Designing and Compiling Functional Java for the Fresh Breeze Architecture

by

William J. Jacobs

B.S. Computer Science and Engineering
Massachusetts Institute of Technology

Submitted to the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Electrical Engineering and Computer Science at the Massachusetts Institute of Technology

May 2009

©2009 William J. Jacobs. All rights reserved.

The author hereby grants permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created.

Author

Department of Electrical Engineering and Computer Science

May 22, 2009

Certified by

Jack Dennis, Professor Emeritus
Thesis Supervisor

Accepted by

Arthur C. Smith
Professor of Electrical Engineering
Chairman, Department Committee on Graduate Theses
Designing and Compiling Functional Java for the Fresh Breeze Architecture

by

William J. Jacobs

Submitted to the
Department of Electrical Engineering and Computer Science

May 22, 2009

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The Fresh Breeze architecture is a novel approach to computing that aims to support a high degree of parallelism. Rather than striving for heroic complexity in order to support exceptional single-thread performance, as in the Pentium and PowerPC processors, it focuses on using a medium level of complexity with a view to enabling exceptional parallelized performance. The design makes certain sacrifices with regard to capability in order to achieve a lower degree of complexity. These design choices have significant implications for compiling for the architecture. In particular, Fresh Breeze uses immutable, fixed-size memory chunks rather than sequential, mutable memory to store data [1][2][3]. This work demonstrates Functional Java, a subset of the Java language that one can compile to Fresh Breeze machine code with relative ease, overcoming challenges pertaining to aliased arrays and objects. It also describes work on a compiler designed for the Fresh Breeze architecture and how the work overcomes various challenges in compiling Java bytecode to data flow graphs.

Thesis Supervisor: Jack Dennis
Title: Professor Emeritus
1. Introduction

The Fresh Breeze processor design is in many ways a departure from conventional design. It is designed to be highly parallelized, with simultaneous multithreading and hardware support for spawning method calls to other processors or cores.

The Fresh Breeze system makes use of a memory model that is considerably different from the standard model. In the standard memory model, memory is regarded as a linear array of mutable memory locations. In the Fresh Breeze memory model, memory is allocated to a thread of computation in 128-byte chunks, each of which is referenced by a unique UID or pointer. Each chunk may contain pointers to other chunks. Fresh Breeze memory chunks are immutable in the sense that a thread may create a chunk and write data into it, but the chunk becomes permanently fixed once shared with other threads. This behavior provides a guarantee that the heap will never contain cyclic structures, ensuring that the heap forms a directed acyclic graph. This enables efficient hardware garbage collection using reference counting [1][2][3].

The immutability of memory is well-suited to the functional programming paradigm, which is concerned with functions that produce output values appropriate to a given set of inputs, without altering the inputs to the function. In addition, immutable memory eliminates the concern of cache coherence by ensuring that any memory stored in a cache is always accurate. In order to expedite the allocation of memory, the Fresh Breeze system relies on hardware garbage collection that is implemented using reference counting. The usage of hardware-based memory allocation and deallocation greatly reduces the overhead typically associated with these operations. Furthermore, it solves problems associated with determining when a portion of memory that was available to multiple processors may be deallocated.
While the particular features of the Fresh Breeze model make the design well-suited to scientific and other computation-intensive applications, they pose interesting challenges for a compiler designed to target Fresh Breeze machine code. In particular, how can one ensure that the heap contains no reference cycles without unnecessarily burdening the programmer? The aim of this paper is to describe the work involved in overcoming these challenges. This project entails writing software that compiles Java bytecode to a data flow graph. In targeting the Java programming language, the intent was to enable the programmer to use a familiar language, while simultaneously enabling the compiler to produce efficient Fresh Breeze machine code. In addition, by using Java bytecode, we are able to leverage parsers and semantic analyzers that already exist for the Java programming language in building the Fresh Breeze compiler.

The compilation of a program into Fresh Breeze machine code is a five-step process, as illustrated in Figure 1. First, the Java compiler produces Java bytecode from Java code. This is converted into an intermediate representation, which is subsequently compiled into a data flow graph. Optimization converts a data flow graph into an optimized data flow graph. Finally, this data flow graph is compiled into Fresh Breeze machine code.
The compilation process will operate on a single Java class as the basic unit of compilation. Methods will be linked during the code generation phase by substituting the UID (pointer) of the appropriate code object at each method call.

This project focuses on the design and programming of the conversion of Java bytecode to an intermediate representation and subsequent compilation to data flow graphs. The objective is to produce functional data flow graphs from Java classfiles with minimal restrictions on the allowable Java source code. Generation of machine code for the Fresh Breeze architecture is left to future work.

The remainder of this thesis is organized into six sections. Section 2 describes a means of overcoming the problem of aliasing in order to design a compiler that is compatible with the Fresh Breeze memory model. Section 3 describes an intermediate representation to which Java bytecode is compiled and the algorithms used to compile to it. In Section 4, this paper describes
the data flow graph representation to which the intermediate representation is compiled as well as algorithms used in the compilation process. Section 5 details how the compiler checks restrictions on the Java language pertaining to aliasing. In section 6, this treats the subject of optimization, indicating how the compiler performs various optimizations. Finally, section 7 is concerned with how this work may be extended and improved.

2. Aliasing

2.1. Functional Java

In the Fresh Breeze memory model, memory is immutable. This makes operations such as changing an array’s element or an object’s field impossible, strictly speaking. Instead of changing an object or array, a program must produce a copy of the object or array that differs only in one of its fields or elements. This is consistent with the functional programming perspective, in which each method’s purpose is to produce an output from a particular set of inputs without altering any of the inputs. However, it poses a unique challenge when compiling a non-functional language, such as Java.

In particular, aliasing presents a problem for a compiler designed to target Fresh Breeze machine code. Aliasing refers to the ability to access a given portion of memory using multiple symbolic names in the source code. This is problematic when a particular object is altered. Because the object might be accessible from multiple variables, the compiler would need to ensure that regardless of the variable from which the object is accessed, the contents are the same.
In order to use the Fresh Breeze memory model correctly, one can impose restrictions on the permissible Java programs that ensure that aliasing cannot occur. Having eliminated aliasing, each computation can be expressed functionally; that is, in such a manner that each method produces a set of outputs from a given set of inputs without modifying any of the inputs. This successfully eliminates the need for mutable memory. Furthermore, since the computation is functional, method calls are necessarily independent, allowing the compiler to maximize the amount of parallelism in a given program.

In practice, to express each Java method as a functional computation, one can design the compiler to implicitly return modified copies of all of its arguments. Figure 2 contains an example of a code listing and the equivalent Fresh Breeze pseudocode.

Code:

```java
class Foo {
    int x;

    public static void bar(Foo f) {
        f.x = 1;
    }

    public static void baz(Foo f) {
        bar(f);
        f.x++;
    }
}
```
Fresh Breeze equivalent:

```java
Foo bar(Foo f)
    Foo f2 = alteredCopy(f, x - 1)
    Return f2

Foo baz(Foo f)
    Foo f2 = bar(f)
    Foo f3 = alteredCopy(f2, x -> (f2.x + 1))
    Return f3
```

Figure 2: Using Return Values to Implicitly Modify Arguments

This sort of compilation is capable of preserving Java semantics, so that the `bar` method does what the programmer would expect. However, aliasing presents a problem for this sort of approach. For example, consider the code and the Fresh Breeze equivalent presented in Figure 3.

Code:

```java
class Foo {
    int x;
}
class Bar {
    Foo f;

    public static void baz(Bar bl, Bar b2) {
        bl.f.x = 1;
    }
}
```
Fresh Breeze Equivalent:

```java
<Bar, Bar> baz(Bar b1, Bar b2)
    Foo f = b1.f
    Foo f2 = alteredCopy(f, x - 1)
    Bar b3 = alteredCopy(b1, f - f2)
    Return <b3, b2>
```

Figure 3: Problem Arising From Aliasing

A problem arises if `b1.f` and `b2.f` are the same. In this case, the programmer would expect both `b1.f.x` and `b2.f.x` to be changed to 1, in conformance with the standard Java semantics. However, if one were to use the code in Figure 3, only `b1.f.x` would be changed; `b2.f.x` would be unaltered.

There are two fundamental approaches to the problem of aliasing. In one approach, the program performs runtime checks to identify each instance of aliasing so that the compiler may take the appropriate action. For example, one could rewrite the above `baz` function as demonstrated in Figure 4:

```java
<Foo, Foo> baz(Foo f1, Foo f2)
    Bar b = f1.bar
    Bar b2 = alteredCopy(b, x - 1)
    Foo f3 = alteredCopy(f1, bar - b2)
    If f2.bar = b
        f2 = alteredCopy(f2, bar - b2)
    Return <f3, f2>
```

Figure 4: Runtime Correction of Aliasing

This solution is undesirable, mainly because it requires an exceedingly large amount of
time in even some relatively common cases. For example, if a method is passed an array of 1,000 objects, every time one of the objects' fields is changed, the method would have to check each of the other objects to see if they match the one that was changed.

Another approach is to place restrictions on what Java programs the compiler will accept. This is the approach recommended here. By forbidding certain Java programs, one can ensure that the problem of aliasing is avoided.

Having settled on this approach, the objective is to place as little restriction on the programmer as possible. One might consider the simple solution of requiring objects to be immutable, rejecting any program that modifies any object’s field, as proposed in [5]. However, a less restrictive approach is possible.

One may describe object references using a directed graph. Each node in the graph represents a single array or object. There is an edge from an array to each of its elements and from an object to each of its fields. The solution to the problem of aliasing described here is a set of compile-time checks designed to ensure that the graph of the references forms a forest. The checks also guarantee that the parent of every object or array that is referenced in a method is known at compile time.

The restricted subset of Java is termed “Functional Java”. The restrictions are as follows:

1. No reference argument to a method call may be a descendant of another argument or the same as another argument. For example, the following is disallowed:

```java
void foo() {
    Foo f = new Foo();
    bar(f, f.bar);
}
```
2. A method may not return one of its reference arguments or one of their descendants. This rule forbids code such as the following:

```java
Bar foo(Foo f) {
    return f.bar;
}
```

3. No reference may be made a descendant of another reference, unless it is known to have no parent. This prohibits behavior such as the following:

```java
void foo(Foo f, Bar b) {
    f.bar = b;
}
```

4. A reference variable may not be altered if the identity of its parent may depend on which branch is taken. The following, for example, is not permitted:

```java
void foo(Foo f1, Foo f2) {
    Bar b;
    if (baz())
        b = f1.bar;
    else
        b = f2.bar;
    b.x = 1;
}
```

5. A variable containing a reference descendant of an array may not be accessed or altered after a descendant of the array is altered, unless the variable was set after the alteration was performed. This forbids the following code, which would be problematic if the inputs `a` and `b` were the same:

```java
void foo(Foo[] f, int a, int b) {
    Foo f2 = f[a];
    Foo f3 = f[b];
    f2.x = 1;
    f3.x = 2;
}
```

6. A variable containing a reference descendant of an array may not be altered after the array is altered, unless the variable was set after the alteration was performed. The following is
forbidden by this rule, since a problem would arise if the inputs \(a \) and \(b \) were the same:

```java
void foo(Foo[] f, int a, int b) {
    Foo f2 = f[a];
    f[b] = new Foo();
    f2.x = 2;
}
```

7. The `==` and `!=` operators may not be used between any pair of references, unless at least one of them is explicitly `null`. At any rate, because of the above restrictions, the result of such an operation would be known at compile time (unless one of the operands is `null`), so the `==` or `!=` was probably used in error.

Note that each of these conditions can be checked on a per-method basis. In particular, it is guaranteed that if two classes can successfully be compiled separately, then they can be successfully compiled together.

In addition, static fields are required to be compile-time constants, as proposed in [5]. Otherwise, every method would have to accept the static fields as implicit arguments and implicitly return the new values. At any rate, permitting variable static fields would not conform to the paradigm of functional programming.

