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Abstract:

This masters thesis assesses the impact of a emissions trading on short-term carbon
abatement and investment decisions in the power sector.

Environmental benefits from carbon abatement due to emissions trading are quantified
using top-down trend analysis and a bottom-up power sector model "E-simulate" to define
upper and lower boundaries on carbon abatement in Germany in the first phase of the EU
Emissions Trading Scheme (2005-2007).

The long-term economic and investment implications of emissions trading form the
centerpiece of the thesis. A sample coal and gas investment project is modeled using
discounted cash flows and analyzed using probabilistic Monte Carlo methods. The model
results help explain the empirical evidence of an increase in coal investments in Germany
against a preference for gas in the wider European market. The model is used to separately
discuss both the price and allocation effects of emissions trading on investment decisions in
the power sector. The modeling provides evidence of the dominance of fuel prices on the
long-term investment decision and highlights under which carbon and fuel price scenarios
the current preference for coal over gas investments could be reversed. Model results show
a good match when compared to power spreads which are created using empirical data.
Furthermore, related policy domains such as the Clean Development Mechanism (CDM)
and Renewable energy policy are assessed and sector-wide carbon abatement estimates are
reconciled between fuel switching and emissions displacement from renewables.
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1. Introduction

1.1. Motivation
In the spring of 2009, the world finds itself in several states of distress with a highly

uncertain outlook on the future. In the US, the Obama Administration has made climate

change one of the key policy priorities; yet the outlook on carbon markets and even the

regulatory authority between EPA and Congress remains unclear. The EU with a

significant carbon market is firmly committed to post-2012 carbon markets regardless of

whether or not an international consensus is reached. This continuing regulatory

uncertainty for the power sector comes at a time in which the world finds itself in the

midst of the largest recession since the Great Depression; the global financial crisis has

all but closed the credit markets, freezing large debt-financed infrastructure investments.

In the US and Europe, gigantic government subsidy programs promise rapid aid for

"shovel-ready" projects, with the very first grants, loan subsidies and tax incentives being

rolled out while government agencies are sill increasing staff levels and write grant

proposals.

At the same time, governments and utilities must look beyond the near-term demand

contraction and plan the investments required to support the long-term energy demand

growth. This also includes making significant investments in more flexible power grids

and providing incentives for the development of a lower carbon intensive power sector.

Yet, while environmental economics could suggest that carbon regulation would end the

use of coal, exactly this fuel is chosen for large parts of the future grid mix. This thesis

will analyze the carbon price effects on long-term investments in the power sector. The

analysis will distinguish between price effects and allocation effects using various

quantitative methods to analyze empirical and market data from the European Union's

Emissions Trading Scheme (EU-ETS).



1.2. Background on Emissions Markets
The fundamental justification for emissions trading markets results from the desire of

regulators to price environmental externalities. Emissions trading caps the total carbon

output, thus providing certainty over output; trading between participants is allowed so

that largest amount of abatement can occur at the lowest marginal cost. Although Europe

has taken the lead on carbon markets, first environmental markets were envisioned in the

United States in the 1970s but only implemented at full-scale in the early 1990s. The

economist Pigou (1932) first suggested internalizing environmental costs through a tax;

then Ronald Coase (1960) challenged the polluter pays principle and proved efficient

outcomes could be achieved independently of initial allocation. Dales (1968) continued

with this notion and strengthened the concept of transferable property rights for public

goods, which was contrary to command and control regulations of the time. The US

Clean Air Act first allowed companies to offset higher emissions through emission

reduction credits, reducing implementation by up to 90%, compared to traditional

command and control regulation, and providing an economic incentive to invest in

technologies of lower carbon intensity (Tietenberg 1985). Following the success of this

environmental market mechanism, it was continually applied in the US for a reduction in

lead gasoline in the 1980s, as well as the sulphur dioxide emissions in coal power that

formed part of the 1990 Clean Air Act (Ellerman 2003).

On an international level, emissions trading was implemented in the 1997 Kyoto Protocol

which is now regarded as a central pillar of global climate policy. Since its ratification in

2005, it has served as the central international climate change regulatory framework and

as the basis for the global carbon market. It sets legally binding targets for the reduction

by 2012 of the six main greenhouse gases (GHGs) below 1990 levels on all Annex 1

countries which have ratified the treaty. Developing countries have no binding carbon

emission reduction targets, but play a central role in the Kyoto Protocol.

Under the Treaty, three 'flexible mechanisms' were established which aim at helping

achieve the emission reduction targets at least cost:

* Joint Implementation (JI): Investment among Annex 1 countries to

generate Emission Reduction Units (ERUs);



* Clean Development Mechanism (CDM): Investment in an emission

reduction project in a non-Annex 1 country to generate Certified Emission

Reductions (CERs), which can be sold globally.

* Emissions Trading: An Annex 1 country can sell its emission rights

granted under the Treaty - Assigned Amount Units (AAUs) to another Annex 1

country.

Emissions reductions can be achieved within industrialized countries or be bought from

carbon emissions offsetting projects in the developing world, which contributes to the

reduction of carbon dioxide globally. The third flexible mechanism, emissions trading,

served as the inspiration for the European Emissions Trading Scheme (EU-ETS) which

has been implemented into EU law through the Emissions Trading Directive (European

Commission 2003). The Clean Development Mechanism and Joint Implementation will

be briefly discussed in Chapter 8, as these credits serve as an alternative to domestic

abatement that will be described in Chapter 2.

Recently, several other compliance and voluntary carbon markets have been developed,

such as the Chicago Climate Exchange or the Australian scheme in New South Wales.

The total global carbon market in 2008 recorded revenues of over 125 billion dollars, the

exact split between markets will be published by the World Bank in May 2009 in their

annual publication "States and Trends of the Carbon Market". The table below depicts

the historic development of the market, showing the rapid growth both in value and total

transaction volumes.



Table 1.1: Global carbon markets volume and value

Source: Kapoor, Ambrosi (2008) and Point Carbon (2008)

1.3. The EU-ETS and the Power Sector
The EU ETS (European Trading Scheme), launched on January 1, 2005, is the key

element of EU climate policy to comply with its Kyoto commitments. The EU ETS is

currently the largest carbon market and has materially impacted the economic operations

and investment decision-making process in the power sector, which is the largest single

polluting sector. The research for this thesis is motivated by the large policy interest in

this area and is enabled by the recent data availability and good reporting from the

relatively liquid allowance markets. The cap and trade scheme covers about 11.500

energy intensive installations which account for around 44.7 percent of total emissions

from the 27 states (2.2 billion tonnes). Emission 'allowances' are given to each operator,

who is obliged to keep their emissions below the level permitted or they will have to buy

allowances from other operators. Currently in its Phase II (2008-2012), the EU ETS

establishes an annual cap at 5.8 percent below the 2005 verified emissions and a non-

compliance penalty of €100 (up from E40). At the same time, it is maintaining the

obligation to cover any shortfall in the period, the introduction of aviation (from 2012

onwards), and the possibility of banking (keeping credits for use in future years).
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Figure 1.1 Phase I allocation by sector and country

Source: CITL Viewer

The power generation assets form part of the "combustion" installations which form the

largest single sector in the EU-ETS. The chart above shows the Phase I allocations by

installation and country, specifying whether the installation was over-allocated (long

position above the origin) or under-allocated (short position below the origin). The data

shows the large discrepancies in countries' overall positions, with the United Kingdom

(GB), Spain (ES) and Italy (IT) being the economies with allocations over 250 million

tons to have net short positions. The initial allocation shown for Germany was later

reduced using the so-called ex-post adjustment mechanism, making Germany a net-

importer of emissions credits.!

Emissions and Power generation in Germany

The unification of East and West Germany in 1990 started a process of industrial

reorganization and consolidation of the former East Germany, which had a marked effect

1 The European Commission contested the ex-post adjustment, yet Germany prevailed in the European
Court of Justice (Weishaar, 2008).
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on measured economic activity, and, more

illustrated in Figure 1.2.
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Figure 1.2: Macro-economic indicators, power prices and emissions since 1990

Source: German government, CRF reports

The chart shows that immediately following the reunification, in the years 1990-1996,

German economy-wide CO2 emissions were reduced by 10%. This coincided with a

comparable reduction in industrial activity as measured by the gross value added (GVA)

of the industry component of the national income statistics. 1996 marks a turning point:

From then on, industrial activity rose more or less steadily, as did power production and

GVA for the economy as a whole. Notably however, primary energy consumption

remained flat, before a significant reduction in 2007, and economy-wide CO 2 emissions

continued to decline. A particularly remarkable feature of the post-1996 period is the

recovery of industrial activity, especially in the three years that marked the trial period.

From 1996 through 2004, there was an annual increase of 2.1% of constant dollar GVA

in the industrial sector excluding construction and power, rising to 4.4% growth between

2004 and 2007. The carbon emissions that were associated with this increase were by and



large included in the EU ETS, although the sub-sectors accounting for the extra growth,

like machine tools, electronics and optics, are not especially carbon intensive.

These trends are also reflected in the German power sector. In particular, fossil

generation, which had fallen by 6% between 1990 and 1999, has since then risen by 12%

in 2007, about half of which was lignite and the other half natural gas. In part, this trend

reflects the fact that electricity use is increasing apace with GDP, but it also reflects the

decline in nuclear generation. As shown in Figure 3, the level of generation from

combined nuclear and fossil generation has increased only very slightly since 1999

(+2.2%). The contemporaneous increase in demand of almost 14% has been met almost

entirely by renewable energy, an effect that will be further explored in Chapter 6 of the

thesis. The increased fossil generation has made up for the 17% reduction in nuclear

generation, which is presumably a reflection of the German government decision in 2000

to phase out nuclear power.
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Figure 1.3: German power generation by fuel type

Source: German government, CRF reports



1.4. Approach and Methods of Analysis
Fundamentally, this thesis aims to explore the effects that carbon emissions trading and

the presence of a carbon price have on long-term investment behavior in the power

sector. Germany is chosen as a specific case study of analysis, given that it is the largest

European economy, and has a diversified fleet of power generation technologies, and is

the largest participant in the European Emissions Trading Scheme (EU-ETS). In order to

accurately model the long-term effect of a carbon price on the power sector, the short-

term environmental and fuel switching effects need to be understood. This is done using

the bottom-up power model called "E-simulate", a cost-minimization model that

simulates European electricity generation dispatch on an hourly basis over an annual

cycle at the power plant level. This model is explained more fully in in Delarue,

Ellerman, and D'haeseleer (2008). The entire system is organized as a set of

interconnected 'zones', each of which corresponds to a specific country or group of

countries, of which Germany is one. The demand for electricity is specified by zone for

each hour of the year, and the model solves for the least cost dispatch of generation to

meet electricity demand in all zones, given daily fuel prices. E-simulate operates as a

linked hourly stacking model in which the dispatch of available generation is determined

by power plant characteristics and fuel prices. This bottom-up method is combined with a

top-down analysis, based on carbon emissions intensities, to estimate lower and upper

boundaries for carbon emissions abatement. Furthermore, the model is used for assessing

the capacity factor of all generation assets of the same technology and fuel type as well as

the marginal fuel at every hour of the year. It is an indirect method of calculating the

capacity factor of the system and it is a key input to assess the profitability of power

investments. The marginal fuel analysis adjusts for the ramp times of the different

generation technologies, as defined in the technical specifications of each power

generation technology.

The main economic analysis regarding the long-term investment behavior in the power

sector relies on several modeling methodologies that are combined to provide a better

insight into the profitability of a marginal coal and gas investment. The model is based on

a discounted cash flow model that calculates the annual cash in- and outflows from the



operation of a power plant, under the technical assumptions which are taken from the

previously mentioned, bottom-up "E-simulate" model. Rather than relying on a static

analysis of several price scenarios, as is often done in the literature, the model uses

probabilistic methods to provide a more dynamic insight into the power sector. The

principal inputs into the model, gas prices, coal prices, and carbon prices, are entered as

distributions which are fitted to the empirical data set. This way, the model is used to

calculate returns on investment, both as a net present value calculation as well as an

internal rate of return calculation to determine the more profitable investment. In addition

to several model outcomes, standard sensitivity analysis is applied to all the key technical

and financial inputs to quantify the impact that a change in these factors would have on

the final outcomes.

Finally, the results from these model simulations are compared to empirical data of power

sector spreads that are reported on power exchanges, or by financial data providers, such

as Bloomberg or Reuters. Power spreads compare the power price to the input prices

required to generate power and make several simplifying assumptions as to the technical

details of power generation. These spreads are calculated for the earnings a utility makes

for generating power one MWh from coal (called dark spread), as well as the earnings

from generating one MWh using gas (called spark spread). These power market spreads

can then be reduced by the carbon price given the carbon intensity of the fuel (then called

"clean" dark or spark spreads). These spreads provide a daily quantification of the

earnings a utility can make; subtracting the spark from the dark spread provides an

insight as to whether it is more profitable to generate power from gas or from coal.

Assuming that a marginal power investment is only dispatched when it is profitable to do

so, these spreads implicitly express capacity factors and can thus be compared to the

capacity factors that the bottom-up model calculates.

1.5. Thesis Structure
The thesis provides quantitative modeling approaches to estimate both the environmental

and the economic consequences that emissions trading has on the power sector.



Chapter 2 explores these environmental effects of carbon trading by quantifying the

options for carbon emissions abatement. Short-term fuel switching in the power sector is

analyzed by using several top-down and bottom-up modeling techniques.

Chapter 3 provides a discussion of the empirical evidence of changing investment

behavior in the EU-ETS before and during the first phase from 2005-2008. Furthermore,

this chapter provides a literature review of the methods used to model long-term

investment decision uncertainty.

Chapter 4 describes the power plant investment model that is the centerpiece of analysis

of this thesis. The uncertainties of the input parameters, the distribution fitting process

and the sampling using Monte Carlo methods are described in detail.

Chapter 5 discusses the price effects of emissions trading. Empirical data is used to

calculate clean dark and spark spreads and these outcomes are compared with the results

generated by the power sector models.

Chapter 6 quantifies the allocation effects that emissions trading has on the profitability

of investments and technology choice. The chapter discusses the allocation mechanisms

of grandfathering, benchmarking, and auctioning in more detail. It also comprises the

effects that policy changes regarding new entrant and closure rules have had on the

economics of power generation.

Chapter 7 discusses the broader implications of carbon trading by looking at the related

policy fields of the Clean Development Mechanism and renewable energy policy. The

results show a good fit between top-down estimates of the entire power industry

including renewables and the sum of the two bottom-up estimates for carbon abatement

in the power sector from fuel switching and carbon abatement from renewables.

The final chapter draws conclusions on the overall environmental and economic

implications of this work and suggests areas for future research.



2. Measuring Short-term Abatement and Implications for
Long-term Investment Decisions

While the main aim of the thesis is to explore the investment implications of a carbon

price on the power sector, the long-term effects are an aggregation of short-term

economic signals that induce fuel switching as a consequence of the carbon price. Hence

understanding the fundamental mechanism of fuel switching is crucial for the analysis

presented in chapters four and onwards. The bottom-up model presented in this chapter

will be applied on the one hand to inform the assumptions for the capacity factor made in

the investment model, and, on the other, to have the opportunity of cross-checking the

model results with empirical data presented in later chapters.

2.1 Introducing methodology of measuring emissions intensities
More specifically, the reduction in CO 2 emissions is a consequence of switching from

coal to the relatively less CO2 intensive gas. Since reductions can be estimated only by

comparison of actual emissions with what emissions would have been absent the EU ETS

and the CO 2 price associated with it, analysts are forced to estimate this unobserved

counterfactual. In this chapter, two different methods of quantifying the carbon emissions

abatement are presented. Firstly, a top-down trend analysis, as used by Ellerman and

Buchner (2008), is applied to the EU as a whole; secondly, a bottom-up approach is

applied, according to Delarue et al. (2008), who already focused on the power sector

using the simulation model applied to the EU as a whole.

The top-down approach is based on trends in economic activity, emissions, and emission

intensities that require an analysis of these trends prior to the start of the EU ETS on

January 1, 2005. Essentially, this approach assumes a continuation of these trends in the

absence of a carbon price. Particular attention is given to the trends in emissions intensity

for various indicators of economic activity. The economic activity and emissions can be

observed ex post, but a counterfactual needs to be constructed by extrapolating business

as usual carbon intensities from 2000-2004 and combining these intensities with the

observed levels of economic activity from 2005 onwards. The difference between that



level of emissions and what is observed with the carbon price constitutes the top-down

estimate of abatement. Implicitly, this approach assumes that the surrounding factors

would have stayed the same; and this is rarely the case. Accordingly, any complete

analysis requires consideration of other factors affecting emissions that have changed

from the pre-policy period. Examples are fuel prices and renewable energy policy, which

will be addressed in Chapter 7. As will be explained, at least some of the abatement that

can be inferred by this top-down approach cannot be attributed to the carbon price.

Hence, this estimate forms an upper limit on abatement.

