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Abstract

Traditional oblivious routing algorithms either do not take into account the bandwidth
demand, or assume that each flow has its own private channel to guarantee deadlock
freedom. Though adaptive routing schemes can react to varying network traffic,
they require complicated router designs. In this thesis, we present a polynomial-time
heuristic routing algorithm that takes bandwidth requirements of each flow into ac-
count to minimize maximum channel load. The heuristic algorithm has two variants.
The first one produces a deadlock-free route. The second one produces a minimal
route, and is deadlock-free with two or more virtual channels assuming proper VC al-
location. Both routing algorithms are oblivious, and need only simple router designs.
The performance of each bandwidth-sensitive routing algorithm is evaluated against
dimension-order routing and against the other on a number of benchmarks.
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Chapter 1

Introduction

Routing methods can be divided into two main types, oblivious and adaptive [21].

In an oblivious routing algorithm a route is completely determined given a set of

source and destination positions. Oblivious routing methods need very simple router

designs. A route lookup table or fixed logic at each network node suffices. No adap-

tation capability in the routers is needed. However, most existing oblivious routing

algorithms do not perform well, especially under conditions where an application has

different bandwidth requirements for each flow. Adaptive routing, on the other hand,

can change routes of flows based on network traffic information, such as congestion.

However, adaptive routing requires complex router designs to make intelligent deci-

sions and so incurs extra hardware cost and delay.

Many techniques have been explored in designing Network-on-Chip (NoC) inter-

connect. [1] presents a survey. A large body of work considers routing in the NoC

design phase when mapping applications onto NoC architectures [13, 19, 12]. This

thesis adopts the idea of routing in the NoC design phase but it is unique in the sense

that it iteratively uses a heuristic function in an attempt to find the globally optimal

routes.

A heuristic algorithm is introduced in [31] to improve the initial set of routes

given by dimension-order routing and guarantees a deadlock-free route. Palesi [23]

developed a deadlock-free, bandwidth-aware, adaptive routing algorithm for a specific

application. Load is uniformly balanced across the network, so the routes globally



perform well.

In this thesis, we propose and evaluate two bandwidth-sensitive oblivious routing

algorithms that run in polynomial-time and statically produce a set of deadlock-free

routes. Assuming knowledge of rough estimates of bandwidth demand for each flow,

we heuristically minimize congestion at each link while satisfying each flow's demand

and minimize the maximum channel load of the network. Bandwidth requirements

are acquired by application analysis or profiling. After performing offline routing and

virtual channel allocation, next hop and virtual channel numbers corresponding to

the flows are statically loaded onto the network while the processing elements are

configured for computation, though it is possible to dynamically reconfigure at hard-

ware cost [17, 24]. These two bandwidth-sensitive oblivious routing algorithms give

higher throughput than traditional oblivious routing algorithms because the routes

are optimized based on the global knowledge of bandwidth demand. Furthermore, the

routers needed by these oblivious routing algorithms are simple and require hardly

any hardware modification.

Both of the routing algorithms are based on Dijkstra's algorithm to find shortest

paths [7]. They both iteratively route flows to balance bandwidth loads and to reduce

maximum channel load. The first routing algorithm, Dijkstra's Routing Algorithm,

produces a set of deadlock-free routes that fit into a particular turn model [11]. The

second routing algorithm, Dijkstra's Algorithm in Minimal Routing, produces a set of

minimal routes that are not deadlock-free. However, they can be made deadlock-free

after virtual channel allocation with at least two virtual channels. Virtual channel

allocation is done to firstly make the routes deadlock-free (for the case of Dijkstra's

Algorithm in Minimal Routing), secondly to reduce head-of-line blocking, and thirdly

to minimize the number of flows per virtual channel.

The performance of routes produced by the two bandwidth-sensitive oblivious

routing algorithms, routes produced by dimension-order routing, XY/YX, and routes

produced by traditional oblivious routing algorithms, ROMM/Valiant, are compared

on four benchmarks.



1.1 Thesis Outline

This thesis presents two methods to generate deadlock-free bandwidth sensitive obliv-

ious routes. It details the implementation of each and compares their performances

against XY/YX routings as well as each other.

The rest of this thesis is structured as follows. Chapter 2 summarizes background

and related work in applications, routing, and router design. Chapter 3 details ev-

ery design issue faced in building on Dijkstra's shortest path algorithm to obtain

a bandwidth-sensitive oblivious routing algorithm we call Dijkstra's Routing Algo-

rithm. Chapter 4 describes the simulation process and compares maximum channel

load and the performance results of Dijkstra's Routing Algorithm with dimension-

order routing, XY and YX, on four benchmarks. The effect of bandwidth variation is

also simulated and analyzed. Chapter 5 details the implementation of Dijkstra's Al-

gorithm in Minimal Routing. It is based on Dijkstra's Routing Algorithm and so the

differences are highlighted. Chapter 6 compares the performance of Dijkstra's Rout-

ing Algorithm and Dijkstra's Algorithm in Minimal Routing using 2 and 8 virtual

channels. Chapter 7 concludes this thesis and discusses future work.
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Chapter 2

Background and Related Work

Before diving into the detailed implementation and performance analysis of our rout-

ing algorithms, this chapter talks about the basic structure of diastolic arrays in

Section 2.1. Dijkstra's Routing Algorithm, introduced in Chapter 3, is suitable for

routing on these arrays. This chapter also discusses the differences and trade-offs

between oblivious and adaptive routing methods in Section 2.2. Section 2.2.1 gives

one example of oblivious routes, produced by the XY/YX routing algorithm. Section

2.2.2 discusses two other oblivious routing algorithms, ROMM and Valiant. Section

2.3 talks about some well-known simple router designs that are suitable for oblivious

routing algorithms.