2.2. Implementing the Java API Using Functional Java

Much of the Java API requires a violation of one of the aliasing rules. For example, the `ArrayList` class, which stores a dynamically sized array, has a method to add an element to the class. Figure 5 contains a simplified form of how it is implemented.
public void add(T element) {
 this.array[pos] = element;
 pos++;
}

Figure 5: Implementation of ArrayList.add

This code is forbidden by rule 3, since element is made a descendant of this, both of which are arguments to the method. In order to get around the restrictions, the programmer may use a Fresh Breeze library method of the form presented in Figure 6.

public class FBUtil {
 public static native <E> E copy(E object);
}

Figure 6: The FBUtil.copy method

The method takes an object or array and returns a deep copy of it. Counter-intuitively, the method takes no time at all. It simply returns its argument and causes the compiler to treat the returned object as if it were an unrelated object. This implementation is guaranteed to be correct because in the Fresh Breeze memory model, memory is immutable.

The FBUtil.copy method provides a workaround for the ArrayList method shown above. It may instead be implemented as presented in Figure 7:

public void add(T element) {
 this.array[pos] = FBUtil.copy(element);
 pos++;
}

Figure 7: An alternative implementation of ArrayList.add
This alters the semantics of the ArrayList class. Now, instead of storing references to objects, it would store copies of objects and would only permit retrieval of copies of its elements.

Another hitch pertaining to the standard Java library arises with regard to the equals function. For example, say a programmer were to implement a class FBHashSet that is similar to the Java HashSet class, except that it uses the copying semantics suggested above. Then, say the programmer uses the class as shown in Figure 8:

```java
boolean foo() {
    Foo f = new Foo();
    FBHashSet<Foo> fs = new FBHashSet<Foo>();
    hs.add(f);
    return hs.contains(f);
}
```

Figure 8: Using FBHashSet

This method would not return true as expected, unless the Foo class correctly overrides the Object.equals and Object.hashCode methods. This is because the method adds a copy of f rather than a direct reference to f to the FBHashSet.

Some of the instance methods in the Java library are specified to return the objects on which they are called. Such methods are a violation of the second aliasing rule. One example of such a method is the one shown in Figure 9.
public class StringBuilder {
 public StringBuilder append(CharSequence s) {
 ...
 return this;
 }
}

Figure 9: Aliasing in the StringBuilder Class

Methods of the StringBuilder class are special from the perspective of the Java compiler, since expressions such as str + "something" are typically compiled by creating a temporary StringBuilder object and calling one of the append methods. In order to permit compiling such expressions, the compiler treats the return values of a hardcoded set of library methods that return this differently.

It is not immediately obvious how burdensome the restrictions imposed by Functional Java are on the programmer. To get a sense of this, and to enable users of the Fresh Breeze system to program using the standard Java API, it was useful to reimplement much of the Java API in order to satisfy these restrictions.

Experience suggests that for some tasks, it is difficult to conform to the restrictions. In particular, it is difficult to work with chains of objects that may be of arbitrary length, as in linked lists and binary search trees. The implementation of a red-black tree and a hash table uses integers to serve as pointers to nodes in the red-black tree and nodes in the linked lists in the hash table, which took difficulty to maintain correctly. However, for most tasks, it took little effort to keep from violating the aliasing restrictions, particularly with the assistance of a compiler that provided the file and line number of any such violations.

While reimplementing the Java API provides a useful barometer of the difficulty of
following the aliasing restrictions, the primary target of the Fresh Breeze system is computation-intensive scientific applications. For these applications, which often make less use of high-level constructs than other programs, it seems likely that following the aliasing rules would be easier. In general, while the restrictions may be limiting to people used to working with user-end PC's, who are often concerned with programs that require careful design and make use of Java's more advanced features, it is probably not very limiting to those writing scientific programs, who tend to rely on arrays and matrices for algorithms such as the Fast Fourier Transform and the Cholesky algorithm.

2.3. A Possible Extension to Functional Java

One possible extension to Functional Java would be to behave differently when dealing with immutable objects, which are understood to be objects consisting only of final, immutable fields whose constructors do nothing but set these fields. This would allow relaxation of the restrictions in certain cases. For example, one could allow immutable objects to be made children of multiple objects or arrays. Such an extension would cause Functional Java to be strictly less restrictive.

However, there is at least one reason why such an extension might not be desirable. Specifically, it is difficult to know the intent of the programmer when writing a class. A programmer might create a class that is initially very simple, which might by accident be immutable. The programmer might start using this class in several places with the intent of making the class mutable later on. He might inadvertently write code that would violate the aliasing restrictions if the class were mutable. When the programmer changes the class to be
mutable, numerous aliasing restrictions would appear.

At any rate, this possible extension affects the convenience of the language but not its power. Any case where one could refer to an immutable object with the extension but not without it can be corrected by a call to the FBUtil.copy method described in section 2.2.

2.4. Related Work

Previous work pertaining to aliasing has largely been focused on alias analysis within common languages such as C that permit aliasing. Such analysis is intended to improve optimization rather than eliminate aliasing [4]. This is understandable, since the memory model in use on conventional processors allows arbitrary mutation of data stored in memory.

Some functional languages allow the programmer to indicate occasions in which aliasing cannot occur. One way of doing so is uniqueness typing, which permits each object that the programmer declares to be linear to appear only once on the right-hand side of an assignment. Similarly, in a linear type system, once a value is cast to a linear form, the value can only be used once in the right-hand side of an assignment [7]. Like the work in this paper, such systems involve using compile-time checks to ensure that aliasing does not occur. However, these alternative systems are generally aimed at limiting aliasing rather than eliminating it outright. Furthermore, by comparison with the aliasing rules presented in section 2.1, they are particularly restrictive.
3. Compiling to Intermediate Representation

When compiling a program from Java bytecode to a data flow graph (DFG) representation, it is helpful to first convert the bytecode into an intermediate representation. The primary motivation for using this intermediate step is the fact that Java bytecode expresses some variables implicitly as positions on a stack, but it is more useful to refer to each variable explicitly. In addition, such a conversion enables the compiler to more easily keep track of the datatype of each variable that it is considering, which may enable certain optimizations at a later time.

The intermediate representation is based on the representation used in [5]. It consists of sequences of statements. Each particular type of statement is represented as a subclass of the abstract IrStatement class. Control flow is represented by IrCondBranch statements, which perform conditional branches, and IrUncondBranch statements, which perform unconditional branches. Statements typically operate on operands, which are represented as instances of IrOperand. Each IrOperand is either a fixed constant, using the IrConstant subclass, or a variable reference, using the IrReference subclass. IrOperand objects store the type of the operand. At this stage in compilation, the compiler does not determine whether a reference operand is an object or an array; this determination is deferred to a later time. The relevant class hierarchy appears in Figure 10.
In order to convert the implicit information about variables on the stack and in the local variable array to explicit variable references, the compiler uses a StackAndLocals class. For each stack or local variable position, the StackAndLocals class keeps a map from each datatype to an IrReference. Each such IrReference is used to hold any value of its respective type that is stored in its respective position. In addition, the class keeps track of the datatype that is stored in each stack and local position at the current point in compilation. Using this construction, each push of a value X onto a stack or store operation of a value X into a local variable can be compiled as an assignment of the value X to the appropriate variable.

Using the StackAndLocals class, it is generally easy to compile bytecode to an intermediate representation. Java bytecodes represent relatively simple operations, such as pushing the value 2 onto the stack or converting the top item on the stack from an integer to a floating point value. For most bytecodes, the compiler can pop any operands it needs from the stack, perform the desired operation on them, store the result in a temporary variable, and push the variable onto the stack, using the StackAndLocals class to take care of the details of pushing and popping.

One challenge in producing the intermediate representation is determining the type of elements stored in each array on which an array get or set operation is performed. This type
includes the number of dimensions in the array and the type of elements stored in the array. Each array get or set operation is required to store the exact type of the array in question. Doing so gives the compiler the flexibility to store arrays and objects differently, to store multidimensional arrays as single-dimensional arrays if desired, to store arrays containing different types of elements differently, and to perform other optimizations.

It is not trivial to determine the type of each array because the aastore and aaload bytecodes, which set and get an array element respectively, only indicate that some sort of reference is being stored in or retrieved from an array. The compiler does not immediately know whether the reference is another array or an object. Furthermore, a given variable may be one type of array in one location in the bytecode and another type of array in another location. However, if the compiler observes the entire body of the method, there will necessarily be enough information to make the desired determinations.

Because the compiler may need to look at a method’s entire body to determine array types, it defers the computation until it has compiled the whole method to its intermediate representation. Once a method is compiled, to compute the types of the arrays, the compiler relies on fixed-point computation. The aim of the computation is to determine the type of array stored in each array variable at the beginning of each basic block of the program. Here, a “basic block” is understood to be a maximal sequence of statements to which only the first can be jumped.

For each basic block, the algorithm first compute a sequence of “generated” mappings from variables to array types. It does this by maintaining a map from \texttt{IrReferences} to array types. It iterates through the statements in the basic block. If one can determine the type of
some array variable referred to in the statement, it adds an entry to the map, replacing any existing entry for the variable. For example, it would know the type of any array that is the return value of a method call or is a field it is retrieving from an object.

Once the algorithm has computed this information, it makes use of a fixed-point algorithm. The algorithm is a special case of the fixed-point algorithm that is commonly used. The algorithm appears in Figure 11.
Map<N, Map<K, V>> doFixedPointMapUnion(Map<N, Map<K, V>> initialValues, Map<N, Map<K, V>> generated, Map<N, Set<K>> killed, Map<N, Set<N>> successors)
Map<N, Set<V>> allValues
For map e initialValues
For (key, value) e map
allValues[key] = allValues[key] U {value}
For map e generated
For (key, value) e map
allValues[key] = allValues[key] U {value}
Map<N, Set<Pair<K, V>>> initialValues2
For (node, map) e initialValues
For (key, value) e map
initialValues2[node] = initialValues2[node] U {(key, value)}
Map<N, Set<Pair<K, V>>> generated2
Map<N, Set<Pair<K, V>>> killed2
For (node, map) e generated
For (key, value) e map
generated2[node] = generated2[node] U {(key, value)}
For value2 e allValues[key]
killed2[node] = killed2[node] U {(key, value2)}
For (node, keys) e killed
For key e keys
For value e allValues[key]
killed2[node] = killed2[node] U {(key, value)}
Map<N, Set<K, V>> fixedPoint
fixedPoint = doFixedPointUnion(initialValues2, generated2, killed2, successors)
Map<N, Map<K, V>> fixedPoint2
For (node, pairs) e fixedPoint
Map<K, V> map
Set<K> repeatedKeys
For (key, value) e fixedPoint
If map[key] # null
repeatedKeys = repeatedKeys U {key}
map[key] = null
Else If key # repeatedKeys
map[key] = value
fixedPoint2[node] = map
Return fixedPoint2

Figure 11: An Algorithm for Fixed-Point Computation With Maps

The method relies on the algorithm in Figure 12 as a subprocedure.
Map<N, Set<V>> doFixedPointUnion(Map<N, Set<V>> initialValues, Map<N, Set<V>> generated, Map<N, Set<V>> killed, Map<N, Set<N>> successors)
 Map<N, Set<N>> predecessors
 For (node, nodes) ∈ successors
 For node2 ∈ nodes
 predecessors[node2] = predecessors[node2] ∪ {node}
 Map<N, Set<V>> in
 Map<N, Set<N>> out
 Set<N> changed
 For (node, succ) ∈ successors
 If initialValues[node] = null
 changed = changed ∪ {node}
 out[node] = generated[node]
 Else
 in[node] = initialValues[node]
 out[node] = in[node] ∪ generated[node] - killed[node]
 While changed ≠ {}
 N node = Any element in changed
 changed = changed - {node}
 Set<V> newIn
 For node ∈ predecessors[node]
 newIn = newIn ∪ out[node]
 If newIn ≠ in[node]
 in[node] = newIn
 out[node] = newIn ∪ generated[node] - killed[node]
 For node2 ∈ successors[node]
 changed = changed ∪ {node2}
 Return in

Figure 12: Fixed-Point Algorithm

The method doFixedPointUnion is a standard and well-studied algorithm. In practice, implementations of the algorithm operate by storing sets of values as bit vectors, which enables them to perform the union and difference operations efficiently.

