
Introduction of Digital Experimentation

Capabilities on the ELVIS iLab Platform

by

Hamidou Soumare

S.B., Massachusetts Institute of Technology (2008)

MASSACHUSETTS INSTrT9TE
OF TECHNOLOGY

JUL 2 0 2009

LIBRARIES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2009

@ Massachusetts Institute of Technology 2009. All rights reserved.

A/ /

Author .
Department of Electrical Engineering and Computer Science

May 22, 2009

Certified by.
Dr. V. Judson Harward

Associate Director CECI
Thesis Supervisor

Accepted by..............
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

ARCHIVES

ir~'

Introduction of Digital Experimentation Capabilities on the

ELVIS iLab Platform

by

Hamidou Soumare

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2009, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

iLabs are online laboratories that give students access to experimental setups enabling
them to conduct real experiments remotely through the internet. This circumvents a
subset of the typical problems of conventional laboratories in addition to significantly
increasing equipment utilization rates. In response to the lack of financial resources
at partner universities in Africa, the National Instruments Educational Laboratory
Virtual Instrumentation Suite (ELVIS), a low cost all-in-one electronics workbench,
has become the hardware of choice for the iLab-Africa project. In this thesis, I
extended the ELVIS iLab platform to support experiments in Digital Electronics
complementing its analog capabilities. The new platform now offers an even greater
return on investment by providing pedagogically useful laboratory exercises covering
a larger portion of Electrical Engineering curricula.

Thesis Supervisor: Dr. V. Judson Harward
Title: Associate Director CECI

Acknowledgments

I would like to begin by thanking my thesis advisor, Dr. Judson Harward for providing

me with invaluable guidance and direction throughout my tenure on the project. I

would also like to thank Prof Jesus Del Alamo, who created the iLab project at MIT,

for keeping me focused on the important vision of iLabs.

Many thanks to Jim Hardison who was instrumental in my development efforts. I

also would like to acknowledge Phil Bailey, Kimberly DeLong, Meg Westlund, Maria

Karatzas and the rest of the iLabs team for all their support and guidance throught

the year.

My predecessors, Bryant Harrison and Adnaan Jiwaji, were great mentors during

my transition period onto the project. The feedback I got from Rahul Shroff, my

partner on the project, really helped shape the fnal product.

A great deal of thanks is due to the members of the iLabs teams at Makerere

University and the University of Dar Es Salaam. I couldn't have asked for more

hospitable and energetic hosts.

Lastly, I would like to thank my family for instilling in me the value of hard

work and education. They have provided me with a great deal of love and support

throughout my life for which I am eternally grateful.

Contents

1 Introduction

1.1 Motivation for iLabs

1.2 iLab-Africa Partnership

1.3 Misconceptions about iLabs

1.4 Overview of Thesis

2 iLabs Shared Architechture

2.1 Lab Client

2.2 Service Broker

2.3 Lab Server

2.4 Information Flow through the ISA . .

3 Overview of National Instruments ELVIS

3.1 ELVIS Platform

3.1.1 ELVIS Hardware

3.1.2 ELVIS Software and LabVIEW .

3.2 Suitability of ELVIS for iLabs in Africa .

4 Past Development on ELVIS Platform

3.0

4.1 ELVIS 1.0

4.2 ELVIS 2.0

4.3 Motivation For ELVIS 3.0

7

and Motivations for ELVIS

5 ELVIS 3.0 Detailed Design and Testing 35

5.1 XML Document Specification 35

5.1.1 Changes Made To LabConfiguration.xml And LabConfigura-

tion.dtd 35

5.1.2 Changes Made To ExperimentSpecification.xml And ExperimentSpec-

ification.dtd 36

5.2 Lab Server 37

5.2.1 LabView 38

5.2.1.1 Dig.VI 39

5.2.2 Experiment Engine 41

5.2.2.1 loadjob 41

5.2.2.2 ParseExperimentSpec 41

5.2.2.3 RunExperiment 42

5.2.3 Validation Engine 46

5.2.4 Lab Server Administration Pages 46

5.3 WebLab Client 47

5.3.1 Operation of the WebLab Client 47

5.3.2 Client Updates in ELVIS 3.0 47

5.3.2.1 Updating the MainFrame 48

5.3.2.2 Updating Graphical Utilities 48

5.4 Testing ELVIS 3.0 50

6 Conclusions 55

6.1 Contributions 55

6.2 Recommendation for Direction of iLab Project 56

6.3 Future of iLab-Africa Partnership 57

A LabConfiguration.xml 59

B ExperimentSpecification.xml 63

C ExperimentResult.xml 65

D LabConfiguration.dtd

E Experiment Specification.dtd 69

F Experiment Specification.dtd 71

10

List of Figures

1-1 Timeline displaying select online laboratories. Not all of these

labs were converted to the iLab Shared Architecture. 17

2-1 Diagram of the three major components in the ISA [11]. ... 21

2-2 Screenshot of Weblab Client highlighting the schematic and

results panel 22

2-3 Screenshot of a Service Broker website displaying the labs

available to the user. 24

2-4 Diagram showing the origin and destination of XML docu-

ments in the ISA 25

3-1 Image of NI ELVIS all-in-one desktop workstation. 27

3-2 Screenshot of instrument launcher, which provides links to

the user interface for all twelve ELVIS instruments. 28

3-3 Screenshot of User Interface for Dynamic Signal Analyzer in-

strument on ELVIS 29

4-1 Timeline displaying the development of ELVIS iLabs. 32

4-2 ELVIS 2.0 client displaying the representation of switchable

components....................................... 34

5-1 Sample DOUT block in the Lab Configuration XML document. 36

5-2 Sample DOUT block in the Experiment Specification XML

document 36

5-3 Flowchart depicting the interconnections between the lab server

components 37

5-4 Diagram of interconnection between modular components that

comprise the LabView code. 38

5-5 Screen shot of user interface for Digital Bus Reader. 39

5-6 Screen shot of user interface for Digital Bus Writer. 40

5-7 Screen shot of LabView code for Dig.vi. 40

5-8 Diagram showing the effect of processDOUT on the sample

output of a digital experiment. 43

5-9 Sample stacked strip chart. 43

5-10 Stacked strip chart displaying the result: High, Low, High,

Low 44

5-11 Table showing how DOUT and DOUTTIME datavectors are

broken down by clock step 44

5-12 Diagram illustrating the creation of a stacked strip chart for

an experiment involving one digital line and four clock steps. 45

5-13 Desired stacked strip chart for experiment involving a 1-input,

1-output inverter. 45

5-14 Table summarizing the arithmetic calculations that produce

the DOUT data vector for the stacked strip chart in Figure

5-13.................................... .. 46

5-15 Screen shot of dialog for configuring a DOUT instrument.

Users must specify the number of clock steps, the number of

inputs, number of outputs in addition to the bit patterns for

each clock step. Here we have specified a bit pattern for a

2-input, 1-output experiment run for 4 clock steps. 48

5-16 ELVIS 3.0 client displaying the results of the characterization

of an AND gate specified in Figure 5-15. Each waveform is

labeled and numbered. 49

5-17 Stacked strip chart when connectpattern is set to ALWAYS-

CONNECT 50

5-18 In order to properly display the stacked strip chart, P8 and

P9 are not connected because they represent datapoints on

adjacent digital lines. 51

5-19 Experimental results for the characterization of a NAND gate. 52

5-20 Experimental results for the simultaneous characterizations

of NAND, AND, and NOR gates. 53

14

Chapter 1

Introduction

1.1 Motivation for iLabs

The ability to perform laboratory work is an essential component of any legitimate

course in science, technology or engineering. The laboratory experience provides

students with many of the skills necessary to become good engineers and scientists.

The requisite skill set includes the aptitude to handle real data and understand the

reasons for its discrepancies with theoretical calculations as well as the ability to work

in teams. Most importantly, however, experimentation allows students to pursue their

intellectual curiosity and develop their interests.