2.1 Diastolic Arrays

In [3] Cho et al proposed a diastolic array structure in which the processing elements

communicate exclusively through First-In First-Out queues. Diastolic arrays are tar-

geted at throughput sensitive, latency tolerant applications. Usually applications

running on diastolic arrays are spatially partitioned into processing elements (PEs)

and the network traffic pattern between these PEs remains relatively constant. This

is because each PE performs a specific fixed task. The bandwidth demand of each flow

stays roughly the same throughout. This thesis explores routing for a network whose

traffic pattern is relatively static, rather than one with dramatic fluctuations in band-

width demand. This is the case for most applications in reconfigurable computing.

These applications are suitable for running on diastolic arrays.



2.2 Oblivious and Adaptive Routing

There are two main types of routing strategies, adaptive and oblivious, which are

introduced in [21]. In adaptive routing, the path for each packet in a flow is dynami-

cally determined by some global or local metric, such as the network traffic load. In

oblivious routing, a packet's path is routed statically determined beforehand. Each

flow defined by a source-destination pair always takes a predetermined path.

Deterministic routing is a subset of oblivious routing. Given the source and des-

tination positions, there is only one possible path and it is always chosen.

On the other hand, in adaptive routing routes may be changed during execution

based on some global or local network information. This may imply better perfor-

mance because of its ability to adapt to the network. However, router complexity

increases because of the functionality required for collecting and processing network

data.

2.2.1 XY/YX Routing

DOR (dimension-order routing) [5] becomes XY and YX on a 2-D mesh. DOR is

deterministic. XY routing chooses routes with the shortest possible distance from

source to destination, travelling along the x direction first, then along the y direction.

YX routing routes along the y direction first, then along the x direction. Given a

source-destination pair, deterministic routing always chooses the same path [4]. Since

there is no one single method that always performs best for all patterns of network

traffic, XY/YX may not be the best routing strategy due to its determinism.

Although deterministic, XY/YX routing guarantees that the routes it produces

are minimal; they have the fewest number of hops possible. This may not always be

beneficial as it doesn't allow for the possibility of routing around a heavily congested

link while its surrounding links are unused. In this situation a non-minimal route is

likely to give better performance because it can better balance load.

XY/YX is deterministic and minimal, which makes it impossible to take network

traffic information into account. XY/YX routing is deadlock-free, but it may perform



very poorly under certain traffic patterns. Assuming no false resource dependencies,

necessary and sufficient conditions for deadlock-free deterministic routing are given

in [5]. We use this condition to determine if a set of routes is deadlock-free in our

oblivious routing scheme introduced in Chapter 3.

2.2.2 ROMM and Valiant Routing

ROMM [20] and Valiant [29] are two examples of oblivious routing methods. Dimension-

order routings are used by ROMM and Valiant. A middle node is randomly chosen

to randomize the traffic pattern in order to distribute load better. In olturn [26], a

guarantee on worst-case throughput is given by balancing traffic patterns in XY and

YX. Weighted ordered toggle (WOT) [10] uses more than 2 virtual channels to reduce

maximum network load for a given source to destination pair. These routes either do

not take into account bandwidth demands, or are limited to simple minimal paths

(WOT). Our goal is to develop a routing algorithm that is bandwidth sensitive, but

also utilizes non-minimal routes.



2.3 Router Designs

2.3.1 Typical Virtual Channel Router

The architecture and operation of a typical virtual channel router can be found in

[6, 25, 18]. Various virtual channel router designs have been proposed in [2, 14, 22].

The data path of a router consists of buffers and a switch with multiple buffers for

each physical link. This way it appears to have multiple virtual channels available

for transmission. When a packet is ready to be sent, the switch connects an input

buffer to a corresponding output channel. There are three major control modules for

managing the data path: a router, a virtual-channel (VC) allocator, and a switch

allocator. These control modules determine the next hop, the next virtual channel

and when a switch is available for the next flit, respectively.

There are four phases for a routing operation: routing (RC), virtual-channel al-

location (VA), switch allocation (SA), and switch traversal (ST). These four phases

are often represented as one to four pipeline stages in modern virtual channel routers.

When a head flit (the beginning of a packet) arrives at an input channel, the next hop

is determined by the routing (RC) phase. Based on the next hop, a virtual channel

is allocated by the VA phase. Then the head flit needs to compete for a switch (SA).

If the next hop is able to accept a flit, the flit moves on to the output port (ST).

Traditional oblivious routing algorithms such as dimension-order routing (DOR)

[5], ROMM [20], Valiant [29], and olturn [26], have next hops completely determined

given a source destination pair. This allows the next hop to be computed quite easily

at each router node using the packet's destination.

Oblivious routing algorithms need only simple router designs. Simple logic is

needed for the routing (RC) phase. The clock frequency that the router runs on is

usually determined by the switch allocation (SA) phase [25].



2.3.2 Source Routing and Node-Table Routing

Source routing and node-table routing are suitable for any static routes, regardless

of whether the routes are minimal or not. Routers need to be programmable to

remember the information of the next hop, and flexible enough to support any fixed

route from any source to any destination. Source routing and node-table routing need

augmentations to support adaptive routing algorithms.

Source routing and node-table routing are described in detail in [15]. Source

routing creates longer packets as the next hop information is carried in each packet.

Node-table routing requires a lookup table in each node to store which direction a

packet should be sent as well as slightly larger packets to store the table index. In

either case, there is no additional computation logic in comparison with the router

described in Section 2.3.1. In fact, source routing and node-table routing are suitable

for any oblivious routing algorithm.