For a lower limit estimate, the methodology only focuses on the power sector, which

constitutes 61% of the C0 2 emissions within the sectors included in the EU Emissions

Trading Scheme in Germany. It is widely acknowledged (and implicit in the windfall

profits critique) that power companies priced the value of CO2 into their bids for

supplying electricity to the grid. The additional carbon cost in the electricity supply bids

would change the dispatch of power plants depending on their type and the availability of

lower emitting (generally natural gas fired) plants to substitute for higher emitting

(generally coal) plants at various times throughout the year. The availability of lower

emitting generation for such fuel switching depended heavily on fuel prices and the load

at particular hours. To make this estimate, the model simulates the operation of the

German power sector as part of the European grid and resolves supply on an hour-by-

hour and plant-by-plant basis. The actual demand and fuel prices, both of which are

assumed to be independent of the carbon price, were included, too. The difference

between simulations with and without the actual C0 2 price provides a bottom-up estimate

of abatement in the German power sector. Since it is likely that other sectors reduced

emissions to some extent in response to the CO 2 price, this estimate must be considered a

lower bound. Also, the simulation model would not capture other effects of the carbon

price, such as lower demand for electricity or improved efficiencies in power plants in

response to the higher fuel/carbon price.



2.2 Top-down Estimate of Abatement
Top-down estimates of abatement, such as those first essayed for the EU ETS by

Ellerman and Buchner (2007), rely upon aggregate data and comparison of trends before

and after some policy measure is implemented. Typically, the analyst is looking for some

break in the trend that could indicate that the policy had an effect. As an ex post exercise,

the analyst also has the advantage of knowing the evolution of other factors that would

cause emissions to be higher or lower, independently of the policy measure, or in this

case, the price of CO2 as expressed in European Union allowances (EUAs). Obviously,

much depends on the choice of trend. The evolution of emission levels is not necessarily

helpful, since it can be influenced by these other factors. Attributing the emission

reduction to the policy measure would not be warranted, or at the least it would constitute

an overstatement of the measure's effect. An important assumption in evaluating the

effect of some policy measure is that the pre-policy trend in CO2 intensity, and

specifically of CO 2 emissions associated with various indicators of economic activity,

would have continued without the policy measure. Intensity is not fixed; it will vary from

year to year as a result of fluctuations in weather, energy prices, and the composition of

economic activity. Nevertheless, the extrapolated values can be seen as an expectation

that can be adjusted to the extent these other factors and their effect on intensity are

known. The effect of the policy - in terms of carbon abatement - is measured by

difference from what is observed and the counterfactual projection of the pre-policy trend

into the policy period. Thus, counterfactual emissions would be the projected pre-policy

intensity trend times the observed ex post indicator of economic activity. Figure 2.1

provides the basic elements of such an analysis of the effect of the EU ETS on

Germany's CO2 emissions.
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Figure 2.1: Emissions and Economic Activity Growth Rates

Source: German Government, DEHSt

The pairs of columns provide the annual rates of growth for CO2 emissions and four

indicators of economic activity for the four years preceding the introduction of the EU

ETS (2000-2004) and for the three years of the trial period (2004-2007). The four

indicators of economic activity are:

1. Gross domestic product (GDP), a common measure of economy-wide activity

2. Gross value added (GVA) for the sectors of the economy included in the EU ETS

(mostly, electricity generation and industrial activities),

3. GVA for industrial activities alone, and power generation (which is measured in

physical units instead of GVA).

4. Power generation expressed in total MWh produced

GDP is used although this indicator includes more economic activity than is encompassed

by the EU ETS, but it is a readily available and commonly used indicator that is thought

to have an important influence on CO2 emissions. The GVA of the combined power and

relevant industrial components of GDP comes closest to capturing the EU ETS sectors,

although it would miss combustion facilities greater than 20 MW thermal that are located

in sectors not included in the EU ETS. The GVA for industry alone and the generation of



electricity reflect the activity levels of the two main subcomponents of EU ETS

emissions. The striking feature of Figure 2.1 is the change in the growth in CO 2

emissions before and after the EU ETS in contrast to the corresponding changes for the

several indicators of economic activity. In the four years prior to the introduction of the

EU ETS, CO2 emissions grew at an annual rate of about 0.8% per annum; in the three

years since the introduction of a CO 2 price, emissions have declined very slightly even

though economic growth was strong. Figure 2.2 shows both the evolution of observed

CO2 intensity per unit of GDP from 2000 through 2007 and also the counterfactual

expected from a continuation of the 2000-2004 trend into the policy period.

The intensity observed during the policy years of 2005-2007 is not only below the trend

but also below the intensity levels observed in any of the earlier years. Figure 2.3 projects

ETS emissions assuming that the growth in economic activity and the trend in CO2

intensity were the same within the ETS sectors as they were for the German economy as

a whole. Actual ETS emissions are also shown and the hatched area represents the top-

down estimate of abatement. The distinct flattening of emissions growth, observed in

2005-2007, may have had some other contributing factors, but it is hard to imagine that

the CO 2 price did not play a role, given the general belief that economic activity and CO2

emissions are closely linked.
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Source: German government, DEHSt

The yearly pattern that is observed during these years is precisely what economic theory

would predict. There was a perceptible drop in emissions as the CO2 price was integrated

into production decisions. Once that adjustment was made emissions continued to grow

in some relation to GDP growth. In Germany, CO 2 emissions declined by 2.8% from

2004 to 2005 when real GDP rose by 0.8%. In subsequent years of the trial period,

emissions rose by 0.8% and 2.0% while GDP rose by 2.9% and 2.5%. If the pre-policy

emissions trend had prevailed, CO 2 emissions would have increased by 1.1%, 3.2%, and

2.8% in those three years, at rates that were slightly greater than the rate of GDP growth,

as had been the case during the 2000-04 period.

Anyone familiar with the evolution of EUA prices over the years 2005 through 2007 will

question why the abatement indicated in Figure 2.3 would be greater in 2007, when the

EUA price was near zero, than in 2005 or 2006, when an average price near €20

prevailed. In response, two reasons can be adduced for placing less confidence on the

annual amounts than in the estimate for the period as a whole. First, the estimates reflect

a straight line projection of the pre-2005 intensity trend, as readily seen in Figure 2.2,

when, in fact, the actual counterfactual intensity may have been higher or lower

depending on weather and other factors. Such annual variation can be readily seen for the

years 2000-2004 around a back casting of the intensity trend. Thus, in the absence of a

carbon price, the counterfactual intensity could have been higher in 2005 and 2006 than

shown on Figure 2.2. In fact, given the succession of two colder than normal winters, in

2004-05 and in 2005-06, and an intervening warmer than usual summer, not to mention

very high natural gas prices, a higher counterfactual intensity is likely. This would imply

greater abatement. Moreover, the opposite weather conditions and lower natural gas

prices occurred in 2007 and could have caused the counterfactual intensity in 2007 to be

lower.
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A second reason for focusing on the three years as a whole is the departure of reality

from many of the assumptions common in economic reasoning. Not all investments in

abatement are reversible; that emission reductions pursued during high EUA prices in

2005 and 2006 with an eye to the expected (and realized) higher 2008 CO2 price would

not be shut down or reversed when the EUA price fell temporarily to zero in 2007.

Examples of irreversible and reversible abatement can be found in the power industry.

Improvements in the efficiency of power generation that may have been realized in 2005

and 2006 with a view to the longer-term EUA price would not have been reversed in

2007. Similarly, contract considerations and the common lags in production decisions

would be other reasons not to expect an exact correspondence between carbon prices and

abatement. That being said, the more intensive utilization of gas-fired power plants at the

expense of coal-fired units for supplying the spot market is readily reversible, so,

consequently, a greater reliance on coal-fired generating units, and commensurately less

abatement, would be expected in 2007 as the EUA price fell.

These considerations suggest that some confidence can be placed in the cumulative totals

yielded by this type of top-down analysis without being overly concerned about the

VON-
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annual distribution of abatement. Accordingly, Table 2.1 presents four alternative

estimates of CO2 emissions abatement in Germany due to the EU ETS. The data and

representative calculations made to arrive at these estimates are presented in the appendix

of this paper. The counterfactuals are based on emissions intensities that are formed by

dividing carbon emissions by an observed activity index (such as GDP) over the years

2000-2004 and then extrapolating this intensity into the years 2005-2007. The difference

between the emissions counterfactual and observed emissions forms the estimate for

emissions abatement. The abatement estimate for all EU-ETS sectors uses a

counterfactual based on gross value added (GVA) for the industry and power sectors

since it most closely matches the EU-ETS sectors; the calculation is also done using

emissions intensities based on economy-wide GDP which is an intuitive, but less accurate

measure. The power sector abatement uses counterfactuals based on power generation

and GDP.

Table 2.1: Emissions Abatement Estimates

Basis of estimate (million tons) 3-yr abatement Annual reduction
All ETS Sectors using counterfactual 121.9 40.6 (8.1%)
based on GVA Intensity
All ETS Sectors using counterfactual 85.5 28.5 (5.7%)
based on GDP Intensity
Power sector only using counterfactual
based on generation intensity
Power sector only using counterfactual 56.7 18.9 (3.8%)
based on GDP Intensity

Source: Authors' calculations

These estimates vary according to the denominator that is chosen to form the intensity

statistic. The important point is not the exact number but the general magnitude. The data

on emissions and economic activity in Germany all point to emission reductions,

coinciding with the introduction of the EU ETS and probably caused by the CO 2 price.

The numbers developed here would suggest abatement of 5%, and perhaps higher, of

what CO2 emissions from EU ETS installations in Germany would reasonably otherwise

have been (around 500 million tons).

There are reasons that these numbers may overstate the magnitude and for that reason

they are referred to as upper-bound estimates. For instance, all energy prices rose



significantly during these years independently of the CO 2 price, and these increases

would have led to reductions in emissions for the same reasons that we would expect a

that a CO2 price would have been expected to have an effect. Similarly, the German

government has undertaken a series of measures aimed at reducing energy use, and these

probably led to energy use and emission reductions independently of the EU ETS. Still, it

is doubtful that all of the indicated reduction in CO 2 emissions could be attributed to

these other confounding factors. The effect of renewables in this regard will be discussed

in Chapter 7.

2.3. Estimating and Illustrating Abatement in the Power Sector
Top-down approaches that depend on aggregate statistics can be supplemented by more

focused analyses that concern single sectors where models and data are available. These

analyses incorporate more of the sector-specific details that cannot be captured in

aggregate numbers and which always raise questions about the reliance that can be placed

on top-down estimates. This part of the analysis relies on a simulation model, "E-

simulate," that was originally developed at the University of Leuven, Belgium and that

has been subsequently calibrated to fit historical data from 2003 and 2004.2 E-simulate is

a cost minimization model that simulates European electricity generation dispatch on an

hourly basis over an annual cycle at the power plant level. The entire system is organized

as a set of interconnected 'zones', each of which corresponds to specific country or group

of countries, of which Germany is one. Transfers of electricity can occur among zones

subject to the pre-specified limits on interconnection capabilities. The demand for

electricity is specified by zone for each hour of the year, and the model solves for the

least cost dispatch of generation to meet electricity demand in all zones, given daily fuel

prices. E-simulate operates as a linked hourly stacking model, in which the dispatch of

available generation is determined by power plant characteristics and fuel prices. By

adding a cost for CO2, the stacking order is usually changed in favor of lower CO2-

emitting generation with consequent abatement for most levels of demand. The results

reported below reflect the German zone only, although those results flow from running

the entire model including interzonal transfers that involve Germany.

2 More detail on the model can be found at Voorspools (2004) and Delarue, Ellerman and D'haeseleer,
(2008).



As explained more fully in Delarue, Ellerman, and D'haeseleer (2008), CO 2 abatement

through fuel switching depends principally on two factors: The availability of natural-

gas-fired capacity and the prices of coal and natural gas. For any given stock of

generating capacity, the availability of lower emitting gas-fired capacity that could be

substituted for higher emitting coal-fired generation will depend upon the hourly load,

which varies by daily, weekly, and seasonal cycles, and fuel prices. For instance, if

natural gas prices are very low relative to those of coal, all gas generation will be

committed anyway and there will be little to no capability to reduce CO2 emissions by

fuel switching. Similarly, when fuel prices favor coal-fired generation over gas-fired

generation, as is usually the case, the amount of gas-fired generation available for

switching will depend on the hourly load. On peak hours, when demand is high, most of

the gas-fired generating capacity will be already committed, so that there will be less

low-emissions capacity available for switching. The interplay of these factors and their

effect on abatement is illustrated in Figure 2.4, which shows the effect of both load and

fuel prices on abatement by the German power sector in response to the observed EUA

price.

Due to the lack of demand data for 2007 when this analysis was performed, generation

and abatement are shown only for 2005 and 2006. Load is shown by the black line at the

top labeled generation (right axis in terawatt-hours/day), and it displays a decided

seasonal variation reflecting the winter-peaking characteristics of German power demand.

The reddish, dashed line at the bottom shows daily abatement (left axis in 000 tons/day)

due to fuel switching. As can readily be seen, there is a distinct seasonal pattern to

abatement. There is more in the summer, when there is less demand on the system and

when more uncommitted gas-fired generation is available for switching.
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Figure 2.4: Summary of Abatement Drivers

Source: Model results, Bloomberg

The effect of the CO2 or EUA price (green line to be read on left axis in euro per ton) also

depends on fuel prices. The blue band reflects the distribution of the fuel switching

points, which depend on power plant efficiencies and fuel prices. A switching range or

distribution can be defined as the EUA price at which available unused gas-fired capacity

would be substituted for coal-fired generation. This distribution is defined on the low side

by the substitution of the most efficient and lowest cost unused gas-fired capacity for the

least efficient and highest cost coal-fired capacity in service; on the high side it is defined

by the substitution of the least efficient and highest cost gas-fired units for the most

efficient and lowest cost coal-fired unit. Thus, the further the EUA price penetrates into

this range, the greater the abatement will be, all else being equal.

This fuel price effect can be observed in comparing the abatement in the summer of 2005

with that in the summer of 2006. As shown in Figure 2.4, EUA prices were well within

the fuel-switching band during the summer of 2005, in contrast to the summer of 2006
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when EUA prices were frequently below the switching band. When summarized over the

two years by quarters, the seasonal pattern of abatement and the influence of these other

price factors can readily be seen.

Table 2.2: Estimate of abatement in the German power sector

Mn tons 2005 2006 2007

Jan-Mar 0.85 0.34 0.1

Apr-Jun 2.98 1.61 0

Jul-Sep 3.61 1.81 0

Oct-Dec 0.87 1.05 0

Full year 8.31 4.81 0.1

Source: Model calculations

Assuming little to no fuel switching in 2007, this bottom-up estimate indicates abatement

of 13.2 million tons in the power sector alone for the three-year trial period, or about 1%

of what emissions would have been in the ETS sectors in Germany (about 1.5 billion

tons), and it can be taken as a lower bound for the reasons previously explained.

Further illustrations of power sector behavior in response to a CO 2 price

The extent and timing of fuel switching and the effect on abatement is illustrated more

directly in Figure 2.5, which shows model results for 2005 alone. Abatement is driven by

gas displacing coal and lignite, and the vertical lines show the percentage variations in

generation from gas- and coal-fired power plants in response to actual EUA prices.

Hourly abatement is shown by the black dots measured on the right axis in tons per hour.

Most fuel switching and abatement occur during the summer when more unused gas-fired

capacity is available. But there is also a pronounced variation within each season

reflecting daily and weekly cycles in load. These are chiefly the week-day peak hours,

when much of the gas-fired capacity is committed, regardless of fuel or CO2 prices.

Similarly, there are hours during the winter, when switching and abatement occurs,

chiefly during the week-ends and at night when the load is relatively lower. The

concentration of abatement during the summer occurs, because there are more hours with

unused gas-fired capacity due to the lower load over-all during the summer months. As



shown on the graph, fuel switching varies between 2% and 12% given EUA and fuel

prices.
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Figures 2.6 and 2.7 below provide a comparison of dispatch in the Germany electricity

system in 2006, when there is no CO2 price (2.7) and when the actual CO2 price (2.6a) is

simulated. Figure 2.6 also shows hourly abatement. There are perceptible changes, but

the change is not as great as hoped or feared by various parties. With the observed CO 2

price, natural gas fired generation penetrated more deeply into the maroon, hard coal

band and hard coal displaced some lignite (yellow band) mostly on week-ends during the

summer, when the highest abatement tends to be observed. Lignite and hard coal still

provide an important part of base-load power and natural gas and oil-fired units still

provide the peaking capacity regardless of season.
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The influence of load, fuel and CO2 prices on abatement in the German power sector can

be summarized as in Figure 2.8 below. The figure aggregates the hourly abatement and

generation data points into daily values to correspond to EUA and fuel price data. Then

these daily values are ordered from highest to lowest abatement and expressed as a

relative measure from 100, for the day with the greatest abatement, to 0 for the day with

the least abatement. Linear trend lines are added for easier analysis. High abatement

tends to coincide at low loads when the system offers the most flexibility for fuel

switching, gas/coal ratios are low which results in a low switching band, as well as high

EUA prices so that the EUA price is most likely to fall within the fuel switch band. As

load and natural gas prices increase relative to coal; when EUA prices decline, abatement

diminishes. As the slopes of the trend lines show, load has more effect than the price

factors, and the gas/coal price ratio is as important as the EUA price in determining

abatement.
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The estimates of abatement provided here compare well with the estimates for the EU as

a whole that have been provided by Ellerman and Buchner (2008, p. 34), when they

speak of between 50 and 100 million tons, or of 2.5% to 5%, for each of 2005 and 2006.