Unfortunately, many courses in schools around the world, including MIT, tend

to forgo the laboratory component because of large class sizes in addition to per-

ceived limitations in class time and equipment availability. This has very serious

consequences for the students affected.

Traditional laboratories have their share of problems as well. The initial invest-

ment required to set up a lab is often a major barrier. When you factor in the cost

of maintenance with lab assistants, repairs etc., the financial requirements are multi-

plied. Labs are also usually only open during regular business hours. This oftentimes

represents an inconvenience for students as well as an underutilization of resources.

From a professor's or lab administrator's point of view, the biggest risk is the damage

to equipment by rough handling or extreme values for parameter inputs.

This risk was the initial motivation for iLabs. Jess del Alamo, a professor at

MIT, had acquired the Agilent Dynamic Signal analyzer, which he wanted to make

available to his students. However, given that the equipment cost upwards of $20,000

he could not risk damage to it. The concept of iLabs was conceived from this tradeoff

and has had a profound impact on science and engineering education at every level.

iLabs are online laboratories that give students access to experimental setups en-

abling them to conduct real experiments remotely through the internet from anywhere

around the world. This circumvents a subset of the typical problems of conventional

laboratories and increases utilization significantly. Given that they can access the

experimental setups 24 hours a day, 7 days a week, students are able to learn at their

own convenience.

iLabs usage at MIT began in 1998, with the Microelectronics Device Characteriza-

tion test station, which is still being used by over 500 MIT students in three different

courses [6]. The concept of online laboratories is by no means tethered to Electrical

Engineering; in fact iLabs have been developed in many other disciplines:

* Chemical Engineering (Heat Exchanger)

* Civil Engineering (Shake Table)

* Physics (Neutron Beam)

* Control Theory (HVAC Control)

* Mechanical Engineering (Pendulum)

* Chemistry (Polymer Crystallization)

Given the scalability of the iLabs platform, the defining characteristic has shifted

from being a protective measure for costly equipment, to a vehicle for mass diffusion of

pedagogically useful labs. iLabs lend themselves to the concept of sharing laboratories

allowing students and researchers to use equipment located around the world. This

may result in a global network of iLabs being available as people create and publish

their own iLabs in addition to using iLabs put up by other institutions. There is

2004

Micoelectronics Device Poymer Crystallization Dynamic SignalAnalyzer
Characterization

2001 ELMS Electronics Lab
Heat Exchanger 2003

Shake Table

Figure 1-1: Timeline displaying select online laboratories. Not all of these labs
were converted to the iLab Shared Architecture.

evidence to suggest that this is a sustainable idea given the fact that in 2005 alone,

students in 10 different countries used iLabs. More iLabs come online every year.

1.2 iLab-Africa Partnership

iLabs offers the greatest potential benefit to students in developing countries and more

specifically to students in African universities where the lack of sufficient financial

resources, large class sizes, and bureaucracy have proven to be significant barriers

to the procurement of lab equipment. Professors at these universities have shown

significant interest in the iLab Project and as a result, MIT has set up a formal

partnership with Obafemi Awolowo University in Nigeria, the University of Dar Es

Salaam in Tanzania, and Makerere University in Uganda. This partnership began

with the sharing of the MIT Microelectronics iLab, but has moved more and more

towards encouraging the African universities to join the development process. This

was supported by a transition from using high-end, ultra precise devices such as the

Agilent DSA, to cheaper lab equipment such as the NI ELVIS workstation, which is

more affordable for our African partners. This shift created a common development

environment enabling us to work much more efficiently together.

1.3 Misconceptions about iLabs

I would like to start off this subsection by stating that iLabs will never totally sup-

plant traditional labs because they are meant to be a complement rather than a

complete replacement. Given the choice to perform a given experiment via an iLab

or a traditional lab, you would almost certainly opt for the traditional lab. There

are certain examples however, where an iLab resulted in better student performance

than the traditional counterpart.

In my discussions with people, I have come across several objections to the concept

of an iLab, which I will address below:

1. A major part of the experimental process is the process of wiring a circuit board,

soldering and physically interacting with the equipment. This is impossible with an

iLab, so iLabs have no value.

I agree that the ability to physically wire and solder is essential for an engineer. I

contend however that once you have learned how to solder and wire a circuit on a

breadboard, there is no incremental educational value in repeating the process for

every circuit you analyze. Providing simple bread boards, solder and soldering irons

to a class focusing on this mechanical process can be done at a relatively low cost.

Most of the educational value of an experiment is in the scientific concept that is

being demonstrated, which is just as clear through an iLab as it is with a traditional

lab.

2. iLabs seem to be an expensive simulation, why don't you just use an

industry-grade simulator such as SPICE?

This objection along with all of its variations came up extremely often. It is important

to distinguish between simulation of the laboratory experience and simulation of some

natural phenomenon. iLabs simulate the laboratory experience by extracting out the

steps such as wiring that aren't critical for the concept being communicated. On the

other hand, programs such as SPICE simulate the behavior of a physical entity such

as a MOSFET for example. SPICE-style simulation is important for understanding

the ideal behavior of an electrical device or system. iLabs are run using real devices

on real equipment and so demonstrate all of the non-linearities, noise and other

imperfections of real devices. This provides students with a better understanding of

how a device behaves in the real-world along with the limitations of device itself and

the mathematical models used to describe its behavior.

3. iLabs do not allow you to debug a faulty circuit, which is an important skill to

have in practice.

Again, I completely agree with the importance of the ability to debug complex

circuits. This skill is best learned through a traditional laboratory setup. Once this is

learned, it is not necessary to debug every subsequent circuit analyzed. Although you

cannot fully debug a circuit with an iLab, it can be simulated with the newest ELVIS

iLabs. The most recent iLabs use clever switching mechanisms to allow students to

dynamically take measurements across different points in a circuit, which is in effect

the process of debugging.

1.4 Overview of Thesis

In this thesis, I will describe the motivations for extending the iLabs platform to in-

clude digital experiment capabilities as well as documenting the development process.

Further, I will provide an update on the current state of the iLabs Africa partnership.

In chapter 2 I will provide a high level view of the iLabs shared architecture. All

of the major components will be covered, namely the weblab client, service broker,

and lab server as well as the information flow within the system.

In chapter 3, I discuss the National Instrument ELVIS hardware along with the

LabView development environment. I will also discuss the characteristics that make

ELVIS and LabView particularly suitable for deployment with iLabs in Africa.

Chapter 4 describes the iterative nature of our relationship with our African part-

ners and how that has influenced the natural progression of the system. In this

chapter I will describe past versions of the ELVIS iLab as well as discussing the needs

that were met by each version. This discussion sets the stage for a discussion of the

motivations and objectives of my work.

In Chapter 5, I provide a very technical discussion of the design and implemen-

tation of the changes required for the current version of the iLabs platform. Finally,

in chapter 6, I make concluding remarks about the project as a whole. More specifi-

cally, I will discuss my contributions to the iLabs Africa project as well as providing

recommendations for the future direction of iLabs Africa.

Chapter 2

iLabs Shared Architechture

7

/ X Is

Figure 2-1: Diagram of the three major components in the ISA [11].

The iLabs shared architecture (ISA) is split up into three major subsystems. Each

plays a distinct role. The lab server, service broker and lab client communicate via

special xml documents and web service calls.

Disk

a

2.1 Lab Client

The lab client is the user interface through which students accesses an iLab. It

provides an intuitive representation for the given lab being run and allows users to

specify parameter values as well as graphing the experiment results returned from

the setup. The current family of lab clients was adapted from the versatile, open

source weblab client used in the original microelectronics lab. Thus, users of previous

generations of lab clients will be familiar with the most recent lab client.

FII I

a[t II :
+

-i

IA~f i *1 i: I

~-4- :,i
:i1 :::i

~aa 1 I;-
~i:~~

::

I:i--i~6;P~B-:
--- (

r,:i

Figure 2-2: Screenshot
panel.

of Weblab Client highlighting the schematic and results

As can be seen in figure 2-2, the client is essentially made up of two components,

the schematic panel and the result panel. The schematic panel illustrates the ex-

perimental circuit and allows users to specify parameter values for the instruments

present in the setup. The results panel contains a 3 axis graph that allows a student

to graph two experiment data vectors simultaneously. The results panel also contains

Y1 AOIM

Iliiu ;
-- ----- i^i --- -- --

several graphing utilities.