2.3.3 Virtual Channels

There are usually many virtual channels in modern routers, which may support dy-

namic virtual channel allocation. In the single virtual channel case, cycles in cycle

dependency graph imply the network may deadlock. It is possible to have a deadlock-

free path with a cycle in cycle dependency graph if an escape path is provided [8, 9].

However, this involves adaptive routing, which we do not consider in this thesis.

Virtual channels, if statically allocated, can help avoid deadlock, as we will explore

in this thesis.



2.4 Linear Programming

A Linear Programming formulation can be used to determine a lower bound on max-

imum channel load given a set of flows [4, 28]. However, the routes given by linear

programming may not be realizable by modern routers, because a packet flow may

be split into different paths (splittable flow) to achieve maximum throughput. This

may result in packets received out of order. Besides, the routes produced may cause

deadlock with a single virtual channel.

A route in which every packet flows along a single path is called an unsplittable

flow. However, the unsplittable flow problem is NP-hard even for single sources [16],

requiring the use of estimation algorithms or heuristics for large problem sets. Mixed

integer-linear programming (MILP) can produce an optimal result by minimizing

maximum channel load (MCL), for small problems. The MILP formulation was first

presented in [15] and also described below for comparison with our Dijkstra's Routing

Algorithm in Chapter 3 and Dijkstra's Algorithm in Minimal Routing in Chapter 5.

2.4.1 Mixed Integer-Linear Programming

Assume that we have an acyclic Cycle Dependency Graph (CDG) DA. We transform

it into a flow network GA, where an edge (u, v) E E has capacity c(u, v). The

capacities c(u, v) are the available bandwidths on the edge. There is a set of k data

transfers or flows K = {Ki, K 2, .. , Kk}. Ki = (si, ti, di), where si and ti are the

source and sink, respectively, for connection i, and di is the demand. We assume

si 5 ti. We may have multiple flows with the same source and destination. The

variable for flow i along edge (u, v) is fi(u, v). A route is a path pi from si to ti for a

flow i. Edges along this path will have fi(u, v) > 0, other edges will have fi(u, v) = 0.

The capacity of an edge in GA is the capacity of the link/vertex that the edge

is incident on. For example, the edge from si to AB will be assigned the capacity

of link/vertex AB. An edge from AB to BC will be assigned the capacity associated

with link/vertex BC. Edges into destination nodes di have infinite capacity.

Assume the above specification. Find an assignment of flow in GA, i.e., Vi, V(u, v) E



Figure 2-1: 3 x 3 mesh.

E fi(u, v) > O, which satisfies the constraints:

Capacity :

V(u, v) E E
k

h(u, v) = f(u, v) < c(u, v)
i=1

Flow conservation:

Vi, Vu $ si, ti Sf, (, ) =
(w,u)EE

Vi x f,(si,w) =
(si,w)EE

Ew fi(wit) = gs
(w,ti)EE

Unsplittable flow :

Vi, V(u, v) e E

Hop Count:

Vi, Vu bi(u,v)<1
(u,v)EE

Vi I b (u,v) < hopi
(u,v)EE

E fi(u, w)

(u,w)EE

fi(u, v) < bi(u, v) - di



and maximizes the total throughput, given as

k

maximize S = gi (2.1)
i=1

or maximizes the minimal fraction of the flow of each commodity to its demand:

maximize T min -  (2.2)
1<i<k di

or minimizes the maximum channel load:

minimize U = max h(u, v) (2.3)
(u,v)EE

The variables bi(u, v) are Boolean variables, i.e., they can take on values of 0

or 1 only. They enforce the restriction that a flow i can only take a single path

from source si to destination ti. Path length restrictions are also enforced. hopi is a

specified constant that can be set to be equal to the minimal path length between si

and ti. This will imply that only minimal paths will be considered. hopi should be

incremented by 2 or more to allow for non-minimal routing. The fi(u, v) variables

can take on any positive value less than or equal to the demand di.

Even though the MILP formulation produces routes with unsplittable flows, the

time it takes to compute grows exponentially as the problem size increases. Fur-

thermore, even though there are various cost functions that have been formulated,

a route with the highest throughput (Equation 2.1), or the biggest minimal fraction

of each flow (Equation 2.2), or the lowest possible MCL (Equation 2.3), may not be

the optimal route for performance. We would therefore like to find a polynomial-time

algorithm that can find a set of routes with unsplittable flows that produce optimal

performance.
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Chapter 3

Routing Using Dijkstra's algorithm

XY and YX routings are minimal and deterministic, but are purely based on the

source and destination positions and do not take into account network traffic infor-

mation. If we could profile the applications before running and record bandwidth

requirements for each source-destination pair, we could utilize this information in

our routing algorithm, and thus generate better routes. This chapter proposes an

oblivious routing algorithm based on Dijkstra's Algorithm for finding shortest paths.

It provides a polynomial-time heuristic solution to the routing problem given knowl-

edge of each flows bandwidth requirement. Since the routing algorithm is oblivious,

very little hardware support is needed from the routers. Simple router designs that

support source routing or node-table routing will do.

Traditionally Dijkstra's Algorithm is used to find the shortest paths from one

source to all destinations on a directed graph. We can model the processing elements

in diastolic arrays in [3] as nodes and the connections between processing elements as

edges on our directed graph. If we set the weights on the edges to reflect the residual

capacity of each link, we can then run Dijkstra's Algorithm to find the paths with the

lowest weight. This way, congested links are avoided and the resulting graph would

have many links with large residual capacities, and therefore is likely to perform well

under high traffic loads. This chapter describes the implementation of the oblivious

routing algorithm.