The idea of the doFixedPointMapUnion algorithm is to make use of the standard fixed-point algorithm by representing mappings as sets of key-value pairs. The algorithm converts the generated and killed mappings into generated and killed key-value pairs, passes these pairs to the ordinary fixed-point algorithm, and converts the results into the appropriate
maps. Note that in the case of determining array types, there are no killed keys, while the `initialValues` map consists of a mapping from the first basic block to the types of each array argument to the method.

In fact, this algorithm by itself is insufficient to determine every array type. Sometimes, it is necessary to know one variable’s array type before another variable’s array type can be discovered. In reality, the compiler runs the algorithm several times, each time using information from the previous run to expand the set of generated mappings, until the algorithm produces the same results twice in a row. Once the compiler has determined the type of each relevant array variable at the beginning of each basic block, it is a relatively simple matter to determine the type of each relevant array variable within each basic block.

Once the program has compiled each method to its intermediate representation, it inline the “access” methods. Access methods are methods the compiler generates that are designed to assist in information hiding. Access methods are of three types: retrieving a private field, setting a private field, and calling a private method. Nested classes that have access to these private fields and methods use such access methods rather than directly accessing the fields and methods. Inlining these methods enables the compiler to correctly identify violations of the aliasing rules presented in section 2.1 when compiling the intermediate representation to data flow graphs.

After producing a sequence of statements for the intermediate representation, the compiler creates a corresponding control flow graph. The control flow graph is essentially the same as the sequence of statements, except that it includes nodes to represent the basic blocks and edges to represent conditional or unconditional jumps. Creating the control flow graph
makes it easier to compile the intermediate representation into a data flow graph.

4. Compiling to Data Flow Graphs

4.1. Introduction to Data Flow Graphs

The compiler represents each method in a program as a data flow graph, using a representation inspired by [5] and [6]. Data flow graphs are contrasted with control flow graphs (CFGs), which are a more common representation. Control flow graphs represent a program as a graph of basic blocks, each consisting of a sequence of statements. Each node has edges to the nodes to which it might subsequently branch. By comparison, a data flow graph represents a program as a directed, acyclic graph containing nodes representing various operations. Each node’s inputs are indicated by the incoming edges.

Data flow graphs are particularly appropriate for functional programming. Because no statement has any side effects, the predecessor-successor relationships represented in a data flow graph are a natural representation of the order in which computations must be performed. A data flow graph represents control flow implicitly using special constructs like conditional graphs.

To get a sense for how data flow graphs can represent a method, some examples ought to be of assistance. Figure 13 provides a data flow graph representation of the absolute value method.
The code for the absolute value function is:

```c
int abs(int x) {
    if (0 <= x)
        return x;
    else
        return -x;
}
```

The data flow graph for the absolute value method begins by comparing the input to 0. The result of this computation is provided as an input to a conditional graph, which is a subgraph of the method. Depending on the result of the comparison, the conditional graph executes either its left subgraph or its right subgraph. In the former case, it returns the input to the method; in
the latter case, it negates the input and returns the result.

As another example, consider the data flow graph in Figure 14 for the method `foo`, which creates a new array and initializes it to all ones.

Code:

```java
int[] foo(int size) {
    int[] array = new int[size];
    for (int i = 0; i < size; i++)
        array[i] = 1;
    return array;
}
```

Data Flow Graph:

![Data Flow Graph](image)

Figure 14: Data Flow Graph Representation of Building a New Array
In this example, the input is passed to a node that creates a new integer array of that length. Then, the result is passed to a loop graph. The loop graph consists of an initialization subgraph, a test subgraph, and a body subgraph. The initialization subgraph, which is the one on top, computes the initial values for the loop-dependent variables, array and i in this case. The test subgraph, which is on the left, checks whether i is less than size; if so, the method perform another iteration of the loop. The body of the loop, which is on the bottom-right, takes the values stored in the loop-dependent variables array and i at the beginning of one iteration and computes the values that are stored in these variables at the end of the iteration. The addition node in the body increments the loop counter. The node labeled \[\] takes as inputs an array, an index, and a value and outputs an array that is the same as the input array, but with the element of the given index set to the given value. The final value of array is used for the return value of the method.

Each data flow graph and subgraph contains a source node and a sink node. A source node accepts no inputs and outputs the inputs to the corresponding graph. Likewise, a sink node has no outputs, and its inputs are used as the outputs to the corresponding graph. To make data flow graphs easier to visualize, the source nodes and sink nodes are not shown in the diagrams for DFGs.

Although producing a correct data flow representation of a program is relatively difficult, the usage of data flow graphs generally simplifies the process of transforming and optimizing a given program. In control flow graphs, one is often concerned with keeping track of what is stored in each variable at any given time. Data flow graphs, by contrast, eliminate the need for such bookkeeping by abstracting the locations of intermediate results of the computation.
Determining where to store each of the intermediate values is left to the code generator, which is responsible for converting the data flow graphs to machine code.

4.2. Identifying Loops

The process of compiling the intermediate representation to its data flow graph representation is a relatively difficult one. To begin with, the compiler converts the sequence of statements in the intermediate representation into a control flow graph. Then, it order the nodes in the control flow graph into an array so that each loop occupies a contiguous range of elements in the array. Doing so makes it easier when it eventually compiles the loops.

As it turns out, it is not trivial to identify the loops in a particular program. A simple definition of a loop is "a maximal set of nodes for which there is a path from each node to every other node." However, this definition is insufficient for the purposes of the compiler. For example, consider the loop shown in Figure 15.

```c
for(int i = 0; i < n; i++) {
    for(int j = 0; j < n; j++) {
        if (i + j == 5)
            return j;
    }
}
```

Figure 15: Nested Loops

Using the simple definition of a loop, the node containing the statement `return j` is not contained in the inner loop. In this case, since the statement can be reached from the inner loop, one would say that it is contained in the inner loop. This suggests a refined definition of a loop:
A loop is a maximal set of nodes S for which there is a path from each node to every other node, along with the set of nodes T that cannot exit the loop without reaching a return statement.”

In fact, even this definition is insufficient for the purposes of the compiler. Consider the code shown in Figure 16.

```
int i;
for(int i = 0; i < n; i++) {
    if (i == 5) {
        i = 3;
        break;
    }
}
i += 2;
```

Figure 16: Interruption of Control Flow in a Loop

Here, the statement `i = 3` ought to be contained in the first loop, but according to the above definition, it is not in any loop. Cases like this pose an additional problem for compilation.

To address these problems, when the compiler orders the statements, it first orders them so that all loops occupy a contiguous range of nodes, if one excludes “dead end” nodes and “break” nodes. “Dead end” nodes are defined to be nodes that cannot exit the loops in which they appear without reaching a return statement, while “break” nodes are defined to be nodes that can be included in a loop but cannot reach the beginning of the loop. Then, the compiler “fixes” the dead end and break nodes so that they are in the correct positions.

The `orderByBeforeFix` method, in which the compiler establishes a partially correct ordering, appears in the appendix. The algorithm goes through the nodes in a particular order, so that the first node in each nested loop is visited before any other node in the nested loop and each
node that is not in a nested loop is visited before any of its successors. For each node, it determines whether the node is in a loop. If so, it computes the nodes in that loop, stores them in a group, and adds the group to a set of groups. Otherwise, it stores only the node itself in a group and adds that group to the set. After grouping the nodes, it orders the groups topologically, putting each group before all of its successors. Finally, it produces an ordering of nodes by going through the groups in order, recursively ordering each group and adding the nodes in order to the output list.

To identify the nodes contained in a loop, the compiler first locates every subsequent node that can reach the first node in the loop using dynamic programming. It checks each node that is a successor of some loop node to see whether it is a dead end. It adds such dead end nodes to the deadEnds set, and it adds each such node along with every node it can reach to the set of loop nodes. Then, the compiler remove each node with a predecessor that is not in the loop from the set of loop nodes.

Having roughly ordered the nodes, the compiler needs to fix the locations of break nodes and dead end nodes. It begins by computing the successor of each loop; that is, the node which is executed immediately after each loop in “normal” control flow. It uses the computeLoopSuccessors algorithm presented in the appendix.

Computing the successor of each loop is relatively complicated because there are cases in which one is constrained to make a dead end node the successor of a loop. For example, consider the code in Figure 17:
Outer: for(int i = 0; i < n; i++) {
 Inner: for(int j = 0; j < n; j++) {
 for(int k = 0; k < n; k++) {
 if (i + j + k == 6)
 break Inner;
 }
 if (i + j == 4)
 continue Outer;
 }
 return 3;
}

Figure 17: Interruption of Control Flow in Nested Loops

In this case, the compiler needs to ensure that the successor of the second for loop is the statement `return 3` rather than the statement `i++`. More generally, it needs to ensure that dead end nodes with predecessors in multiple loops are the successor of some loop.

The algorithm operates by identifying all dead end nodes that have predecessors in multiple loops. For each, it identifies the children of the lowest common ancestor of the loops that contain the predecessors of the dead end node. For instance, in the above code, the statement `return 3` is a dead end node that has predecessors in multiple loops, namely the inner two loops. The lowest common ancestor of these loops is the second loop, and the only child of this is the innermost loop. For each loop, the algorithm also identifies the set of nodes within the loop have a predecessor in an inner loop.

Next, the compiler orders the loops so that each loop appears before the loop in which it is enclosed, and it goes through the loops in order. The current loop will have a set of nodes X containing zero, one, or two nodes that have a predecessor in an inner loop, if one excludes break nodes. Each node in X will be either the successor of the loop or the node to which a continue statement from an inner loop jumps. There is also a set of nodes Y consisting of dead end nodes.
that need to be the successor of the loop or one of its ancestors. If X has no nodes, take a node from Y and make it the successor of the loop. If X has two nodes, make the earlier of the two the successor of the loop. If X has one node, the algorithm needs to determine whether the node may be the target of a continue statement from an inner loop. This is the case if every path from the start of the loop back to the start passes through the node. If the node may be the target of a continue statement, make an element of Y the successor of the loop; otherwise, make the node in X the successor.

Having computed the successor of each loop, the algorithm can proceed to fix the ordering of the nodes. The fixOrder method and the order method that makes use of it appear in the appendix.

4.3. Identifying If Statements

Another challenge related to the inability to directly express control flow statements in data flow graphs pertains to if statements. In the absence of explicit branching, the compiler expresses conditional statements in data flow graphs as DfgConditionalGraphs. Each DfgConditionalGraph accepts a special boolean input edge. If the input evaluates to true, the program executes the left subgraph of the DfgConditionalGraph; otherwise, it executes the right subgraph. The outputs of the subgraphs flow into DfgMergeNodes, each of which has one input per subgraph and one output. Each DfgMergeNode selects as its output the input that corresponds to the subgraph that was executed.

In order to be able to compile if statements, the first goal is to locate the beginning and end of each if statement. The beginning of an if statement is understood to refer to the first CFG
node containing a conditional branch for the if statement, while the end of an if statement refers to the node where a program continues execution after executing the if statement. To identify the beginning nodes, the compiler goes through the nodes in order, so that it visits each node before any of its successors (ignoring the edges to the beginning of each loop). Whenever it finds the beginning of an if statement, it computes its end and the beginning nodes of each of its branches. Then, it recursively identifies if statements that are contained in each of the if statement’s branches. The algorithm continues searching for the beginnings of if statements at the ending node of the if statement.