2.2 Service Broker

The Service Broker serves as the heart of the ISA by providing several administrative

services. It also provides a path for communication between lab servers and weblab

clients. All of the communication occurs by passing xml documents generated in

the lab servers and clients. The service broker mediates this exchange of information.

Given its generic design, it can be used by multiple lab servers and clients. In addition,

the service broker also deals with user accounts and enforcing permissions. This allows

administrators to group students by class, year, or even educational institution, for

example, and specify which labs are available to each group of students. The service

broker also stores usage data that completely describes a lab session whenever a

student runs an experiment.

There are two distinct types of service broker, namely the Batched and Interactive

Service Brokers. The Batched service broker supports the running of batched labs.

A batched lab is completely defined by specifying parameter values for the setup.

This information is passed through the Batched service broker and stored in a first-in

first out (FIFO) queue. Once the experiment reaches the front of the queue, it is run

and the results are passed back to the client. When running a batched experiment,

the student does not have real time control of the lab equipment and as a result the

bandwidth requirements are quite low. This type of experiment is suitable in many

cases such as device characterizations.

On the other end of the spectrum is the Interactive Service broker, which facilitates

the running of interactive labs. In an interactive lab, the student has complete and

exclusive control of the experimental setup for a given period of time. This is a much

more realistic simulation of the laboratory experience but presents several challenges

such as the possibility of scheduling issues when dealing with large class sizes. This

type of lab requires a significant amount of bandwidth, which is often restricted in

African countries. As a result of these bandwidth issues, we decided to use the batched

architecture for the ELVIS iLabs deployed in Africa.

We are in the process of deploying a Merged Service Broker, which provides a

common platform for running both batched experiments and interactive experiments.

Currently a large fiber optic backbone is being built to support the planned East

African submarine cable. The successful completion of this project will amount to a

significant increase in the available bandwidth. As a result of this future increase, we

are encouraging our partners in Africa to adopt the merged architecture.

Figure 2-3: Screenshot of a Service Broker website displaying the labs available
to the user.

2.3 Lab Server

The lab server communicates directly with the lab equipment. It uses the param-

eter values specified by the student to run the desired experiment and returns the

experiment results. The typical lab server also provides an administrative interface

with which a lab administrator can create a setup by specifying the required instru-

ments. This administrative interface also allows for the specification of maximum

and minimum supported parameter values preventing students from damaging the

a i ! i! i > i i i ij [,,3 % ,U % : ~ [, - .. . !

lab equipment with excessive parameter values.

The computer running the lab server software must be physically interfaced to the

lab server hardware. The client and server processes are tightly coupled because their

communication is essential to the system. Lab servers can be connected to several

service brokers.

2.4 Information Flow through the ISA

Figure 2-4: Diagram showing the origin and destination of XML documents in
the ISA.

Figure 2-4 shows that communication within the ISA is facilitated by three distinct

xml documents, Lab Configuration.xml, ExperimentSpecification.zml, and Experimen-

tResult.xml. The process occurs in three steps.

In the first step, a student accesses the service broker and selects a lab to run.The

LabConfiguration.xml is created by the lab server and passed to the client via the ser-

vice broker. This xml document provides information about the specific instruments

that make up the setup and is used by the client to create a representation of the

circuit in the schematic panel.

Next, the client creates the ExperimentSpecification.xml document containing all

of the user specified parameter values. This is passed through the service broker to

the lab server, which runs the specified experiment. In the final step, the lab server

packages the results in the ExperimentResult.xml document, which is sent to and

graphed in the client.

In the following chapter, I provide an overview of the specific laboratory hardware

used in the ELVIS iLab and explore the reasons for its success with our African

partners.

Chapter 3

Overview of National Instruments

ELVIS

3.1 ELVIS Platform

3.1.1 ELVIS Hardware

The National Instruments Educational Laboratory Virtual Instrument Suite (ELVIS)

is an all-in-one device containing a suite of 12 instruments allowing students to per-

form hands-on experiments in electronics. The ELVIS contains most of the essential

instruments found in traditional electrical engineering laboratories. This combination

of instruments allows for very complex experiments to be performed.

Figure 3-1: Image of NI ELVIS all-in-one desktop workstation.

3.1.2 ELVIS Software and LabVIEW

LabView is a very powerful graphical programming language developed by National

Instruments. It takes a dataflow approach to programming making it very intuitive

to use. LabView programs are referred to as Virtual Instruments(VI's). What is

unique about the LabView programming language is that it ties the creation of user

interfaces (Front Panel) into the development cycle. Controls and indicators within

the front panel can be used to input data and extract information from a VI.

NI ELVIS

Digital Multimeter

OsSlosope

Function Generator

Variable Power Supples

Bode Analyzer

Dynan Signal Analyzer

Arbitrary Waveform Generator

Digital Reader

Digital Writer

impedance Analyzer

Two-Wire Current-Voltage Analyzer

Three-Wire Current-Voltage Analyzer

Launch LabVIEW

Figure 3-2: Screenshot of instrument launcher, which provides links to the user
interface for all twelve ELVIS instruments.

The behavior of all NI ELVIS instruments is coded in LabView. Included with the

hardware is software that provides a user interface offering complete control of each

instrument (See Figure 3-3). LabView also comes equipped with Express VI's, which

are a high level API that encompasses most of the common functionality for a given

instrument. This dramatically reduces the development time since the Express VI's

take care of general instrument tasks such as initialization and also prevent resource

conflicts. Nonetheless, development on top of Express VI's requires the programming

of low level VIs to tailor the Express VIs behavior to your exact specifications. Al-

though building an instrument from low level VIs is much more time consuming, it

does provide much more freedom in implementation. I chose to use Express VIs in

my development efforts because their modularity allowed for implementation of the

exact desired behavior. It also reduced the complexity of the design, resulting in more

efficient and very readable code.

Input Settings
Source Channel Votage Range
ACHi +/- 10V

FFT Settings Averaging

Wndow # of Averages

Triggerhg

Frequency Dis ay

Markers

'14 i i
Sca

Auto I

Run Single1Io1 ___

Figure 3-3: Screenshot of User Interface for Dynamic Signal Analyzer instru-
ment on ELVIS.

3.2 Suitability of ELVIS for iLabs in Africa

Reduction of Costs

The major theme in the discussions with our partners in Africa was cost. Their

budgets simply did not allow for the acquisition of sufficient laboratory equipment

to provide a meaningful experience for their students. The $2000 cost of the ELVIS

platform is an order of magnitude less than it would cost to purchase all of the

instruments separately. When you factor in the minimal maintenance costs and the

number of students served, it is clearly an extremely cost effective solution.

Support for wide spectrum of Experiments

The mix of instruments provided by the ELVIS platform supports a wide range of

experiments, which makes it applicable for students at many different levels.

Access to Extensive Knowledge Base

As its name suggests, the ELVIS platform was designed for educational purposes.

As a result of its widespread adoption, National Instruments has set up several

forums and discussion boards tailored directly to the ELVIS platform. Users of the

ELVIS therefore have access to this extensive knowledge base.

Chapter 4

Past Development on ELVIS

Platform and Motivations for

ELVIS 3.0

It is important to note that the present state of the ELVIS iLab is the result of a

very iterative process between developers and faculty at our partner universities.

Each new piece of functionality was added in response to curricular demands and

perceived limitations of the platform. In this chapter, I will provide context for each

iteration of the ELVIS iLab as well as developing the motivation for my work.

4.1 ELVIS 1.0

ELVIS 1.0 was the first version of the ELVIS iLab. The reason for this version was

to provide a low cost and accessible platform that would facilitate the development

of labs by our African partners.