3.1 Dijkstra's Routing Algorithm

Dijkstra's algorithm for finding shortest paths is described in [7]. It solves the single-

source shortest path problem on a weighted, directed graph, where all edge weights

are non-negative.

Ideally we would like to have routes that avoid using links with little residual

capacity, so the network does not get congested. We can incorporate this idea by

using residual capacity information to modify the weights on the graph's edges. When

the residual capacity is high, the weight is small and when a link is heavily used, its

weight is increased. This modified Dijkstra's algorithm to find shortest paths for

routing is named Dijkstra's Routing Algorithm. Dijkstra's Routing Algorithm is less

liable to choose paths utilizing congested links as these edges have higher weights.

The idea is that Dijkstra's Routing Algorithm can give us a route with low congestion

by taking into account of bandwidth demands of each source-destination pair, and

will therefore perform better than the deterministic routing algorithms, XY and YX.

The complexity of the algorithm depends upon the implementation of the heap.

Here we chose a Fibonacci heap over an array or a binary min-heap for performance

reasons. If V is the number of vertices and E is the number of edges in the graph,

the complexity of extractmin for a Fibonacci heap is O(log V), and the complexity

of decreasekey is ((1). Therefore, the complexity of Dijkstra's algorithm before

any modifications is O(V x extract-min + E x decreaseley) = O(V log V + E).



3.2 Setting the Weights

Dijkstra's algorithm is able to find paths with minimum weights from a source to

all destinations on the graph, given that all weights are non-negative. In order to

incorporate Dijkstra's algorithm into our bandwidth sensitive routing, we have to

modify the weights to not only take into account of the length of the path, but also

its bandwidth demand.

We run Dijkstra's algorithm on a weighted, directed graph, deriving the weights

from the residual capacities of each link. Consider a link e that has a capacity c(e).

We create a variable for the link a(e) which is the current residual capacity of link e.

Initially, it is equal to the capacity c(e) set to be a constant C. If a flow i is routed

through this link e, we will subtract the demand di from the residual capacity. The

residual capacity is always checked to see whether it is enough to supply the demand

for the flow during routing. If there is not enough capacity, then Dijkstra's Routing

Algorithm sets the weight of the link to be extremely high, so it never chooses the

link. Therefore, the residual capacity c(e) will never be negative.

We have experimented with multiple ways of setting the weights. To take band-

width into account, we decided to set the weight to be the reciprocal of link resid-

ual capacity, similar to the CSPF metric described in [30]. Our weight function is

(e) = ( except if c(e) < di, then w(e) = oc, and the algorithm never chooses the

link. The constant C is set to be the smallest number that can provide us with routes

for all flows without using oc-weight links. The maximum channel load (MCL) 1 from

XY or YX routing gives us an upper bound for C, but in most cases, we can set C

lower and still find a solution. We want to set C lower because a lower C makes the

algorithm more aggressively avoid congested links due to their higher weight. As it is

shown in Figure 3-1, the weight function indicated by the line with diamonds has a

lower C than the weight function indicated by the line with circles. We can see that

links with lower residual capacity are punished even more on the line with diamonds

as more effort is put into avoiding congested links. The Mixed Integer-Linear Pro-

1MCL stands for Maximum Channel Load. This number is the maximum of link load for all
links.



gramming (MILP) approach for routing presented in Section 2.4.1 generates routes

by setting the unsplittable flow constraint and minimizing MCL. The result given

by MILP sets a lower bound for C, but the routes do not necessarily perform the

best. C needs to be tuned along with K to get good results. K is a constant in the

weight function. The higher we set K, the more effort is put into minimizing the hop

count. As shown in Figure 3-1, the line with crosses shows a K value that is 3 times

the original K shown by the line with circles. The weight increases for every case

of residual capacity E(e). By setting higher weights corresponding to each c(e), we

effectively reduce hop counts and get shorter paths.

Weight Set for Dijkstra
- K K= 1.0, = 105

1 K =3.0, C= 105
K = 1.0, C= 100

0.8

0.6-

0.4

10 20 30 40 50 60
Residual Capacity

Figure 3-1: Two weight functions over residual capacity

From the above paragraph, we conclude that by tweaking C and K in the weight

function, we set a trade-off between path length and link load. However, it is not

the case that the more weight we give to the more congested links, the better. If we

punish the congested links too much by setting C lower, the weights get extremely

high for links with low residual capacity. Figure 3-1 shows the line with diamonds

having much higher weights than the line with crosses for low residual capacities.



If this line with diamonds gets too high for low a(e), the weights are too high for

congested links then they matter so much that slightly less congested links do not

matter any more. We do not have any most congested links. However, this situation

is not as good as it first looks. We may still get many heavily congested links, despite

getting none of the most congested ones. Caution needs to be taken when setting C

and K in order to get a close to optimal solution.



3.3 Breaking Cycles Using the Turn Model

Dijkstra's Routing Algorithm guarantees us the shortest weight path for each source

to destination pair. However, it doesn't guarantee us a cycle free route. Cyclic routes

may result in deadlock.

In a 2-D mesh, there are 8 possible 90-degree turns. XY and YX routes do not

have deadlock problems because each of them only uses 4 of the 8 90-degree turns.

Furthermore, the 4 turns used are such that there is no way a cycle can be formed

using them. However, XY and YX routes may be too restrictive.

The turn model introduced in [11] only eliminates 2 of the 8 90-degree turns to

eliminate cycles. If we assume that the mesh does not have wraparound channels and

0-degree turns, then we can also allow 2 out of the 4 180-degree turns. These turns

to be eliminated are not random. As long as we follow the rules described in the turn

model, we are guaranteed to get an acyclic set of routes which are thus deadlock-free.

