL LBHALF=LB/2

STD LBCOM=LBHALF

STA AX

AXT 1,2

TESTLO CLA **,1 GET X. (**=A(X+1))

BTESTI CAS **,4 B(1) SEE IF IN LOWEST RANGE

TRA TESTHI

TRA MEXIT

TRA MEXIT

TESTHI CAS ** ***A(B(LB)). SEE IF IN HIGHEST RANGE

TRA MEXIT

TRA MEXIT

SEARCH LXAX LBCOM=2

XADD CLA **,1 GET X(IX)

BADD CAS **,2 COMPARE WITH B(LB)

TRA GREATER X GREATER, NEW LBLO (=LB)

TRA MEXIT GOT IT, SET IX(IR)+1

LESS PXX 0,2 X LESS, NEW LBHI (=LB)

SUB LBLO LBLO-2=LB

CAS KIMLI

TRA **,3 DIFF GREATER THAN ONE

TRA EQUAL DIFF=1, GOT IT, SET IX(IR)+1

TRA ERROR IMPOSSIBLE

ARS 1 DIFF/2

ADD LBLO NEW LBCOM

LDQ LBCOM
PROGRAM LISTINGS

* MPSEQ1 *

** MPSEQ1 **

(STO LBMW 0150
STO LBCOM 0151
TRA SEARCH 0152
GRATER PXA 0,2 0153
SUB LBMW LBCOM-LBMW=-DIF 0154
SSP DIF 0155
CAS K1MI 0156
TRA *+3 0157
TRA NEXIND DIF=1, GOT IT, SET IX(IRI+1) 0158
TRA ERROR decking IMPOSSIBLE 0159
ARS 1 0160
ADD LBCOM 0161
LDQ LBCOM 0162
STO LBCOM 0163
STQ LBMW 0164
TRA SEARCH 0165
NEXIND TXI **1,2,1 0166
EQUAL PXD ,2 0167
ADD XLOW 0168
IXSTO STO **.1 *** ADDRESS OF IX+1 0169
TXI **1,1,1 0170
END TXL LCCP,1,** ***=LX 0171
RETURN AXT **.1 0172
AXT **.2 0173
AXT **.4 0174
TRA B,4 0175
HIEST LXA LR,2 0176
TRA EXCL 0177
ERR1 CLA K1FX 0178
STO* 7,4 STORE IANS 0179
TRA B,4 RETURN 0180
ERR2 CLA K2FX 0181
TRA ERR1+1 0182
ERROR CLA K3FX 0183
TRA ERR1+1 0184

* CONSTANTS AND TEMPORARIES 0185
K1FX PZE 0,0,1 0186
K2FX PZE 0,0,2 0187
K3FX PZE 0,0,3 0188
K1MLI PZE 1,0,0 0189
LB PZE 0 0190
LBMW PZE 0 0191
LBCOM PZE 0 0192
LBMW PZE 0 0193
LBMW PZE 0 0194
XLOW PZE 0195
END 0196
SUBROUTINE MSCON1 (NORDER, P, PHI, DEPEND, IANS)

C
C ---- ABSTRACT ----
C
C TITLE - MSCONI
C MEAN SQUARE CONTINGENCY AND DEPENDENCY FROM PROBABILITY DENSITY.
C
C MSCON1 COMPUTES THE MEAN SQUARE CONTINGENCY AND A
C DEPENDENCY MEASURE AS DEFINED ON PAGE 282 OF CRAMER,
C MATHEMATICAL METHODS OF STATISTICS, PRINCTON UNIV. PRESS,
C 1951. THE COMPUTATION REQUIRES THE SECOND PROBABILITY
C DENSITY WHICH CAN BE COMPUTED WITH SUBROUTINE PROB2 (SEE
C WRITE-UP OF PROB2). IF PHI IS THE MEAN SQUARE CONTINGENCY,
C DEPEND IS THE DEPENDENCY MEASURE, AND NORDER IS THE ORDER
C OF THE SECOND PROBABILITY MATRIX, P(I,J), THEN
C
DEPEND = PHI/(NORDER-1)

C LANGUAGE - FORTRAN II SUBROUTINE
C EQUIPMENT - 709, 7090 (MAIN FRAME ONLY)
C STORAGE - 239 REGISTERS
C SPEED -
C AUTHOR - J.N. GALBRAITH
C
C ---- USAGE ----
C TRANSFER VECTOR CONTAINS ROUTINES - NONE
C AND FORTRAN SYSTEM ROUTINES - NONE
C
C FORTRAN USAGE
C
CALL MSCON1(NORDER, P, PHI, DEPEND, IANS)

C INPUTS
C NORDER INTEGER. THE ORDER OF THE P(I,J) PROBABILITY DENSITY
C MATRICES. GRTHN ONE, LSTHN OR EQUAL 25.
C
P(I,J) I=1,...,NORDER, J=1,...,NORDER. PROBABILITY DENSITY
MATRIX WHICH CAN BE COMPUTED WITH SUBROUTINE PROB2 (SEE
WRITE-UP OF PROB2). IF PHI IS THE MEAN SQUARE CONTINGENCY,
DEPEND IS THE DEPENDENCY MEASURE, AND NORDER IS THE ORDER
OF THE SECOND PROBABILITY MATRIX, P(I,J), THEN

ERROR INDICATOR
=0 NORMAL
=-1 ILLEGAL NORDER. LSTHN 1 OR GRTHN 25
=-2 ILLEGAL P MATRIX. ROW OR COLUMN SUM ZERO OR NEGATIVE.