Samuel Gikandi, in his MEng thesis used code from the Microelectronics iLab as

a starting point for his development efforts. The client was completely revamped to

accurately display the results of experiments specific to the ELVIS as can be seen in

Figure 2-2. This version of the ELVIS iLab only exposed the functionality of the

function generator and oscilloscope, enabling the investigation of one monitor point

ELVIS 1.0 Bode Analyzer &
FGEN & SCOPE Arbitrary Waveform Generator

2006 2008
I I I

2007 2009

ELVIS 2.0 ELVIS 3.0
Component Switching & Digital Reader &
Variable Power Supplies Digital Writer

Figure 4-1: Timeline displaying the development of ELVIS iLabs.

in single input circuits. Given the low cost and potential for extending the

capabilities, ELVIS 1.0 was very successful. There were, however, several limitations

of the design.

Firstly, only being able to use the function generator and the oscilloscope greatly

limited the types of circuits that could be analyzed. A multi-stage amplifier circuit

requiring both 5V and 12V supply rails would be impossible to create on ELVIS 1.0,

for example. Secondly, the points to be monitored in the test circuit had to be

hardwired by the lab administrator and could not be altered remotely by the

students. This limited the students' ability to fully investigate the circuit. Finally,

only one experimental setup could be active at any given time, which created

problems in the situation where different courses wanted to investigate different

circuits on the same ELVIS station.

4.2 ELVIS 2.0

Version 2.0 of the ELVIS iLab addressed some of the limitations present in ELVIS

1.0 by exposing more of the ELVIS functionality, namely:

* Variable Power Supplies that output a DC voltage between -12V and +12V

enabling Op-Amp experiments, among others.

* Arbitrary Waveform Generator that allowed students to explore the respons of

circuits to user-defined waveforms.

There were two major criticisms of the initial ELVIS iLab. First, the ability for

students to design circuits was not supported. Second, students could only perform

experiments in the Time-Domain, which neglected a significant portion of the

material taught in the curriculum.

In addition to the functionality described above, ELVIS 2.0 incorporated

support for the Bode Analyzer instrument, which exposed the frequency domain

capabilities that allow for magnitude and phase response characterizations. Perhaps

the most powerful addition in ELVIS 2.0 was the component switching capability

provided through National Instrument switching hardware. The ability to switch

components in a circuit provides a richer pedagogical experience since it allows

students to start designing their own circuits. In addition, it permits lab

administrators to put numerous setups on a single ELVIS station allowing different

courses to use the ELVIS equipment simultaneously.

4.3 Motivation For ELVIS 3.0

The major contributions in the past involved the addition of a new "Domain" to the

iLabs platform. ELVIS 1.0 set the foundation for the Time-Domain. ELVIS 2.0

introduced the Frequency Domain, and my work in ELVIS 3.0 was designed to

contribute the Digital-Domain. The addition of the digital capabilities was the next

logical step in the evolution of the iLabs platform. Furthermore, development of the

digital capabilities will lay the foundation for a whole host of experiments involving

logic gates, programmable arrays, ROMs, FPGAs, and various other

microcontrollers. Good understanding of digital electronics is essential for engineers

in this increasingly digital world.

Figure 4-2: ELVIS 2.0 client displaying the representation of switchable com-

ponents.

Mb GI ~EN
XOpE

Chapter 5

ELVIS 3.0 Detailed Design and

Testing

5.1 XML Document Specification

The development of the current version of the ELVIS iLab began with the XML

documents since they dictate the format for the flow of information within the ISA

as can be seen in Figure 2-4. Once these documents are specified, development can

be done independently on the client and the lab server. Each XML document has a

corresponding document type definition(.DTD) file, which is responsible for defining

the legal building blocks of the XML document. It was only necessary to change

LabConfiguration.xml and ExperimentSpecification.xml as well as the corresponding

.DTD files.

5.1.1 Changes Made To Lab Configuration.xml And

Lab Configuration. dtd

As discussed in Section 2.4, the LabConfiguration.xml (see Appendix A) is created

by a process in the lab server that queries the databases for the instruments that

make up the active setup. This document is used by the client to create the

appropriate representation of the circuit. The only change made was to

LabConfiguration.dtd (see Appendix D) to allow for the new instrument type,

namely the DOUT instrument. The allowed XML block for this instrument is as

follows:

- <terminal nstrumentType="DOUT" InstrumentClass= "control"
instrumentNumber= "" setupTermlD= "6">
<Iabel>Digital Out</label>

- <pixelLocation>
<x> 2</x>
<y>45</y>

</pixelLocation>
</terminal>

Figure 5-1: Sample DOUT block in the Lab Configuration XML document.

This is a standard terminal definition. The label specfies the name of the

instrument, while the pixel location specifies the instrument's location on the

schematic panel of the client.

5.1.2 Changes Made To ExperimentSpecification.xml And

ExperimentSpecification. dtd

The ExperimentSpecification.xml (see Appendix B) contains the user configured

inputs for a particular instrument and is used by the lab server to actually run the

experiment. The ExperimentSpecification.dtd (see Appendix E) was changed to

support all of the inputs for the DOUT instrument.

- <terminal nstrumentType= "DOUT" lnstrumentClass= "control"
InstrumentNumber="6" setupTermlD="6">

- <function type= "DOUTFunction">
<byte> 01100111</byte>
<Input> 4</Input>
<Output> 2</Output>

</functlon>
</terminal>

Figure 5-2: Sample DOUT block in the Experiment Specification XML docu-
ment.

The byte field specifies the sequence of bits to be written by the digital writer.

The input and output field are from the point of view of the circuit. The input field

specifies the number of digital lines that are read by the circuit, whereas the output

field specifies the number of digital lines being written by circuit.

5.2 Lab Server

The Lab server is the heart of the iLabs system and is made up of the following

modular components:

Figure 5-3: Flowchart depicting the interconnections between the lab server
components.

* ELVIS and Switch hardware responsible for the actual running of the

experiment.

* Execution code responsible for parsing and validating an experiment

specification, passing parameter values to the hardware, and creating an XML

document summarizing the empirical results.

* Database that stores data about available instruments and active setups in

addition to all of the information for every experiment run.

* Administrative Interface used to create and activate setups.

A................

5.2.1 LabView

The LabView code is made up of several modular subVI's that perform distinctive

tasks.

Main.vi

ELVIS-TD ELVIS-FD

FGENVi Arb.vl Scop.v BodeM

Variable
Dlg.vi Power MainSwitch.vi

Supplies

Figure 5-4: Diagram of interconnection between modular components that com-
prise the LabView code.

As can be seen from Figure 5-4 the LabView code is partitioned into a frequency

domain tranche containing the Bode Analyzer and a time domain tranche, which

contains functionality for the arbitrary waveform generator, oscilloscope, and

function generator. In addition to this partition, there is a set of functionality that

is common to both domains, namely the switch controller, the variable power

supplies and the digital VI. The addition of the digital functionality was the major

contribution in ELVIS 3.0.

Figure 5-5: Screen shot of user interface for Digital Bus Reader.

5.2.1.1 Dig.VI

The Dig.VI contains all of the functionality required for performing experiments in

digital electronics. It was designed with flexibility in mind. Figures 5-5 and 5-6

show the user interfaces provided for the digital bus writer and reader respectively.

The digital writer allows for the configuration of 8 different channels and the digital

reader can in turn read upto 8 channels. A lab administrator could therefore setup a

circuit and wire in up to 8 points of interest in the given circuit to the digital

reader, which displays the results of the experiment.

Proper understanding of any digital circuit requires the creation of a truth table.

An experiment involving 3 inputs for example has 8 distinct combinations of inputs

and would therefore require 8 runs to completely specify the corresponding truth

table. The number of runs required is exponentially related to the number of inputs.

Given that we are dealing with a batched lab, performing a large number of runs is

inconvenient and very time consuming. In response to this limitation, I designed the

digital VI to support continuous experiments. Dynamic experiments allow the user

to specify the digital input for upto 8 clock steps, which enables the the creation of

a 3 input truth table in one experiment run.