Enumeration of the turn model is listed in Table 3.1.

Allowing 2 out of 4 180-degree turns is merely for completeness of the turn model.

Incorporating 180-degree turns does not produce better routes. If a 180-degree turn

is chosen, it only adds extra path length. Since Dijkstra's Routing Algorithm tries

to reduce each link's weight, which takes into account of hop count, 180-degree turns

never appear in the routes produced.

There are two ways to generate acyclic routes. The first is to generate an acyclic

CDG using the turn model, and then run the routing algorithm on it. Generating

an acyclic CDG is described in [15]. The second way is to run Dijkstra's Routing

Algorithm straight on the mesh. However, during execution we keep track of the

direction of the incoming edge, aka, the parent of the node, and so we know which

turn is being made for each outgoing edge. If that turn is not allowed in a specific

turn model, then we set the weight on the illegal output edge to be very high; higher

than any valid route. In doing this we make sure Dijkstra's Routing Algorithm will

never choose to relax this edge and never choose this turn.

The complexity of the algorithm should not change after adding the turn model



case 2 prohibited 90-degree turns 2 prohibited 180-degree turns
1 east-north west-north south-north west-east
2 east-north west-north south-north east-west
3 north-west north-east north-south west-east
4 north-west north-east north-south east-west
5 east-south west-south north-south west-east
6 east-south west-south north-south east-west
7 south-west south-east south-north east-west
8 south-west south-east south-north west-east
9 north-west south-west east-west north-south

10 north-west south-west east-west south-north
11 west-south west-north west-east south-north
12 west-south west-north west-east north-south
13 north-east south-east west-east south-north
14 north-east south-east west-east north-south
15 east-north east-south east-west north-south
16 east-north east-south east-west south-north
17 west-north south-east south-north west-east
18 west-south north-east north-south west-east
19 north-west east-south east-west north-south
20 south-west east-north south-north east-west

Table 3.1: Turns prohibited for 20 cases in the turn model

check. Parents of nodes are already tracked in the original Dijkstra's algorithm

for finding shortest paths. Comparing the relative positions of nodes to determine

whether they satisfy a particular turn model is an 0(1) computation. Therefore, the

order of growth of our modified algorithm remains the same: O(V log V + E).

This way, we generate a route that is deadlock-free.



3.4 Nodes With 4 States

Dijkstra's Algorithm guarantees finding the shortest path from source to a particular

node after it extracts the node from the heap and finishes the Relax step. After it is

done with one node, it never goes back to relax the same node again. However, after

incorporating the turn model constraint, the current Dijkstra's Routing Algorithm

may not produce the correct shortest path, or a path at all when it should.

iS

1 "50

1 i
1*

D
Figure 3-2: A situation where the current Dijkstra's Routing Algorithm would not
produce the correct answer.

Consider the situation shown in Figure 3-2. We are trying to route from source S

to destination D. Going into node A, our current algorithm would pick the solid path

versus the dotted path, as it has the shortest distance of 3, versus the dotted path's

distance of 50. However, if we are using turn model case 15 or 16 shown in Table

3.1, east-north, east-south, and east-west turns are not allowed. Therefore, the solid

path cannot go south at node A because it cannot take an east-south turn. It can

only go east. After choosing the link with load 1 after node A, the solid path still

cannot go south because the east-south turn is prohibited. It can't go west either,

because the east-west turn is prohibited. Therefore, the solid path is a dead-end and



can never reach node D. Our current Dijkstra's Routing Algorithm would not produce

a valid route. However, in this case, the dotted path from S to A to D should have

been chosen. It is a valid route with weight 50 + 1 = 51, but the dotted path had

already been eliminated at node A. One way to solve this problem is to create four

nodes for each original node in our Dijkstra's Routing Algorithm. These new nodes

represent incoming edges from four different directions. In this case, at node A, there

is a state for the dotted path coming from the north AN and a state for the solid path

coming from the west Aw. Neither of them is thrown away at Node A because they

are distinct nodes. Both need to be relaxed and kept. Therefore, the correct shortest

path, which is the dotted path, will be found. Nodes that do not have incoming edges

from a particular direction will never be reached, but this doesn't pose a problem.

The algorithm would ignore those nodes and never try to extract them from the heap.

Dijkstra's Routing Algorithm is modified as described above. In the worst case,

there are 4 times as many nodes and edges to explore. The complexity of Dijkstra's

Routing Algorithm after this modification stays the same.



3.5 Modified Dijkstra: 1 Iteration vs. 100 Itera-

tions

Our current Dijkstra's Routing Algorithm starts by routing the first source to des-

tination pair. The residual capacities are then modified and the weights updated.

Then it routes the second source to destination pair with the modified weights which

are based on the routing result of the first source to destination pair. Next it routes

for the third source to destination pair using weights modified by the first two flows

and so on.

The problem with this is that based on the order chosen to route source to desti-

nation pair, the results can differ significantly. Consider the situation shown in Figure

3-3. The first pair is routed from S to D1 and the path chosen is shown by the solid

arrows. The second pair from S to D2 is routed after the first and takes the path

shown by the dotted arrows. In this case, S # A is congested, but S = A > D2 gives

the shortest path, because going around to S = C = B == D r= D2 is too expensive.

We would like to avoid this situation because we create a heavily congested edge

between S and A.

od S

D1 B A
OC-- O*--

D D2

Figure 3-3: Routing result for routing S to D1 first and S to D2 second



If we routed the S to D2 pair first, then S = A = D2 would be the path chosen as

shown in Figure 3-4 by the dotted arrows. Then routing S to D1 Dijkstra's algorithm

would be able to find a route that is less congested, but with the same number of

hops: S = C = B = D1. As shown clearly in the example, routing order does matter.