The similar top-down estimate for Germany that is developed in this paper tends to the

upper end of this range on a percentage basis; however, they also clearly include other

factors, particularly in 2007, which cannot be attributed to the EU ETS. Minimum

estimates can be provided by realistic bottom-up simulations of the power sector alone.

The calibrated EU-wide simulation that is reported more extensively in Delarue,

Ellerman and D'haeseleer (2008, p. 29), and used here, provides an estimate of 13 million

tons for Germany (and 53 million tons for the EU as a whole) for the years 2005 and

2006 combined. These minimum estimates are approximately 1.3% of both German and
EU-wide emissions, on the unlikely assumption that the only abatement in response to the
C02 price was in the power sector and in that sector only by fuel switching. The exact
number or percentage is not as important as the evidence that there was some effect,

although it was modest in keeping with the emission reduction ambitions of the trial
period of the EU ETS.



2.3 The implications of Short-term Effects on Long-term Investment Decisions

The bottom up models provide a crucial link for the long-term investment decisions. The

E-simulate model in its least cost hourly approach also calculates the marginal fuel at

every hour. Assuming that the marginal plant will have to compete with the existing

generation fleet and does not directly replace other capacity, the marginal fuel can be

taken as an indication for the number of hours the new plant will be dispatched, and

hence the capacity factor. This is one of the most sensitive variables in the discounted

cash flow model that will be introduced in more detail in Chapter 4.

Taking the results from the bottom-up model, the hours per marginal fuel can be

aggregated to find how many hours per year coal is the marginal fuel on the grid.

Table 2.3: Marginal Fuel Calculations for the year 2006

2006
Min. up

Fuel Conversion type time (hrs) Raw Count Percent Adjusted for Ramp Time
Coal Rankine multifuel 12 5369 61.29% 61.28% Coal
Gas Rankine gas 4 1085 12.39%
Gas Brayton-Rankine SS 4 106 1.21%
Gas Brayton-Rankine DS 4 1902 21.71% 38.72% Gas, Diesel,
Gas Brayton 1 55 0.63% Fuel oil
Diesel Diesel 1 2 0.02%
Fuel oil Rankine oil 4 241 2.75% L _I

Source: E-simulate model

Table 2.4: Marginal Fuel Calculations for the year 2005

2005
Min. up

Fuel Conversion type time (hrs) Raw Count Percent Adjusted for Ramp Time
Coal Rankine multifuel 12 5459 62.32% 62.31% Coal
Gas Rankine gas 4 609 6.95%
Gas Brayton-Rankine SS 4 51 0.58%
Gas Brayton-Rankine DS 4 2224 25.39% 37.69% Gas, Diesel,
Gas Brayton 1 65 0.74% Fuel oil
Diesel Diesel 1 7 0.08%
Fuel oil Rankine oil 4 345 3.94%1

Source: E-simulate model

Aggregating the raw numbers for the year 2006, this results in 61% of hours with coal as

the marginal fuel. If the numbers are adjusted for the minimum up times required, the

numbers do not change significantly and 61.3% of the hours find coal as the marginal



fuel, while 38.7% of all hours find gas as the marginal fuel. This analysis forms the basis

for using a capacity factor of 0.4 for the peak gas dispatch in the following chapters. If

one assumes that the short-term marginal cost of a gas plant is higher than the marginal

coal plant after adjusting for the price of carbon, this results in a low capacity factor for

gas and hence a significant deterioration of the profitability of a gas investment.

Repeating this analysis for 2005 shows very little difference even though the carbon

prices had been significantly higher, suggesting that the impact of the carbon price is not

significant.

These results will be discussed in more detail in the context of fuel spreads and capacity

factors used in the investment model in Chapter 5. Before the long-term investment

model will be discussed, however, the following chapter will look more broadly at

evidence of changing investment behavior as a consequence of the introduction of carbon

emissions trading in Europe and specifically in Germany.



3. Long-term Investment Effects and Evidence of
Changing Investment Decisions

The short-term effects of carbon pricing have been established in the literature using

bottom-up models such as the one presented in the previous chapter; however, methods

for estimating the long-term impacts of carbon pricing on power investments are much

less established. This is in part due to the fact that there are merely four full years of data

available in Europe. Furthermore, three competitive and game theoretic considerations

make companies less willing to fully and openly disclose their actual assessment. Firstly,

individual plant-level cost structures and portfolio merit orders are kept secret from to

avoid being underbid by competitors. Secondly, companies want to maintain a strong

bargaining position vis-ai-vis the regulators and the European Commission to ensure that

the power plant and company receives the highest possible carbon credit allocation.

Thirdly, the real options embedded in the company's growth portfolio are dependent on

specific regulatory and market outcomes related to carbon and power prices which means

that investment plans are contingent on expectations of price and allocation effects.

While the next three chapters will discuss these elements in more detail, this chapter

provides a literature review of long-term effects and presents empirical data that shows

how Germany has not followed the European trend of investing in gas-fired generation

assets.

3.1 Literature Review
Given the 25-40 life of power plant investments, any changes to the generation portfolio

will be of a gradual nature and investment decisions are unlikely to be influenced by

short-term movements in price. The long-term effect of emissions trading on power

investments is contested among industry experts. Depending on whether one classifies

CO2 emissions trading as a marginal change of fuel prices or a long-term change of the

industry, the conclusion of the effect of emissions trading on long-term investment

decisions is either only seen on short-term fuel change and marginal carbon abatement or

the structural change of investment viability in specific generation technologies. The

literature on the long-term investment effects of carbon trading for the power sector is



still relatively scarce. The literature review shows that so far analysis has focused on

normative approaches, cost distortions as well as real options and examples will draw

both on carbon emissions trading as well as experiences from the US SO 2 trading system.

Normative Approaches

Brewer (2005) uses surveys to assess the level of knowledge within firms prior to Phase I

of the EU-ETS and assesses company actions to increase their preparedness to emissions

trading, which, at the time of the study was still surrounded by significant uncertainty.

Pinske (2007) uses the large database of carbon related information compiled through the

Carbon Disclosure Projects to assess the intentions of a global sample of companies in

dealing with the consequences of a carbon price. Curiously, companies had very similar

responses regardless of them being European firms or outside of a mandatory carbon

trading framework which is explained with the focus on global climate change policy in

general rather than carbon pricing in specific. Several other studies look at the

preparedness of specific industries in specific countries, including Paulsson and von

Malmborg (2004) in their analysis for Sweden.

Cost Distortions on a Macro and Firm level

A second set of studies has analyzed the changes in cost structures and distortions

introduced through elements of carbon emissions pricing. The first seminal papers on the

economic implications of emissions trading rules stem from Weitzman (1974) and

Atkinson and Tietenberg (1987). A crucial part of this analysis is to assess the impact of

different emissions allocation mechanisms. Ellerman, Joskow and Harrison (2003) reflect

on experiences, lessons and considerations from emissions trading in the US. Busch,

Weinhofer and Hoffman assess the carbon performance of the 100 largest US electricity

producers as well as potential carbon exposure of these companies. Neuhoff, Martinez

and Sato (2006) discuss the impacts that the national allocation plans (NAP) have on

market prices, operation and investment decisions and provide numerical examples to

support these findings. Gagelmann and Frondel (2005) review the literature on similar

issues faced by other emissions trading schemes such as the US SO 2 system. Schleich and

Betz (2005) review the impacts that allocation mechanisms have on incentives to

innovate. Oberndorfer and Rennings (2007) assess the competitiveness impacts on the



companies that result from the EU ETS. Ellerman (2006) provides insights on distortions

from new entrant and closure provisions while Ellerman and Buchner (2006) assess

abatement and allocation effects in their preliminary analysis of the EU-ETS. Sekar,

Parsons, Herzog and Jacoby (2006) give a concrete example how carbon price and policy

scenarios present tradeoffs between coal generation technologies. Hoffmann (2007)

assesses the effects of carbon trading on investment decisions through expert interviews

and finds limited impact on investment or R&D decisions. Hepburn, Grubb, Neuhoff and

Mathes (2006) review the fundamental basis for auctioning within the EU-ETS.

Real Options in Capital Investment Decisions

Laurikka and Koljonen (2006) apply a real options methodology to analyze the impact of

carbon price uncertainties in future power plants. Their study of the Finnish power sector

comes to the conclusion that there are two specific real options embedded in the capital

allocation problem, the option to wait and the option to alter the scale of the operations

and the impacts of allocation methodologies on these options is discussed in detail.

Yang and Blith (2007) provide a comprehensive model for assessing risks and

uncertainties of policy risk and carbon price uncertainty on the long-term investment

decisions of power generators. Uncertainty is modeled as short-term volatility, longer-

term random walk price variations (Brownifan motion), as well as climate policy

uncertainty that leads to step changes in price after price shocks are triggered by discrete

changes to the market. The authors then provide a comprehensive modeling approach

using real options to quantify the value of flexibility and to determine the optimum

investment point given the expectations on the carbon regime. In addition to looking at

the changes in merit order between coal and gas investments and the associated carbon

pass-through, Yang and Blith also consider the development of CCS technology and

calculate carbon price thresholds required to incentivize CCS development.

3.2. Evidence of Investment Decisions Pre- and Intra- Phase I
Before developing the investment model to analyze long-term effects, this section will

assess recent empirical evidence of trends within the industry two years into the second

phase of European carbon trading. Both the current generation portfolio and announced



investment plans are taken into consideration to see whether there are any early

indications of structural change in the power generation industry.

Method and sources of empirical evidence

Empirical evidence is gathered from annual reports, analyst reports and technical reports

of the large power generation companies. Germany has four large incumbent utilities,

E.On, RWE, Vattenfall, and EnBW (referred to as "Big 4"), which define the

oligopolistic structure of the European and especially German markets. Aside from

aggregating data from the large four companies separately, another data source is the

German economics ministry, which collects and publishes aggregated statistical data

series. Furthermore Platts has developed a database of EU-15 wide power plant

construction and investment announcements, which has been tracking the sector since

2002. Moreover, the German association of electric power and water companies, BDEB,

publishes a database of power projects and tracks the projects from announcement,

through the licensing stage and into the construction and completion stage. While this

data is only available as a current snapshot of the industry rather than a time series, the

data is the most detailed and most up to date. Initially a timeseries had been constructed

based on data from mid-term investment plans of the Big 4 players. This idea had to be

abandoned, though, due to the large reporting inconsistencies between companies,

changes in regional aggregation and changes in time scales for projects.

European Trend towards Gas strong, Coal stalled briefly by EU-ETS

Investment in power generation assets in the EU has been focused on incremental builds

in gas, coal, wind and waste. The macro data seems to suggests two very clear price and

policy trends. In gas, the growth of expected capacity can be explained with the

expectation of more stringent carbon regulation while the drop in activity from 2006 to

2007 most likely is a reflection of the high gas price and the higher gas to coal price ratio.
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Figure 3.1: EU 15 Power Plants Planned and Under Construction

Source: Platts Database

It is exactly this ratio which seems the most intuitive explanation of the recent increase in

coal build, although the total capacity of coal (at 43 GW in 2007) is about half of the total

planned gas capacity (still at 87 GW, down from 97 GW in 2006). The sharp drop in coal

plant plans in 2004 is likely a reflection of the negative impacts that a carbon price would

have on the relative profitability of coal. The clear preference for gas and renewables

over coal is evident from this EU 15 chart; however it stands diametrically opposite to

power plant build in Germany which is shown in Figure 3.2. German planned generation

capacity investments are 70% coal and 20% gas for projects that are currently being built

or already have a license. For projects in the planning or approval stage, 63% are coal

while 33% are gas. This could reflect trends towards more gas, but still shows a clear

preference for coal that runs contrary to investment trends in the rest of Europe. To

explore possible reasons, it seems pertinent to look at the ownership structure of

generation assets in Germany and specifically the dominance of the four largest utilities.
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Figure 3.2: German Planned Generation Capacity by Fuel and Completion Stage

Source: BDEW

The Big 4 players account for two-thirds of the total power generation assets in Germany,

owning the majority of coal and nuclear assets. The companies are, however, minority

holders in gas and renewables.



Big 4 own most of Coal, Nuclear, minority in Gas and Renewables

o- -

E Total German Capacity 8 Ifg 4 Portfilo

so
92%

'40-

98%

42%20

10- 35%

7%

Coal Gas/OII Nuclear Renewable Others
Including Hydro

Figure 3.3: Ownership of assets by Fuel Type of Big 4: E.ON, EnBw, RWE,
Vattenfall

Source: Company Annual Reports, Federal Economics Ministry

The Big 4 own almost all lignite, hard coal and nuclear assets, they own only 42% of

renewable assets, a large part of which is hydro, and 35% of natural gas and oil assets.

Historically, the Big 4 have been best positioned to make high capacity, large capital

investments and smaller local utilities. They have focused on the lower upfront cash cost,

smaller capacity investments that serve distributed communities. Hence marginal

investments from these companies are likely to be geared towards large baseload

investments such as coal.

Generation Portfolio hardly changes during ETS-Phase I

Unsurprisingly due to the large life times of power investments, the overall generation

portfolio of the Big 4 did not change significantly before and during ETS-Phase I.

Marginal increases in gas capacity and marginal decreases in nuclear capacity have let

the total generation capacity of the Big 4 companies hover around 90 GW in the five

years between 2003 and 2007.
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Significant Investment Plans before Phase III

Investment in additional generation capacity is driven by several factors. Firstly, several

coal power plants are reaching their planned retirement age and are likely to be replaced.

Secondly, power demand has risen steadily over the past decade requiring new capacity.

As incremental demand is currently being met almost entirely from non-fossil sources,
there is the need for baseload capacity. Thirdly, the nuclear phase-out laws of Germany

will retire nuclear power completely by 2021, although future administrations could

decide to revoke this law as early as 2010, should neither the Green Party nor the Social

Democrats be part of the ruling coalition following German elections in September 2009.

While the current economic crisis will dampen demand, the long-term need for additional

capacity has resulted in the industry increasing investments and pledging significant new

investments in the next years.
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Figure 3.5: Investment in Generation Capacity by German Power Companies

Source: BDEW

Following the German reunification, power companies have invested an average of 1.7

bn Euros annually in new generation while spending an average of 3.6 bn Euros annually

on transmission and other capital investment projects. Following the projections of the

power company as reported by the industry association, BDEW, this trajectory is set to

increase through to 2010 when power companies expect to invest close to 7 bn Euros in

generation capacity alone. In real terms this amount of investment has not been seen

since the mid 1970s, and then again in the mid 1980s, when a significant part of the

current generation fleet was built.

A more detailed view on the technology preference of these investments is provided by

the BDEW, the German power and water utility industry association that publishes up-to-

date statistics of all announced power plant announcements and traces projects through

the regulatory pipeline. As of January 2009, 14.5 GW of new capacity were either under

construction or had received building licenses or building pre-clearances. This represents



16% of the current Big4 generation portfolio and 11% of the total German power

generation assets. An additional 9.7 GW of capacity is currently going through the

approval process; 10.2 GW of capacity have been announced to be built with operation to

begin before 2014, while 3.1 GW of capacity are planned to come to operation after

2014, 1.2 GW of projects are currently conducting citing studies.
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Figure 3.6: Planned German Capacity Build by Construction Stage

Source: BDEW

The 24.3 GW of currently planned capacity represents 27% of the current Big4 portfolio

and 18% of total German generation assets while the entire 38.8 GW of capacity that is

either being constructed or in the pipeline represents 43% of the Big 4 and 29% of the

entire German capacity. As shown in Figure 3.2 more than two thirds of this investment

will likely be done in coal.



Table 3.1: Planned Capacity Pipeline compared with Big 4 and Total German
Assets

Capacity As Percentage of As Percentage of
Capacity Current Big4 total German

(GW) Portfolio Generation Assets

Capacity being Built as of Jan 2009 14.5 16% 11%
Capacity in the Pipeline 24.3 27% 18%
Sum of Capacity being built and in pipeline 38.8 43% 29%

Sum Big 4 Capacity 2007 89.8
Sum Germany Capacity 2007 134.3

Source: BDEW, Company Annual Reports, German Federal Economics Ministry

These statistics underline the fact that many power generation companies are in the

process of deciding which technology to use for additional capacity. Even if the European

economy is heading towards a long recession and power demand is slowing over the

coming quarters, this investment decision will have to be revisited as soon as the

economy will recover and demand growth returns to historic trajectories of 1-2% per

annum. The following chapters will serve to outline the investment model to provide an

understanding for such preference, and they will analyze how carbon trading has both

price and allocation effects on the long-term investment decisions.