Figure 5-7 shows the labView code for the digital VI. As can be seen in the code,

I decided to couple the digital writer and reader within the VI. As a result, the

reader is constantly monitoring the digital lines and will pick up a digital output

Write

zI~~r~J Pattern

Mnu Pattern i

DO 7 6 S 4 3 2 1 0

SAction

Left Rig
HELP?

Figure 5-6: Screen shot of user interface for Digital Bus Writer.

Figure 5-7: Screen shot of LabView code for Dig.vi.

Mode

L! 3_1

NATIONAL
UNSTRUMENTS

whenever the digital writer is active. Another point to note is the placement of the

time delay between the digital writer and reader, which allows ample time for the

logic functions to settle before a reading is taken. The millisecond time delay

supports the cascading of many integrated circuits since their delay is usually on the

order of nanoseconds. The digital functionality is encompassed in a loop to enable

continuous experiments to be run. There is a limit to the number of inputs that can

be passed into the labView DLL, so in order to circumvent this problem, I only used

one input for the digital VI, which is parsed by the VI itself to extract all of the key

information.

5.2.2 Experiment Engine

The Experiment engine is an executable file that runs in the background and

consists of 3 major methods responsible for most of its functionality namely, loadjob,

ParseExperimentSpec, and runExperiment.

5.2.2.1 loadjob

When a user selects a setup, the loadjob method is called, which queries the

databases and creates the LabConfiguration.xml document. This function needed to

be changed in ELVIS 3.0 to account for the DOUT instrument type.

5.2.2.2 ParseExperimentSpec

The experiment engine is constantly monitoring the databases for an experiment to

be submitted. Once an experiment is submitted, the experiment engine de-queues

the job and then parses the experiment specification via the ParseExperimentSpec

function. This function reads the user specified parameter values within the

ExperimentSpec.xml document and populates termInfoTable and functInfoTable,

which are tables that store information about the terminals present in a setup and

the user defined parameters for the terminal instruments respectively.

The first step in my work was to expand both of these tables to include an entry

for the DOUT instrument. Next, a case had to be added within the parsing routine

to recognize the DOUT instrument and also extract its defining properties, which

are the byte string, the number of inputs, and the number of outputs.

5.2.2.3 RunExperiment

The RunExperiment method creates a parameter list from the experiment

specification, initializes the RunElvisExp executable file, which in turn calls the

ElvisWrapper class that runs the experiment through the LabView DLL. It also

creates the ExperimentResult.xml document. The parameter list had to be updated

to include the byte string for the DOUT instrument, but most of the work went into

creating two helper functions (procesDOUT and createCombinedDOUTGraph)

whose purpose was to format the digital output from LabView into an easily

manipulated form for the client to use.

processDOUT

The output of Dig.VI is formatted as a collection of bits for each clock step. We

want to convert this into a collection of timesteps for each bit in order to graph the

data in the client. The conversion process is performed by the function

processDOUT as can be seen in Figure 5-8.

createCombinedDOUTGraph

This function further formats the processed DOUT data into a form that that

enables the client to create a stacked strip chart, which is a standard display

method for digital data (see Figure 5-9). Just like any graph, a stacked strip chart is

a collection of (x,y) coordinate pairs. This collection is specified by an x-axis vector

(DOUTTIME) and a y-axis vector (DOUT). In order to understand the numerical

values behind a stacked strip chart, we must look at DOUT and DOUTTIME in

more detail.

Let's assume for illustration purposes, that we have run an experiment

(Experiment 1) in which we read a digital line that starts off high and alternates

Clock Step 1 Clock Step 2 Clock Step 3
01010111 01110101 11100110

Digital Line 0 Digital Line 1 Digital Line 6 Digital Line 7
001 111 101 110

-8: Diagram showing the effect

al experiment.

0022

.... , ,

of processDOUT on the sample output

Figure 5-9: Sample stacked strip chart.

Figure 5-
of a digil

1 I I I
i I I i
i I I i
1 I I i_ I __ _ I II II - II

thereafter. Also assume that the experiment is run for a total of 4 clock steps. Thus

the results are as follows: High, Low, High, Low. The result returned by the

labserver for this experiment is: DOUT<1 1 0 0 1 1 0 0>, DOUTTIME<0 1 1 2 2

3 3 4>. When we graph these two data vectors, we get the graphical output seen in

Figure 5-10.

Figure 5-10: Stacked strip chart displaying the result: High, Low, High, Low.

Our experiment only lasted 4 clock steps but the datavectors are twice as long

since each bit value occurs in pairs. The reason for this become clear if we split the

datavectors into clock steps (see Figure 5-11).

Figure 5-11: Table showing how DOUT and DOUTTIME datavectors are bro-

ken down by clock step.

The points specified by the results are coordinate pairs in the form

(DOUTTIME,DOUT). Therefore plotting clock step 1 would produce the points

P1=(0,1),P2=(1,1) connected by a horizontal line. Plotting clock step 2 produces

the points P3=(1,0),P4=(2,0) and connects P2 and P3 with a vertical line in

addition to connecting P3 and P4 with a horizontal line. This process continues for

the remaining clock steps. It is important to note that there is an overlap between

the end of a clock step and the beginning of the next clock step. For example, clock

step 1 ends at time point 1 and clock step 2 begins at time point 1 as well, which

ensures that the stacked strip chart is only made up of horizontal and vertical lines.

The overlap in clock steps is also evident by the repeated entries in the

DOUTTIME datavector.

Now, imagine performing an experiment (Experiment 2) that investigates the

behavior of a 1-input 1-output inverter. Assume that we use the same input pattern

P P1 P2 P1 P2 P5 P6

tt tt t t
3 P4 P3 P4 P7 P8P3 P4 I I I

I I

Figure 5-12: Diagram illustrating the creation of a stacked strip chart for an
experiment involving one digital line and four clock steps.

as in Experiment 1. Thus the input is the following: High, Low, High, Low. The

resulting output of the inverter is: Low, High, Low, High. The labserver returns the

following datavectors: DOUT<1 1 0 0 1 1 0 0 2 2 3 3 2 2 3 3>, DOUTTIME<0 1

1 2 2 3 3 4 0 1 1 2 2 3 3 4>. The desired graphical output is shown in Figure 5-13.

Figure 5-13: Desired stacked strip chart for experiment involving a 1-input,
1-output inverter.

You should think about this result as two waveforms stacked on top of each

other. In order for this to occur, two conditions must be met. Firstly, each

waveform should have the same DOUTTIME data vector, which ensures that they

are aligned horizontally. The second requirement involves adding an offset equal to

twice the digital line number to each bit value in the DOUT data vector to create

the stacking effect. This process is shown graphically Figure 5-14.

1 0 0 1 0

Figure 5-14: Table summarizing the arithmetic calculations that produce the
DOUT data vector for the stacked strip chart in Figure 5-13.

5.2.3 Validation Engine

The main function of the validation engine is to ensure that the experiment

specified by a student meets the requirements established by the lab administrator

before the the runExperiment function is called. The validation engine was updated

to verify that the input byte string was composed of either Os and is. In ELVIS 2.0,

a time domain experiment was required to have an input source (FGEN of Arb

instrument) and an output source(scope) and a frequency domain experiment was

required to have a bode instrument. I modified the validation engine in ELVIS 3.0

to waive the requirements discussed above for both frequency domain and time

domain experiments if a DOUT instrument is present. However, regardless of

whether or not a DOUT instrument is present in a time domain experiment, if an

input source is present, an output source must also be present.

5.2.4 Lab Server Administration Pages

The lab server administration pages provide the user interface through which lab

administrators specify the instruments and diagram for a given setup. It also

provides the interface for creating, deleting and activating setups in addition to a

series of other useful functions for administrators. The interface for specifying

instruments needed updating to include the DOUT instrument. In addition, the

stored procedure AddSetupTerminal and the constraints for the

Setup TerminalConfig table were updated.