To compute the end of each if statement given its beginning, one may use the algorithm in Figure 18:

```java
void findReachableNodes(Node start, Node end, Loop loop, Set<Node> &reachable, Map<Node, Loop> enclosingLoops, Boolean isFirstCall)
    If start ∈ reachable
        Return
        reachable = reachable ∪ {start}
    If start = end
        Return
    Node enclosingLoop = enclosingLoops[start]
    Node loopStart
    If enclosingLoop ≠ null
        loopStart = enclosingLoop.start
    Else
        loopStart = null
    If (start = loopStart and Not isFirstCall) or enclosingLoop ≠ loop
        If enclosingLoop.successor ≠ null
            findReachableNodes(enclosingLoop.successor, end, loop, reachable, enclosingLoops, false)
        Else
            For succ in start.successors
                If succ ≠ loopStart
                    Loop loop2 = enclosingLoops[succ]
                    If loop2 = loop or (loop2 ≠ null and loop2.parent = loop)
                        findReachableNodes(succ, end, loop, reachable, enclosingLoops, false)
```
Node findIfStatementEnd(Node start, Node except, Map<Node, Loop> enclosingLoops, Map<Node, Set<Loop>> loopSuccessors, Map<Node, Int> nodeIndices)
Set<Node> reachable
 findReachableNodes(start, except, enclosingLoops[start], reachable, enclosingLoops, true)
 reachable = reachable - {except}

Loop enclosingLoop = enclosingLoops[start]
Node loopStart
If enclosingLoop # null
 loopStart = enclosingLoop.start
Else
 loopStart = null

Map<Node, Int> unreachablePreds
 unreachablePreds[start] = 0
PriorityQueue<Node> queue sorted by predicate(node1, node2)
If node1 # loopStart and node2 = loopStart
 Return node1
Else If node1 = loopStart and node2 # loopStart
 Return node2
Else If unreachablePreds[node1] = 0 and unreachablePreds[node2] > 0
 Return node1
Else If unreachablePreds[node1] > 0 and unreachablePreds[node2] = 0
 Return node2
Else If nodeIndices[node1] < nodeIndices[node2]
 Return node1
Else If nodeIndices[node1] > nodeIndices[node2]
 Return node2
Else
 Return null
queue = {start}
Set<Node> visited
Boolean first = true
While |queue| > 1 or first
 first = false
 Node node = First element in queue
 queue = queue - {node}
 visited = visited U {node}
Set<Node> ss
If enclosingLoops[node] = enclosingLoop
 ss = node.successors
Else
 ss = {enclosingLoops[node].successor}
For succ ∈ ss
 If succ = except
 Continue
 If enclosingLoops[succ] = enclosingLoop or (enclosingLoops[succ] # null and enclosingLoops[succ].parent = enclosingLoop)
 Int count = unreachablePreds[succ]
 If count = null
 //Compute the number of unreachable predecessors
 Set<Node> preds = succ.predecessors
For loop ∈ loopSuccessors[succ]
 If loop.parent = enclosingLoop
 preds = preds ∪ {loop.start}
 count = 0
 For pred ∈ preds
 If pred ∈ reachable and pred ≠ succ
 count = count + 1
 unreachablePreds[succ] = count
 queue = queue ∪ {succ}
 Else
 unreachablePreds[succ] = count - 1
 If |queue| > 0
 Node node = First element in queue
 If (enclosingLoops[node] = enclosingLoop or (enclosingLoops[node] ≠ null and enclosingLoops[node].parent = enclosingLoop)) and (enclosingLoop = null or node ≠ loopStart)
 Return node
 Else
 Return null
 Else
 Return null

Node findIfStatementEnd(Node start, Map<Node, Loop> enclosingLoops, Map<Node, Set<Loop>> loopSuccessors, Map<Node, Int> nodeIndices)
 Return findIfStatementEnd(start, null, enclosingLoops, loopSuccessors, nodeIndices)

Figure 18: Finding the End of an If Statement

Note that in the pseudocode representation of this algorithm, as in all pseudocode presented in this paper, an ampersand in front of a parameter indicates that changes to the parameter are reflected in the calling method; otherwise, changes are not reflected in the caller.

The general approach of the algorithm is to maintain a priority queue of nodes. It sorts the nodes by whether each of their predecessors that is reachable from the starting node has been visited yet, then by their indices in the previously established node ordering. At each iteration, it extracts an element from the queue and add its successors to the queue. It continues until the queue has one or zero elements left. The remaining element, if any, is typically the end of the if
Once the compiler has located the end of an if statement, it identifies its branches. Each if-else statement will have two branches, which begin at two particular nodes, while each if statement will have one branch, beginning at a particular node. For the sake of consistency, the compiler considers if statements without else branches to have two branches: one for the contents of the if statement and one at the end of the if statement.

Often, the branches of the if statement are simply the successors of the beginning node of the if statement. However, the ternary \(? :\) operator and the short circuiting behavior of the \&\& and \|\| operators pose a particular difficulty in identifying the branches, because in general, an if statement’s condition may consist of multiple nodes. Intuitively, the branches are the earliest disjoint groups of nodes beginning with “choke points” in the graph through which a program must pass to go from the beginning of the if statement to the end. The example in Figure 19 illustrates one occasion when it is difficult to programatically identify the branches of an if statement.

Code:

```c
if ((a ? b : c) || (d ? e : f))
    x = 1;
else
    return 2;
y = 3;
```
Data Flow Graph:

![Data Flow Graph](image)

Figure 19: Data Flow Graph Representation of a Complex Condition

To compute the branches of an if statement, the compiler uses the `findBranches` algorithm shown in Figure 20.

```java
void findBreakNodes(Node start, Node end, Set<Node> visited, Set<Node>& breakNodes, Map<Node, Loop> enclosingLoops, Map<Node, Loop> loopStarts)
    If start = end or start ∈ visited
        Return
        visited = visited U {start}
    For succ ∈ start.successors
        If succ = end
            Continue
        If succ.successors = {}
            breakNodes = breakNodes U {succ}
        Else If enclosingLoops[succ] = enclosingLoops[start]
            findBreakNodes(succ, end, visited, breakNodes, enclosingLoops, loopStarts)
        Else
            Loop loop = loopStarts[succ]
```

38
If loop \# null and loop.successor \# null and loop.parent = enclosingLoops[start]
findBreakNodes(loop.successor, end, visited, breakNodes, enclosingLoops, loopStarts)
breakNodes = breakNodes \cup \{\text{succ}\}

Node latestNodeBeforeBranches(Node start, Node end, Set<Node> &breakNodes, Map<Node, Int> nodeIndices, Map<Node, Loop> enclosingLoops)
Set<Node> reachable
findReachableNodes(start, end, enclosingLoops[start], reachable, enclosingLoops, true)
PriorityQueue<Node> reachableSorted sorted by predicate(node1, node2)
If nodeIndices[node1] < nodeIndices[node2]
Return node1
Else If nodeIndices[node1] > nodeIndices[node2]
Return node2
Else
Return null
reachableSorted = reachable
Map<Node, Set<Node>> reachable2
For node \in reachableSorted
If node.nextIfFalse \# null
List<Set<Node>> reachable3
For succ \in node.successors
If succ \in reachable and succ \notin breakNodes
Set<Node> reachable4 = reachable2[succ]
If reachable4 = null
reachable4 = \{\}
findReachableNodes(next, end, enclosingLoops[node], reachable4, enclosingLoops, true)
reachable2[succ] = reachable4
Add reachable4 to reachable3
Else
Add \{succ\} to reachable3
If (reachable[0] \cap reachable[1]) - \{except\} = \{
Return node

Pair<Node> findBranches(Node start, Node end, Map<Node, Loop> enclosingLoops, Map<Node, Int> nodeIndices, Map<Node, Loop> loopStarts)
Set<Node> breakNodes
findBreakNodes(start, end, {}, breakNodes, enclosingLoops, loopStarts)
Node latest = latestNodeBeforeBranches(start, end, breakNodes, nodeIndices, enclosingLoops)
Node enclosingLoop = enclosingLoop[start]
If enclosingLoops[latest] \# enclosingLoop
Return (latest, null)
Else If end \# null and ((latest.next = end and latest.nextIfFalse \notin breakNodes) or (latest.nextIfFalse = end and latest.next \notin breakNodes))
Return (end, findIfStatementEnd(start, end))
Else
Node.branch1 = latest.next
If enclosingLoop \# null and enclosingLoop.start = branch1
branch1 = \textit{null}
Node branch2 = latest.nextIfFalse
If enclosingLoop \# null and enclosingLoop.start = branch2
branch2 = \textit{null}
If branch1 = \textit{null}
branch1 = branch2
branch2 = \textit{null}
Return (branch1, branch2)

IfStatementInfo computeIfStatement(Node start)
Node end = findIfStatementEnd(start)
Pair<Node> branches = findBranches(start, end)
If branches.second = \textit{null}
end = \textit{null}
IfStatementInfo info
info.start = start
info.end = end
info.branch1 = branches.first
info.branch2 = branches.second
Return info

Figure 20: Pseudocode For findBranches

The general strategy of this algorithm is to identify the latest node that is before either of the branches. Such a node is usually the earliest node with two successors for which the set of nodes reachable from each of its successors is disjoint. In addition to computing the branches of an if statement, the computeIfStatement method also corrects for certain cases in which the end of the if statement was initially computed incorrectly.

4.4. Compiling Data Flow Graphs

To compile a method to a data flow graph, the compiler make use the Frame class. The intent of the class is to keep track of the edges that contain the values of each of the variables. The Frame class operates in a manner analogous to a scope in programming languages. Each
Frame stores a reference to a parent Frame, which may be null. Whenever the compiler needs to obtain the value of a variable in a frame, it sees whether the frame has an edge for that variable. If so, it uses that edge. If not, it recursively obtains the desired edge from the parent frame.

The usage of frames enable the compiler to separately keep track of the location of each variable in a given context. For instance, consider the Java program in Figure 21.

```java
x = 1;
if (condition)
    x = 2;
else
    y = 3 * x;
```

Figure 21: A Java Method Illustrating the Frame Class

When compiling the else branch of the if statement, the compiler need to determine the edge to which x corresponds. A naïve approach would use a global mapping from variable to edge. However, in this case, such a map would indicate to use the edge containing the value 2. If one uses frames instead, one will create new frames for each branch of the if statement, giving the correct result.

The Frame class stores additional mappings used to ensure that compilation properly implements the Fresh Breeze memory model. Recall that in order to meet the requirements of the memory model, programs do not modify objects and arrays in place; rather, they create altered copies of the objects and arrays and subsequently refer to these modified copies. Consider, for example, code in Figure 22.
Foo x = new Foo();
x.bar();
Foo y = x;
return y.baz();

Figure 22: A Java Method Illustrating the ClassReference class

In the last line of the code, the compiler needs to ensure that it calls baz on correct copy of x. To ensure correct behavior, the Frame class stores a mapping from each array or object variable to a ClassReference describing which object is stored in the variable. The Frame class also stores a mapping from each ClassReference to the edge that holds the current value of the array or object. In the above example, the compiler would create a ClassReference object c describing the Foo object that is constructed, and it would add a mapping indicating that x stores the value c. The statement x.bar() would create a method call node with an output indicating the altered copy of x. The compiler would update the mapping for the edge for c to be this output edge. In the statement Foo y = x, it would add a mapping from the variable y to the ClassReference c. When compiling the last statement, it would observe that y contains the value c, so it would look up the edge that contains that value and pass it as an input to the baz method.

Furthermore, each Frame needs to keep track of the ClassReference parent of each ClassReference as well as the object field or array index from which it was derived. Every time an object or array is changed, the appropriate changes need to be affected in the ancestors of the object. These changes are manifested by creating DfgArraySetNodes and DfgSetFieldNodes for the ancestors and updating the locations of the ancestor
ClassReferences to the outputs of these nodes.

Doing this entails causes certain inefficiencies in the resulting data flow graph. Consider, for example, the Java method in Figure 23.

```java
int[] foo(int[][] array) {
    int[] array2 = array[0];
    array2[0] = 1;
    array2[1] = 3;
    array2[2] = 7;
}
```

Figure 23: A Java Method Illustrating Unnecessary Array Setting

Each of the last three statements results in two array set operations: one that alters array2 and one that alters array. However, it is possible to execute the entire method with only four array set operations, three of which alter array2 and one of which alters array. For the time being, the compiler allows for such inefficiencies; correcting them is relegated to the optimization phase of compilation.

The process of compiling a control flow graph into a data flow graph is recursive. Having computed where a method’s loops and if statements are located, the compiler proceeds with a call to compileRange, which compiles a sequence of nodes, if statements, and loops to a data flow graph. Each individual node is compiled by calling compileNode, while if statements and loops are compiled using calls to compileIfStatement and compileLoop respectively. compileIfStatement and compileLoop will use compileRange as a subprocedure to compile the branches of if statements and the bodies of loops.