C EXAMPLES
C 1. INPUTS - P(1,1)=2, P(1,2)=2, P(1,3)=2, P(1,4)=2, P(1,5)=2
 OTHER P(I,J)=0.
 NORDER=0
 OUTPUTS - PHI=0. DEPEND=0. IANS=-1
 C 2. INPUTS - SAME AS EXAMPLE 1 EXCEPT
 NORDER=26
 OUTPUTS - PHI=0. DEPEND=0. IANS=-1
 C 3. INPUTS - SAME AS EXAMPLE 1 EXCEPT
 NORDER=5
 OUTPUTS - PHI=1.6666666 DEPEND=0. IANS=0
 C 4. INPUTS - SAME AS EXAMPLE 1 EXCEPT
 P(1,5)=0., P(5,1)=1. NORDER=5
 OUTPUTS - PHI=1.7333333 DEPEND=0. IANS=0
 C
C 5. INPUTS - SAME AS EXAMPLE 4 EXCEPT
C
C P(5,5)=0.
C
C OUTPUTS - IANS=-2
C
C DIMENSION P(25,25),PSROW(25),PSCOL(25)
C
C CHECK NORDER
C
C IANS=-1
C IF(NORDER-1) 9999,9999,5
C IF(NORDER-26) 6,9999,9999
C
C FIND ROW AND COLUMN SUMS
C
6 DC 10 J=1,NORDER
C PSROW(J)=0.
C PSCOL(J)=0.
C DC 10 I=1,NORDER
C PSROW(J)=PSROW(J)+P(J,I)
C PSCOL(J)=PSCOL(J)+P(I,J)
C
C CHECK ROW AND COLUMN SUMS
C
IANS=-2
C DC 15 I=1,NORDER
C IF(PSROW(I)) 9999,9999,12
C IF(PSCOL(I)) 9999,9999,15
C CONTINUE
C
C COMPUTE MEAN SQUARE CONTINGENCY
C
C PHI=0.
C DC 20 I=1,NORDER
C DC 2C J=1,NORDER
C PHI=PHI+P(I,J)*P(I,J)/(PSROW(I)*PSCOL(J))
C PHI=PHI-1.
C
C COMPUTE DEPENDENCY MEASURE
C
C DEPEND=PHI/(FLOAT(F(NORDER-1))
C IANS=0
C
9999 RETURN
END
NOINT1

2/18/63

LAST CARD IN DECK IS NO. 0374

FAP

+NOINT1

COUNT 370

LPL NGINT1

ENTRY NOINT1 (X,PROB)

ENTRY NOINT2 (XMEAN,XSD,NDIV,KDIV,IVANS)

----ABSTRACT----

TITLE - NOINT1 WITH SECONDARY ENTRY NOINT2

NORMAL DISTRIBUTION AND DIVISION INTO EQUALLY LIKELY SECTIONS

NOINT1 finds the integral of the zero mean, unit variance, normal probability density function from minus infinity to X. This is done by table look up in a table of 201 values of the normal distribution which correspond to values of X from 0.0 to 4.0 in increments of 0.02. Linear interpolation is used for values of X lying between tabulated values. The program returns zero for X values less than -4.0, and returns 1.0 for X values greater than 4.0.

NOINT2 divides the entire X axis into an arbitrary number, NDIV, of ranges which are equally likely with respect to a given normal distribution specified by its mean and standard deviation.

The integral of the normal distribution gives the probability that X lies in a certain range. NOINT2 reverses the process by finding the X ranges with a given probability. For K-th division, X-axis limits correspond to the probabilities (K-1)/NDIV, K/NDIV. Stored values of the antisymmetric integral of the unit normal distribution for X values zero to 4 in increments of 0.02 are searched for probability values given by K/NDIV. Interpolation where necessary is linear, i.e. find nearest value of X to corresponding to P when P does not appear in table exactly. If R-th value in table is less than P and (R+1)th value is greater, then X value = ((P-Rth value)/(R+1-th value))*0.02*R+.02. This value is then scaled for the particular normal distribution such that the output X = X*XSD+MEAN. Since only half of the normal integral is stored, the X values corresponding to P1 greater than .5 are computed first and the values for P2 less than .5 are symmetric and equal to 1-P1.

Note - NOINT1 and NOINT2 are independent except for their mutual need of the distribution function table.

LANGUAGE - FAP SUBROUTINE (FORTRAN II COMPATIBLE)

EQUIPMENT - 709 OR 7090 (MAIN FRAME ONLY)

STORAGE - 369 REGISTERS

SPEED -

AUTHOR - S.W. SIMPSON AND J.N. GALBRAITH

----USAGE----

TRANSFER VECTOR CONTAINS ROUTINES - LINTR1

AND FORTRAN SYSTEM ROUTINES - NONE

FORTRAN USAGE OF NOINT1

CALL NOINT1(X,PROB)

INPUTS TO NOINT1

X = UPPER LIMIT OF THE INTEGRAL (FLT PT.).

OUTPUTS FROM NOINT1

PROB = ------ INTEGRAL (EXP(-X/2)*DX).

SORT(2PI) -- INFINITY

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

0020

0021

0022

0023

0024

0025

0026

0027

0028

0029

0030

0031

0032

0033

0034

0035

0036

0037

0038

0039

0040

0041

0042

0043

0044

0045

0046

0047

0048

0049

0050

0051

0052

0053

0054

0055

0056

0057

0058

0059

0060

0061

0062

0063

0064

0065

0066

0067

0068

0069

0070

0071

0072

0073

0074
NOINT1

NOINT2

(PAGE 2)

FORTRAN USAGE OF NCINT2

CALL NCINT2(XMEAN, XSD, NDIV, XDIV, IANS)

INPUTS TO NOINT2

- **XMEAN** = MEAN OF X SERIES
- **XSD** = STANDARD DEVIATION OF X SERIES.
 - MUST BE GRTHN 0.
- **NDIV** = NUMBER OF EQUALLY LIKELY DIVISIONS INTO WHICH X SERIES IS TO BE PLACED.
 - MUST BE GRTHN 1

OUTPUTS FROM NOINT2

- **XDIV(I)** = X VALUES FOR EQUALLY LIKELY DIVISIONS. FIRST DIVISION IS FROM -INFINITY TO XDIV(1), THE SECOND IS FROM XDIV(1) TO XDIV(2) ETC. THE LAST DIVISION IS FROM XDIV(NDIV-1) TO +INFINITY.

- **IANS** =
 - 0: NORMAL
 - 1: ILLEGAL XSD
 - 2: ILLEGAL NDIV

EXAMPLES OF NOINT1

1. **INPUTS** - X=-5.
 - **OUTPUTS** - PROB=0.