0 1 0 1 0

5.3 WebLab Client

The weblab client is the face of an iLab as far as students and educators are

concerned, so significant effort was provide the most flexible andintuitive user

experience as possible. Several changes were made to the ELVIS 3.0 client, however

the user experience is virtually the same. This is important because it allows

students that are already familiar with previous generations of the ELVIS client to

be able to jump right into ELVIS 3.0 without having to re-learn an entirely new

user interface.

5.3.1 Operation of the WebLab Client

When a student launches the client from the service broker, the

LabConfiguration.xml is sent to the client. This document is parsed by the client via

the parseXMLLabConfiguration0 function in the LabConfiguration.java class, which

creates a list of terminals that make up the current active setup. The schematic

panel displays an image of the circuit along with the user-configurable instruments

as can be seen in Figure 2-2). In order to configure an instrument, a user must click

on the instrument icon and specify the required parameter values in the dialog box

that appears (see Figure 5-15). Once all of the instruments have been configured

the experiment is submitted by clicking the run button in the top right corner.

When an experiment is submitted, the ExperimentSpecification.java class creates

the ExperimentSpecification.xml document, which is validated and sent to the

labserver via the service broker. The results of the experiment are parsed by within

the ExperimentResult.java class and then displayed in the results panel.

5.3.2 Client Updates in ELVIS 3.0

There were two types of changes/additions made to the client, those affecting the

main panel of the client, and those affecting the graphical utilities of the client.

no of Clock steps (C): the number of inputs, number of outputs

no oaddition to thedigital lines to writeah clock step. Here we have specified a bitply

no of digiUpdating the Maines to read: Cancel

C52: CS&:L
CS3: 10 CI7:
C54 00CS

Figure 5-15: Screen shot of dialog for configuring a DOUT instrument. Users
must specify the number of clock steps, the number of inputs, number of outputs
in addition to the bit patterns for each clock step. Here we have specified a bit
pattern for a 2-input, 1-output experiment run for 4 clock steps.

5.3.2.1 Updating the MainFrame

Figure 5-16 shows the ELVIS 3.0 client. It is important to note the addition of the

check box that allows a user to toggle the gridlines on and off in the graph. This

was added to improve the aesthetic qualities and simplicity of the graph when

displaying stacked strip charts. In addition, when a stacked strip chart is being

displayed on the ELVIS 3.0 client, the graph is automatically autoscaled and the

y-axis is not labeled with its maximum, minimum or units per division. Given that

digital domain data is unitless, it was important to prevent the display of false

units. This preventive measure will greatly reduce any potential confusion

experienced by students when performing digital experiments. Input waveforms are

blue and output waveforms are red.

5.3.2.2 Updating Graphical Utilities

Significant changes were made to the graphing utilities to support the display of

stacked strip charts. In order to graph data, a user must specify an x-axis and a

Figure 5-16: ELVIS 3.0 client displaying the results of the characterization of

an AND gate specified in Figure 5-15. Each waveform is labeled and numbered.

y-axis from the respective drop down menus, resulting in pointers to the specified

datavectors. Together, these datavectors specify a set of coordinate pairs

representing the results. The plot(method draws the graph by looping through the

set of coordinate pairs and connecting adjacent points by a line. In order to

understand the limitations of the plot0 method, it is important to look at an

example where it produces an undesired output. Referring back to the experiment

involving the 1-input 1-output inverter, the lab server returns the following data

vectors: DOUT<1 1 0 10 1 0 0 2 2 3 3 2 2 3 3>, DOUTTIME<0 11 2 2 3 3 4 0 1

1 2 2 3 3 4>. Plotting this data results in the graph in Figure 5-17.

The result is almost as desired except for the diagonal line that connects the

waveforms for two separate digital lines. The plot0 function uses a datatype called

a connectpattern that specifes a function for determining which points to connect in

the graph. This datattype has an isConnected(method that returns true for the

index of every point that should connected to the preceding point. So for example, if

Tst SystM-njO

10 40
AND Gate

DIGN VPIN VPS+

Temperature:siwown

0k0

Y1 Am--- etr, asm;dNone
scale:

X xs LAT Sk

Figure 5-17: Stacked strip chart when connectpattern is set to ALWAYS-
CONNECT.

isConnected(4) is true, then P4 will be connected to P3 as is the case in Figure 5-12.

The default connectpattern is ALWAYS-CONNECT, which connects every adjacent

point in the graph. In order to properly display digital data, all adjacent points are

connected except for those belonging to different digital lines. As discussed above,

the number of required datapoints for a digital line is equal to twice the number of

clock steps. Therefore points immediately following a point whose index is a

multiple of twice the number of clock steps, should not be connected to the previous

point because they represent two different digital lines. Figure 5-18 clarifies this

idea. Thus since the required connectpattern for a digital output is a function of the

number of clock steps, I had to create the function plot2O that is called whenever

digital data is to be graphed, in other words when the user specifies DOUTTIME as

the x-axis and DOUT as one of the y-axis. This function activates the appropriate

connectpattern depending on the number of clock steps for a given experiment in

addition to setting color schemes and labeling the digital lines.

5.4 Testing ELVIS 3.0

Tests were performed on several logic gates to ensure the correct functioning of the

system. I performed basic tests with single logic gates as well as more complicated

tests with several logic gates. Figures 5-19 and 5-20 show sample results for our test

experiments. displays some of the experimental results obtained. In addition to

these technical tests, I consulted frequently with colleagues in the lab to ensure that

- P9 - P16

- P1 -*

P8

Figure 5-18: In order to properly display the stacked strip chart, P8 and P9 are

not connected because they represent datapoints on adjacent digital lines.

the client was as aesthetically pleasing and intuitive as possible. These exchanges

prompted several tweaks in arriving at the final product.

testFD

Terperature unknown

None

Scale:

autoscale

X Axs: DOUfTIM cae: Linearj 0uss~ ~
Distortion data

.I.. Spectral mode

Figure 5-19: Experimental results for the characterization of a NAND gate.

Scale

------ -- ;--;-;-------

Figure 5-20: Experimental results for the simultaneous characterizations of

NAND, AND, and NOR gates.

53

54

Chapter 6

Conclusions

ELVIS 3.0, by supporting experiments in digital electronics, has greatly improved

the impact of the iLabs platform. The ELVIS iLabs now offer an even greater return

on investment by providing pedagogically useful labs covering a larger portion of

Electrical Engineering curricula. Since integrated circuits are the backbone of

modern day computing, the incorporation of digital capabilities will create a new

class of user of the ELVIS 3.0, namely the computer science and engineering

community. Diversifying our target audience is a very important step in the ongoing

iterative process of the iLab project. As we get feedback from students in other

disciplines, we can improve the virtual laboratory experience for all users by

creating a layer of abstraction around the common set of functionality and services

required by all labs. This new layer will provide the flexibility to create

multi-disciplinary labs with relative ease.

6.1 Contributions

In this section I state some of the most noteworthy contributions of my work.

* Unified parallel development efforts to create a single code base from which

further development can proceed.

* Expanded the ELVIS iLab to support experiments in digital electronics.

* Facilitated a training session at Makerere University that set the foundation

for the timely completion of their final projects.

6.2 Recommendation for Direction of iLab

Project

There has been a great deal of progress since ELVIS 1.0 was first introduced.

Currently, very complex experiments can be conducted on the ELVIS iLab. Future

development of this project falls into three major catergories.

The first alternative is to continue the process of exposing instruments on the

ELVIS platform. Currently, 8 out of the 12 available instruments have been

exposed. The natural followup would be to expose the remaining 4 instruments. At

the top of this list would be the Dynamic Signal Analyzer instrument. The

popularity of this instrument is clear when you consider the amount of traffic on the

open iLab DSA site. The other instruments to be exposed are the Impedance

Analyzer in addition to the Two and Three Wire Current-Voltage Analyzer.

The second alternative is also related to the ELVIS platform but takes a slightly

different approach. National Instruments makes several specialty plug-in boards for

the ELVIS platform, which expand its functionality to include telecommunications

and microcontroller programming for example. A good example is the EMONA

board, which is currently being developed at Makerere University for

telecommunications labs. Thus further development efforts could center around

incorporating these boards into the iLabs framework. If this path is taken, a

significant amount of work should go into creating an intuitive and educationally

useful lab client.