0 C S
O9

D1 B A

o D VD2

Figure 3-4: Routing result for routing S to D2 first

The 100 iteration Dijkstra's Routing Algorithm tries to mitigate the effects caused

by routing order. The idea is to route each pair many times growing the bandwidth

requirements gradually. This would mean when we come to last iteration the first

pair is routed onto a graph where the edge weights are nearly at their final values.

In this way no flow is given the luxury of having been routed onto an empty mesh

which caused the problem above. The algorithm works as follows: At iteration 1, we

route all source to destination pairs with only 1 of each pair's flow demand. At

iteration 2, we first erase the route for the first source to destination pair and reroute

this flow with 2 of its demand. During this second routing process, a small amount

of all other flows are on the mesh so the edge weights are affected by them, but their

contribution is small, as only 1 of the demand for each flow has been routed. Then

we erase and reroute the second source to destination pair, the third, and so on, with

2 of its flow demand. On the third iteration, we reroute each flow with I of its100demand, and so on. On iteration 100, we reroute with the full flow demand for all the

demand, and so on. On iteration 100, we reroute with the full flow demand for all the



source to destination pairs with 2 of the flow demand for all other flows already on

the mesh. This algorithm reduces the effect caused by routing order. For the example

given above, the 100 iteration Dijkstra's Routing Algorithm is able to find the routes

shown in Figure 3-4 even though S -= D1 is routed first.

This algorithm essentially repeats the previous Dijkstra's Routing Algorithm 100

times. Erasing each path requires modifying the weights of all the edges that were

routed in the last iteration, and is an O(1) operation. The complexity of the algorithm

remains the same, though it takes 100 times more time than the original algorithm.



3.6 Output Selection Process

Dijkstra's Routing Algorithm produces routes by avoiding congested links at different

levels. The more congested the link is, the less likely Dijkstra's Routing Algorithm will

use that link as part of a route. Given a set of values for C and K, we run Dijkstra's

Routing Algorithm as described in this chapter, taking into consideration all 20 turn

model cases listed in Table 3.1. We reduce C from the MCL produced by XY to

the MCL produced by MILP presented in Section 2.4.1 or until we cannot obtain a

set of routes, storing the routes obtained for each value of C. Often times we have

several routes with the same MCL. We pick the set of routes with the least congestion

amongst all computed routes with the lowest MCL. Congestion corresponds to the

product of the average excess bandwidth demand over all links times the average

number of flows competing for each link.

We developed 2 relevant metrics we can use to analyze the results.

* Average Channel Load (ACL) = lnk load for link where n is the totaln

number of links that are used. This parameter is calculated by summing up

link load for all links, and then dividing the sum by the number of links in the

network. ACL reflects how congested the network traffic is.

* Average Flow Competition Per VC (AFC) 2 = %=number of flows into the VC where

n is the total number of virtual channels that are assigned flows to in the net-

work. This parameter is calculated by computing all the flows going into every

virtual channel, and then averaging it over all the virtual channels. AFC reflects

head-of-line blocking.

One case of head-of-line blocking is illustrated in Figure 3-5. There are two flows,

depicted as A and B in Figure 3-5, sharing the same link. Ahead of flow A, the traffic

is heavy and that part of the network is very congested. A cannot move because the

flow is congested. At the same time, there is almost no traffic ahead of the other flow

B. B should be able to move freely. However, B cannot move either, because A and B
2VC stands for virtual channel. Each link in our mesh network has four virtual channels, each

for one direction.



packets are interleaved, thus flow A is blocking flow B. The bigger the AFC, the more

potential there is for head-of-line blocking.

From the above two network parameters, congestion is calculated as congestion

= (ACL - Threshold) x (AFC). Threshold is a parameter we can set. It can be thought

of as the link capacity of the network. (ACL - Threshold) gives us the average excess

bandwidth demand. This number multiplied with AFC, which is the potential for

head-of-line blocking, gives us the congestion number.

We calculate this congestion number for all generated routes with the lowest MCL,

and pick the route with the lowest congestion number.

fOB

Figure 3-5: Head-of-line blocking illustration. There is heavy congestion ahead of
flow A, and no congestion ahead of flow B after the split.



Chapter 4

Experiments with Dijkstra's

Routing Algorithm

As described in Chapter 3, the complexity of Dijkstra's Routing Algorithm is 8(V log V+

E), which is polynomial. Dimension-order routings like XY and YX are simple algo-

rithms which take linear time to route, but they may not give good routing results

because the bandwidth demand of each route is not taken into account.

This chapter details the simulator and simulation method we use to measure the

performance in Section 4.1. Section 4.2.1 evaluates the actual performance when

compared with DOR (dimension-order routing) and maximum channel load results

compared with ROMM and Valiant. The analysis for the simulation results is dis-

cussed in Section 4.2.2.



4.1 Simulation Process

4.1.1 The Simulator

A cycle-accurate network simulator is used to estimate the throughput and latency of

each flow in the application for various oblivious routing algorithms. The simulator

models the router micro-architecture with four stages. As discussed in Section 2.3,

our routing scheme only requires minor changes in modern router hardware design.

Therefore, we assume an identical clock frequency for all routing algorithms.

We use an 8 x 8 2-D mesh network with 1 to 8 virtual channels per port. The

simulator is configured to have a per-hop latency of 1 cycle, and 16 flits of buffer size

per VC. We simulate a fixed packet length of 8 flits. For each simulation, the network

is warmed up for 20,000 cycles prior to being measured, after which the simulation is

run for 100,000 cycles to collect statistics. This is enough for convergence.