 - **OUTPUTS** - PROB=.32 E-04

3. **INPUTS** - X=.013
 - **OUTPUTS** - PROB=.5052

 - **OUTPUTS** - PROB=.999968

5. **INPUTS** - X=4.1
 - **OUTPUTS** - PROB=1.

EXAMPLES OF NOINT2

1. **INPUTS** - XMEAN=0. XSD=1. NDIV=3
 - **OUTPUTS** - XDIV(1)=-.430722 XDIV(2)=.430722 IANS=0

2. **INPUTS** - XMEAN=0. XSD=2. NDIV=3
 - **OUTPUTS** - XDIV(1)=-.861444 XDIV(2)=.861444 IANS=0

3. **INPUTS** - XMEAN=1. XSD=2.
 - **OUTPUTS** - XDIV(1)=1.385185 XDIV(2)=1.861444 IANS=0

4. **INPUTS** - XMEAN=0. XSD=1.
 - **OUTPUTS** - XDIV(1)=0. IANS=0

5. **INPUTS** - XMEAN=3.5 XSD=1.
 - **OUTPUTS** - XDIV(1)=3.5 IANS=0

6. **INPUTS** - XMEAN=3.5 XSD=1.
 - **OUTPUTS** - XDIV(1)=3.5 IANS=2

7. **INPUTS** - XMEAN=3.5 XSD=0.
 - **OUTPUTS** - ERROR IANS=1

8. **INPUTS** - XMEAN=0. XSD=1.
 - **OUTPUTS** - XDIV(1...3)=-.674602,0.,+.674602 IANS=0

9. **INPUTS** - XMEAN=0. XSD=1.
 - **OUTPUTS** - XDIV(1...4)=-.8417856,-.253334,253334, .8417856 IANS=0

INITIALIZE.

PZE 0
*NOINTI

(BPGE
NOINTI SXA LV,4
STA GETX
CLA 2,4
STA STORE

*GET X AND ITS SIZE. COMPARE SIZE WITH 4.0.

GETX CLA ** **=ADDRESS OF X

STO XX
SPP
STO SX
CAS K4FL
TRA BIGGER
TRA INTRP

*(OR ZERO FOR NEG X).

BIGGER CLA KIFL
STO TEMP
TRA CHECK

*INTERPOLATE IF SIZE LESS THAN OR = 4.0.

*NOTE LINTRI MUST BE USED BACKWARDS SINCE OUR TABLE IS FORWARDS.

INTRP CLA K4FL
FSB SX
STO SXMOD
TSX $LINTRI,4
TSX SXMOD SXMOD=4.0-SX
TSX KO XLO=0.0
TSX KDELX KDELX=0.02
TSX Y+200 TABLE IS FORTRAN VECTOR
TSX KD201 NTABLE=201
TSX TEMP ANSWER

*IF X WAS MINUS WE NEED 1.0 MINUS THE INTERPOLATED VALUE.

CHECK CLA XX
TPL STORE-1
CLA KIFL
FSB TEMP
TRA STORE
CLA TEMP

STORE STO ** **=ADDRESS OF PROB
LV AXT **=XR4
TRA 3,4

*TEMPORARIES

XX PZE ** ***=X
SX PZE **=MAGNITUDE OF X
SXMOD PZE **=4.0-SX
TEMP PZE **=OUTPUT FROM LINTI

*CONSTANTS

KO PZE 0
KD201 PZE 0,0,201
KIFL DEC 1.0
K4FL DEC 4.0
KDELX DEC 0.02

*ENTRY NOINT2 (XMEAN,XSD,NDIV,XDIV,IANS)

*SAVE IRS AND INITIALIZE IANS

PZE 0

BCI 1,NOINT2

NOINT2 SXA RETURN,1
SXA RETURN+1,2
SXA RETURN+2,4
SXD NOINT2-2,4
STZ* 5,4

*CHECK XSD AND NDIV.

CLA* 2,4 GET XSD
TZE ERR1 TRANSFER IF ILLEGAL
TMI ERR1 TRANSFER IF ILLEGAL
CLA* 3,4 GET NDIV
SUB* KIFL NDIV-1
TZE ERR2 TRANSFER IF ILLEGAL
TMI ERR2 TRANSFER IF ILLEGAL

*PARAMETERS OK. SET UP MEAN LOOP AND GET XSD AND XMEAN ADDRESSES.

STD END2 SET UP MEAN LOOP

CLA 4,4 ADDRESS OF XDIV
ADD KMLI1
STA LOOP2
STA MEAN+1
CLA 1,4
STA MEAN
CLQ 2,4
FMP KDELX
STO SCALE
CLA 4,4
CLA* 3,4
LRS 16
ORA CONST
FAD CONST
STO NDIVFL
CLA KIFL
FOP NDIVFL
STQ DEFL
CLA* 3,4
LGR 19