The third alternative is a complete change in direction from the current path of

the ELVIS iLab. During the iLabs workshops, we realized that there was a great

deal of interest from faculty outside of Electrical Engineering and Physics. There

was a Biology professor at the Open University of Tanzania, who was particulary

excited about the iLabs concept and was eager to help develop biology based iLabs.

Thus research could be done to identify and incorporate the Biology or Chemical

Engineering equivalent of ELVIS and incorporate that into the iLabs framework. I

am convinced that this path would have the greatest impact on the project as a

whole.

6.3 Future of iLab-Africa Partnership

The relationship with our partners in Africa have strengthened significantly as a

result of open and honest communication. The numerous exchanges has also

accelerated their progress. A major turning point during my tenure on the project

was our visit to Makerere University in January 2009. Before this visit, our time

spent in Africa would be split evenly between UDSM and Makerere University. The

success of the most recent trip was due to the fact that we were able to get the

UDSM students to participate in the training session at Makerere. Not only did this

promote collaboration between students from both Universities, but it served to

strengthen their relationship. The teams from both Universities are now well versed

in the technical aspects of the project so the size and scope of their contributions

will increase. In order for the iLab Africa project to remain sustainable, the role of

these Universities must change. They must take on a greater leadership role within

the East African community and in effect become local hubs. They must help with

the recruitment of Universities in order to help grow the project. Given the energy

of the teams at both UDSM and Makerere I am convinced that the project is in

good hands.

58

Appendix A

LabConfiguration.xml

<?xml version='1.0' encoding='utf-8' standalone='no' ?>

<!DOCTYPE labConfiguration SYSTEM 'http://localhost/labserver/xml/labConfiguration.dtd'>

<labConfiguration lab='MATEC ESyst iLab' specversion='0.1'>

<setup id='9'>

<name>Audio System</name>

<description>multistage audio system</description>

<imageURL>http://olid.mit.edu/images/setups/9RLcircuit.PNG</imageURL>

<mode type='TD' enabled='true'>

<terminal instrumentType='DOUT' instrumentClass='control' instrumentNumber='6' setupTermID='6'>

<label>Digital Out</label>

<pixelLocation>

<x>2</x>

<y>4 5</y>

</pixelLocation>

</terminal>

<terminal instrumentType='FGEN' instrumentClass='input' instrumentNumber='1' setupTermID='1'>

<label>FGEN Input</label>

<pixelLocation>

<x>123</x>

<y>4 3</y>

</pixelLocation>

</terminal>

<terminal instrumentType='SCOPE' instrumentClass='output' instrumentNumber='3' setupTermID='3'>

<label>Oscilloscope</label>

<source name='Circuit Output' channel='ACHO'>

<pixelLocation>

<x>45</x>

<y> 34</y>

</pixelLocation>

</source>

<source name='Amp Stage Out' channel='ACH1'>

<pixelLocation>

<x>23</x>

<y> 56 </y>

</pixelLocation>

</source>

<source name='FGEN' channel='FGEN'>

<pixelLocation>

<x>123</x>

<y>4 3</y>

</pixelLocation>

</source>

<postProcessOptions>SPEC,DIST</postProcessOptions>

</terminal>

<terminal instrumentType='VPSPos' instrumentClass='control' instrumentNumber='4' setupTermID='4'>

<label>Var Power Supply +</label>

<pixelLocation>

<x>166</x>

<y>84</y>

</pixelLocation>

</terminal>

<terminal instrumentType='VPSNeg' instrumentClass='control' instrumentNumber='5' setupTermID='5'>

<label>Var Power Supply -</label>

<pixelLocation>

<x>345</x>

<y>23</y>

</pixelLocation>

</terminal>

<terminal instrumentType='COM' instrumentClass='control' instrumentNumber='7' setupTermlD='O'>

<label></label>

<pixelLocation>

<x>100</x>

<y>150</y>

</pixelLocation>

<subCOM subCOMType ="horizR" instrumentNumber='7' setupTermID='7'>

<label>100 K</label>

</subCOM>

<subCOM subCOMType ="horizR" instrumentNumber='7' setupTermID='8'>

<label>200 K</label>

</subCOM>

</terminal>

</mode>

<mode type='FD' enabled='true'>

<terminal instrumentType='BODE' instrumentClass='output' insturmentNumber='8' setupTermID='9'>

<label>Bode Analyzer</label>

<pixelLocation>

<x>64</x>

<y>78</y>

</pixelLocation>

</terminal>

</mode>

</setup>

</labConfiguration>

62

Appendix B

Experiment Specification.xml

<?xml version="1.0" encoding="utf-8" standalone="no" ?>

<!DOCTYPE experimentSpecification SYSTEM "http://localhost/xml/ExperimentSpecification.dtd">

<experimentSpecification lab="MATEC ESyst iLab" specversion="0.1">

<setupID mode='FD'>9</setupID>

<terminal instrumentType="BODE" instrumentClass="input" instrumentNumber="7" setupTermID = "7" >

<function type="BODE">

<startFreq> 0</startFreq>

<stopFreq>5000</stopFreq>

<stepsPerDec>5</stepsPerDec>

<inputAmp>2</inputAmp>

</function>

</terminal>

<terminal instrumentType="VPSPos" instrumentClass="control" instrumentNumber="4" setupTermID = "4"

<function type="VPSFunction">

<value>5.0</value>

</function>

</terminal>

<terminal instrumentType="VPSNeg" instrumentClass=" control" instrumentNumber="5" setupTermID = "5"

<function type="VPSFunction">

<value>-5.5</value>

</function>

</terminal>

<terminal instrumentType="DOUT" instrumentClass="control" instrumentNumber="6" setupTermID = "6">

<function type="DOUTFunction">

<byte>01100111</byte>

<Input>4</Input>

<0utput>2</Output>

</function>

</terminal>

<terminal instrumentType="COM" instrumentClass="control" instrumentNumber="7" setupTermID = "0">

<function type="subCOM" setupTermID = "73">

<subCOM>horizR</subCOM>

<label>100k</label>

</function>

</terminal>

</experimentSpecification>

Appendix C

ExperimentResult.xml

<?xml version='1.0' encoding='utf-8' standalone='no' ?>

<!DOCTYPE experimentResult SYSTEM 'http://localhost/xml/experimentResult.dtd'>

<experimentResult lab='MATEC ESyst iLab' specversion='0.1'>

<datavector name='Gain' units='dB' scalable='false' type='vector'>-12.3682857521954 -18.9917193553

-12.3001253042114 -6.14745399734583 -2.90944045250843 -0.100294773285425 0.527363392938682

0.839316439511952 0.993080303257754 1.01255667697537 13.0111791863401 13.2534987682982

13.4865654371622 13.6044492322361 </datavector>

<datavector name='Phase' units='degrees' scalable='false' type='vector'>-69.3246746172284

-58.2213082414745 -50.2184638790464 -34.1847322356342 -17.7876755472731 0.624672634595873

8.25502781716833 12.9608384424874 15.2443676098177 17.7371930556832 40.5524999444354

43.2629805793569 44.7180160233491 47.469405384509 </datavector>

<datavector name='Frequency' units='Hz' scalable='true' type='vector'>10 15.8489319246111

25.1188643150958 39.8107170553497 63.0957344480193 100 158.489319246111 251.188643150958

398.107170553497 630.957344480193 1000 1584.89319246111 2511.88643150958 3981.07170553497

</datavector>

<datavector name='DOUTTIME' units='bool' scalable='true' type='vector'>0 1 1 2 2 3 3 4 0

1 1 2 2 3 3 4 0 1 1 2 2 3 3 4 0 1 1 223340 1 1 223340 1 1 2 2 3 3 4 0 1 1 2 2

3340 1 1 2 2 3 3 4 0 1 1 2 2 3 3 4 0 1 1 2 2 3 3 4 0 1 1 2233401 1 2 2 3 3 4 0

1122334011223340 1 1 2 2 3 3 4 0 1 122334011223340 1 1 2 2

3 3 4</datavector>

<datavector name='DOUT' units='bool' scalable='true' type='vector'>O 0 0 0 0 0 0 0 1 1 1