Compiling a single node in the control flow graph is relatively straightforward. It entails
going through the statements one-by-one and producing DFG equivalents for each. An addition statement, for example, will be compiled to an addition node that accepts the operands as inputs, while a statement that sets an array element is compiled to a node whose inputs are the array, the index of the element the program is setting, and the value to which it is setting the element. When compiling a statement, the compiler use the Frame class to determine what edges correspond to each of the input variables, and it updates the location of any variables that are assigned in the statement.

The compiler accounts for interruptions in control flow such as break statements, continue statements, and return statements using temporary boolean variables. It creates two variables for each loop, one for continuing and one for breaking, as well as one variable for return statements. The boolean variables indicate whether to skip different portions of the code. Each variable is initialized to true at the beginning of the method. Whenever the compiler encounters a continue, break, or return statement, it sets each of the subsequent variables to false. When compiling the code, it checks each such variable at the proper time. As an example, this would result in the transformation suggested in Figure 24.
int foo(int[][] array) {
 int sum = 0;
 for(int i = 0; i < array.length; i++) {
 for(int j = 0; j < array[i].length; j++) {
 if (array[i][j] < 0)
 break OuterLoop;
 sum++;
 if (array[i][j] == 0)
 return 0;
 sum++;
 if (array[i][j] == 10)
 continue;
 sum += array[i][j];
 }
 }
 return 1;
}
Transformed Code:

```java
int foo(int[][] array) {
    boolean continueVarInner = true;
    boolean breakVarInner = true;
    boolean continueVarOuter = true;
    boolean breakVarOuter = true;
    boolean returnVar = true;
    int returnValue = -1;
    int sum = 0;
    for(int i = 0; breakVarOuter && i < array.length; i++) {
        for(int j = 0; breakVarInner && j < array[i].length; j++) {
            if (array[i][j] < 0) {
                continueVarInner = false;
                breakVarInner = false;
                continueVarOuter = false;
                breakVarOuter = false;
                if (continueVarInner)
                    sum++;
            }
            if (returnVar)
                returnValue = sum;
            return returnValue;
        }
    }
}
```

Figure 24: Transformation Performed To Eliminate Interruption of Control Flow

While this code would be relatively inefficient if executed directly due to the extensive use of temporary variables, optimization ought to eliminate this problem. In particular, the
unused variable `continueVarOuter` would be eliminated during optimization, while `returnVar` and `breakVarOuter` would be combined into a single variable. After this optimization, the compiler could correct inefficiencies introduced by the remaining temporary boolean variables when the data flow graph is converted into Fresh Breeze machine code. In general, this conversion process could look for occasions when variables contain known constants and replace them with the appropriate branching instructions.

In some cases, it is not yet known whether a given variable is storing an object or an array. It is helpful to compute this information, in order to open up potential opportunities for optimization. To this end, before beginning to compile a data flow graph, the compiler computes the type of each object or array variable in the intermediate representation at each location in the code. To do so, it uses the `doFixedPointMap` algorithm described in section 3. Each statement that uses a variable as an array generates a mapping from that variable to the array datatype, while each statement that uses a variable as an object generates a mapping from that variable to the object datatype.

Compiling the condition of an if statement takes special care, as the condition may consist of more than one node in the control flow graph. Figure 25 contains an example of an if statement whose condition consists of multiple CFG nodes, along with a possible DFG representation of the condition.
Code:

\[a \lor (b \land c) \]

Data Flow Graph:

Note that as it stands, the above data flow graph is less efficient than the original program, since it makes use of temporary variables to store boolean values. However, any such inefficiencies could be corrected when the data flow graph is converted into Fresh Breeze machine code by substituting branching in place of temporary booleans. This would allow the compiler to recover the original, branch-based approach to the computation.

To compile a given if statement's condition, the compiler creates temporary variables for
each of the nodes in the condition other than the first. Each variable represents whether the program should execute the node. It sets the values of these variables to be false in the current Frame. It also creates a temporary variable representing whether it will jump to the first branch or the second branch. It creates a new Frame and compiles the first node in the condition by a call to compileNode. Then, the compiler updates the appropriate temporary variables within the context of the new Frame. For example, say that E is the edge indicating whether to jump to the first successor or to the second successor of the node. Also, suppose that if this value is true, the program jump to a node X, which is not one of the branches, and if it is false, it jump to the “true” branch of the if statement. In this case, the compiler would update the condition for X to be the edge E, and it would update the condition for the if statement to be the negation of this edge.

Having compiled the first node in the condition, it proceeds to the second node. The second node is only executed if its temporary variable is true, so it needs to create a DfgConditionalGraph for the node. The compiler creates a new Frame for the second node and compiles it with another call to compileNode. Then, the compiler updates the appropriate temporary variables based on the result of that node’s condition, as it did with the first node. Because the locations of these variables are updated in the context of the new frame, changes to such variables will naturally be manifested in the DfgConditionalGraph’s merge nodes, with one input to each of the merge nodes flowing from the old value of the variable and one flowing from the new value. The compiler continues compiling the remaining nodes in the condition in the same manner. Finally, it can compile the body of the if statement into a DfgConditionalGraph, using as the condition the temporary variable for the if statement.
5. Checking the Aliasing Restrictions

The compiler is designed to check the input programs to ensure that they meet the aliasing restrictions detailed in section 2.1. Checking the seventh aliasing rule, which forbids $==$ and $!=$ under certain circumstances, is a simple matter of scanning the intermediate representation of the program for illegal uses of the operators. The remaining checks require the compiler to make use of information regarding the ancestors of objects and arrays. The checks are performed as it compiles a method, since it already has the necessary information regarding objects’ and arrays’ ancestors.

To check aliasing rule 1, which forbids any argument to a method call from being a descendant of any other argument, the compiler performs the necessary check whenever compiling a method call. For each argument, it checks the argument and each of its ancestors to see if its ClassReference matches the ClassReference of any of the other arguments. To check for violations of rule 2, whenever the compiler encounters a return statement, it checks to see whether the return value is a descendant of any of the arguments to the method. If a walk up the tree of ancestors reveals that this is the case, it raises an exception. To prevent violations of rule 3, which only allows a programmer to set an object’s parent if it is known to have no parent, the compiler performs a check whenever an array’s element or an object’s field is being set. If the object to which it is being set has a known parent or is an argument to the method, it fails the check.

Rules 4, 5, and 6 are a bit trickier, as they require the compiler to ensure that certain objects and arrays are not accessed or altered. In order to check for violations of these rules, in
each Frame, it keeps track of which ClassReferences may not be accessed and which may not be altered. Each time it compiles a statement that accesses or alters an object or array, it checks the Frame to see whether it and all of its ancestors may be accessed or altered; if not, the compiler raises an exception.

In order to disallow altering an object whose parent depends on which branch was taken, in violation of rule 4, the compiler needs to be sure to mark such ClassReferences as unalterable. Whenever it finishes compiling a DfgConditionalGraph, it checks each ClassReference that was changed by one of the branches' Frames to see whether it has the same parent in each branch. For each one whose parent is ambiguous, it indicates that the ClassReference may not be altered. Also, whenever the compiler encounters a statement setting an array element or an object's field to some array or object, it indicates that the ClassReference may subsequently be altered, since its parent is now known.

To prevent violations of rule 5, whenever an array or object is altered, the compiler find the highest array ancestor of the array and mark each of its children as unable to be accessed or altered, aside from the one that is an ancestor of the array or object that is being altered. For rule 6, whenever an array is altered, it goes through its children and mark them as unalterable.

There are some aliasing violations that are not caught in a single pass of compilation. These cases arise when there is looping. Consider, for example, the method in Figure 26.
void foo(Foo foo, Foo foo2) {
 for(int i = 0; i < 10; i++) {
 if (i == 5)
 foo = foo2;
 else
 foo.bar = new Bar();
 }
}

Figure 26: An Aliasing Violation in a Loop

This code violates rule 4 because in the statement foo.bar = new Bar(), the identity of the parent of foo is unknown. However, a single pass through the loop will not be able to identify this violation. To solve this problem, the compiler compiles each loop twice and discarding the results of the second compilation. The second pass through the above loop would be aware that the parent of foo is unknown, so it would reject the method. This solution, while inelegant and inefficient, is exceedingly simple, requiring only three lines of code. Note that there is undoubtedly a more elegant but substantially more complex solution.

6. Optimization

6.1. Overview of Optimization

The compiler performs several optimizations on the data flow graph. These optimizations include classical optimizations, which are commonly performed on control flow graphs, optimizations that are specific to data flow graphs, optimizations that are specific to Java, and optimizations designed for the Fresh Breeze memory model.

Each optimization is implemented as a transformation that modifies a data flow graph in
place. The compiler performs the optimizations on the data flow graph for each method in no particular order. It repeatedly applies them to a given DFG so that opportunities for optimization that are uncovered by one optimization may be utilized by another optimization. It repeats the optimizations until a fixed point is reached; that is, until each optimization indicates that it cannot optimize the DFG any further.

Some optimizations do not exactly preserve the behavior of the original program, due to imprecision and special cases regarding floating point numbers. For example, code is optimized in the form shown in Figure 27:

Original Code:

```c
float foo(float x, float y, float z) {
    return (x + y) * (x + z + y);
}
```

Optimized Code:

```c
float foo(float x, float y, float z) {
    float temp = x + y;
    return temp * (temp + z);
}
```

Figure 27: An Imprecise Floating Point Optimization

The optimization slightly alters the results of the method, since due to imprecision in floating point numbers, \(x + z + y \) is not exactly equivalent to \(x + y + z \). Because such optimizations alter methods' results, a compiler flag enables the user to disable them (more
precisely, to alter the optimizations’ behavior).

Some of the optimizations make use of DfgCommutativeOpNodes. Such a node represents an operation that is commutative and associative, such as addition and xor. Unless the user sets the compiler flag mentioned previously, floating point addition and multiplication are treated as commutative and associative, although such operations are not associative, strictly speaking. DfgCommutativeOpNodes are helpful because, for example, they make it more obvious that $x + y + (-x)$ can be simplified to y, where x and y are both integers.

Before performing any optimizations, the compiler does a transformation that is designed to reveal opportunities for optimization. It replaces each subtraction operation $x - y$ with the addition $x + (-y)$ and, if imprecision in floating point operations is permitted, each floating point division x / y with the multiplication $x \ast (1 / y)$, where $1 / y$ is treated as a unary operation on y. Both of these transformations allow the compiler to combine several operations into a single DfgCommutativeOpNode, making it easier to identify occasions for optimization. For example, these transformations will make it easy to transform $x / y / z$ into $x / (y \ast z)$, saving an expensive division operation.

6.2. Classical Optimizations

One of the optimizations the compiler uses is dead code elimination. To perform dead code elimination, it identifies every needed node in the graph by performing a search from each sink node. For each node N, it checks the nodes that have an output of N as an input. It discards each such node, causing them and each node that uses their results to be garbage collected at
some point in the future. This optimization takes linear time.

Constant folding is another classical optimization the compiler performs on data flow graphs. To do constant folding, it finds each node in the graph that performs a binary or unary operation and that has constant inputs. It simplifies each such node by substituting the appropriate constant in place of its output. For example, such an optimization would replace the output to $3 + 7$ with the constant 10. This also takes linear time.

The compiler also performs algebraic simplification on the data flow graph. Algebraic simplification is essentially a set of pattern matching rules that allow the compiler to simplify a data flow graph. One simplification is the removal of the identity from addition, multiplication, bitwise and, bitwise or, and xor operations. For example, the expression $0 + x$ is simplified to x. Another simplification is the removal of redundant promotions or demotions. For example, \texttt{itob(btoi(true))} is simplified to true. This simplification eliminates some inefficiency introduced when converting the Java bytecode into its intermediate representation. The compiler performs several additional simplifications that are not described here because they are so numerous and simple. The optimization takes $O(n)$ time.

Loop-invariant code motion provides further opportunities for optimizing a data flow graph. The optimization entails identifying nodes in a loop’s body that flow directly from the loop-invariant inputs to the graph, rather than from loop-dependent variables, and hoisting such nodes out of the loop. The optimization is relatively easy to implement, using only about 200 lines of code, and operates in linear time.