* NDIV/2 WITH REMAINDER IN SIGN OF MQ
PAX +1
SXD ENC,1
SSM
ADD 4,4
CLA KMLI1
ADD ADDRESS OF XDIV
CLA STG1
STA STC2
TQP EVEN
TRANSFER IF NDIV EVEN
CLA DEFL
FOP K2FL
XCA
P=(.5+DELP/2)
FAD P
STC P
AXT 0,1
AXT 1,2
AXT 0,4
TRX SEARCH
EVEN
AXT 0,2
CLA Y
STO P
STZ* STC1
AXT 1,2
AXT -1,4
AXT 0,1
LOOP
CLA P
FAD DEFL
STO P
SEARCH
CAS Y,1
TXI SEARCH,1,-1
TRA SKINT
FSB Y-1,1
STO XTEMP1
CLA Y,1
STO XTEMP2
FMP XTEMP2
STO XTEMP1
SKINT
STZ XTEMP1
TXI **1,1,1
SXA XTEMP2,1
PAX +1
PAC +1
ORA CONST
FAD CONST
XCA
FMP SCALE
STO XTEMP1
STO **2
**=A(XDIV)-NDIV/2+1
STO **4
**=A(XDIV)-NDIV/2+1
LXA XTEMP2,1
PROGRAM LISTINGS

```
NOINT1

TXI **1,4,-1 0300
TXI **1,2,1 0301
END Txl LOOP2,2,** **=NDIV/2 ROUNDED DOWN 0302
* FINISHED SEARCH AND SCALING FOR ALL BLOCKS. ADD MEAN 0303
AXT 1,2 0304
LOOP2 CLA **,2 **=(AXDIV)+1 0305
MEAN FAD **,2 0306
STO **,2 0307
TXI **1,2,1 0308
END2 Txl LOCP,2,** **=NDIV-1 0309
RETURN AXT **1 0310
AXT **,2 0311
AXT **,4 0312
TRA 6,4 0313
ERR1 CLA K1FX 0314
STO* 5,4 0315
TRA 6,4 0316
ERR2 CLA K2FX 0317
STO* 5,4 0318
TRA 6,4 0319
CONST OCT 23300C000000 0320
KIFX PZE 0 0321
K2FX PZE 0 0322
KML1 PZE 1 0323
K2FL DEC 2.0 0324
XTEMP1 PZE 0 0325
XTEMP2 PZE 0 0326
P PZE 0 0327
DELP PZE 0 0328
NDIVF PZE 0 0329
SCALE PZE 0 0330
*TABLE (YULE AND KENDALL, THEORY OF STATISTICS, 0331
*1950, PAGE 664.) 0332
Y DEC .5000,.5080,.5160,.5239,.5319 0333
DEC .5398,.5478,.5557,.5636,.5714 0334
DEC .5793,.5871,.5948,.6026,.6103 0335
DEC .6179,.6259,.6331,.6406,.6480 0336
DEC .6554,.6628,.6700,.6772,.6844 0337
DEC .6915,.6985,.7054,.7123,.7192 0338
DEC .7257,.7327,.7396,.7465,.7534 0339
DEC .7580,.7642,.7704,.7764,.7823 0340
DEC .7881,.7939,.7995,.8051,.8106 0341
DEC .8159,.8212,.8264,.8315,.8365 0342
DEC .8413,.8465,.8508,.8554,.8599 0343
DEC .8643,.8686,.8729,.8770,.8810 0344
DEC .8849,.8888,.8925,.8962,.8997 0345
DEC .9032,.9066,.9100,.9131,.9162 0346
DEC .9192,.9222,.9251,.9279,.9306 0347
DEC .9332,.9357,.9382,.9406,.9429 0348
DEC .9452,.9474,.9495,.9515,.9535 0349
DEC .9554,.9573,.9591,.9608,.9625 0350
DEC .9641,.9665,.9686,.9694,.9718 0351
DEC .9713,.9726,.9738,.9750,.9761 0352
DEC .9772,.9783,.9793,.9803,.9812 0353
DEC .9821,.9830,.9838,.9846,.9854 0354
DEC .9861,.9868,.9875,.9881,.9887 0355
DEC .9893,.9898,.9904,.9909,.9913 0356
DEC .9918,.9922,.9927,.9931,.9934 0357
DEC .9937,.9941,.9944,.9947,.9950 0358
DEC .9953,.9956,.9959,.9962,.9965 0359
DEC .9963,.9967,.9970,.9973,.9976 0360
DEC .9974,.9976,.9977,.9980,.9983 0361
DEC .9983,.9985,.9986,.9989,.9992 0362
DEC .9993,.9993,.9994,.9995,.9995 0363
DEC .9995,.9995,.9997,.9997,.9997 0364
DEC .9997,.9998,.9998,.9998,.9998 0365
DEC .9995,.9995,.9995,.9995,.9995 0366
DEC .9996,.9996,.9996,.9996,.9996 0367
DEC .9997,.9997,.9997,.9997,.9997 0368
DEC .9998,.9998,.9998,.9998,.9998 0369
DEC .9999,.9999,.9999,.9999,.9999 0370
DEC .9999,.9999,.9999,.9999,.9999 0371
DEC .9999,.9999,.9999,.9999,.9999 0372
DEC .9999,.9999,.9999,.9999,.9999 0373
END
```

* TABLE (YULE AND KENDALL, THEORY OF STATISTICS, 1950, PAGE 664.)
PROGRAM LISTINGS

* POKCTI (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO. 0131
* LABEL
* CPOKCTI

SUBROUTINE POKCTI (IX,NHANDS,ICT,IANS)

****ABSTRACT****

C TITLE - POKCTI
C EVALUATION OF INTEGER SEQUENCE IN GROUPS OF FIVE AS POKER HANDS.
C
C POKCT1 BREAKS UP A FORTRAN II INTEGER SEQUENCE INTO NON-
C OVERLAPPING GROUPS OF FIVE DIGITS WHICH IT TREATS AS POKER
C HANDS. THE HANDS ARE EVALUATED AND A TABULATION OF THE
C NUMBER OF DIFFERENT TYPES OF HANDS IS PRODUCED. THE A
C PRIORI PROBABILITIES OF DIFFERENT HAND TYPES ARE KNOWN FOR
C THE CASE OF INDEPENDENT EQUALLY LIKELY DIGITS FROM ZERO TO
C NINE. HENCE A POKER COUNT IS USEFUL IN DETERMINING THE
C INDEPENDENCE OF A SEQUENCE. THE A PRIORI PROBABILITIES
C ARE GIVEN BELOW AND ARE EXACT. THE DECIMALS TERMINATE AT
C THE FOURTH PLACE.

C BUST .2952
C 1 PAIR .5040
C 2 PAIR .1080
C 3 OF A KIND .0720
C FULL HOUSE .0090
C STRAIGHT .0072
C 4 OF A KIND .0045
C 5 OF A KIND .0001

C LANGUAGE - FORTRAN II SUBROUTINE
C EQUIPMENT - 709 OR 7090 (MAIN FRAME ONLY)
C STORAGE - 219 REGISTERS
C SPEED -
C AUTHOR - S.W. SIMPSON

****USAGE****

C TRANSFER VECTOR CONTAINS ROUTINES - FRQCT1
C AND FORTRAN SYSTEM ROUTINES - NONE

C FORTRAN USAGE
C CALL POKCT1(IX,NHANDS,ICT,IANS)

C INPUTS
C IX(I) I=1;..5*NHANDS IS THE DIGIT SEQUENCE
C ZERO LESS THAN OR = IX LESS THAN OR = 9
C NHANDS IS THE NUMBER OF HANDS TO BE FORMED FROM THE IX SEQUENCE.
C NHANDS MUST BE GREATER THAN ZERO.