4. Power Plant Investment Model and Analysis of Key
Uncertainty Parameters

Long-term investment decisions by their very nature are characterized by significant

uncertainties. As presented in the previous chapter, more capacity needs to be built over

the medium-term, yet companies must decide in which generation technology and what

fuel to invest. While commodity markets express price expectations for the next several

years through forward curves, no long-term indicators exist over the entire expected life

of a power plant. A frequent tool used when trying to forecast the future is to develop

scenarios that will reflect optimistic, pessimistic, or the base case assumptions. However,

scenarios make it hard to judge the relative likelihood of these scenarios occurring, which

is why a probabilistic approach is chosen. Hence, rather than using static price

assumptions, a time series of historic data is fitted to a distribution. Using Monte-Carlo

methods, 10,000 samples are then drawn randomly from the distributions of the different

variables.

Over the next three chapters, the investment model and its main variables will be

presented and the model outcomes discussed in detail. The effects of the carbon price on

the power sector can be divided into two separate drivers, price and allocation. This

chapter will introduce the discounted cash flow model of a coal and gas investment while

the full discussion of price effects will be done in Chapter 5. The allocation effects will

be discussed in detail in Chapter 6.

4.1. Representing Uncertainties in Investment Model
The centerpiece of calculating the profitability of power generation investments is the use

of a discounted cash flow model both for a coal and gas power plant. The model

calculates the net present value (NPV) of the investment over the project lifetime, as well

as the internal rate of return (IRR) of the project cash flows. More formally, the NPV is

the sum of the future cash flows discounted using the weighted average cost of capital,

specified mathematically as:
T

NPV= R, (1)
=(1 + i



with ti = project construction start;

T = end of lifetime of investment which is 25 years for gas plant and 40 years for

coal investment;

i = interest rate which is set at the weighted average cost of capital (WACC)

The internal rate of return is defined formally as the interest rate, i, that would make the

NPV of the project zero and can be solved directly from the NPV formula or iteratively.

The investment model is implemented in Excel and sample results can be found in the

Annex II.

Technical assumptions for the Coal Investment Model

There are several technical assumptions required for the coal investment model. To the

extent possible, the assumptions are taken directly from the same sources that were also

used for the bottom-up E-simulate model, so as to provide the biggest sense of cohesion

between the short-term and the long-term models. The overall specifications assumed for

the coal power plant are a Rankine 500 MW coal plant, with a 40 year life span, running

at a full load efficiency of 40%, and a capacity factor of 0.85 to produce 3.7 TWh of

power per year. The full technical assumptions are provided in the table below:

Table 4.1: Technical Assumptions for Coal Plant

Technical Assumptions for Coal Plant:

Source E-simulate and model calculation

Technical assumptions for the Gas Investment Model

Like the coal model, the assumptions used in the gas investment model use the same

underlying sources that were also used for the bottom-up E-simulate model, so as to

provide the biggest sense of cohesion between the short-term and the long-term models.



The overall specifications assumed for the gas power plant are based on a 300 MW

Brayton-Rankine gas plant, with a 25 year life span and a full load efficiency of 52%.

The gas power plant can be dispatched in two different means, either at a high capacity

factor bidding for base load power prices or at lower capacity factors bidding for peak

load power prices. When dispatched as a peak power plant with a base case assumption

of a capacity factor of 0.4, it produces 1.1 TWh of power per year, while a base load

configuration would use a base case assumption of 0.85. The capacity factor of 0.4 has

been chosen, based on the marginal fuel analysis shown at the end of Chapter 2. Given

that the German power grid has coal as the marginal fuel for significant parts of the year,

these assumptions might be very optimistic as will be shown in the following two

chapters. The full technical assumptions for a peak load configuration are provided in the

table below:

Table 4.2: Technical Assumptions for Gas Plant

Technical Assumptions for Gas Plant:
PlaSource:nt Size MW 300
Cap. Cost: mn EUR/MW 0.4133
Heat Rate (Btu/Kwhe) 6562
O&M Cost Fixed (mn EUR/MW) 0.02475
O&M Cost Variable (EUR/MWh) 1.5
Carbon Emissions Factor (t Cboth2 / MWh) 0.350
CapTherecity Factor 0.40
Power Produced per year ( Forn KWh) 1051.2
Lifetime 25
Full Load Efficiency 52%

Source: E-simulate and model calculation

Financial assumptions used in both Investment Models

There are a number of standard finance assumptions that have been used both for the coal

and gas power plant investments. For example, the model assumes that the investor

already holds a diversified portfolio and the credit rating agency does not penalize the

investor's credit rating for the investment decision taken.

Table 4.3: Finance Assumptions used both in coal and gas plants



Source: E-simulate and model calculation

The tax rate of 28.3% and a depreciation rate of 6.3% were taken from an Ernst&Young

(2007) publication on representative power investments in Germany. It is assumed that

the power plant will be financed using 60% debt and 40% equity. Given the current credit

environments, it is questionable whether utilities could actually receive 60% debt

financing for new projects, a point which disadvantages coal investments versus gas due

to the higher capital intensity. While current investment projects will potentially be

delayed or require a higher equity portion (which erodes returns), we assume that the

current scarcity of large credit financing facilities is a temporary effect.

4.2. Uncertainty of Commodity Input Prices
As seen from the short-term effects discussed in Chapter 2, fuel prices take a central role

in determining the marginal fuel choice. The price distribution hence becomes one of the

central assumptions for any long-term investment model, having a large impact on the

projected economic returns of a power plant over the coming 25-40 years. The long-term

price forecasts through simulation are required, given that the forward curves, observed

in the commodity markets, seldom reach beyond 5 years into the future and forward-

selling of power tends to occur only one to two years into the future.

Distribution Fitting:

The method for the probabilistic analysis of the data requires the historical data to be

fitted to standard distributions, from which the Monte Carlo Simulation can then

randomly draw samples. The distribution fitting was performed using MATLAB as well

as the distribution fitting software Crystal Ball 11.0, a software produced by Oracle that

allows very easy and rapid fitting of large datasets and allows correlations between

datasets to be defined when used together with Monte Carlo methods. Both Crystal Ball

and MATLAB fit the data sample to a wide variety of possible distributions and provide

the statistical goodness of fits as output upon which the most adequate distribution is

chosen. After determining the optimal distribution using the Crystal Ball software, the



data was then put into MATLAB, which allows for further analysis and good graphical

representations of the fitted distributions.
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Figure 4.1: Screenshot from Distribution Fitting Software- Crystal Ball

Source: Crystal Ball 11.0 Software

Before discussing the commodity price distributions in detail, there is the question of

what time periods to consider for the analysis. The carbon price has only existed since

2005, hence leading to the use of the entire available data for Phase II delivery, since the

trial period is now over and prices are very unlikely to ever be this low again. The

upcoming chapter 5 on price effects will also show how in the first half of the decade

before the introduction of the EU-ETS, gas seemed the more profitable fuel thus

justifying new builds. Using 2001 to 2004 commodity prices, gas looks especially

appealing when adding a hypothetical carbon price and scenarios are shown for carbon

prices of 8 and 15 Euros per ton.

For the commodities coal and gas, longer ranging price distributions were used; this

assumes that gas and coal are large regional or global commodity markets that are not

impacted by the presence of the carbon price. While this is definitely the case for the

global coal markets, the same assumption is made for gas, since the development of

global LNG terminals is rapidly integrating global gas sub-markets into a single,



interconnected market similar to the oil market. The table below also shows alternative

commodity prices that have been used in other scenarios outside of the base case. Had

recent gas and coal prices been used, the returns would have been lower since the mean

values of the commodity costs would have been higher. Since a strong argument of this

thesis is that fuel prices are potentially dominating carbon price effects, the choice of a

viable fuel price series is crucial to the analysis. What is important to notice, however, is

that gas prices have seen relatively large swings in tandem with oil prices several times in

the last decades, while the recent coal price spike is a phenomenon that has not been seen

so far. Hence all long-term coal price projections are lower than those of gas, but in the

interest of taking a conservative approach in the analysis, relatively high coal prices have

been chosen nonetheless. Another crucial factor rests with long-term delivery contracts

that are often not fully disclosed for commercial reasons. The analysis is based on

forward prices seen on the market, assuming that companies could potentially sell into

these markets, if that was possible. Lower fuel prices would necessarily lead to higher

returns and potential distributions are shown in the table below.

Table 4.4: Overview of data inputs for price distributions

Data Series: Units Mean Distribution Type
Gas-2000-2008 EUR/TJ 4244.59 Log-normal
Gas-2005-2008 EUR/TJ 5860.60 Normal

Coal-2000-2008 EUR/t 57.56 Log-normal
Coal-2005-2008 EUR/t 74.38 Log-normal

Carbon: 2005-2008- Dec 09 contract EUR/t 20.40 Normal

Power-Base: 2000-2008 EUR/MWh 36.64 Beta
Power-Base: 2005-2008 EUR/MWh 51.51 Log-normal

Power-Peak: 2000-2008 EUR/MWh 70.97 Log-normal
Power-Peak: 2005-2008 EUR/MWh 71.76 Beta

Source: Model inputs. For a detailed listing of all distributions refer to Annex I.

Coal Price

Several coal prices were taken into consideration as the basis for the price distribution

used in the coal investment model. The German import prices for hard coal are reported

on a monthly basis, which is not sufficiently frequent to use in conjunction with daily



carbon and power prices. Another option would be to use the standard world market price

for coal, such as the API #2 ARA coal price series. The drawback of this price series is

that it does not consider transportation costs (although this could be adjusted for) and that

the time series available for use showed gaps for any data prior to 2005. Using a

European or global market price will ignore any benefits that backward integrated players

reap from access to cheap resources, yet assuming that utilities have the option of selling

the coal into forward markets removes any distorting effect on dispatch. The price series

used for the analysis was a daily coal index developed by Merrill Lynch that reflects an

average of OTC coal prices from independent brokers for the global coal price (CIF

ARA). The index is based on forward contracts that roll over quarterly. This index has

been scaled to the German monthly price data to reflect the prices including

transportation costs faced by power companies while capturing the daily volatility in

prices. As the prices used for the distribution are from January 1, 2001 until March 10,

2009. The fit of the price data is not very good in statistical terms, due to the high price

fluctuation and the coal price spike observed in 2008. Using MATLAB's distribution fit

tool, one of the best fits for the data sample is a lognormal function with p = 3.93889 and

a = 0.3404. The data histogram and fit is shown below:
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Figure 4.2: Histogram and fitted line for coal dataset

Source: MATLAB output



Gas Price

The German gas market lacks full transparency in that most power utilities have signed

long-term off-take agreements with gas providers under confidential terms for prices that

are often linked to oil price movements using a proprietary formula. The gas data that is

published by official sources is the monthly German border gas import price before taxes.

Given the large uncertainty of the real prices, the data series used is the Zeebrugge one

month forward gas price in the same time interval as the coal price (from 2001 onwards).

This price series is used assuming that power utilities continue to have the opportunity to

either use gas in their operations or to sell it on the short-term forward market if that is

more attractive. The distribution that best fits the historical data series is a Gamma

distribution with the factors alpha= 9.77765 and a beta= 457.276. The histogram and

fitted line from the Crystal Ball software is shown below:

Figure 4.3: Histogram and fitted line for gas dataset

Source: Crystal Ball 11. 0 Software Trial Version

Carbon Price

The carbon prices used for this analysis are completely based on Phase II pricing. The

Phase I prices have not been included since the first phase carbon credits were not

bankable across phases and are not relevant to investment decisions going forward. The

European Commission has reaffirmed numerous times its commitment to carbon trading

beyond 2012, regardless of whether a post-Kyoto agreement is struck. The complete



smooth continuation of carbon trading beyond 2012 is also reflected in the fact that the
price spreads between 2012 and 2013 futures contract have significantly narrowed. While
the Phase I carbon price showed large volatility, Phase II carbon has been trading in a
relatively stable range. Only very lately has the carbon price dropped below the EUR 15
mark, reflecting negative demand growth from the power sector, due to the wider global
economic recession.
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Figure 4.4: Phase II Carbon Price History

Source: European Climate Exchange (ECX)

The carbon price is normally distributed around a mean of 20.40 Euros with a standard

deviation of 4.09, as can be seen from the graph below. The data is based on the

December 2008 delivery contract quoted on the European Climate Exchange (ECX), one

of the main exchanges both for carbon and power in Europe. After the expiration of the

December 2008 contract, the price series is based on the December 2009 contract, the

next available contract. While this distribution is an accurate representation of the very



sparse history of price data, it is more difficult to say how reliable this price distribution

is for estimates going forward.
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Figure 4.5: Distribution Fit of Carbon Prices

Source: MATLAB software

Given the difficulty in predicting future carbon emissions prices, the sensitivity analysis

below compares the profitability of gas and coal investments given different carbon and

power price scenarios. The sensitivity analysis assumes the carbon and the power price

on the axis as the base starting price in the first year of generation, 2011, and then an

annual price increase of carbon and power in line with an expected inflation rate of 1.5%.

The base case scenario assumes 85 % free allocation until 2012 and then full auctioning

from 2013 onwards, in line with the current state of the European Commission Emissions

Trading Directive. The sensitivity analysis shows an investment in a gas asset that has a

positive net present value over the life of the project at an initial power price of 50

EUR/MWh at zero carbon price to a power price of 95 EUR/MWh at a carbon price of

150 EUR/t.



Gas: Sensitivity of NPV to Power and Carbon Price
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Figure 4.6: Sensitivity Analysis of Gas Investment NPV to Power and Carbon Price

Source: Model calculations

Similarly, the sensitivity of a coal power investment in net present value terms can also

be shown as a function of carbon and power prices. The sensitivity analysis merely

graphically portrays the sensitivity of coal investments to the carbon price. The coal

investment is highly unprofitable at mid to high carbon prices if the power price is low,

but conversely, the investment is very profitable in a high power price, low/mid carbon

price scenario. The line of break-even (the transition between cream and green colors)

runs from a zero carbon price at a power price of 33 Euros/MWh to a carbon price of 130

EUR/t at a power price of 150 EURIMWh.

All scenarios assume full auctioning beyond 2012 and the base case assumptions for all

the other technical and financial indicators. The scenario analysis also keeps the fuel

prices constant for every carbon price, thus treating carbon and power prices as fully

independent. There actually exists a relatively high correlation between power, carbon

and fuel prices, but this will be explored in further detail in following chapter on price

effects.



Coal: Sensitivity of NPV to Power and Carbon Price
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Figure 4.7: Sensitivity Analysis of Coal Investment NPV to Power and Carbon Price

Source: Model calculations

In summary, the difference between the coal and the gas investment profitability reflects

the different emission intensity characteristics of the fuels. Thus in a low carbon price

scenario, the net present value of the coal investment is positive at a lower power price.

In a high carbon price scenario the net present value of a gas investment turns positive at

a lower power price compared with the coal plant investment. These insights are intuitive

and reflect how these fundamental characteristics are reflected in the investment model.

Power Price

Power prices in Europe differ on a country-by-country basis and large-scale arbitrage

between the markets is not possible due to the physical boundaries of power transmission

over long distances and across borders. Power prices in Germany have historically been

in the mid to high range compared to bordering European states. Regions with lower



power prices such as France or the Scandinavian states served by Nordpool, profit from

the low cost power generation assets from nuclear and hydropower.

Since the introduction of emissions trading, power prices in Germany have increased

significantly as both coal prices rose and high oil prices resulted in gas prices (oil and gas

prices are linked, although both have significantly dropped lately). Furthermore this is

due to a significant part of the opportunity costs of carbon being passed on to rate payers,
leading to significant windfall profits for the power utilities3. Perhaps surprisingly, power

utilities were not forced to repay these profits through windfall taxes. Given the long-

term trajectory of further reductions on the carbon cap in Europe and the rapid movement

towards full auctioning, the actual or opportunity costs will remain an integral part of the

power price.

Given that power prices going forward are going to reflect carbon prices, there is little

value in using pre-2005 power prices as a basis for the price distributions. The available

and useful data sources for power prices are the daily power prices quoted by Bloomberg.

Several prices are updated on a daily basis, including the day ahead, month ahead, and

year ahead prices. The day ahead prices are very sensitive to sudden disruptions in power

generation leading to very high price volatility; yet, they account for only a small part of

the total power generation capacity. Instead, the forward month price was used as this

price series correlates most closely with the monthly and quarterly commodity prices

used is the analysis.

Having discussed the choices made for the main input variables to the investment model,
the following two chapters will apply this model to differentiate the price effects and the

allocation effects of carbon trading on investment decisions.