Another possible optimization is method inlining. To do inlining, one would first identify occasions in which one should inline a method using some sort of heuristic. Then, one would
copy the graph for each method that one is inlining and insert it in place of each method call node where it is being inlined. Inlining takes linear time.

Common subexpression elimination enables the compiler to get rid of repeated computations of the same value. For the most part, this is straightforward. The compiler builds a map from expressions to nodes and use it to identify multiple occurrences of the same expression. When it finds a repeated expression, it retains only one occurrence of the expression and have its output flow to the other places where the expression’s result is used. This approach allows the compiler to eliminate operations as diverse as additions, method calls, checking the type of a class, and entire subgraphs of a method.

The use of DfgCommutativeOpNodes allows the compiler to make use of more advanced common subexpression elimination. If two DfgCommutativeOpNodes have the same operation and have at least two identical inputs, it can simplify them by computing some portion of the commutative operation a single time. For instance, the compiler can perform the optimization suggested in Figure 28.

Original Code:

```c
int x = a + c + b;
int y = a + b + d;
```
Optimized Code:

```
int temp = a + b;
int x = temp + c;
int y = temp + d;
```

Figure 28: Optimizing Common Subexpressions

For each commutative and associative operation, the algorithm maintains a priority queue of the DfgCommutativeOpNodes for that operation sorted by the number of remaining inputs. It retrieves the node X with the most such inputs and compute the DfgCommutativeOpNode Y that has the most inputs in common with it. If there is an overlap of more than one input, it creates a new DfgCommutativeOpNode Z whose inputs are the overlapping inputs. It removes the overlapping inputs from X and Y and replace them with the output of Z.

While this approach works well in typical cases, it is not optimal, relying on heuristics in an attempt to get relatively good results. It is worth considering how one might further reduce redundant computations.

In the worst case, for each repeated computation of a particular value, common subexpression elimination will create a number of edges that is linear in the size of the program. For this reason, the optimization has a quadratic worst-case running time.

6.3. Other Optimizations

Several of the optimizations used by the compiler are specific to data flow graphs. One such optimization is “constant merging”, an optimization that operates on DfgConstantNodes,
which output fixed constants. It takes DfgConstantNodes that output the same constant and replaces them with references to one DfgConstantNode. While this optimization has no effect on the speed of the resulting program, it reduces the space used by the data flow graph, makes it faster to perform future optimizations, and makes it easier to read output representing a data flow graph. The optimization takes $O(n)$ time.

In the “graph removal” optimization, the compiler locate “free-standing” subgraphs; that is, graphs other than conditional graphs and loop graphs and those contained in conditional graphs or loop graphs. It removes each such subgraph by moving its nodes to the graph in which the subgraph lies. Again, this does not affect the speed of the compiled method, but does make it easier to work with the data flow graph, at the expense of linear running time.

In the “graph port elimination” optimization, the compiler removes graphs’ input and output ports and convert loop-dependent variable ports into loop-independent variable ports. To perform the optimization, it goes through each of the method’s subgraphs. It removes each of the output ports that does not flow into some other node. The compiler checks each input port to each graph’s sink node to find pairs of input ports that flow from the same output, and it removes one port from each such pair. In addition, it removes input ports to each graph’s sink node that flow directly from the source node.

To simplify loop graphs, the compiler looks for pairs of loop-dependent variables that are equivalent; that is, pairs of loop-dependent variables that are initialized from the same output and that are set to the same output value at each iteration. It retains only one variable port in each such pair. Also, it finds loop-dependent variable ports that are, in fact, loop-independent. Such ports are those that flow directly from an output port of the source node of the loop body’s graph.
to the corresponding input port in the sink node. It makes these nodes instead flow directly from the loop graph's source node to the loop body's graph. Lastly, the compiler remove loop-dependent variables that are never used, which are those variables that do not flow to any nodes from the loop body's source node or from the loop graph itself. Loop port elimination has linear running time.

There are also several optimizations one can perform on conditional graphs in linear time. If the condition of such a graph is a constant, the compiler can replace the conditional graph with the appropriate subgraph. It can also simplify conditional graphs whose condition flows from a node that inverts its boolean input by reversing the true and false subgraphs and changing the condition to the input to the inverting node. If the graph's condition flows into one of the nodes in one of the conditional graphs subgraphs, the condition's value is known to be true in the case of the left subgraph and false in the case of the right subgraph, so the compiler can substitute the appropriate boolean constant. It can replace any output to the conditional graph that is the same in both branches with its value in the two branches. Any other output to the graph that is a boolean can be replaced with either a reference to the graph's condition or to the inverse of the graph's condition. The compiler can also simplify pairs of conditional graphs whose conditions are the same or are opposites of each other to a single conditional graph.

Furthermore, the compiler can eliminate operations that are performed on conditional graphs' outputs whose values are constant, regardless of which branch is taken. For example, it can perform the optimization suggested in Figure 29.
Original Code:

```java
if (a) {
    b = 1;
    c = 2;
}
else {
    b = 3;
    c = 4;
}
d = b + c;
```

Optimized Code:

```java
if (a) {
    b = 1;
    c = 2;
    d = 3;
}
else {
    b = 3;
    c = 4;
    d = 7;
}
```

Figure 29: Optimizing a Conditional Statement

The compiler can perform a few optimizations that rely on specifics of the Java language. Whenever a program retrieves the length of an array that was created within the method, one can simply use the length that was supplied when creating the array. More generally, if a variable may store one of multiple arrays created in the method and all of these arrays were created with the same length, the program may use that length directly rather than retrieving the array's length. Wherever a program retrieves an element of an array that was just created, this value is known to be 0 (or false or null), provided that the index of the array is known not to be out of
bounds, so the program can use the appropriate constant value instead.

Also, the compiler can use known information about an object’s type. If a program checks whether a variable is an instance of a particular object type, the compiler can check all possible types of objects that may be stored in that variable. If they all match the desired type, it can replace the check with a check for null. If they all fail to match the desired type, it can replace the check with the constant “false”. Since `java.lang.Object` is the superclass of every object, it also replaces checking whether a given object is an instance of `java.lang.Object` with checking whether the object is null. Each of these optimizations runs in linear time.

Other optimizations are helpful for the write-once memory model of the Fresh Breeze architecture. Particularly useful in this regard is the “repeated set elimination” optimization. The optimization replaces repeated setting a given array’s element a given object’s field to a single setting. For example, this would convert the statements `array[x] = 0; array[x] = 1;` into the single statement `array[x] = 1;`

This optimization is particularly helpful when objects with ancestors are altered. Consider the code in Figure 30.

```java
int[] x = y[0][1][2];
x[0] = 1;
x[1] = 17;
x[2] = 4;
```

Figure 30: Repeated Set Elimination

In a naïve approach, an altered copy of `y` is created every time `x` is changed. Repeated set
elimination transforms a graph that uses the naïve approach to one that creates a single altered copy of y.

To perform repeated set elimination, the compiler needs to identify groups of edges that represent the “same” object or array. This process is a matter of finding pairs of edges with the “same” object or array and using an algorithm to use these pairs to compute a set of edges for each given object. For example, the output of a DfgArraySetNode is the “same” array as the input array, so these edges would comprise one such pair.

Having identified the relevant objects and arrays, the compiler needs to determine which array elements and object fields are “live” at which points in the code. Live elements and fields are understood to be elements and fields that may be used before they are reassigned. Note that elements and fields may be live at some points of the graph and dead at other points. Determining which elements and fields are live is essential to ensure correct behavior, as in the method in Figure 31.

```java
void foo(int[] array) {
    array[0] = 5;
    int x = array[0];
    array[0] = 10;
    return x;
}
```

Figure 31: Usage of Live Elements

In the method `foo`, it is not permissible to eliminate the statement `array[0] = 5`. This is because the `array[0]` is live, since it is accessed in the statement `int x = array[0]` before it is reassigned in the statement `array[0] = 10`. More generally, eliminating setting an
object's field or an array's element is only permissible if the field or element is dead.

To compute the liveness of each element and field at any given point in the graph, the compiler relies on fixed-point computation, using the algorithm described in the appendix. As in live variable analysis for control flow graphs, the computation goes through the graph backwards. For each node, it identifies the live fields and elements that are "generated," which are the fields and elements that are used by the node, and the live fields and elements that are "killed," which are the fields and elements that are reassigned by the node. The compiler represents a given object's field using the group of edges that correspond to that object and the particular field the program is retrieving. Likewise, it represents an array element using the group of edges corresponding to the array and the edge representing index of the element in question. For the fixed-point computation, the compiler also needs to indicate that every field and element of each return values is live at the sink node of the method's data flow graph, as are all of their descendants. Then, it uses the ordinary algorithm for fixed point computation presented in the appendix to determine liveness. While the algorithm is dealing with more nodes than usual, since each operation rather than each basic block represents a single node, the algorithm is still correct.

Due to a bit of sloppiness in the above approach, the algorithm misses some opportunities for optimization. For instance, consider the method in Figure 32.
void foo(int[][] x) {
 int[] y = x[0];
 y[0] = 5;
 x[0] = y;
 y[0] = 10;
}

Figure 32: An Opportunity for Repeated Set Elimination

In this case, it is possible to remove the assignment $y[0] = 5$. However, the algorithm takes a conservative approach, labeling the elements of y as live immediately before the statement $x[0] = y$. With some modification that entails keeping track not only of arrays’ immediate elements, but also of their elements’ elements and so on, the algorithm could be designed to identify this and similar occasions for optimization.

Repeated set elimination takes $O(n^5)$ running time, where n is the size of the program being compiled, because of its usage of the fixed-point algorithm. The universe of values provided to the algorithm has a size $O(n)$. The fraction of iterations in the fixed-point algorithm that have an effect is 1 in $O(n)$, since the size of the changed variable is at most $O(n)$ and it decreases by one each time that an iteration has no effect. At each iteration of the fixed-point algorithm that has an effect, the number of live elements and fields associated with a given node increases by at least one. Since there are at most $O(n)$ nodes, each of which may have a total of $O(n)$ live elements and fields, there will be a quadratic number of iterations that have an effect. Each iteration must process each of the $O(n)$ nodes. Doing so requires taking the union of two bit sets, which takes linear time. Multiplying these values gives a running time of $O(n^5)$. However, the fixed-point algorithm is generally accepted to run quickly in practice. The remainder of the repeated set elimination optimization takes linear time.
Another transformation opens further opportunities for optimization. The transformation has to do with multiple references to the “same” array or object. Consider, for example, the code in Figure 33.

```java
int a = x[0];
x[1] = 5;
int b = x[0];
```

Figure 33: Repeated Access of a Single Array Object

One can optimize the last statement to `int b = a`. However, this optimization is not immediately apparent when looking at the data flow graph. This is because in the last statement, `x` refers to the output of the `DfgArraySetNode` for the statement `x[1] = 5`. To make this optimization more apparent, the compiler attempts to move array accesses and the like “higher” in the graph. In this case, the compiler could move the array access in the last statement so that the array input is the same as the array input in the first statement. Now that there are two `DfgArrayGetNodes` with the same two input edges, common subexpression elimination can identify the array access as a common subexpression, allowing the compiler to optimize the last statement. More generally, the goal is to move accessing an array’s element or an object’s field, retrieving the length of an array, comparing an array or object with null, and checking the type of an object as “high” in the graph as possible, so that the compiler uses the “highest” possible array or object edge as input.

To find these edges, the compiler relies on a relatively simple subprocedure `sameEdge` that identifies “local” edges that hold the “same” array or object as a given edge and are higher than the given edge. For example, if the compiler is looking at the output to a
DfgArraySetNode, it know that the output edge holds the “same” array as the input array. If it is looking at the output to the source node of a loop body, it knows that the edge holds the “same” array or object as the corresponding input to the body’s sink node (the loop variable’s value at the end of an iteration) and the input to the body (the loop variable’s initial value).

The aim is to find the earliest possible “source” of a given object or array. Possible sources include outputs to nodes that create new objects or arrays and the return values of methods.