1000022222222332222334444444455554444666 6 6 6 6

6 7 7 6 6 6 6 7 7 8 8 8 8 8 8 8 9 9 9 8 8 8 8 10 10 10 10 10 10 10 10 11 11 10 10 10

10 11 11 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 14 14 14 15 15

14 14 14 14 14 14 16 16 16 16 16 16 16 16 16 16 16 16 17 17 16 16</datavector>

</experimentResult>

Appendix D

LabConfiguration.dtd

<!ELEMENT labConfiguration (setup*)>

<!ATTLIST labConfiguration lab CDATA #REQUIRED

specversion CDATA #REQUIRED>

<!ELEMENT setup (name, description, imageURL, mode+)>

<!ATTLIST setup id CDATA #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT imageURL (#PCDATA)>

<!ELEMENT mode (terminal*)>

<!ATTLIST mode type (TD I FD) #REQUIRED

enabled (true I false) #REQUIRED>

<!ELEMENT terminal (label, pixelLocation?,subCOM*, ((source+, postProcessOptions?)

I(enabledModes, file*)))>

<!ATTLIST terminal instrumentType (FGEN I SCOPE I ARBO I VPSPos I VPSNeg I DOUT I COM I BODE)

#REQUIRED

instrumentClass (input I output I control I switch) #IMPLIED

instrumentNumber CDATA #REQUIRED

setupTermID CDATA #REQUIRED>

<!ATTLIST subCOM subCOMType CDATA #REQUIRED

instrumentNumber CDATA #REQUIRED

setupTermID CDATA #REQUIRED>

<!ELEMENT subCOM (label)>

<!ELEMENT label (#PCDATA)>

<!ELEMENT pixelLocation (x, y)>

<!ELEMENT x (#PCDATA)>

<!ELEMENT y (#PCDATA)>

<!ELEMENT source (pixelLocation)>

<!ATTLIST source name CDATA #REQUIRED

channel CDATA #REQUIRED>

<!ELEMENT postProcessOptions (#PCDATA)>

<!ELEMENT enabledModes (#PCDATA)>

<!ELEMENT file (name, description, URL,

<!ATTLIST file WAVID CDATA #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT URL (#PCDATA)>

<!ELEMENT length (#PCDATA)>

<!ELEMENT recSamplingRate (#PCDATA)>

<!ELEMENT recTotalSamples (#PCDATA)>

length, recSamplingRate, recTotalSamples)>

Appendix E

Experiment Specification. dtd

<!ELEMENT experimentSpecification (setupID, terminal+)>

<!ATTLIST experimentSpecification lab CDATA #REQUIRED

specversion CDATA #REQUIRED>

<!ELEMENT setupID (#PCDATA)>

<!ATTLIST setupID mode (TD I FD) #REQUIRED>

<!ELEMENT terminal (function+)>

<!ATTLIST terminal instrumentType (FGEN I SCOPE I ARBO I VPSPos I VPSNeg I DOUT I BODE)

#REQUIRED

instrumentClass (INPUT I OUTPUT I CONTROL) #IMPLIED

instrumentNumber CDATA #REQUIRED>

<!ELEMENT function ((waveformType, frequency, amplitude, offset) I

(scope+, samplingRate, samples, trigger) I

(mode, arbSamplingRate, arbSamples, ((frequency, amplitude, offset, phase, dutyCycle?) I

(waveform) I

(fileID))) I

(value) I

(byte) I

(startFreq, stopFreq, stepsPerDec, inputAmp))>

<!ATTLIST function type (WAVEFORM I SAMPLING I ARB I BODE I VPSFunction I DOUTFunction) #REQUIRED>

<!ELEMENT waveformType (#PCDATA)>

<!ELEMENT frequency (#PCDATA)>

<!ELEMENT amplitude (#PCDATA)>

<!ELEMENT offset (#PCDATA)>

<!ELEMENT scope (name?, source, paSpec, paDist)>

<!ATTLIST scope channel (A I B) #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT source (#PCDATA)>

<!ELEMENT paSpec EMPTY>

<!ATTLIST paSpec perform (true I false) #REQUIRED>

<!ELEMENT paDist EMPTY>

<!ATTLIST paDist perform (true I false) #REQUIRED>

<!ELEMENT samplingRate (#PCDATA)>

<!ELEMENT samples (#PCDATA)>

<!ELEMENT trigger (source, slope?, level?)>

<!ELEMENT source (#PCDATA)>

<!ELEMENT slope (#PCDATA)>

<!ELEMENT level (#PCDATA)>

<!ELEMENT mode (#PCDATA)>

<!ELEMENT arbSamplingRate (#PCDATA)>

<!ELEMENT arbSamples (#PCDATA)>

<!ELEMENT frequency (#PCDATA)>

<!ELEMENT amplitude (#PCDATA)>

<!ELEMENT phase (#PCDATA)>

<!ELEMENT dutycycle (#PCDATA)>

<!ELEMENT waveform (#PCDATA)>

<!ATTLIST waveform dt CDATA #REQUIRED>

<!ELEMENT fileID (#PCDATA)>

<!ELEMENT value (#PCDATA)>

<!ELEMENT byte (#PCDATA)>

<!ELEMENT startFreq (#PCDATA)>

<!ELEMENT stopFreq (#PCDATA)>

<!ELEMENT stepsPerDec (#PCDATA)>

<!ELEMENT inputAmp (#PCDATA)>

Appendix F

Experiment Sp ecificat ion. dtd

<!ELEMENT experimentResult (datavector+)>

<!ELEMENT datavector (#PCDATA)>

<!ATTLIST experimentResult lab CDATA #REQUIRED

specversion CDATA #REQUIRED>

<!ATTLIST datavector name CDATA #REQUIRED

units CDATA #REQUIRED

scalable (true I false) #IMPLIED

type (vector I scalar) #IMPLIED>

72

Bibliography

[1] Thomas E. Brewer. Georgia institute of technology simplifies teaching circuit
design with ni elvis, ni labview, and ni multisim.
http://www.ni.com/academic/ni_elvis/universities_using nielvis.htm.

[2] Jesus del Alamo. Realizing the Potential of iLabs in sub-Sahara Africa, 2005.
http://www-mtl.mit.edu/ alamo/del%20Alamo.pdf.

[3] Samuel Gikandi. Elvis ilab: A flexible platform for online laboratory
experiments in electrical engineering. Master's thesis, Massachusetts Institute
of Technology, 2006.

[4] Bryant J. Harrison. Expanding the capabilities of the elvis ilab using
component switching. Master's thesis, Massachusetts Institute of Technology,
2008.

[5] Judson Harward. Service broker to lab server api.
http://icampus.mit.edu/iLabs/Architecture/downloads/protectedfiles/ServiceOBroker

[6] iCampus: the MIT-Microsoft Alliance. ilab: Remote online laboratories.
http://icampus.mit.edu/projects/ilabs.shtml.

[7] National Instruments. Getting Started With Lab VIEW, 2007.
http://www.ni.com/pdf/manuals/373427c.pdf.

[8] Adnaan Jiwaji. Modular development of an educational remote laboratory
platform for electrical engineering: the elvis ilab. Master's thesis,
Massachusetts Institute of Technology, 2009.

[9] Steve Lerman and Jesus del Alamo. ilab: Remote online laboratories. 2000.
http://icampus.mit.edu/projects/ilabs.shtml.

[10] National Instruments. NI Educational Laboratory Virtual Instrumentation
Suite (NI ELVIS), 2006. http://zone.ni.com/devzone/cda/tut/p/id/3711.

[11] Carter Macready Snowden. The ilab project. 1986.
https://wikis.mit.edu/confluence/display/ILAB2/Home.

[12] David Zych. Client to service broker api.
http://icampus.mit .edu/iLabs/Architecture/downloads/protectedfiles/Clientto