3 The World Wildlife Fund (WWF) on a basis of several assumptions calculates that windfall profits in
Germany alone in Phase II could reach 32.2 bn Euros. Sijm, Neuhoff and Chen (2006) estimate passed-
through rates between 60%-100% for the German and Dutch markets.



5. Price Effects and Reconciling Fuel Spreads with
Model Results

Having discussed the different inputs into the investment model, this chapter will discuss

the price effects of emissions trading. In the second half of this chapter empirical fuel

spread data will be introduced as a cross-reference for the model results presented in this

thesis. These methods will be used to strengthen the point that the base case assumptions

for gas, although initially compelling, might be too optimistic, which would explain the

preference of coal investments as seen in the German market.

5.1 Price Effects of Carbon
Power plants are designed to either meet base or peaking capacity with the large, capital

intensive investments suited for meeting baseload demand at high capacity factors. For

the two investment options presented in this thesis, coal is dispatched as baseload, while

the combined cycle gas power plant can be dispatched either for base- or for peakload;

peak power prices are significantly higher to give an incentive for higher variable cost

capacity to be deployed. There are several different power prices depending on the time

to delivery, but these fundamentally reflect the costs of meeting marginal demand. Given

that it becomes impossible to ramp up base capacity at minute's notice, the very short-

term power prices are very volatile and can be very high to incentivized spinning reserve

or flexible, but expensive, peaking plants to come to the market. Data quality varies

significantly between European countries; for example, the Spanish market operator

publishes the bids of the hourly electricity auctions, while in Germany only a daily value

of base and peak power is reported on Bloomberg. Given the lack of dynamic pricing

data, it is not possible to directly map the hourly dispatch data calculated from the

bottom-up model to prices seen on the exchange.

The investment model calculates the distribution of returns and net present values as

already elaborated in Chapter 4. Beginning with coal, the base case profitability is based

on a capacity factor of 85% and base power pricing, since coal power plants are never

dispatched for peaking capacity.
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Figure 5.1: NPV distribution of Coal investment under base power pricing

Source: Model calculations

Assuming full auctioning for a coal plant, the NPV of the investment using power prices

sampled from the base power price distribution has a mean of 141.81 million Euros with

a mean IRR of 13.6%. The analysis shows that only with a probability of about 36.7% the

investment results in negative returns; however it is important to note that very

conservative assumptions have been made in choosing to use coal and carbon price

samples and using only the total correlation of the entire sample set, rather than having

the Monte Carlo simulation pick discrete pairs of carbon and coal prices actually

observed historically. This results in price pairs of high carbon and low power prices

being drawn that have not been observed in reality, but that are theoretically possible.

Choosing only historically observed paired samples would reduce the tails of the

distribution, providing more mass around the mean and make this distribution more

leptokurtic. The following chapter will explore how different potential carbon allocation

scenarios can increase the value of an investment in coal by shielding the cost impacts

from carbon.



5.2. Gas Investment: Baseload versus Peak Dispatch
When looking at the combined cycle gas plant investments, there are two major

assumptions one can make about the dispatch pattern. Either the gas plant can serve

baseload demand, meaning that base power prices will be used and capacity factors that

are equally high as for the coal plant (85% in the base case) are used. Otherwise, the gas

plant can be dispatched to meet peak demand, which means that higher power prices are

earned, yet the capacity factor is much lower (assumed at 40% in the base case).

As can be seen in the chart below, the outcome of these two scenarios shows that it is

more profitable to have the plant meet peak demand, assuming that the capacity factor of

40% can be attained. The distributions and means of both gas plant setups are shown

below. Furthermore a hybrid model between the two scenarios is likely. For example,

given the seasonality of power demand with highest demand in the winter and lowest

demand in the summer, the operator could decide to dispatch the gas plant to meet

baseload demand during the winter months while dispatching the plant to meet peak

demand in the summer months. This flexibility also gives the operator the opportunity to

react flexibly to gas price volatilities.
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Figure 5.2: NPV distribution of Gas investment under baseload pricing and

CF=85% as well as peak power pricing and CF=40%

Source: Model calculations



5.3. Spread Analysis- Reconciling Market Fuel Spreads and
Model Results
One of the key analysis metrics used in the power industry are the spreads that a company

is earning for generating power. These spreads make several simplifying assumptions on

the production efficiencies of the power producing assets and take the heat rates of the

fuels into account. The simple spreads only account for marginal costs and show the

profit that is earned above the operating costs, i.e. the profits that will be retained to repay

the capital costs. Positive spreads indicate that it is more profitable to generate power

than to purchase the electricity from the market. For the analysis below API #2 coal

prices, Zeebrugge European gas prices and the closest end-of-year carbon prices have

been used.

There are several different spreads, each with a distinct name to specify its use:
a. (Dirty) Dark Spread- Refers to coal without adjustments for carbon

= Power Price - (Coal Price/ Fuel efficiency)
b. Clean Dark Spread- Coal spreads adjusting for carbon prices

= Dirty Dark Spread - (CO2 intensity of coal*C0 2 price)
c. (Dirty) Spark Spread- Refers to natural gas without carbon adjustment

= Power Price - (Gas Price/ Fuel efficiency)
d. Clean Spark Spread- Gas spreads adjusting for carbon prices

= Dirty Spark Spread - (CO 2 intensity of gas*CO 2 price)

These spreads are quoted on Bloomberg, however, there is only very limited historic data

available for these spreads. Hence, the spreads were recreated from first principles using

long-dated price series. While the absolute value of the spreads is interesting, the real

question for making a relative investment decision between coal and gas is the movement

of the difference of the dark and spark spreads.

The figure below gives a long-time series of these spreads from the end of 2000 until

February 2009. The figure shows the difference between the dark and spark clean spreads

(i.e. carbon-price adjusted). The clean spreads were calculated twice, once using the spot

price for carbon and once using the higher Phase II carbon prices. The pre-2005 carbon

price obviously is zero, however, later in this chapter two scenarios will show these fuel

spreads if a carbon price of 8 or 15 Euros per ton is assumed for the years 2000-2004.

The difference between the spot and Phase II fuel spread charts below emerges in late

2006 and 2007 when the Phase I carbon price tended to zero while the contract with



December 2008 delivery did not move significantly. Obviously, using the higher Phase II

price favors gas since it has a lower carbon intensity, although the overall difference is

not very large and is not explicitly shown in the figure below. Using this analysis it

becomes possible to count the number of days when the clean dark spread (coal-based) is

above the clean spark spread (gas-based) to see how many days coal dominates gas a

more profitable fuel.
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Figure 5.3: Clean Spreads for Coal and Gas from 2000-2009

Source: Bloomberg, ECX model calculations

Table 5.1: Spread Analysis

Clean Spreads
using Phase II Clean Spreads and Spot

Carbon Carbon

2005-2008 2005-2008 2000-2004

Days with Positive Spread 707 745 617

Total Days with Data 969 914 939

Fraction Coal Dominance 72.96% 81.51% 65.71%
Source: Model calculations



The outcome is striking. The large majority of days show a higher profitability of coal

plants versus gas plants. The data is presented as five day rolling averages to smooth the

data, in order to make it more easily legible on a graph with a long time series, although

the calculations have not been smoothed.

Another very interesting feature emerges when taking a closer look at the data. There are

clearly seasonal effects of commodity prices that can be seen in the data; the dark-spark

spread is lower during the summer months, coinciding with the seasonal dip in gas prices

often turning negative, which serves as an indicator to operate a gas plant. Moreover, the

absolute value of the spread difference indicates that coal plant investments have actually

become more profitable versus gas since the introduction of carbon emissions trading;

this is a slightly counter-intuitive result but with great explanatory power for the recent

announcements of new coal builds, as outlined in Chapter 3 of the thesis. While in the

time before carbon emissions trading, it was more profitable to operate coal power plants

versus gas plants on 65.7% of trading days. During the emissions trading scheme this

increased to 81.5% of trading days, showing a clear preference for coal over gas and

exemplifying the coal/gas fuel price ratio increasing.

5.4. Cost Pass-Through
An implicit assumption made in all the spread calculations so far is that the carbon price

is passed on in full to the power price and hence the consumer. Reinaud (2004) discusses

the distorting effects that partial cost pass-through effects could have on the EU-ETS

sectors including the power sector. Sijm, Neuhoff, Chen, 2006 find evidence of carbon

cost pass-through between 60%-80% in Phase I for power installations that received free

allocations. One of the central arguments for auctioning is that the pass-through of the

carbon price will be reflected in consumer choice reacting to these higher prices. The

sensitivity analysis below shows the impacts on the base case profitability of the power

and gas investments, assuming baseload dispatch for coal and peak dispatch for gas. This

is done by subtracting the C02 cost element from the power price, which is deducting the

carbon coal C02 costs from the base load price or deducting the gas C02 costs from the

peak power price. In the case of full (100%) pass through, the companies fully pass on



the carbon price through the power price charged to the consumer. In the scenario of

125% pass-through, the power prices are increased by 25% of the carbon price, if the

utilities were to theoretically charge the consumer beyond the actual carbon cost incurred,

which is a situation sometimes seen in monopolies. The table shows how large the impact

of the carbon price is on the profitability of coal investments relative to gas investments

and is a reflection how geared the coal investment is towards the carbon price.

Table 5.2: Cost Pass-Through effects on coal and gas plants

Coal NPV- Gas NPV- Coal- Gas-
Pass-Through Base Peak NPV/Equity NPV/Equity

75% -40.2 116.3 -0.2 2.3
1000/0 141.8 128.7 0.7 2.6
125% 259.2 139.3 1.3 2.8

Equity
Capacity Plant Life Invested (mn

Assumptions (MW) (years) EUR) Pricing CF
Coal 500 40 192.1 Base 0.85
Gas 300 25 49.596 Peak 0.4

Source: Model Calculations

Adjustments for Capital Cost:

The analysis so far has not taken into account the capital cost, looking only at the

marginal operating cost. In the investment model, the capital cost is reflected through the

constant annual loan repayment charge on the debt, which both pays debt interest and

principal. In the base case of the model, a debt level of 60% is assumed. The capital cost

for a gas plant are assumed at 0.41 million EUR/ MW of capacity while the costs for a

coal fired plant are more than twice that level at 0.96 million EUR/MW capacity. To

attain a cost per output, the annual debt service charge is divided by the amount of energy

generated. The energy output of the plant is highly dependent on the capacity factor and

increases linearly with a decrease in the capacity factor, since the capital charges need to

be recovered over fewer units of output. The table below shows the resulting capital cost

charges for a number of capacity factors, while the model calculations use 85% as a base

case scenario.



Table 5.3: Capital costs and capacity factors

Capital Cost Per Technology
Capacity Coal Gas

Factor (EUR/MWh) (EUR/MWh)
85% 2.03 1.01
80% 2.16 1.07
70% 2.47 1.22
60% 2.88 1.43
50% 3.46 1.71
40% 4.32 2.14

Source: Model calculations

The fuel spreads shown above in figure 5.3 are thus the main measure for the investment

profitability excluding capital cost. Hence, to adjust the fuel spreads for the capital cost

the difference in clean fuel spreads must be 1.02 EUR/MWh or higher for coal to be more

profitable than gas (assuming a capacity factor of 85%, where the 1.02 EUR/MWh is the

difference between the capital cost for coal of 2.03 EUR/MWh and gas of 1.01

EUR/MWh). Adjusting for capital costs still leaves coal the more profitable fuel in more

than 78% of days over the last four years, assuming spot carbon prices or almost 70% of

days when applying Phase II carbon prices.

Table 5.4: Capital adjusted spreads

Clean Spreads
using Phase II Clean Spreads and Spot

Carbon Carbon

2005-2008 2005-2008 2000-2004

Days with Positive Spread 707 745 617

Total Days with Data 969 914 939

Fraction Coal Dominance 72.96% 81.51% 65.71%

Fraction Coal Dominance-
Capital Cost Adjusted 69.45% 78.34% 58.25%

Source: Model calculations

Looking at these numbers it seems counter-intuitive why anyone would argue for the

construction of gas-fired power plants at any point back to the year 2000, when large



amounts of gas-fired capacity were built. However, adjusting the pre-2005 figures for the

carbon prices at levels that had been anticipated prior to the start of the EU-ETS, it

becomes apparent why a strong argument for gas existed. This is visualized in the graph

below that shows in blue the pre-Phase I 2000-2004 spreads with no carbon price; all data

is shown as a 50 day moving average for better legibility. The straight line is the trend

line and shows that on average it is more profitable to burn coal over the entire time

period. The magenta line assumes an 8 Euro per ton carbon price being added between

2000 and 2004. This shifts the trend line by about 4 Euros, showing a preference for gas

on average over the entire period. If the hypothetical carbon price is increased to 15

Euros per ton to the 2000-2004 fuel spreads (shown in green), an even clearer preference

for gas over the entire period emerges. Hence assuming a hypothetical carbon price for

the years 2000-2004 results in a vertical move of the spreads of about four Euros if a

carbon price of 8 Euros/ton is assumed and seven Euros for a carbon price of 15

Euros/ton compared to the baseline of no carbon price.
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Table 5.5: Clean Spreads using spot prices for carbon

Clean Spreads
using Phase II 2000-2004 with Hypothetical

Carbon Clean Spreads and Spot Carbon Carbon Prices
2005-2008 2005-2008 2000-2004 8 EUR 15 EUR

Days with Positive Spread 707 745 617 406 260
Total Days with Data 969 914 939 939 939

Fraction Coal Dominance 72.96% 81.51% 65.71% 43.24% 27.69%

Fraction Coal Dominance-
Capital Cost Adjusted 69.45% 78.34% 58.25% 36.53% 24.07%

Source: Model calculations

With a hypothetical carbon price of 8 Euros, the number of days prior to Phase I, when

coal was more profitable, is reduced to 43% or 37% when adjusting for capital cost,
assuming a capacity factor of 85%. Moreover, when adding a hypothetical carbon price,

the number of days when coal is the dominant fuel further falls to 28% or 24% when

adjusting for capital cost. This makes a very compelling argument for building gas plants,

even when assuming that gas plants will be dispatched only when fuel spreads are

favorable for gas.

Looking at these results and assuming a Phase II carbon price, the number of days when

coal is the more profitable fuel is reduced from 82% to 73%. However, given that

historically the pass-through rates of the carbon prices into the power price are very high,
the actual power price would likely be higher in an environment of elevated carbon

prices, and this would marginally benefit coal which has lower marginal costs. Such

results explain the preference for gas fired investments in the run-up to the EU-ETS,

while the Phase I numbers also explain the recent preference for coal-fired investments.

Overall, this analysis shows how large fluctuations in fuel prices dominate any moderate

changes in the carbon price.

Using these figures as more realistic capacity factors for the investment model, it

becomes clear why the preference for new investments is coal and not natural gas.

The table compares the initial base case assumptions from the analysis with the updated

capacity factors based on the spread analysis. The analysis shows the preference for a



coal in a baseload dispatch (IRR = 13.6%; NPV/equity = 0.74) over gas in a peak

dispatch, if the capacity factor is reduced to 0.25 (IRR = 11.1%; NPV/equity = 0.31), as

well as gas in a baseload dispatch, if the capacity factor is reduced to 0.8 (IRR = 13.3%;

NPV/equity = 0.54).

Table 5.6: Capacity Factor Sensitivity Analysis

Coal Gas- Base Gas- Peak
Capacity Factor 0.85 0.85 0.8 0.4 0.35 0.3 0.25
NPV 141.8 38.9 26.6 128.7 92.5 53.89 15.27
NPV/MW 0.28 0.13 0.09 0.43 0.31 0.18 0.05

NPV/Equity 0.74 0.78 0.54 2.59 1.87 1.09 0.31
IRR 13.6% 15.8% 13.3% 28.6% 23.4% 17.4% 11.1%

Capacity 500 300
Equity 192.1 49.596

Source: Model Calculations

The case for showing the strong effect of fundamental fuel prices is furthermore

exemplified when looking across the commodity price distributions and calculating the

carbon price required to equalize short run marginal costs. The figure shows the

components of the marginal price, namely fuel costs, variable O&M costs, as well as

carbon costs in dark gray. The resulting carbon price that would equalize the operating

costs is the solid line that is traced onto the secondary Y-axis on the right. The above

figure splits the price distributions for gas and coal into deciles on the X-axis in opposite

directions; the lowest 10% of gas prices are being shown at the left together with the

highest 10% of coal prices. This gives an overview of the most extreme values that the

carbon price can take, i.e. the lowest possible gas price paired with the highest possible

coal price moving to the highest possible gas price and the lowest possible coal price.

Historically, gas and coal prices have slightly correlated (R squared of 0.13), making the

extreme cases highly unlikely. The figure shows that a carbon price would need to rise

above 100 Euros/ton in order to give an economic incentive for fuel switching, if gas

prices are above their 7 0 th percentile and coal prices are in their lowest 30 th percentile.

The table shows, for example, that if gas prices being in their lowest 30th percentile and

coal prices in their 70th percentile, a carbon price of 28 Euros/ton would exactly equalize

the short-term variable costs of both plants and give rise to fuel switching on the margin.