We vary the input injection rate and measure the throughput of the network. A

high throughput under a high input injection rate for a specific set of routes shows

that the routes perform better. When the input injection rate is low, the throughput

should converge to the same value, dominated and controlled by the injection rate

of the input. When the input injection rate is moderate, the network is reasonably

congested. A better route with a lower MCL with little head-of-line blocking should

produce a higher throughput.

Input injection rates are tuned so that the maximum transmission rates of the

network would cover the range in between the MCLs of the two routes being compared.

Any difference in performance between two routes should be most visible within this

region. Above this region both networks are congested, whereas below neither would

be. Only within this region should the set of routes with a lower MCL not be congested

while the other set is.



4.1.2 Benchmarks

We use a set of standard synthetic traffic patterns, namely transpose, bit-complement,

and shuffle in our experiments. They are defined as follows:

* bitcomp: di = si

* shuffle: di = Si-1 mod b

* transpose: di = Si+b modb

where si(di) denotes the it h bit of the source (destination) address.

The bit length of an address is b = log 2 N, where N is the number of nodes in the

network. The synthetic benchmarks provide basic comparisons between Dijkstra's

Routing Algorithm and other oblivious routing algorithms, since they are widely

used to evaluate routing algorithms. In the above three synthetic benchmarks, all

flows have the same average bandwidth demands. We also report results on H.264,

which is a widely known and used application. We profiled a 4-engine H.264 decoder

and recorded all the flows' demands. This benchmark exhibits significantly varying

flow demands - by up to 2 orders of magnitude. It is usually the case that different

applications have vastly different flow demands.



4.2 Performance Evaluation of Dijkstra's Algorithm

4.2.1 Channel Load Comparison

The following table 4.1 shows the MCL computed by each routing algorithm.

Traffic XY YX ROMM Valiant Dijkstra's Routing Algorithm
transpose 175 175 200 175 75

bit-complement 100 100 400 200 100
shuffle 100 100 150 200 75
H.264 214.48 365.51 336.14 352.98 124.54

Table 4.1: Comparison of Maximum Channel Load (MCL) in MB/second.

As shown, Dijkstra's Routing Algorithm always finds routes with as low an, or

lower, MCL compared with XY/YX, ROMM, and Valiant routings. Dijkstra's Rout-

ing Algorithm finds the same lowest MCL as XY/YX for bit-complement. This is

because the flows in bit-complement have many source and destination positions

across the mesh, making it highly symmetric both in the x and y direction. Fig-

ure 4-1 shows the bandwidth demand for each flow and the routes determined by

Dijkstra's Routing Algorithm for bit-complement. Each arrow represents a unit of

flow demand. The more arrows pointing to the same direction on a link, the more

congested the link is in that direction. The symmetry of the benchmark is clearly

seen. For comparison, the same plot is generated for transpose, shown in Figure 4-2.

There is not as much symmetry in this figure. For the case of bit-complement, this

symmetry makes a minimal and deterministic routing algorithm, XY/YX, attractive

for this particular traffic pattern.

However, Dijkstra's Routing Algorithm finds the same result as XY/YX for bit-

complement, which shows its generality. Dijkstra's Routing Algorithm produces

routes with the same or lower MCL than XY/YX.

In this thesis, ROMM and Valiant have been implemented to randomly choose an

intermediate point on a per-flow basis, not a per-packet basis. They both produce

routes that have higher MCLs than XY/YX for the three synthetic benchmarks. The

three synthetic benchmarks that we use have relatively symmetric traffic patterns,



which make XY or YX attractive. Even though ROMM and Valiant add randomness

into the network to balance the load, the MCLs of the routes produced by ROMM and

Valiant are higher than routes produced by XY/YX for bit-complement, transpose

and shuffle. It should be noted that this is not the case for H.264.

Figure 4-1: Routes generated using Dijkstra's Routing Algorithm for bit-complement.

4.2.2 Simulation Results of Four Synthetic Benchmarks

Routes are produced by Dijkstra's Routing Algorithm on four benchmarks, discussed

in Section 4.1.2. Since there are 20 different turn models described in Section 3.3, there



Figure 4-2: Routes generated using Dijkstra's Routing Algorithm for transpose.



are 20 results produced. The selection process described in Section 3.6 is used to pick

the routes with the lowest MCL and the least congestion. It selects one set of routes

for each benchmark. The threshold is set to be 25 for all four benchmarks. Figures

4-3 through 4-6 1 show the throughput corresponding to various input injection rates

for Dijkstra's Routing Algorithm, XY, and YX on the four benchmarks. Offered

injection rate is the injection rate per MB/s bandwidth.

As can be observed from Figures 4-3 through 4-6, Dijkstra's Routing Algorithm

outperforms existing oblivious routing algorithms significantly in most of the bench-

marks. This is seen in the reduction of the MCL and the number of congested links

whose channel load is close to the MCL. Figures 4-4 and 4-5 clearly show that when

the injection rate is low, the throughput is dominated by the injection rate. The

throughput converges to the same value for all routing algorithms.

An interesting result to note is that of bit-complement. The best result is given

by minimal routing, YX. This is because the flow demands in bit-complement are

highly symmetric, as described in Section 4.2.1. This is the reason why YX routing

would give us the lowest MCL, and thus a good simulation result. Dijkstra's Routing

Algorithm was able to produce the same routes as XY or YX when XY/YX routes

are optimal, in this instance.