Accessing an array’s element or an object’s field are treated differently from the other operations because elements and fields are not constant throughout an object’s lifetime. In this case, the compiler treat the outputs of DfgArraySetNodes and DfgSetFieldNodes as potential sources. For these two particular operations, it aims to find the earliest single source for the array or object in question. Note that it is possible for an edge for an object or array to have multiple potential sources; in this case, there is no higher edge that the compiler may use in its place. For example, consider the code in Figure 34.

```java
void foo(int[] x) {
    if (x.length > 2)
        x[2] = 2;
    else
        x = new int[3];
    x[0] = 0;
    x[1] = 1;
    return x[2];
}
```

Figure 34: Identifying Source Edges

In the statement `return x[2]`, the compiler initially use the output of the statement
\(x[1] = 1 \) as the array input. It would be preferable to use a higher edge in place of this input. The compiler is permitted to use the output to \(x[0] = 0 \) in its place. However, it may not use the output to \(x[2] = 2 \) or \(x = \text{new int}[3] \), because neither is the sole source of the array in question. As such, the compiler needs an algorithm that identifies the output to \(x[0] = 0 \) as the correct edge to use.

The algorithm uses dynamic programming to identify the sole source of a given object or array. If \(\text{sameEdge} \) returns a source edge, it returns that edge. Otherwise, it recurses on each of the edges the subprocedure returned. If each gives the same source edge, it returns that edge. Otherwise, if the current edge is the output to a \(\text{DfgArraySetNode} \) or a \(\text{DfgSetFieldNode} \), it returns the edge. Otherwise, it returns null, indicating that there is no single source edge.

When dealing with operations other than getting an array’s element or an object’s field, it is simpler to identify what source to use. In this case, the compiler does not need to find the sole source of a given object or array; it may use any source edge. Now rather than following several edges to their sources, the compiler select a single “best” edge to follow for each given node. For example, if it is considering the output to a loop body’s source node, it follows the input to the body (the loop variable’s initial value) while ignoring the corresponding input to the body’s sink node (which contains the loop variable’s value at the end of an iteration).

This optimization has quadratic running time in the worst case. This is because identifying the source of a given edge, an operation that is performed a linear number of times, takes a linear amount of time.
7. Future Work

While this project entailed much work on the Fresh Breeze compiler, future work could build on this. For one, under the current implementation, the optimization process is particularly slow, taking about a minute to optimize the 17,000 lines of code in test cases. It is worth considering how its speed could be improved. Although most or all of the algorithms the compiler uses are linear or quadratic, it is likely that at least some of their asymptotic running times could be improved. Also, the intermediate representation of the program is particularly sloppy, using lots of temporary variables. Perhaps performing some basic optimization on the intermediate representation, such as copy propagation and dead code elimination, before compiling to a data flow graph would save time on the whole. In addition, rather than applying the optimizations in an arbitrary order, one could perhaps order them more efficiently. Profiling the program's execution may reveal additional ways to improve speed without substantial algorithmic changes.

Some of the optimization algorithms can be improved to produce better data flow graphs. For example, the algorithms the compiler uses for repeated set elimination and common subexpression elimination are known to be suboptimal. Details regarding how these algorithms might be improved are suggested in sections 6.1 and 6.3.

While the compiler is quite successful at producing an optimized data flow graph representation of a given method, it does not yet target Fresh Breeze machine code. Future work could focus on developing a code generator to convert the DFGs to machine code.

Additional work could design the compiler to reveal opportunities for further optimizations. In particular, work could be done to deal more efficiently with arrays, which due
to the constraints of the Fresh Breeze memory model each have to be stored as a tree rather than as a single linear block of memory. To this end, one could add special nodes to identify occasions on which an array’s elements are set in order. This would allow these operations to be compiled in such a manner that one does not have to walk the entire depth of the tree each time an element is set. Furthermore, one could introduce nodes that indicate when successive iterations of a loop are independent of each other. By identifying independent iterations, loops could be divided into several pieces, each of which is worked on by a separate processor or core.

The current implementation of the compiler does not handle exceptions, including trying to access an element of an array that is out of bounds. Also, the compiler will get rid of loops whose results are not used. This is technically incorrect, since the loop might be an infinite loop. Future work could add support for exceptions and properly handle such infinite loops. One possible implementation of these exceptional cases would be to have special exception edges as outputs to nodes that might throw exceptions and loops that might be infinite loops.

Appendix A: Pseudocode Listings

A.1. Fixed Point Computation

Map<N, Set<V>> doFixedPointUnion(Map<N, Set<V>> initialValues, Map<N, Set<V>> generated, Map<N, Set<V>> killed, Map<N, Set<N>> successors)
Map<N, Set<N>> predecessors
For (node, nodes) ∈ successors
 For node2 ∈ nodes
 predecessors[node2] = predecessors[node2] U {node}
Map<N, Set<N>> in
Map<N, Set<N>> out
Set<N> changed
For (node, succ) ∈ successors
 If initialValues[node] = null
changed = changed \cup \{node\}
out[node] = generated[node]

Else
in[node] = initialValues[node]
out[node] = in[node] \cup generated[node] - killed[node]

While changed \neq {}
N node = Any element in changed
changed = changed - \{node\}
Set<V> newIn
For node \in predecessors[node]
newIn = newIn \cup out[node]

If newIn \neq in[node]
in[node] = newIn
out[node] = newIn \cup generated[node] - killed[node]
For node2 \in successors[node]
 changed = changed \cup \{node2\}

Return in

A.2. Identifying Loops

Boolean canReach(Node start, Node goal, Set<Node> nodes, Set<Node> &visited, Set<Node> &canReach, Set<Node> &cantReach)
If start \in canReach
 Return true
Else If start \in cantReach
 Return false

Boolean r
If start \notin nodes or start \notin visited
 r = false
Else
 visited = visited \cup \{start\}
If start = goal
 r = true
Else
 r = false
For succ \in start.successors
 If canReach(succ, goal, nodes, visited, canReach, cantReach)
 r = true
 Break
If r
 canReach = canReach \cup \{start\}
Else
 cantReach = cantReach \cup \{start\}
Return r

Boolean checkDeadEnd(Node node, Set<Node> nodes, Set<Node> &visited)
If node \notin nodes
 Return false
If node \in visited
 Return true
visited = visited \cup {node}
For succ \in node.successors
 If Not checkDeadEnd(succ, nodes, visited)
 Return false
Return true

Boolean checkDeadEnd(Node node, Set<Node> loopNodes, Set<Node> nodes,
Set<Node> &visited)
 For pred \in node.predecessors
 If pred \notin loopNodes
 Return false
 If checkDeadEnd(node, nodes, visited)
 For node2 \in visited - {node}
 For pred \in node2.predecessors - visited
 Return false
 Return true
Else
 Return false

List<Node> computeLoopNodes(Node start, Set<Node> nodes, Set<Node> &deadEnds)
 Set<Node> loopNodes
 Set<Node> canReach
 Set<Node> cantReach
 For node \in nodes - {start}
 If canReach(node, start, nodes, {}, canReach, cantReach)
 loopNodes = loopNodes \cup {node}
 Set<Node> loopNodes2 = loopNodes
 For node \in loopNodes
 For succ \in node.successors - loopNodes
 Set<Node> visited
 If checkDeadEnd(succ, loopNodes, nodes, visited)
 loopNodes2 = loopNodes2 \cup visited
 deadEnds = deadEnds \cup {succ}
 Set<Node> loopNodes3 = {start}
 For node \in loopNodes2 - {start}
 If node.predecessors - loopNodes2 = {}
 Add node to loopNodes3
 Return loopNodes3

List<Group> topologicalSort(Set<Group> groups, Map<Group, Set<Group>>
successors)
 Map<Group, Int> numPredecessors
 For group \in groups
 For succ \in successors[group]
 numPredecessors[succ] = numPredecessors[succ] + 1
Set\langle Group\rangle remainingGroups = groups
PriorityQueue\langle Group\rangle sortedGroups \text{ sorted by predicate}(group1, group2)
\text{ If } numPredecessors[group1] < numPredecessors[group2]
\text{ Return } group1
\text{ Else If } numPredecessors[group1] > numPredecessors[group2]
\text{ Return } group2
\text{ Else}
\text{ Return arbitrary comparison of } group1 \text{ and } group2
sortedGroups = groups

List\langle Group\rangle groups2
\textbf{While } sortedGroups \neq \{}
\text{ Group group = First element in sortedGroups}
\text{ Add group to groups2}
\text{ sortedGroups = sortedGroups - \{group\}}
\text{ For } group2 \in \text{ successors[\{group\}]}
\hspace{1em} numPredecessors[group2] = numPredecessors[group2] - 1
\text{ Return } groups2

List\langle Node\rangle orderBeforeFix(Set\langle Node\rangle nodes, Node start, Map\langle Node, Node\rangle &loopStartToLoopEnd, Set\langle Node\rangle &deadEnds, Boolean isInLoop)
Set\langle Node\rangle remainingNodes = nodes
Set\langle Node\rangle seen
\textbf{If } isInLoop
\hspace{1em} seen = start.successors \cap remainingNodes
\hspace{1em} remainingNodes = nodes - \{start\}
\textbf{Else}
\hspace{1em} seen = \{start\}

Map\langle Node, Int\rangle numPredecessors
\textbf{For } node \in \text{ remainingNodes}
\hspace{1em} numPredecessors[node] = |node.predecessors|

PriorityQueue\langle Node\rangle sortedNodes \text{ sorted by predicate}(node1, node2)
\text{ If } node1 \in \text{ seen and } node2 \notin seen
\text{ Return } node1
\text{ Else If } node1 \notin seen and node2 \in seen
\text{ Return } node2
\text{ Else If } numPredecessors[node1] < numPredecessors[node2]
\text{ Return } node1
\text{ Else If } numPredecessors[node1] > numPredecessors[node2]
\text{ Return } node2
\text{ Else}
\text{ Return arbitrary comparison of } node1 \text{ and } node2
sortedNodes = remainingNodes

Set\langle Group\rangle groups
Map\langle Node, Group\rangle nodeToGroup
\textbf{While } sortedNodes \neq \{}
\text{ Node node = First element in sortedNodes}
\text{ Group group}
\text{ If } numPredecessors[node] = 0 \text{ or } node.successors = \{
\hspace{1em} group.nodes = \{node\}
Else
 group.nodes = computeLoopNodes(node, remainingNodes, deadEnds)
 groups = groups ∪ {group}
For node ∈ group
 sortedNodes = sortedNodes - {node}
 remainingNodes = remainingNodes - {node}
 nodeToGroup[node] = group
For node ∈ group
 For succ ∈ node.successors ∩ remainingNodes
 numPredecessors[succ] = numPredecessors[succ] - 1
 seen = seen ∪ {succ}
Map<Group, Set<Group>> groupSuccessors
For (node, group) ∈ nodeToGroup
 For succ ∈ node.successors
 If nodeToGroup[succ] != group
 groupSuccessors[group] = groupSuccessors[group] ∪ {nodeToGroup[succ]}
List<Group> groups2 = topologicalSort(groups, groupSuccessors)
List<Node> nodes2
If isInLoop
 Add start to nodes2
For group ∈ groups2
 If |group.nodes| = 1
 Add group.nodes to nodes2
Else
 List<Node> loopNodes = orderBeforeFix(group.nodes, group.nodes[0], loopStartToLoopEnd, deadEnds, true)
 loopStartToLoopEnd[loopNodes[0]] = loopNodes[loopNodes.length - 1]
 Add loopNodes to nodes2
Return nodes2

void computeLoopInfo(List<Node> nodes, Map<Node, Node> loopStartToLoopEnd, Map<Node, Node> &enclosingLoops, Map<Node, Node> &loopParents)
Stack<Node> loopStartStack
Stack<Node> loopEndStack
For node ∈ nodes
 If loopStartToLoopEnd[node] != null
 loopParents[node] = Top of loopStartStack
 Push node onto loopStartStack
 Push loopStartToLoopEnd[node] onto loopEndStack
 enclosingLoops[node] = Top of loopStartStack
While node = Top of loopEndStack
 Pop from loopStartStack
 Pop from loopEndStack

Node lowestCommonAncestor(Set<Node> nodes, Map<Node, Node> parents)
Node lowest = Any element in nodes
nodes = nodes - {lowest}
Set<Node> visited = {lowest}
For node1 ∈ nodes
Node node2 = lowest
Set<Node> visited2