C OUTPUTS
C ICT(I) I=1;..8 IS THE COUNT OF TYPES OF HANDS FOUND WHERE
C ICT(1) = NO. OF HANDS OF NO VALUE
C ICT(2) = NO. OF HANDS WITH 1 PAIR
C ICT(3) = NO. OF HANDS WITH 2 PAIRS
C ICT(4) = NO. OF HANDS WITH 3 OF A KIND
C ICT(5) = NO. OF STRAIGHTS
C ICT(6) = NO. OF FULL HOUSES
C ICT(7) = NO. OF HANDS WITH 4 OF A KIND
C ICT(8) = NO. OF HANDS WITH 5 OF A KIND WHERE HAND NO. 1 =(IX(1),IX(2),IX(3),IX(4),IX(5))
C HAND NO. 2 =(IX(6),IX(7),IX(8),IX(9),IX(10)) ETC.
C IANS =0 NORMAL
C =1 ILLEGAL HANDS
C =3 ERROR RETURN FROM FRQCT1

C EXAMPLES

C 1. INPUTS - NHANDS = 0
C IX(1) I=1;280 BROKEN INTO GROUPS OF FIVE FOR EASY CHECKING.
271

*************** PROGRAM LISTINGS ***********************

* POKCT1 *

*************** PROGRAM LISTINGS ***********************

* POKCT1 *

(PAGE 2) (PAGE 2)

C 40123 43125 23456 76543 86754 95867 0075
C 97654 02345 98762 14327 02678 86430 63142 0076
C 01230 18741 32024 99413 08628 54351 07499 0077
C 01220 42246 45999 94977 82238 77335 55060 0078
C 10020 23334 06033 88381 74877 0079
C 11222 21212 98762 80808 94449 55454 61116 0080
C 950000 66666 44444 88883 00700 09999 0081
C 99999 00000 11111 22222 66666 33333 0082
C OUTPUTS - ICT(1...8) = 0,0,0,1010,0,0,0 IANS=1 0083
C 0084
C 2. INPUTS - SAME AS EXAMPLE 1. EXCEPT NHANDS=56 0085
C OUTPUTS - ICT(1...8) = 0,7,7,6,7,7,6 IANS=0 0086
C 0087
D DIMENSION IX(2),ICT(2),ICI(10),IC2(6) 0088
C CLEAR THE OUTPUT VECTOR. THEN WORK THRU DATA HAND BY HAND. 0089
IANS=1
IF(NHANDS) 9999,9999,10 0090
10 IANS=0
OC 15 I=1,8 0091
15 ICT(I)=0 0092
OC 90 II=1,NHANDS 0093
C FOR EACH HAND FIRST MAKE A FREQUENCY COUNT OF THE DIGITS (VALUES 0-9). 0094
C NOTE RESTRICTION 1 VIOLATION IS CAUGHT BY FRQCT1. 0095
J=(II-1)*5+1 0096
CALL FRQCT1(INX(J),5,0,9,IC1,IANS) 0097
IF(IANS) 9991,21,9991 0098
C AND THEN MAKE A FREQUENCY COUNT OF THE FREQUENCY COUNT (VALUES 0 TO 5) 0099
21 CALL FRQCT1(IC1,10,0,5,IC2,IANS) 0100
IF(IANS) 9991,22,9991 0101
C THE HAND VALUE,IVAL (1 TO 8), IS DETERMINABLE FROM IC2(1),IC2(3), 0102
C IC2(2) EXCEPT FOR STRAIGHTS. 0103
22 IVAL=1 0104
IF (IC2(1)-6) 60,92,50 0105
50 IF (IC2(3)-1) 55,96,93 0106
55 IF (IC2(2)-1) 98,97,94 0107
C CHECK FOR POSSIBLE STRAIGHT WHEN ALL DIGITS ARE DIFFERENT. 0108
60 I=0 0109
62 I=I+1 0110
IF (IC1(I)) 70,62,70 0111
70 IF (IC1(I+1)) 71,91,71 0112
71 IF (IC1(I+2)) 72,91,72 0113
72 IF (IC1(I+3)) 73,91,73 0114
73 IF (IC1(I+4)) 95,91,95 0115
C MAY SET THE HAND VALUE. 0116
98 IVAL=IVAL+1 0117
97 IVAL=IVAL+1 0118
96 IVAL=IVAL+1 0119
95 IVAL=IVAL+1 0120
94 IVAL=IVAL+1 0121
93 IVAL=IVAL+1 0122
92 IVAL=IVAL+1 0123
91 ICT(IVAL)=ICT(IVAL)+1 0124
90 CONTINUE 0125
9999 RETURN 0126
9991 IANS=3 0127
GO TO 9999 0128
END 0129
0130
0131
SUBROUTINE PCLYDV(N,DVS,M,DVD,L,Q)

---- ABSTRACT ----

TITLE - POLYDV
PERFORM LCNG DIVISION OF TWO POLYNOMIALS
PCLYDV COMPUTES THE FIRST L COEFFICIENTS OF THE QUOTIENT
OF TWO POLYNOMIALS. THE POLYNOMIALS ARE SPECIFIED BY THEIR
COEFFICIENTS. SOMETIMES THE LAST COEFFICIENTS MAY TURN
OUT TO BE ZERO IF THE QUOTIENT IS AN EXACT POLYNOMIAL OF ORDER
LESS THAN L. THE REMAINDER IS NOT COMPUTED. AN EXPLANATION
AS TO HOW THE SYMBOLIC DECK MAY BE ALTERED SO THAT
THE REMAINDER WILL BE COMPUTED IS GIVEN IN THE SYMBOLIC
DECK. THE COMPUTATION IS...