The analysis furthermore shows that if gas prices are in their lowest 20th percentile, fuel

switching will always occur (if there is sufficient spare capacity in the system) as seen by

the negative resulting carbon prices.
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Figure 5.5: Commodity Price Distributions and related carbon prices

Source: Model Calculations

Thus the price effects show that fuel prices can dominate carbon price effects and,
furthermore, that only a combination of both effects provides the full explanation of
technology choice. In addition to the price effects of carbon there are also allocation
effects that will be discussed in the following chapter.



6. Allocation Effects

Having introduced the investment model and the price effects seen from carbon, this

chapter will provide a framework for quantifying the impact of allocation effects on coal

and gas investments. The investment model will be used to exemplify, how policy can

change the value of generation projects and can affect the choice between coal and gas

fired power plants. Furthermore, fuel spread analysis will be used to explain why coal

investments in Germany are clearly favorable under significant free allocations. Gas

investments are more profitable in a full auctioning scenario assuming high capacity

factors, which are currently not seen in the market, though. Hence, full auctioning

provides an incentive to lower the power sector's emissions intensity while free

allocations will clearly favor coal investments. All these effects can, however, be

dominated by fuel price effects as will be shown in this chapter. After Chapter 2 had

looked more closely on the short-term effects from fuel switching driven mainly by

marginal cost, this chapter relates to new generation assets, where both operating and

upfront capital costs have to be taken into account.

6.1. National Allocation Plans and Methods of Setting the Cap
There are several possibilities for disbursing carbon emissions permits within a cap and

trade system. The two most widely used mechanisms are free allocation (also known as

grandfathering) and auctioning of these rights. Several hybrid mechanisms exist, for

example, auctioning a proportion of the credits while grandfathering other portions of the

total cap. A third mechanism of allocation is to create a sector-specific or technology-

specific benchmark that allocates credits according to a specific carbon intensity (tons/

MWh generated); any credits required above this benchmark would need to be purchased

in the free market. This chapter will discuss the impacts of such provisions, while also

quantifying the impact of so-called new entrant and closure rules that were initially part

of drafts for the German National allocation plans but have now been removed for any

new investments in generation assets.



6.1.1 Grandfathering
Phase I of the EU-ETS (2005-2007) made almost exclusive use of grandfathering as an

allocation mechanism where carbon credits were allocated at zero cost based on historic

emissions. Boehringer (2005) provides a formal analysis of optimal allocation using

grandfathering. In Germany installations were grandfathered 97.09% of baseline

emissions, a total amount that turned out to be higher than actual emissions, hence

driving the carbon price to transaction cost levels in the Euro cent range towards the end

of Phase I in 2007. In the second phase of the EU-ETS, power installations were

allocated 85% of historic baseline emissions. The European Council decided in

December 2008 that the power sector will move to full auctioning in Phase III with

limited exceptions. Firstly, national allocation plans will be substituted with a central

allocation mechanism that greatly harmonizes overall allocation and rules out any special

provisions, such as the German ex-post adjustment that had been used in the first trading

phase. Secondly, grandfathering to the power sector will be replaced by full auctioning of

emissions permit "taking into account their ability to pass on the increased cost of C02"

(EC Commission, 2008). The European Commission treats the energy intensive

industries differently, since they stand in international competition in often highly

commoditized markets with very slim margins. Hence, the EU Commission foresees

grandfathering to being reduced to 30% by 2020 with a complete phase out aimed by

2027 (European Parliament, 2008).

6.1.2 Auctioning
In the first phase of the EU-ETS, auctioning was hardly used. The EU Commission

allowed national governments to auction up to 5% of the cap and 10% in the current

Phase II. In Phase I, only four member states auctioned emissions credits amounting to a

total of 0.13% of the total allocation. The use of auctioning in the second phase is higher,

but the total volume is far below the potential volume of 10% of EU-ETS wide

emissions. As stated in the amended EU Emissions Trading Directive (EC 2008A), full

auctioning in the power sector is encouraged from 2013. Transitional free allocation for

modernization of electricity generation can be granted to countries with weak integration

into the network interconnected system, where in 2006, 30% of electricity was produced



from a single fossil fuel or where the 2006 gross domestic product per capita at market

prices did not exceed 50% of the average gross domestic product per capita of the EU

(ibid).

Auction theory constitutes a large field in applied economics and a thorough treatment of

the topic would go beyond the scope of this thesis. For an in-depth discussion of

auctioning experiences from different sectors, Klemperer (2002) or Jensen (2004) can be

referred to. The seminal report by Matthes and Neuhoff (2007) expands on the different

auction design aspects,too, and can also be applied specifically to the EU-ETS with its

concrete recommendations. A short overview of their ten main design parameters and

recommendations is provided in this table below:

Table 6.1: Design Variables and recommendations for auctions

Design Variable Matthes and Neuhoff Recommendation
1. Participants All entities with registry account; have financial players to

provide liquidity
2. Number of Rounds Single round simple; no need for revealed preference in multi-

round auction, secondary market prices indicate demand
3. Clearing Price Simple uniform price auction for simplicity and participation
Calculation of unsophisticated bidders
4. Auction Frequency At least monthly, best weekly
5. Allowance Transparent and consistent application of procedure and
Distribution across taking into account hedging demand. Explicit statement if
auctions low price is politically unwanted
6. Reserve Price Using reserve price close to previous trading day increases

transparency and protects integrity from unexpected
outcomes due to technical failures

7. Margin Payments Credit posting of e.g. 10% of bid value to reduce
counterparty risk and ensure seriousness of bids

8. Auction Host Find institution already operating in similar business
9. Bid Restriction No restriction on bids, but limit bids to certain share number

of allowances
10. Monitoring and Market monitoring similar to other commodity markets with
Transparency regular publication of aggregate data.

Source: Matthes and Neuhoff (2007)



Reflecting auctioning the investment decision model

Auctioning impacts the absolute and relative profitability of power generation

investments by adding a cash cost of carbon emissions credits to the operating costs of

the power plants. Given that coal plants have higher carbon intensities than gas plants, the

impact of auctioning on coal investments is higher than those for gas. Several scenarios

quantify the differences between auctioning and grandfathering; these are shown later in

this chapter.

Assuming the Phase III provisions remain in place as they currently stand, the cash cost

of auctioning to the power plant operator will be significant. The underlying assumption

is that auction will not impact the carbon price and hence the original price distribution is

used in the model. Furthermore, this approach assumes that the price that power

companies have to pay in the auctions will be the average price of the rights in the

secondary market, i.e. that prices will not be artificially high or low from arbitrage

between the auctioning and secondary markets.

6.1.3 Benchmark
An alternative allocation mechanism to grandfathering and auctioning is to allocate

emission certificates base on benchmarks. Benchmarks define a set emissions intensity

and define a cap by multiplying the benchmark intensity with a variable that describes the

output or size of the industrial operation. The actual benchmark can be set in accordance

with various measures and is often done with the "best available technology" (BAT) to

give companies an incentive to invest in modern and low-emission intensity capital

equipment. In practice, several characteristics can be used as the basis for a benchmark

allocation, as described by Matthes and Neuhoff (2007) including:

1. Historic production using a fixed baseline
2. Historic production using a moving baseline
3. Current production
4. Projected production using some model-based approach
5. Installed capacity

One of the main areas where benchmarks have been used is in the calculation of new

entrant allocations. The use of benchmarks can become very difficult to administer in an

equitable fashion, especially in highly heterogeneous industries; in the power sector the

most widely used benchmarks are either based on installed capacity or power output.



6.2 Impact of New Entrant Rules
One special characteristic of the EU ETS is the set of rules surrounding the treatment of

new entrants. The 2003 emissions trading directive of the European Commission

(2003/87/EC), for instance, allows for the allocation of free allowances to incumbents

that build new capacity. Article 3h of the directive defines a new entrant as an

installation, "which has obtained a greenhouse gas emissions permit or an update of its

greenhouse gas emissions permit because of a change in the nature or functioning or an

extension of the installations, subsequent to the notification to the Commission of the

national allocation plan". Furthermore, the national allocation plans need to disclose the

amount of new entrants that are granted to generating companies. In the first phase of the

EU-ETS, free allocations to new entrants were granted in all participants of the EU-ETS,

expect for Sweden where new entrant allocations were only granted to very efficient CHP

plants and industry. The reserve size as a fraction of the total cap varied substantially

between countries from 0.4% in Poland to 16.7% in Italy. Most countries allocated

emissions based on best available technology standards (BAT). However, there are

several different ways of allocating new entrant allocations, which are classified by

Ahman and Holmgren 2006:

1. Input- or Output Based- Using a pre-determined benchmark of carbon credits
is multiplied either by the input factor, such as capacity, or the output factor, such
as emissions or power generated. Output based benchmarks are usually preferred
since they incentivizes efficient energy generation.

2. Fuel-neutral or Fuel-specific- Using different benchmarks by fuel gives an
incentive to use low-carbon fuels, however, they tend to not encourage
investments in low-carbon fuels.

3. Technology-neutral or Technology-specific- Technology-specific benchmarks
are used mostly to promote specific technologies or to accommodate for the
different conditions in which different technologies are used. Technology-specific
benchmarks have little justification for incentivizing least-cost emissions
reductions.

4. Product-specific or Product-neutral- In this case the product applies to
electricity or heat, and separating these two enables for a harmonization of
electricity incentives (which is easily transportable and tradable across borders)
versus heat which by its fundamental properties is a local product.



Table 6.2: New Entrants in the First Phase of the EU-ETS

Reserve size as Allowance Allocation
Country NER percentage of withdrawn upon metric for new

total cap closure entrants
Austria Yes 1.8 Yes BAT
Belgium Yes 4.0 Yes BAT
Cyprus Yes 0.7 no information BAT
Czech

c Yes Yes BATRepublic 3.1
Denmark Yes 3.0 Yes BAT
Estonia Yes 3.4 no information BAT
Finland Yes 1.8 Yes BAT
France Yes 1.7 Yes Average
Germany Yes 0.6 Yes BAT
Greece Yes 4.3 Yes As needed
Hungary Yes 1.9 Yes BAT
Ireland Yes 1.5 Yes BAT
Italy Yes 16.7 Yes BAT
Latvia Yes 11.5 no information As needed
Lithuania Yes 5.0 no information Benchmark
Luxemburg Yes 12.0 Yes BAT
Malta Yes 26.3 no information BAT
Netherlands Yes 2.6 No BAT
Poland Yes 0.4 no information BAT
Portugal Yes 8.0 Yes BAT
Slovakia Yes 2.3 no information BAT
Slovenia Yes 0.8 Yes BAT
Spain Yes 3.6 Yes BAT
Sweden CHP/industry only 3.2 No BAT
United

id Yes Yes BAT
Kingdom 6.3

Source: DEHSt, 2005

The somewhat technical issue of allocation evolved into a much larger debate of market

power, competitiveness and innovation.

Fundamental economic principles suggest that new entrants should not be allocated with

allowances free of charge, since the investment decision should reflect the cost of the

carbon emissions. Free allocations are thus only provided to compensate current

installations for the investment sunk costs made before the ETS came into action and that

are now less profitable in a world that prices carbon (see Harrison and Radov, 2002). EU

member states applied new entrant allocations stating it would be useful for

competitiveness. For example, the large power incumbents could effectively subsidize

their new entrant capacity by reducing the output from the existing fleet or even closing

marginal plants and using the allocation for that capacity for the new entrants (Neuhoff et



al, 2006). Hence, the new entrant rule was seen a means to reduce any potential barriers

to entry that the EU-ETS could implicitly create, especially towards small, independent

power companies entering into the oligopolistic market structure (Reinaud 2005). The

market power argument was first made by Hinchy (1998) in looking at the distortions that

allocation effects can have on the market; incumbents could shield their dominant

position by increasing transaction cost, squeezing new entrants out of the market using

predatory pricing and using the existing generation assets with grandfathered carbon

credits to cross-subsidize new entrant capacity. Betz (2003) challenges the assumed

magnitude of the transaction cost increases, but he in principle agrees with the arguments

made.

Lambie (2002) also draws attention to the financing consequences of large incumbents

versus small new entrants. Capital markets - especially in the current illiquid and

constrained conditions - tend to favor incumbent players with stable cash flows, higher

debt capacities and higher debt/equity ratios. These have access to cheaper cost of capital,

compared to the smaller entrants that will have to rely more heavily on equity financing

and thus face a higher project hurdle rate. Gagelmann (2006) quotes Allen Consulting in

reporting that opportunity costs considerations can become irrelevant, if large incumbents

are in public ownership and political interests dominate investment decisions.

Furthermore, investment decisions could be driven by average costs rather than marginal

costs in an environment of price controls, which is highly prevalent, for example, in the

United States regulated utility areas, but is less applicable to European power markets

that have undergone significant deregulation recently.

Furthermore, new entrant allocations can have a real option effect on first investment

decisions. Following the framework of real options analysis presented by Trigeorgis

(1995) and de Neufville (2003), an incumbent power producer would give up the value of

future allocations by closing a plant. Especially in an environment of high carbon price

volatility, the option value of waiting increases, which leads to slower asset turnaround

and - assuming technological innovation from new investments- slower technical

progress to a lower emissions trajectory generation fleet.



Incentives and innovation effects

While there are distinct economic effects from differing allocation mechanisms, part of

the literature has also focused on the consequences of new entrant allocations on

incentives and innovations. Ashford (2002) focuses on new entrants as drivers of new

innovations and more generally on industries with rapid market entry and higher

competition that foster an environment where differentiation through innovation is

incentivized. Contrary to the inertial effects of new entrant allocations, these credits can

also raise the incentives for market entry which leads to increased production capacity,

although as Ellerman (2006) clarifies this investment subsidy and its effects change

dynamically with the level of the allowance price and are not a fixed amount.

Empirical evidence from other environmental markets

The debate over the efficiency and effectiveness of new entrant allocations has also

occurred in previous environmental markets. The United States, which was one of the

driving forces in the establishment of environmental markets, has several examples.

There the allocations have tended to favor a fixed allocation, often with a large front-

loading of allocations into emissions banks. A single allocation without new entrant

allocations is economically efficient as long as no substantial leakage effects, capital

constraints, or dominant market positions exist; all these assumptions cannot be found to

hold entirely in the EU-ETS. Harrison and Radov (2002) give a concise overview of

several key US emissions trading schemes, highlighting key system design variables such

as allocation method, metrics, and allocation length, an excerpt of which is reproduced

below:

Table 6.3: Allocation and Metrics in US Emissions Markets
Program Allocation Method Metrics

Auction Grand- Update Input- Production. Emissions- Allocation Recipients
father based based based Year

X X X 3-year Existing emitters. Set-aside for
US SO2 average efficiency and renewables

California RECLAIM Max out of Existing emitters. Additional
(SOx, NOx) 4 years allocation for early action

US OTC NOx X X 1 year States covered under the OTC

US ODS Phase-out X X X 1 year Existing emitters

Source.: Harrison, Radov, 2002



Closure Provisions

Several countries, including Germany, made use of a closure provision which states that

power plants that were operated at levels <60% had to be closed, and the allocation for

these assets would have to be surrendered to the national authorities. This, however,

creates perverse incentives to continue the operation of inefficient and thus very carbon

intensive power plants, as discussed succinctly in Ellerman (2006). Matthes and Neuhoff

(2007) argue that the costs of closure of inefficient plants leads firms to continue running

their existing portfolio. This could be avoided by transfer rules that were also

implemented by member states and the European Commission. In Germany, for example,

operators that closed old installations may have "old" allowance transferred to other

installations that are still running (ZuG 2007). Schleich and Cremer (2007) argue that the

degree of the disincentive to invest created by closure rules depends on the amount of

allowances that the company forgoes due to closure. They find that closure rules

combined with grandfathering provides a large disincentive for investment in more

efficient technologies, while closure rules combined with BAT-based allocation would

incentivize closure of high carbon intensity assets. Furthermore, Cames (2007) discusses

the negative impact on innovation from the continued use of older assets, resulting in a

higher plant age and lower efficiency.



6.3 New Entrants in Germany: Quantifying Profitability Impacts
of Policy Change
The effects of new entrants and other design factors introduced within the NAP I have

been analyzed comprehensively by authors such as Ellerman (2006), Matthes et al.

(2005) and Ecofys (2004). The policy surrounding new entrants has undergone several

significant changes all of which are accompanied by impacts on the profitability of

current and future investments. Using the investment model, this part of the thesis will

aim to quantify the profitability impacts of the policy changes. Ahman and Holmgren

(2006) have used quantitative analysis of the value of new entrant allocation relative to

capital and operating costs of coal and gas plants as an argument against new entrant

allocation. They show that the significant value bestowed in new entrant allocations can

significantly distort competition. Rather than draw conclusions on the competitive

effects, this analysis aims to show, how a change in new entrant allocation policy alters

the relative economics of new power plant investments. These results will be assessed as

to how far they contradict or help explain the investment behavior observed in the

European Union and especially in Germany.