While node1 ≠ null or node2 ≠ null
 If node1 ≠ null
 If node1 ∈ visited
 Break
 visited = visited ∪ {node1}
 node1 = parents[node1]
 If node2 ≠ null
 node2 = parents[node2]
 If node2 ≠ null
 If node2 ∈ visited
 lowest = node2
 visited = visited ∪ visited2
 Break
 visited2 = visited2 ∪ {node2}
 If node1 = null and node2 = null
 Return lowest

Return null

Set<Node> deadEndLoopAncestors(Set<Node> nodes, Map<Node, Node> parents)
 Node node = lowestCommonAncestor(nodes, parents)
 Set<Node> ancestors
 For node2 ∈ nodes
 Node node3 = node2
 While node3 ≠ null
 node3 = parents[node3]
 If node3 = node
 ancestors = ancestors ∪ {node2}
 Break
 Return ancestors

List<Node> topologicalSort(Map<Node, Node> parents)
 Map<Node, Int> childrenLeft
 For (child, parent) ∈ parents
 childrenLeft[parent] = childrenLeft[parent] + 1
 PriorityQueue<Node> nodesLeft sorted by predicate(node1, node2)
 If childrenLeft[node1] < childrenLeft[node2]
 Return node1
 Else If childrenLeft[node1] > childrenLeft[node2]
 Return node2
 Else
 Return arbitrary comparison of node1 and node2
 For (child, parent) ∈ parents
 nodesLeft = nodesLeft ∪ {child}
 List<Node> nodes
 While nodesLeft ≠ {}
 Node node = First element in nodesLeft
 nodesLeft = nodesLeft - {node}
 Add node to nodes
 Node parent = parents[node]
If parent ≠ null
 childrenLeft[parent] = childrenLeft[parent] - 1
Return nodes

Node firstNode(Node start, Set<Node> goals, Boolean isFirstCall)
 If Not isFirstCall and start ∈ goals
 Return start
 For succ ∈ start.successors
 Node node = firstNode(succ, goals, false)
 If node ≠ null
 Return node
 Return null

void findReachableNodes(Node start, Node goal, Set<Node> &visited)
 If node ∉ visited ∪ {goal}
 visited = visited ∪ {node}
 For succ ∈ start.successors
 findReachableNodes(succ, goal, visited)
Return visited sorted by predicate(node1, node2)
 If nodeIndices[node1] < nodeIndices[node2]
 Return node1
 Else If nodeIndices[node1] > nodeIndices[node2]
 Return node2
 Else
 Return null

List<Node> expand(Node node, Node goal, Map<Node, Integer> nodeIndices)
Set<Node> visited
findReachableNodes(node, goal, visited)
Return visited sorted by predicate(node1, node2)
 If nodeIndices[node1] < startIndex or nodeIndices[node1] > startIndex
 Return true
 For succ ∈ node.successors
 If Not mergeAt(succ, end, start, startIndex, endIndex, nodeIndices, visited, mergeNodes, visited, false)
 Return false
 mergeNodes = mergeNodes ∪ {node}
 Return true

Boolean mergeAt(Node node, Node end, Node start, Int startIndex, Int endIndex, Map<Node, Int> nodeIndices, Set<Node> &mergeNodes, Set<Node> &visited, Boolean isFirstCall)
 If Not isFirstCall and node = start
 Return false
 If node ∉ mergeNodes ∪ visited
 Return true
 visited = visited ∪ {node}
 If nodeIndices[node] < startIndex or nodeIndices[node] > endIndex
 Return true
 For succ ∈ node.successors
 If Not mergeAt(succ, end, start, startIndex, endIndex, nodeIndices, mergeNodes, visited, false)
 Return false
 mergeNodes = mergeNodes ∪ {node}
 Return true
nodeIndices, {}, {}, true

Map<Node, Node> computeLoopSuccessors(List<Node> nodes, Map<Node, Map<Node, Node> loopStartToLoopEnd, Set<Node> deadEnds, Map<Node, Node> &loopParents, Map<Node, Set<Node>> &breakNodesMissed)
Map<Node, Node> enclosingLoops
computeLoopInfo(nodes, loopStartToLoopEnd, enclosingLoops, loopParents)
Map<Node, Int> nodeIndices
For i ∈ [0, |nodes|)
 nodeIndices[nodes[i]] = i

Map<Node, Set<Node>> breakNodes
Map<Node, Set<Node>> deadEndNodeLoops
For node ∈ nodes
 Node loop1 = enclosingLoops[node]
 For succ ∈ node.successors
 If succ ∉ deadEnds
 Node loop2 = enclosingLoops[succ]
 If loop1 = loop2 and (loop2 = null or loop1 ≠ loopParents[loop2])
 breakNodes[loop1] = breakNodes[loop1] ∪ {succ}
 Else
 deadEndNodeLoops[succ] = deadEndNodeLoops[succ] ∪ {loop1}

Map<Node, Set<Node>> loopDeadEndNodes
For (node, loops) ∈ deadEndNodeLoops
 If |loops| = 1
 For loop ∈ deadEndLoopAncestors(loops, loopParents)
 loopDeadEndNodes[loop] = loopDeadEndNodes[loop] ∪ {node}

Map<Node, Queue<Node>> unmatchedDeadEndNodes
Map<Node, Node> loopSuccessors
For loopStart ∈ topologicalSort(loopParents)
 Int endIndex = nodeIndices[loopStartToLoopEnd[loopStart]]
 Set<Node> bns = breakNodes[loopStart]
 If |bns| > 1
 SortedSet<Node> bns2 sorted by predicate(node1, node2)
 If nodeIndices[node1] < nodeIndices[node2]
 Return node1
 Else If nodeIndices[node1] > nodeIndices[node2]
 Return node2
 Else
 Return null
 bns2 = bns
 Node first = First element in bns2
 Node next = firstNode(first, bns, true)
 Set<Node> bns3 = Elements in bns2 before next
 If |bns3| = 1
 Set<Node> predLoops
 For pred ∈ first.predecessors
 predLoops = predLoops ∪ {enclosingLoops[pred]}
 If |predLoops| > 1
 bns3 = {}
For node ∈ bns3
 Node pred = Any element in node.predecessors
 Node loop = enclosingLoops[pred]
 breakNodesMissed[loop] = breakNodesMissed[loop] ∪
expand(node, next, nodeIndices)
 bns = bns - bns3

Node successor
Queue<Node> deadEndNodes = unmatchedDeadEndNodes[loopStart] ∪
loopDeadEndNodes[loopStart]
If |bns| = 0
 If |deadEndNodes| > 0
 successor = Dequeue from deadEndNodes
 Else
 successor = null
Else If |bns| = 1
 Node node = Any element in bns
 If |deadEndNodes| > 0 and mergeAt(loopParents[loopStart], node,
endIndex, nodeIndices)
 successor = Dequeue from deadEndNodes
 Else
 successor = node
Else
 Node node1 = Any element in bns
 Node node2 = Any element in bns - {node1}
 If nodeIndices[node1] < nodeIndices[node2]
 successor = node1
 Else
 successor = node2

loopSuccessors[loopStart] = successor
Node parent = loopParents[loopStart]
If parent ≠ null
 unmatchedDeadEndNodes[parent] = unmatchedDeadEndNodes[parent] ∪
deadEndNodes
Return loopSuccessors

Map<Node, Set<Node>> expandDeadEnds(Set<Node> deadEnds)
 Map<Node, Set<Node>> ds
 For d ∈ deadEnds
 Set<Node> visited
 findReachableNodes(d, null, visited)
 ds[d] = visited
 Return ds

Map<Node, Node> newLoopStartToEnd(List<Node> nodes, List<Node> oldNodeOrder,
 Map<Node, Node> oldLoopStartToEnd, Map<Node, Node> loopSuccessors, Map<Node,
Node> loopParents, Map<Node, Set<Node>> deadEnds2, Map<Node, Set<Node>>
breakNodesMissed)
 Map<Node, Node> extraLoops
 For (loop, succ) ∈ loopSuccessors
 extraLoops[loop] = succ
 Return extraLoops
For d ∈ deadEnds[succ]
 extraLoops[d] = loopParents[loop]
For (loop, nodes) ∈ breakNodesMissed
 For node ∈ nodes
 extraLoops[node] = loop
Map<Node, Int> nodeIndices
For i ∈ [0, |nodes|)
 nodeIndices[nodes[i]] = i
Map<Node, Int> oldNodeIndices
For i ∈ [0, |oldNodeOrder|)
 oldNodeIndices[oldNodeOrder[i]] = i
Map<Node, Node> newLoopStartToEnd
For (start, end) ∈ oldLoopStartToEnd
 Set<Node> loopNodes
 For i ∈ [oldNodeIndices[start], oldNodeIndices[end]]
 If extraLoops[oldNodeIndices[i]] = null
 loopNodes = loopNodes ∪ {oldNodeIndices[i]}
 Int index
 For index ∈ [nodeIndices[start], |nodes|)
 If nodes[index] ∈ loopNodes
 Node loop = extraLoops[nodes[index]]
 If loop = null
 Break
 Boolean found = false
 Node loop2 = loop
 While loop2 ≠ null
 If loop2 = start
 found = true
 Break
 loop2 = loopParents[loop2]
 If Not found
 Break
 newLoopStartToEnd[start] = nodes[index - 1]
List<Node> fixOrder(List<Node> nodes, Map<Node, Node> loopStartToLoopEnd, Set<LoopInfo> &loops, Set<Node> deadEnds)
Map<Node, Node> loopParents
Map<Node, Set<Node>> breakNodesMissed
Map<Node, Node> loopSuccessors = computeLoopSuccessors(nodes, loopStartToLoopEnd, deadEnds, loopParents, breakNodesMissed)
Set<Node> breakNodesMissedSet
For (node, nodes2) ∈ breakNodesMissed
 breakNodesMissedSet = breakNodesMissedSet ∪ {nodes2}
Map<Node, Set<Node>> deadEnds2 = expandDeadEnds(deadEnds)
Map<Node, Int> deadEndSuccessorsCount
For (start, succ) ∈ loopSuccessors
 If succ ∈ deadEnds
 deadEndSuccessorsCount[succ] = deadEndSuccessorsCount[succ] + 1
Set<Node> deadEnds3
For (node, count) ∈ deadEndSuccessorsCount
deadEnds3 = deadEnds3 ∪ deadEnds2[node]
deadEnds3 = deadEnds3 - deadEnds

Stack<Node> loopStartStack
Stack<Node> loopEndStack
List<Node> nodes2
For node ∈ nodes
 If node ∈ breakNodesMissedSet ∪ deadEnds3 or (node ∈ deadEnds and
deadEndSuccessorsCount[node] > 0)
 Continue
 nodes2 = nodes2 ∪ {node}
 If loopStartToLoopEnd[node] ≠ null
 Push node onto loopStartStack
 Push loopStartToLoopEnd[node] onto loopEndStack
 While node = Top of loopEndStack
 nodes2 = nodes2 ∪ breakNodesMissed[Top of loopStartStack]
 Node succ = loopSuccessors[Top of loopStartStack]
 If succ ≠ null
 deadEndSuccessorsCount[succ] = deadEndSuccessorsCount[succ] -
 1
 Pop from loopStartStack
 Pop from loopEndStack

Map<Node, Node> loopStartToLoopEnd2 = newLoopStartToEnd(nodes2, nodes, loops,
loopSuccessors, loopParents, deadEnds2, breakNodesMissed);
For (start, end) ∈ loopStartToLoopEnd2
 LoopInfo info
 info.start = start
 info.end = end
 info.successor = loopSuccessors[start]
 Add info to loops
Return nodes2

List<Node> order(Set<Node> nodes, Node start, Set<LoopInfo> &loops)
Map<Node, Node> loopStartToLoopEnd
Set<Node> deadEnds
List<Node> nodes2 = orderBeforeFix(nodes start, loopStartToLoopEnd, deadEnds, false)
nodes2 = fixOrder(nodes2, loopStartToLoopEnd, loops, deadEnds)
Return nodes2
Bibliography