2 3
Q(1)+Q(2)*X+Q(3)*X+Q(4)*X+...+Q(L)*X+REMAINDER =

2
(M+1)
Q(1)+Q(2)*X+Q(3)*X+...+Q(L)*X+REMAINDER =

WHERE X IS UNSPECIFIED SINCE ALL OPERATIONS ARE ON THE
COEFFICIENTS,
C IS THE QUOTIENT VECTOR,
CVD IS THE DIVIDEND VECTOR,
CVS IS THE DIVISOR VECTOR.

LANGUAGE - FORTRAN II SUBROUTINE
EQUIPMENT - IBM 709, 7090 (MAIN FRAME ONLY)
STORAGE - 135 REGISTERS
SPEED -
AUTHOR - J. CLAERPOUT

---- USAGE ----
TRANSFER VECTCR CONTAINS ROUTINES - NONE
AND FORTRAN SYSTEM ROUTINES - NONE
FORTRAN USAGE
CALL POLYDV(N,DVS,M,DVD,L,Q)

INPUTS
N NUMBER OF COEFFICIENTS IN DIVISOR POLYNOMIAL
M MUST BE GRTHN=1.
DVS(I) I=1,N
COEFFICIENTS OF DIVISOR POLYNOMIAL
DVS(I) MUST BE NON ZERO
W NUMBER OF COEFFICIENTS IN DIVIDEND POLYNOMIAL
MUST BE GRTHN=1.
DVD(I) I=1,W
COEFFICIENTS OF DIVIDEND POLYNOMIAL
L NUMBER OF COEFFICIENTS IN QUOTIENT POLYNOMIAL
MUST BE GRTHN=1.

OUTPUTS
Q(I) I=1,L
COEFFICIENTS IN QUOTIENT POLYNOMIAL

EXAMPLES
1. INPUTS - M=1, DVD(1)=1.
N=2, DVS(1...2)=1.,-.5
L=4
OUTPUTS - Q(1...4)=1.,1.,25.,125

2. INPUTS - M=3, DVD(1...3)=1.,2.,1.
N=2, DVS(1...2)=1.,1.
L=10
C OUTPUTS - Q(1...10)=1.,1.,0.,0.,0.,0.,0.,0.,0.,0.
C THIS COULD BE REPROGRAMMED TO ALLOW EQUIVALENCE(DVD,Q), NOT ALLOW
DIMENSION DVS(10), DVD(10), Q(10)
NM = N-1
DO 8 I=1,L
Q(I) = 0.
8 Q(I) = DVD(I)
MOVE THE USED PORTION OF DVD TO Q
MM = XMINOF(NM, L)
DO 10 I = MM, PML
10 Q(I) = Q(I)/DVS(I)
Q(I) = Q(I)/Q(I)*DVS(I+1)
IF (I-L)30,20,30
20 RETURN
K = I
IF THE FOLLOWING CARD IS CHANGED TO (ISUB=NM) THEN THE REMAINDER
WILL BE COMPUTED AND STORED AT Q(L+1) TO Q(L+NM).
ISUB = XMINOF(NM, L-1)
DO 40 J = 1, ISUB
40 K = K+1
Q(K) = Q(K)-Q(I)*DVS(J+1)
CONTINUE
CONTINUE
PROGRAM NEVER GETS HERE
END
PRBFIT (SUBROUTINE) 2/15/63 LAST CARD IN DECK IS NO. 0186

* LABEL 0001
CPRBFIT 0002
SUBROUTINE PRBFIT(NOR,XMOM,NOUT,X,F,PHI,IONS) 0003

--- ABSTRACT ---

C TITLE - PRBFIT

GENERATE PROBABILITY DISTRIBUTION WITH SPECIFIED MOMENTS

PRBFIT GENERATES A ZERO-MEAN DISTRIBUTION FUNCTION, F(X),
WHOSE HIGHER MOMENTS (2ND, 3RD, ..., NTH WHERE N IS LESS
THAN OR EQUAL 6) ASSUME GIVEN VALUES. F(X) HAS THE FORM
OF A NORMAL DISTRIBUTION TIMES A POLYNOMIAL IN X, AND
CONSEQUENTLY IS USEFUL FOR APPROXIMATING EMPIRICAL
DISTRIBUTIONS WHICH ARE ROUGHLY NORMAL IN APPEARANCE,
BUT FOR WHICH THE NORMAL APPROXIMATION IS INADEQUATE.
IT SHOULD BE NOTED THAT THE PROCEDURE CAN YIELD NEGATIVE
VALUES FOR THE DISTRIBUTION IN CASES WHERE THE DEVIATION
FROM NORMALITY IS SEVERE.

AN ANALYSIS OF THE PROCEDURE USED MAY BE FOUND IN
CRAPER, H., 1951, MATHEMATICAL METHODS OF STATISTICS,
PRINCETON UNIVERSITY PRESS, PRINCETON, PAGE 222.

THE FORM OF THE CALCULATION IS

\[F(X) = \phi(U) + \sum_{n} \frac{(-1)^n}{n!} \phi^{(n)}(U) \]

EVALUATED FOR A GIVEN SET OF X VALUES

\[X = X(1), X(2), \ldots, X(NOUT) \]

WHERE

\[D \quad \text{denotes differentiation with respect to } U \]
\[U = X/SIG \]
\[\phi(U) = \exp(-0.5*U*U)/(\text{SQUARE ROOT}(2*PI)) \]
\[(I.E. \text{ NORMAL CURVE}) \]
\[PI = 3.14159265 \]
\[XMOM(L) = LTH PROBABILITY MOMENT \]
\[(INPUT \text{ PARAMETER VECTOR}) \]
\[SIG = \text{SQUARE ROOT}(XMOM(2)) \]

C LANGUAGE - FORTRAN II SUBROUTINE
C EQUIPMENT - 709, 7090 (MAIN FRAME ONLY)
C STORAGE - 366 REGISTERS
C SPEED -
C AUTHOR - R.J. GREENFIELD, JAN 1963

--- USAGE ---

C TRANSFER VECTOR CONTAINS ROUTINES - none
AND FORTRAN ROUTINES - SQRT, EXP(2, EXP

FORTRAN USAGE

CALL PRBFIT(NOR,XMOM,NOUT,X,F,PHIIANS)

INPUTS

NOR IS THE ORDER OF THE HIGHEST ORDER MOMENT GIVEN

MUST BE GRTHN= 2 AND LSTHN = 6

XMOM(I) I=1...NOR CONTAINS THE MOMENTS WHICH WILL BE USED TO
DEVELOP THE EXPANSION. THE FIRST MOMENT, XMOM(1),
IS NOT ACTUALLY USED, BUT IS ASSUMED TO BE =0.
(I.E. ZERO MEAN ASSUMPTION).