New entrant allocations have undergone several policy changes within the German

NAPs. The first phase of the ETS allowed for 100% free allocation of new entrants. The

condition attached to this free allocation was that the new builds had to fulfill a minimum

technology standard (best available technology or BAT). Specifically, this meant that a

new build that began operations after January 1, 2005 would receive up to 0.750 EUA per

kWh and at least 0.365 EUA per kWh for gas powered stations. In the first emissions

trading phase, there was the so-called "ex-post" adjustment of emissions allocations,

which was implemented to prevent power stations from reducing output of power stations

while still receiving the free allocation. Under the ex-post adjustment the allocations for

any power plants would be taken away if the power plants would have been run less than

60% of the average run rate during the basis period. This clause was highly contentious

within the EU Commission and was taken out for the second phase of emissions trading.

The real value from the new entrant allocation, however, came from the provision

guaranteeing 14 years of full, free allocation.



Changes between Phase I and Phase II included the abolishment of the German 14 year

allocation rule and the reduction of power sector free allocation from 97.09% to 85% of

basis period emissions. The new entrant reserve was significantly increased from 3

million tons annually in Phase I to 17 million tons in Phase II.4

Table 6.4: Changes of Allocation mechanisms across phases

Time Phase I (2005-07) Phase II (2008-12) Phase III (2012-20)
Legislative NAP I NAP II Directive
Basis: 2003/87/EC

amendment of Jan.
2008, Council
Decision Dec. 08

Power 97.09% of basis 85% of basis period Full auction for
Sector Cap: period emissions emissions Germany
New 100% free 100% free "no free allocation
Entrants: allocation for BAT allocation for BAT should be made in

plants; ex-post plants, if plants run respect of the
adjustment above 60% production of

electricity by new
entrants"

New 14 years full Abolished Abolished
Entrant allocation, no
Guarantee: digression
New 3 mn tons annually 17 mn tons annually None
Entrant
Reserve:

Source: BMU 2007, EU Commission 2008

The December 2008 European Council Decision clarified the Phase III outlook. Free

allocation to the power sector is abolished with limited exceptions, mostly for recent EU

accession states. The EU Commission justifies the move towards auctioning with

concerns over distortions of competition in the European power markets. At the same

time the Commission grants Eastern European power industries and industrials

continuing free allocations on the basis of relative wealth and global competitiveness of

the markets the companies operate in.

4 The 17mn tons annual Phase II new entrant reserve includes 5 mn tons per year to replenish the depleted
reserves from Phase I.



This policy change has large impacts on the profitability of power investments in that a

large subsidy to operating costs has been removed. The supporting documentation of the

Emissions Trading Directive is relatively clear on the intention to abolish new entrant

allocations and move towards a market of full auctioning with no free allocation (EU

Commission 2008 B). Using the power investment model, three distinct scenarios are

modeled, all assuming baseload power pricing. All scenarios assume new build and take

into account the investment effects, rather than considering only marginal costs of

existing plants.

Scenario 1: Business as Usual from NAP I with NER

The BAT limits set for power plants are upheld and 14 year free allocations are granted

from the first year of operation onwards. Rather than showing this as a likely scenario, it

is used to show the conditions faced by German utilities towards the end of Phase I.

Scenario 2: Business as usual from NAP II is phased out linearly over Phase III

This is an intermediate scenario where the full allocation is held until 2012 and then

phased out over the 8 years of Phase III, when the percentage of total emissions that

needs to be purchased increases linearly per year. This scenario is more stringent than

free allocation, but less stringent than full auctioning.

Scenario 3: New entrant provision abolished; full auctioning from 2013 onwards

This scenario is in line with the current EU Council decision on Phase III emissions

trading. Of the three scenarios, it is the most stringent and results in the lowest mean net

present value of the investments.

Hence, this analysis can quantify the impact of different allocation mechanisms on power

plant profitability. The IRR figures shown below pertain to the returns earned on the

project cash flows and assume that cash flows can be reinvested at the exact same rates of

return over the entire lifetime of the investment; hence, the IRR figure is likely to be

higher than the actual returns observed in reality over the entire project life cycle. The

raw net present values are not comparable, since they are based on plants of different

sizes (capacities), life times and capital costs. Hence they are normalized by the net



present value per million EUR of equity investment to better reflect the value to the

equity investor.

Table 6.5: Summary of Allocation Effects

Scenario: Full Auctioning Free allocation New Entrant
(Scenario 3) phase-out Allocation

(Scenario 2) (Scenario 1)
Coal NPV (mn EUR) 141.81 249.54 578.05
Coal NPV/MW 0.28 0.50 1.16
(mn EUR/MW capacity)
Coal NPV/Equity investment 0.74 1.30 3.01
(mn EUR/ mn EUR)
Coal IRR; CF=0.85 13.60% 20.50% 32.20%

Gas Base NPV (mn EUR) 38.99 69.19 132.36
Gas Base NPV/MW 0.13 0.23 0.44
(mn EUR/MW capacity)
Gas_Base NPV/Equity 0.79 1.40 2.67
investment
Gas Base IRR; CF=0.85 15.80% 22.90% 31.50%

Gas Peak NPV (mn EUR) 128.67 146.16 173.16
Gas Peak NPV/MW 0.43 0.49 0.58
(mn EUR/MW capacity)
Gas_Peak NPV/ Equity 2.59 2.95 3.49
investment
Gas Peak IRR; CF=0.4 28.60% 31.95% 34.60%

Source: Model calculations

Allocation: Financial versus Policy Effects

The fact that allocation affects the profitability of investments is a trivial insight; the

cross-over point, however, from preferring one technology is of policy relevance when

trying to design emissions trading schemes to encourage or discourage certain

technologies.

This analysis shows coal is put at a relative advantage by generous allocation

mechanisms. While the internal rate of return is similar to gas, the investment in coal is

more profitable on an NPV/equity metric. This changes in the full auctioning case where

the baseload gas is the more profitable investment. The gas peaking case is clearly

superior under the assumption that a capacity factor of 0.4 can be attained, but is



dominated by coal if a capacity factor below 0.3 is assumed; the sensitivities were shown

in the previous chapter. Such analysis exemplifies, how free allocations give a relative

advantage to coal and any investor expecting marginal free allocations or facing

uncertainty over the frequency of gas dispatch will choose to invest in coal. The

allocation effects benefit gas investments only when full auctioning occurs and high

capacity factors can be attained. The three scenarios are all presented in the following

graph to clarify the impact of the allocation mechanism on the overall profitability of a

coal investment. In the most generous case with 14 years of free allocations for new

entrants (Scenario 1), the NPV of the coal investment has a mean value of 578 million

Euros. The scenario two the mean is shifted to 249.5 million Euros while in the most

stringent Scenario 3 the mean NPV is shifted down to 141.8 million Euros.

Coal NPV Distributions - Allocation Scenarios Impact Profitability

Mean Full Auction Mean Transition Mean Free Alocation
NPV--141.81; IRR13.6% NPV249.5; IRR=20.5% NPV=578.1; IRR=32.2%
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Figure 6.1: Profitability impact of allocation scenarios for coal

Source: Model calculation

Similar mean shifting effects are observed in the case of the gas investment. The most

generous allocation would result in a mean NPV of 132.4 million Euros, the second



scenario results in a mean NPV of 69.2 million Euros while the most stringent third

scenario results in a mean NPV of 39.0 million Euros. Given that gas operated utilities

tend to have long-dated gas delivery contracts with non-public pricing clauses, it is very

probable that the gas prices assumed here are overstated and that actual returns are much

higher.

Gas NPV Distributions -Allocation Scenarios Impact Profitability

Mean Full Auctioning Mean Transilon Mean Free Alocation
NPV=39.69= IRR2.9% NPV1=69.2IRR22.9% NPVI32A IRR31.5%
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Figure 6.2: Profitability impact of allocation scenarios for gas

Source: Model calculation

The results from this chapter exemplify the large influence that political decisions related

to carbon emissions trading have on the power market. Although carbon policy has the

most immediate effect, there are, however, other policy areas that also impact the power

sector and carbon policy, as will be discussed in the following chapter.
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7. Impacts of Related Policy Fields

There are two main related policy areas that impact the power sector, namely the Clean

Development Mechanism (CDM) or Joint Implementation (JI) and the Renewable Energy

policy. Ironically, both have direct or indirect effects that benefit the long-term outlook

for coal investments. The CDM can play an important long-term role in mitigating the

necessity for domestic carbon abatement by creating additional, low-cost carbon

reductions in the developing world. If a significantly large amount of relatively cheap

abatement from CERs/ERUs (carbon credits generated through the CDM and JI

respectively) is allowed into the EU-ETS, the effect would be to reduce carbon prices and

favor coal investments, all other things being equal. This dynamic merits a closer look at

the current pipeline of CDM projects (the JI projects have been relatively small in

comparison), as well as an exploration of the CDM as a linking mechanism with other

emerging emissions trading systems such as the American Federal emissions trading

system, should it be established. The effects of renewable energy policy are discussed,

since the abatement has been significant compared with abatement from Phase I fuel

switching (as shown in Chapter 2). Furthermore, this analysis will reconcile the top-down

and bottom up abatement estimates shown in Chapter 2. The impact of renewables favors

coal investments, since the feed-in tariffs for renewables ensures the full dispatch of

renewables, displacing higher variable cost gas generation capacity, as will later be

shown in this chapter.

7.1. The Role of CDM/JI Credits and Linking Emissions Trading
Schemes
Initial observations on the global size of the carbon market and the separate parallel

market structures have already been made in Chapter 1 of the thesis. This chapter will

discuss the CDM and JI credits that are currently being used for compliance within the

EU-ETS as well as national compliance of Annex I nations under the Kyoto Protocol.

International negotiations are currently focused on the next round of global climate

negotiations to be held in Copenhagen in December of this year. A post-2012

continuation of the Kyoto Protocol moves to the center of international climate



negotiations, and the role of the Clean Development Mechanism will play a key role in

the outcome of these negotiations. Hence this chapter will discuss the scheme in more

detail while providing an outlook to the opportunities and constraints that this market

faces from national and regional policy.

The international reductions in carbon emissions that have been negotiated as part of the

Kyoto Protocol can either be reached domestically, or they can be purchased using

international offsets through the Clean Development Mechanism (CDM) and Joint

Implementation (JI). The chief difference between these two schemes rests mainly in the

location that these offsets are being generated in. Joint Implementation credits, called

Emission Reduction Units (ERU), are generated in emissions abating projects in Annex I

countries. To date, this has mainly taken place in former Soviet Union countries, such as

Russia and the Ukraine, although first projects have also been developed in Western

Europe. The Clean Development Mechanism (CDM) generates Certified Emission

Reductions (CER) credits in non-Annex I countries which are essentially developing and

emerging markets in South America, Asia, and Africa.

The Conceptual Framework of CDM/JI credits

The conceptual background of a CDM or JI project is outlined in figure 7.1. It assumes

that a project in a developing nation with no emissions cap has a certain baseline

emissions level. Through implementing a specific technology, greenhouse gas emissions

reductions are achieved. Rigorous methodology verification ensures that these emissions

reductions are actually "additional", i.e. would not have been attained in a business as

usual scenario. The emissions reductions projects are submitted to the UNFCCC

Executive Board (EB), which then issues carbon credits upon the verification of the

project's credentials. These credits can then be sold to governments to help meet

emissions reductions in developed countries, or they can be sold directly to participants

of cap-and-trade carbon markets such as the EU-ETS.



DevelopinglEmerging Market Carbon credits

$$$ l

Global benefits of Carbon Tradina:

- Developing and emerging
markets benefit from technology

transfer and financial inflows.

- Global carbon emissions
reduced cheaply.

Country with Emissions Cap

Project in developing/emerging market
invests in emission reducing technology;
gains carbon credits

industrial country meets emissions
cap mandated in Kyoto Protocol:
- carbon credit purchase
- domestic action

Figure 7.1: Conceptual background of a CDM project

Source: World Bank, 2009

The CDM and JI projects have to undergo significant project documentation and outside

verification, before the Executive Board of the UNFCCC reviews the projects on an

individual basis. It then decides on whether the projects fulfill all the criteria required to

qualify for an emissions offsetting project and hence will be issued carbon credits.

Elaborating on the procedural steps required would go beyond the scope of this thesis

chapter; however, the main steps are shown in a simplified number of steps that also

highlight the different types of risks faced by projects before coming to fruition:

Project Design Document (PDD)prove mthod & additionality

L~ of Approval fros Desinuated N mtAuthofy

Moniering-Implementation of POD. Submit Monitoring Report

Issuance of Carbon Emission Rights --

;;

Risks:
*Methodology risk
*UNFCCC rejection risk
*Legal risk: Enforcing contracts

*Legislative risk of host country

Risks:
*Technical risk of project

Risks:
*Counterparty credit risk
*Transfer and settlement risk

Overall Risk
HIGH

Overall Risk
MEDIUM

Over.il Risk
LOW

Figure 7.2: Project Risk Matrix

Source: UNFCCC, 2008



Thus, getting a CDM project from the initial project design document (PDD) to the point

where the credits are issued by the UNFCC is a long and risky process. The earlier on in

the project, the more risk components increase the uncertainty of project delivery.

Projects that are not yet formally registered with the Executive Board of the UNFCCC

carry very high risks. Projects that passed this stage and are in the monitoring,

verification, and certification stages carry medium-sized risks (determined by the

operational risk of the project delivering the projected amount of credits). Once credits

have been issued to a project, the overall risk is low, since the credit can be readily sold

into the secondary market. As a carbon offset project moves along the value chain it

requires several technical, financing, and management inputs which all reduce risks and

add value. This can be seen in the increasing value of the project as it comes closer to

implementation. The pricing of carbon projects is merely indicative and will be

negotiated on a project-by-project basis; furthermore, prices are reported based on

publications and conversations with market participants in 2008 when overall carbon

prices were trading around 20 Euros per ton. Project pricing has contracted as exchange

prices have reduced although anecdotal evidence seems to suggest that this applies more

to later stage projects that tend to trade in tighter spreads with EUAs; the early projects

with high technical risks are, however, priced closer to actual project costs and will thus

not be able to sell for lower levels in non-distressed situations.

Risks: Methodology, legal, host country, counterparty Risks Project Technical risk Market risk

Pricing: USD 4-6 > USD 10 > USD 20

Market Participants along value chain:
Brokers/Traders

Project Developers and Investment Banks Final Credit Users-

Specialized Consultants EU Industry (EU-
ETS), global

Verifiers companies

Credit Aggregators (Voluntary market)

Figure 7.3: Project Value Chain, Market Participants and Pricing

Source: UNFCCC, World Bank 2009



Sizing the Carbon Project Market:

The global carbon project market has grown significantly since the first projects started to

be developed, following the negotiation of the Kyoto Protocol. Given that the JI market is

only beginning to deliver carbon credits and the CDM market is orders of magnitude

larger, the analysis of the market will focus on the latter. As of February 2009, the

publicly available pipeline of the global CDM projects has reached almost 4500 sites

globally that are expected to deliver almost 3 billion credits by 2012. Most market

analysts apply a significant discount to account for the risks associated with the projects;

however, if just half of the proposed projects get delivered the volume will still be

significant.

Projects by Technology

One of the key objectives of the CDM is to promote technology exchange. Every new

method of generating carbon credits needs to be approved by the UNFCCC before it can

be used to generate credits.
4474 Projects In Global CDn Pipeline

(as of Feb. 2009)
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Figure 7.4: Global CDM Pipeline by Technology (as of February 2009).

Source: UN Riso



Already approved methods can be classified into broader technology types. Most projects

use hydro technologies (1174), biomass energy (676), wind (647), energy efficiency

based on own generation (408) and landfill gas (331). By far the largest projects are those

intended to reduce the most toxic gases. The sulfur hexafluoride projects, HFC and

industrially-sized N20 projects account for 26 percent of the 2.9 bn tons of 'avoided'

carbon even though they only account for 2 percent of the total projects in the pipeline.

2911 mn Credits In Global CDM Pipeline by 2012
as of February 2009
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Figure 7.5: Global CDM Pipeline by Volume (as of February 09)

Source: UN Risoe

India, China, South Korea and Brazil are the countries where most carbon credits have

been issued thus far, with these four players accounting for almost 90% of the market as

is shown in the figure on the next page:
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Figure 7.6: Largest CER issuers to date (as of February 2009)

Source: UN Risoe

Key Policy Uncertainties relating to the CDM/JI

The European Commission does not tire of reaffirming its support for emissions trading

beyond 2012, regardless of whether or not there will emerge a global consensus for the

continuation of any carbon reduction goals beyond the Kyoto Protocol. However,

significant policy uncertainties for the use of CDM/JI credits within an emissions trading

scheme do exist. For instance, the allowance of CDM/JI projects for compliance within

the EU-ETS has been decreasing from phase to phase. In Phase I, there had been no

limit5 , but in Phase II member states allowed differing amounts of CDM/JI to be used for
compliance, and this allowance can be banked into the third phase (Germany allowed

12% of total allocation to be used). Post-2012 will allow using CDM credits amounting

up to 3% of a country's non-ETS emissions, and any unused "capacity" can be traded

between EU-ETS participants. In addition to this, the EU Commission will continue to

5 Even though there had been no cap on the use of CDM/JI credits in Phase I, the slow
registration of credits at the UNFCCC Executive Board and the lack of a common IT platform
integration hindered any significant amount of CDM credits to be surrendered under Phase I.



allow all CDM credits from projects in Least Developing Countries that were registered

between 2008 and 2012. Given protectionist tendencies and fears of carbon leakage

through non-additional projects in developing countries, the total amount of CDM credits

finally allowed during Phase III could even be below this number, greatly reducing the

demand in the global market.

Linking of Schemes and Arbitrage

One often discussed topic is the linking of different emissions trading markets, and the

obvious candidates for linking would be the EU-ETS and the Federal American carbon

trading scheme if it comes into being. Using the same "carbon currency" or accepting the

emissions allowances from other linked-up schemes can directly link different markets.

While it is very difficult to predict the exact form of the US scheme, given the myriad of

proposals currently being debated in the House of Representatives and the US Senate, it

is very possible that an American scheme will not be directly fungible with the EU-ETS,

although both schemes might accept the CDM. In such a case the CDM would flow to the

higher price scheme, leading towards a convergence of prices. A non-compliance buyer

could, for example, arbitrage the spread between the two schemes and "exchange" the

carbon credits using the CER as an intermediary currency in two steps:

1. An EU-ETS market participant sells an EUA and purchases a CER

2. The CER is bought by an American buyer who then sells the CER and

purchases an American emissions allowance

In this way, a European credit has been, in effect, sold to an American compliance buyer

and would be a way to arbitrage prices and to force at least partial convergence of prices.

In an efficient market with zero transaction costs and no cap on the amount of CER

credits allowed into the market, the two emissions trading regimes would thus be linked

and prices would be equal. Given that the market is likely to be shielded from both sides,

most notably through price floors and ceilings, the actual integration of the markets will

likely be limited.



Figure 7.7: Linking of Schemes via the CDM

Source: World map image taken from http://www.webresourcesdepot. com/wp-

content/uploads/image/free-vector-world-map. gif

7.2 Impact of Renewable Energy Policy on Carbon Abatement
In addition to CDM and JI, emissions trading is also affected by Renewable Energy

policy which, perhaps unexpectedly, can favor marginal investments in coal over gas.

The growth of Renewable energy has been stunning, aided by aggressive government

targets in many legislations as a means to diversify energy generation portfolios and

reduce overall carbon emissions. The European Union, home of some of the most

generous feed-in tariffs, has set itself ambitious goals, namely to derive 20% of the

energy mix from Renewable energy by 2020, compared to 8.5% today, with intermediate

targets being set in two year intervals to ensure that countries deliver their mandates.

These targets are specified on a member-state level, with all countries having to increase

the use of renewables by 5.5% with the remaining increases being mandated to the

strongest economies as measured by GDP. These targets are outlined in the figure below:
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Figure 7.8: Renewables portion of total energy in 2005 and 2020 Goal

Source: Euractiv, 2009

The large contribution of renewables to Germany's total energy has already been

discussed in Chapter 2. As of 2009, the government feed-in tariffs have been further

adapted to encourage the development of offshore wind and the repowering of existing

renewable energy assets. The German Federal Ministry of the Environment

(Bundesumweltministerium) estimates that in 2007 alone, Renewable Energies resulted

in 78.9 million tons of carbon abatement. However, the top-down estimates are based on

2000-2004 trends, so one can only count the marginal abatement since the trend years,

otherwise double counting the abatement from renewables that had already occurred by

the base year of the trend. Since the carbon abatement from renewables, such as hydro, is

relatively steady, the real impact on emissions is gained from the advances in wind and

solar. The data takes 2002 as the base year and hence finds marginal abatement from

renewables as 10.6, 13.1 and 22.6 million tons for 2005, 2006 and 2007 respectively.
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Figure 7.9: Abatement Estimates and Reported renewables Abatement

Source: Authors' calculations and BMU 2008, 2007, 2006

The top-down estimate that is compared to this bottom-up data is based on the carbon

intensity trends using power sector data. The top-down and bottom-up data coincide

relatively well; this shows that marginal abatement from the renewables sector is most

likely the other source of carbon abatement, next to abatement from fuel switching that

was calculated in Chapter 2 using the E-simulate model.

The data shows that during times of high carbon prices, the marginal abatement from

carbon trading is comparable to the marginal abatement from wind and solar power, and

the data from 2008 onwards which showed relatively high carbon prices will show more

significant abatement.

Interaction of the Renewable Energy on the Merit Order

One of the key interactions of Renewable Energy is that it displaces high cost capacity

from the total power generation mix. Since Renewable Energy in Germany benefits from

very generous feed-in tariffs they are always effectively dispatched. Reinaud (2003)
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discusses how a higher use of renewable energy production results in lower thermal

production and hence leads to a reduction of total emissions.

Capacity
Cost Displaced by
(EUR Renewable
MWh)(EUR

New
Renewables Gas

Coa

Nuclear
Win

Hydro

Available Capacity (GW)

Figure 7.10: Renewable Energy mandates displacing fossil capacity

Source: Renaud 2003.

The impact this has on the relative use of gas and coal power assets depends on the level

of the carbon price and marginal fuel during the point of renewables dispatch. Thus

renewables will displace fossil fuel capacity and, depending on the merit order, this will

either be coal or gas, leading to a reduction in a capacity factor. In a low carbon price

scenario this would almost certainly displace gas capacity, as shown in a schematic

manner in the graph above. It will also definitely displace the low efficiency gas plants

that are among the last to be dispatched, unless carbon prices rise very high and thus

increase the number of hours in which coal is the marginal fuel. While the overall effect

is a reduction in carbon emissions, the overall long-term impact is to reduce the absolute

capacity of fossil fuel dispatch. From the sensitivity analysis shown in Chapter 5, a slight

reduction in the capacity factor for coal plants has a smaller impact on profitability than a

reduction of the capacity factor in gas plants. This in turn, reduces the long-term

profitability of gas investments and helps to explain, why marginal power investments in
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Germany have been mostly in Renewable Energy, such as wind and - in fossil power -

could be seen to favor coal over gas.
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8. Discussion and Conclusions: Assessing the
Outcomes

This chapter seeks to summarize the economic and environmental policy effects of

carbon trading; it also seeks to summarize the evidence presented in this thesis for the

preference of coal over gas investments in Germany.

8.1. Conclusions on Economic Implications of Carbon Trading
The persistence of coal in the German power sector comes down to the fact that coal has

been the more profitable fuel in Germany and continues to be so. Three different analysis

metrics and methods have been applied in this thesis: Return analysis, marginal fuel

analysis from the bottom-up model, and spread analysis from commodity prices. The

application of these methods has found a preference for coal; unless the fundamental

commodity prices or power generation technologies significantly reduce the costs of gas-

fired generation, the trend for coal investments in the fossil fuel space are unlikely to

change.

As shown in details in Chapter 5 of the thesis, the return on equity investments and net

present value of a gas plant investment is slightly higher than that of coal in the base case

scenario. Yet, after adjusting the base case to lower capacity factors closer to what has

been observed in the market, coal is more profitable. Both factors became evident in the

analysis of sensitivities assuming the base case of technologies available, fuel prices, and

carbon prices. The net present value assumes the allocation mechanisms as decided by

the European Parliament in December 2008. The net present value of the coal plant

investment is 141.8 mn Euros with an internal rate of return of the project cash flows of

13.6% while the gas plant dispatched as baseload has a mean NPV of 39.0 mn Euros and

an IRR of 15.8%; a peaking plant results in an NPV of 128.7 mn Euros and an IRR of

28.6%. These figures represent the mean of the investments, generated using 10,000

Monte-Carlo draws based on the price distributions of the relevant fuel and carbon price

distributions. Both investment options have a possibility of generating negative returns. It

is important to note that all the assumptions for the discounted cash flow model are very
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conservative, and sensitivity analysis shows that coal investments could be more

profitable when looking at the fuel spreads seen on the power markets over Phase I.

Power prices have increased significantly since the introduction of carbon trading to

reflect, among other things, the opportunity and real costs of carbon. Hence, the lower

part of the distributions represents power price levels that are unlikely to be seen in the

market unless fuel prices decrease significantly.

Profitability Comparison- Gas and Coal

Gas_Base: NPV= 39.0 Gas Peak: NPV= 128.7 Coal: NPV= 141.8
Gas Base: IRR= 15.8% GasPeak: IRR= 28.6% Coal: IRR= 13.6%
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Figure 8.1: Net Present Value Distribution and Mean Returns

Source: Model calculations

8.1.2. Marginal Fuel analysis translates into low capacity factors for gas

Chapter 2 has discussed the use of the bottom-up power sector model, "E-simulate",

which was used to estimate carbon abatement from short-term fuel switching. This least

cost linear optimization model calculates optimal dispatch of the available generation

fleet in hourly intervals. One of the outputs that this model generates is the marginal fuel

of the power system every hour. When the ramping constraints associated with the

various generation technologies are applied and the daily carbon prices are accounted for,
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the model provides the marginal fuel, which makes evident how many hours of the year

coal or gas plants can be operated profitably. In reality, utility companies are unlikely to

change the dispatch of large amounts of capacity based on these movements, yet if one

assumes that the power plant investment meets only marginal demand, one can use the

marginal fuel as an indicator for the likely capacity factor to be expected for gas. In both

power investment models, the capacity factor is the second most sensitive input variable

after the full load efficiency that is determined chiefly by the technical attributes of the

power plants. What becomes apparent from this type of analysis is that capacity factors

for gas plants could potentially be much lower than the 80-85% assumed in the

investment model, as gas plants are only running at peak times. This deteriorates the

economics of gas plants and increases the relative attractiveness of coal investments.

Sensitivity of Key Variables expressed h terms of NPV of Gas Plant
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Figure 8.2: Sensitivity of Key Variables of a Gas Investment

Source: Model calculations

A more in-depth model would add the marginal investment plant to the bottom-up model

and iteratively run the bottom-up model year by year. This would require significant
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assumptions on forward-looking hourly power demand, the annual changes in all

segments of the power generation portfolio, as well as price forecasts over the entire plant

life. Long term, large-scale analysis methods become sensitive to the economic feedback

effects, which would require different types of models. MARKAL models, for example,

iteratively solve engineering cost models that are linked with a partial or general

equilibrium models to simulate economic feedbacks. This type of analysis, however, is

beyond the scope of this thesis, but would be an obvious choice for extending this

research.

Larger spreads strengthen coal and fuel prices dominate carbon effects

One of the key analysis metrics used in the power industry are the spreads that a company

is earning for generating power. These spreads make several simplifying assumptions on

the production efficiencies of the power producing assets and take the heat rates of the

respective fuels into consideration. The simple spreads only account for marginal costs

and do not include the need to recoup capital costs for the investments. Positive spreads

indicate that it is more profitable to generate power than to purchase the electricity from

the market. These spreads are quoted on Bloomberg; there is, however, only very limited

historic data available for these spreads. Hence, the spreads were recreated from first

principles using long-dated price series. While the absolute value of the spreads is

interesting, the real question for making a relative investment decision between coal and

gas is the movement of the difference of the dark and spark spreads.

The figure below gives a long-time series of these spreads from the end of 2000 until

February 2009. The figure shows the difference of the clean spreads, i.e. those spreads

that already account for the carbon price.
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Figure 8.3: Clean Spreads for Coal and Gas from 2000-2009

Source: Bloomberg, ECX, model calculations

The outcome is striking. The large majority of days show a higher profitability of coal

plants versus gas plants. There are clearly seasonal effects of commodity prices that can

be seen in the data; over the summer month, when gas prices tend to be lower than in the

winter months, the dark-spark spread briefly turns negative, indicating that it is more

profitable to operate a gas plant. Moreover, the absolute value of the spread difference

indicates that coal plant investments have actually become more profitable versus gas

since the introduction of carbon emissions trading. This is a slightly counter-intuitive

result, but with great explanatory power for the recent announcements of new coal builds

as outlined in Chapters 3 of the thesis. While in the time before carbon emissions trading,

it was more profitable on 65.7% of trading days to operate coal power plants versus gas

plants. During the emissions trading scheme this increased to 81.5% of trading days,

showing a clear preference for coal over gas. Even if one uses Phase II carbon prices,

coal still prevails in 73% of the days.

107



Table 8.1: Clean Spreads using spot prices for carbon

Clean Spreads
using Phase II 2000-2004 with Hypothetical

Carbon Clean Spreads and Spot Carbon Carbon Prices
2005-2008 2005-2008 2000-2004 8 EUR 15 EUR

Days with Positive Spread 707 745 617 406 260
Total Days with Data 969 914 939 939 939

Fraction Coal Dominance 72.96% 81.51% 65.71% 43.24% 27.69%

Fraction Coal Dominance-
Capital Cost Adjusted 69.45% 78.34% 58.25% 36.53% 24.07%

Source: Bloomberg, model calculations

8.2. Environmental Goals and Environmental Policy Issues
Having ascertained the clear economic argument for why coal is preferable in comparison

with gas in Germany, there are the remaining issues of the environmental goals and the
interactions of carbon trading policy with other environmental policies, as already

discussed in Chapter 6.

SE-simulate Bottom Up Marginal Renewables Abatement Top Down Estimate
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Figure 8.4: Top down and bottom up estimates of abatement in the power sector

Source: BMU and model calculations
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Carbon emissions trading is only one mechanism to reduce the carbon intensity of the

economy and the power sector more specifically. Chapter 2 discusses the mechanisms of

fuel switching and calculates bottom-up values of the carbon abatement due to utilities

dispatching gas rather than coal. Top-down approaches look at the carbon intensity of the

economy or parts of the economy and use these trends to establish an emissions

counterfactual against which abatement can be measured. Chapter 7 discusses the

mechanism of how marginal abatement from renewables and fuel switching correlate

closely with the top down abatement estimate of the power sector.

Outlook to Future Work

The work applies several top-down and bottom-up modeling techniques for assessing the

impact of a carbon price on the power sector. The thesis has quantified the short-term

carbon abatement potential from fuel switching as well as presented long-term effects of

the carbon price on investment behavior. The various model outcomes are compared and

reconciled with first empirical data that has become available since the inception of the

European emissions trading scheme in 2005. While the discussion of the results has

focused on the key assumptions and outcomes, the results presented in this thesis could

be used as a foundation for future research. For example, the wider implications of a

carbon price on investment effects could be modeled such as more granular technology

options in coal and gas plants, or utility-scale Renewable energy options such as a wind

or technologies such as CCS to continue the work of this thesis in understanding the in-

depth effects of the carbon price.
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Annex I:

Mean Values and Distribution Types of All Data Series used:

119

Data Series: Units Mean Distribution Type
Gas-2000-2008 EUR/TJ 4244.59 Log-normal
Gas-2005-2008 EUR/TJ 5860.60 Normal

Coal-2000-2008 EUR/t 57.56 Log-normal
Coal-2005-2008 EUR/t 74.38 Log-normal

Carbon: 2005-2008- Dec 09 contract EUR/t 20.40 Normal

Power-Base: 2000-2008 EUR/MWh 36.64 Beta
Power-Base: 2005-2008 EUR/MWh 51.51 Log-normal

Power-Peak: 2000-2008 EUR/MWh 70.97 Log-normal
Power-Peak: 2005-2008 EUR/MWh 71.76 Beta

Power-Base: 2005-2008- Zero Pass EUR/MWh 32.09 Beta
Power-Base: 2005-2008- 0.25 Pass EUR/MWh 37.05 Beta
Power-Base: 2005-2008- 0.5 Pass EUR/MWh 42.01 Beta
Power-Base: 2005-2008- 0.75 Pass EUR/MWh 46.96 Beta
Power-Base: 2005-2008- Full Pass EUR/MWh 51.92 Beta
Power-Base: 2005-2008- 1.25 Pass EUR/MWh 56.88 Beta

Power-Peak: 2005-2008- Zero Pass EUR/MWh 64.15 Beta
Power-Peak: 2005-2008- 0.25 Pass EUR/MWh 66.04 Beta
Power-Peak: 2005-2008- 0.5 Pass EUR/MWh 67.93 Beta
Power-Peak: 2005-2008- 0.75 Pass EUR/MWh 69.82 Beta
Power-Peak: 2005-2008- Full Pass EUR/MWh 71.72 Beta
Power-Base: 2005-2008- 1.25 Pass EUR/MWh 73.61 Beta



Annex II:

The investment model is difficult to represent in paper form and screen shots did not print
in a sufficiently legible quality.
For a copy of the excel and MATLAB files please email the author at
stephan marvin@yahoo.com
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