NOUT IS THE NUMBER OF X VALUES AT WHICH THE EXPANSION WILL BE
EVALUATED

X(I) I=1...NOUT IS THE LIST OF VALUES AT WHICH THE EXPANSION
WILL BE EVALUATED

PHI(I) USED FOR STORAGE

MUST BE DIMENSIONED AT LEAST AS LARGE AS NOUT

OUTPUTS

F(I) I=1...NOUT ARE THE VALUES OF THE EXPANSION FOR THE
NOUT VALUES OF X, I.E. F(I) = F(X(I)) AS DEFINED
IN ABSTRACT

IANS = 0 NORMAL

= 1 ILLEGAL NOR

EXAMPLES

1. (NORMAL APPROXIMATION)

INPUTS - NOR = 2 XMUD(1...4) = 0.,4.,8.,10. NOUT = 4

X(1...4) = 0.,5.,8,-.8

OUTPUTS - F(1...4) = .39894,.017528,.36828,.36828 IANS= 0

2. INPUTS SAME AS IN EXAMPLE 1. EXCEPT NOR = 3

OUTPUTS - F(1...4) = .39894,.041265,.29854,.43800 IANS= 0

3. INPUTS - SAME AS IN EXAMPLE 1. EXCEPT NOR = 4

OUTPUTS - F(1...4) = .28051,.0333501,.22328,.36272 IANS= 0

4. INPUTS - SAME AS EXAMPLE 1. EXCEPT NOR = 0

OUTPUTS - ERROR IANS= 1

5. INPUTS - SAME AS IN EXAMPLE 1. EXCEPT NOR=10

OUTPUTS - ERROR IANS = 1

DIMENSION A(7,7),C(7),PHI(100),XMOM(7),X(100),XMUD(7)

DIMENSION XMU(7),F(2)

NORDER = NOR +1

TEST INPUT DATA

IF (NORDER=2) 31,31,32

IANS=1

RETURN

IF(NORDER=7) 33,33,31

IANS=0

XMUD(1)= 1.

XMUD(2)= 0.

NC 50 X=2,NCR

50 XMUD(K+1)=XMUD(K)

SET UP A TABLE

DO 1 J=1,7

1 A(J,J)=1.

A(3,3)=1.

A(4,2)=3.

A(5,1)=3.

A(5,3)=6.

A(6,2)=15.

A(6,4)=10.
A(7,1)=-15. 0150
A(7,3)=45. 0151
A(7,5)=-15. 0152
C ALL SUBSCRIPTS ADVANCED BY 1
C X(I) INPUT NORMALIZED BY CALLING PROG (ZERO MEAN) 0154
C XMU ARE NOT NORMALIZED BUT ARE FOR ZERO MEAN 0155
C SEC TO COMP C 0156
SIG= SQRTF(XMU(3)) 0157
DO 51 I=1,NOUT 0158
51 X(I)= X(I)/SIG 0159
FACT=1. 0160
DO 5 K=1,NORDER 0161
C(K)=0. 0162
IF(K-1) 41,41,40 0163
40 FACT=FACT*FLOATK(K-1) 0164
41 DO 4 L=1,K 0165
4 C(K)=C(K)+(XMU(L)/(SIG**(L-1)))*A(K,L) 0166
5 C(K)=C(K)/FACT 0167
C SET UP TABLE OF PHI 0168
DO 6 I=1,NOUT 0169
6 PHI(I)=EXPF(-X(I)*X(I)*.5)*.3989423 0170
C COMPUTE F(I) FOR NORMAL DISTRIBUTION 0171
DO 7 I=1,NOUT 0172
7 F(I)=C(1)*PHI(I) 0173
IF(NORDER-4) 99,8,8 0174
C COMPUTES OTHER ORDER F 0175
8 DO 19 K=4,NORDER 0176
DO 12 I=1,NOUT 0177
HER=A(K,1) 0178
DO 10 L=2,K 0179
10 HER=HER+A(K,L)*X(I)**(L-1) 0180
12 F(I)=F(I)+PHI(I)*C(K)*HER 0181
19 CONTINUE 0182
99 DO 98 I=1,NOUT 0183
98 X(I)= X(I)*SIG 0184
RETURN 0185
END 0186
PROGRAM LISTINGS

* PROB2 2/18/63 LAST CARD IN DECK IS NO. 0174
* LABEL 0001
C PROB2
SUBROUTINE PROB2 (IX,LX,N,IP,P,IXHI,IANS)
C ---- ABSTRACT ----
C TITLE - PROB2
SECOND PROBABILITY DENSITY OF INTEGER SERIES AT GIVEN LAG.
C PROB2 COMPUTES THE SECOND PROBABILITY DENSITY FOR AN INTEGER SERIES
BY A FREQUENCY COUNT METHOD. THE SECOND PROBABILITY DENSITY, P(ML),
OF A SERIES IX(K) = M AND IX(K+N)=L, WHERE N IS THE LAG. PROB2
COMPUTES THIS QUANTITY FOR A GIVEN N. THE INTEGER SERIES MUST BE
SCALED SUCH THAT THE LOWEST VALUE OF IX(K) = 1 AND THE HIGHEST
VALUE IS IXHI. IXHI MUST BE LESS THAN OR EQUAL TO THE DIMENSION OF
THE P(I,J) MATRIX.
C THE PROGRAM BELOW DIMENSIONS P(I,J) TO P(25,25).
C PROB2 COUNTS INTO AN INTEGER MATRIX, IP(I,J), THE NUMBER OF TIMES
IX(K)=M AND IX(K+N)=L OVER ALL INDEX PAIRS K, K+N SUCH THAT BOTH K
AND K+N LIE IN THE INCLUSIVE RANGE 1 TO LX WHERE LX IS THE SERIES LENGTH.
N MAY BE NEGATIVE.
C THE INTEGER FREQUENCY COUNT MATRIX IS FLOATED INTO P(I,J)
AND NORMALIZED SUCH THAT SUM OVER I AND J OF P(I,J) IS 1.
C THIS IS DONE BY DIVIDING EACH ELEMENT BY R, WHERE
R=LX-XABS(N).
C IP(I,J) AND P(I,J) MAY BE EQUIVALENT IF THE FREQUENCY COUNT IS NOT
NEEDED. (THIS CAN BE RECONSTRUCTED SINCE LX AND N ARE KNOWN.)
C ---- USAGE ----
TRANSFER VECTOR CONTAINS ROUTINES - NONE
AND FORTRAN SYSTEM ROUTINES - NONE
FORTRAN USAGE
CALL PROB2 (IX,LX,N,IP,P,IXHI,IANS)
C INPUTS
C IX(I) I=1,..,LX INTEGER SERIES. IX(I) GRTHN OR = IXHI
C LX INTEGER. LENGTH OF IX SERIES. GRTHN ZERO
C N INTEGER. LAG OR SEPARATION FOR COUNT. CAN BE +,-, OR 0.
C XABS(N) LSTHN OR = IXHI
C OUTPUTS
C P(I,J) I=1,..,IXHI,J=1,..,IXHI. PROBABILITY DENSITY FOR LAG OF N
NORMALIZED SUCH THAT SUM OVER I AND J OF P(I,J) IS 1.
C IANS INTEGER. ERROR INDICATOR
=0 NORMAL
=-1 ILLEGAL IX VALUE. SOME IX LSTHN 1 OR GRTHN IXHI.
=-2 ILLEGAL LX. LX LSTHN 1
=-3 ILLEGAL N. XABS(N) GRTHN LX.
C =-6 ILLEGAL IXHI. IXHI GRTHN 26 OR LSTHM 1.
C =3 JCB DONE BUT N=0 AND ONLY CONTRIBUTIONS TO P(I,J) ARE
C ON THE DIAGONAL.
C
C EXAMPLES
C
C 1. INPUTS - IX(I)=0, LX=5, N=1, IXHI=5
C CUTPUTS - IP(I,J)=0, P(I,J)=0, IANS=-1
C
C 2. INPUTS - SAME AS EXAMPLE 1 EXCEPT IX(2)=1,2,3,4,6
C CUTPUTS - SAME AS EXAMPLE 1
C
C 3. INPUTS - SAME AS EXAMPLE 2 EXCEPT LX=0
C CUTPUTS - IANS=-2
C
C 4. INPUTS - SAME AS EXAMPLE 2 EXCEPT IXHI=0
C
C 5. INPUTS - SAME AS EXAMPLE 4 EXCEPT IXHI=26
C CUTPUTS - IANS=-6
C
C 6. INPUTS - SAME AS EXAMPLE 2 EXCEPT IX(5)=5, N=-6
C CUTPUTS - IANS=-3
C
C 7. INPUTS - IX(I)=1,1,2,2,3,3,4,4,5,5,1,1,1,1,1,1,1,1,1,1,1,1
C IXHI=5, LX=21, N=1
C CUTPUTS - IANS=4
C
C 8. INPUTS - SAME AS EXAMPLE 7 EXCEPT N=1
C CUTPUTS - IANS=0
C
C 9. INPUTS - SAME AS EXAMPLE 7 EXCEPT LX=24, N=3
C CUTPUTS - IANS=0
C
C 10. INPUTS - SAME AS EXAMPLE 7 EXCEPT LX=20, N=0
C CUTPUTS - IANS=3
C
DIMENSION IX(1000),IP(25,25),P(25,25)
C CHECK LX
IANS=-2
C IF(LX) 9999,9999,2
2 IANS=-6
C CHECK IXHI
C IF(IXHI) 9999,9999,3
3 IF(IXHI-25) 4,4,9999
C CHECK IX SERIES
4 IANS=-1
C DO 1 I=1,LX
C 1 CONTINUE
C IANS=-3
C CHECK N
IF(XABS(N)-LX) 41,9999,9999
41 IANS=0
C CLEAR IP(I,J)
 DD 5 I=1,25
 DD 5 J=1,25
5 IP(I,J)=0
 IF(N) 6,7,8
6 LFRST=-N+1
 LLAST=LX
 GO TO 9
7 IANS=3
8 LFRST=1
 LLAST=LX-N
9 DD 10 I=LFRST,LLAST
 J=IX(I)
 KK=I+N
 X=IX(KK)
10 IP(J,K)=IP(J,K)+1
 L=LLAST-LFRST+1
 TOTAL=L
 DD 15 I=1,IXHI
 DD 15 J=1,IXHI
15 P(I,J)=FLOAT(IP(I,J))/TOTAL
9999 RETURN
END

Geotechnical Corporation, 1961, Personal communication.

Ramirez, J. E., 1940, An experimental investigation of the nature and origin of microseisms at St. Louis, Missouri: Bull. Seis. Soc. Am.

Rand Corporation, 1955, A million random digits with 100,000 normal deviates: Glencoe, Ill., Free Press.

The author was born in Philadelphia, Pennsylvania on April 26, 1936. He attended the Germantown Friends School in Philadelphia from 1941 until his graduation in 1954. He entered the Massachusetts Institute of Technology in 1954 and obtained a Bachelor of Science degree in Physics in 1958. He entered the Graduate School at M.I.T. in the Geology and Geophysics Department in 1958 and was a research assistant under Professor W. F. Brace until 1960. He then held a tuition scholarship for a year and research assistantships for two years while working for Professor S. M. Simpson, Jr on this thesis. He was married in 1960 to the former Miss Joan Blumenstiel of Alliance, Ohio.