The performance of Dijkstra's Routing Algorithm shown in Figure 4-6 for the

H.264 benchmark, on the other hand, is better than XY/YX under moderate traffic

shown in Figure 4-7. However, as the network gets congested, head-of-line blocking

becomes more of an issue for the routes produced by Dijkstra's Routing Algorithm,

because they become unstable. If the network capacity is restricted, the correlation

between MCL and the performance of the routes diminishes, and we should instead

focus on choosing the set of routes with the least head-of-line blocking to make sure

they are stable. Figure 4-8 shows the performance of an alternative set of routes cho-

sen from the 20 routes generated by Dijkstra's Routing Algorithm. This alternative

set of routes has little head-of-line blocking, and thus they are stable and perform

1XY-1 is the performance of XY with 1 virtual channel, YX-2 is YX with 2 virtual channels and
DJK-2 is Dijkstra's Routing Algorithm with 2 virtual channels, etc.



better than XY/YX for all input injection rates.

Bitcomp
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Figure 4-3: Load-throughput graphs for bit-complement on a router with 1 or 2 VCs.

4.2.3 Simulation Result with Bandwidth Variations

The motivation for this experiment stems from the fact that the bandwidth profiling

is unlikely to be exact, and it is important to know whether the routes produced by

Dijkstra's Routing Algorithm are still robust enough to outperform DOR. Figure 4-9

shows the performance after the bandwidths have been varied. In this experiment, we

use the same routes as those used in Figure 4-4. The demands are, however, changed

to be between +10% to +50% of the original. For each flow, the bandwidth could

be as little as half or as much as 1.5 times as the original demand. It is clear that

Dijkstra's Routing Algorithm continues to outperform XY/YX because it spreads the

load across the network.
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Figure 4-4: Load-throughput graphs for transpose on a router with 1 or 2 VCs.

Shuffle
4.5

4-

4 3.5-

c 3

CL 2.5 -

S2 -( - 1XY-1
-- -- XY-2

1.5 YX-1
0 t- YX-2
)- A ....

0 10 20 30 40 50
Offered Injection Rate (packets/cycle)

Figure 4-5: Load-throughput graphs for shuffle on a router with1 or 2 VCs
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Figure 4-6: Load-throughput graphs for H.264 on a router with 1 or 2 VCs.
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Figure 4-7: A zoomed in version of Figure 4-6 to show performance at low input
injection rates.



An Alternative H.264 Set of Routes
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Figure 4-8: An alternative set of routes for H.264.
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Figure 4-9: Load-throughput graphs for transpose (1 virtual channel) when band-
widths change by ±10% and ±50% after route computation.
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Chapter 5

Dijkstra's Routing Algorithm in

Minimal Routing

After generating a set of routes, flows need to be allocated to virtual channels to re-

duce sharing among them and improve performance. It turns out that VC allocation

can help in avoiding deadlock as well if the routes satisfy some conditions. Section 5.1

discusses motivations to modify Dijkstra's Routing Algorithm to do minimal routing.

Section 5.2 details the VC allocation procedures following the routing step. Section

5.3 talks about detailed modifications needed from the original Dijkstra's Routing

Algorithm introduced in Chapter 3 in order to generate bandwidth-sensitive mini-

mal routes. Section 5.4 details the method Dijkstra's Routing Algorithm in Minimal

Routing uses to favor certain minimal routes. Section 5.5 summarizes the four combi-

nations of turns we can favor in order to make the VC allocation step more efficient.



5.1 Motivations for Exploring Dijkstra's Algorithm

in Minimal Routing

Dijkstra's Routing Algorithm described in Chapter 3 guarantees us a set of deadlock-

free routes, which have a low MCL. The head-of-line blocking problem introduced

in Section 3.6, while taken into account during the output selection process, is not

considered heavily during the routing process described in Section 3.6. After the

routing process, we need to do virtual channel allocation based on the number of

channels available in the hardware. We allocate virtual channels in a way that reduces

head-of-line blocking. This is described in detail in Section 5.2.

Virtual channel allocation can not only reduce head-of-line blocking problems, but

also break some cyclic routes ensuring they are deadlock-free. ROMM and Valiant

routings, for example, require at least 2 virtual channels to avoid deadlock. The

first segment of each route before the intermediate point needs to be assigned to

one virtual channel, and the second segment is assigned to the other. In this way,

routes produced by ROMM and Valiant do not cause deadlock problems. If only one

virtual channel is used, ROMM and Valiant routes do not guarantee a deadlock-free

environment.

With the aid of VC allocation, Dijkstra's Routing Algorithm need not generate

deadlock-free routes. As long as deadlock problems can be solved with a limited

number of virtual channels, we can ensure the routes can be deadlock-free after VC

allocation.

As described in [27], we only need 2 sets of virtual channels to ensure deadlock

freedom if all routes are minimal. If there are more than 2 virtual channels available,

some of them can be dedicated to reducing head-of-line blocking. This motivates us

to explore generating bandwidth-sensitive minimal routes using Dijkstra's Algorithm.



5.2 Virtual Channel Allocation for Dijkstra's Al-

gorithm in Minimal Routing

Dijkstra's Algorithm in Minimal Routing produces routes that are minimal but not

deadlock-free. At least 2 virtual channels need to be dedicated to make the routing

deadlock-free. If we have more than 2 VCs, we divide all the virtual channels into

virtual channel sets. 1 VC set has to be dedicated to the West-First turn model while

the other has to be dedicated to the North-Last turn model. All the routes produced

by Dijkstra's Algorithm in Minimal Routing are minimal, and therefore conform to

one of the 2 turn models, West-First or North-Last, or both. We group all the routes

into 3 sets. The first set is for routes that only fit into the West-First turn model,

the second for routes that only fit into the North-Last turn model while the third set

is for routes that fit into both turn models. Therefore, at each link, we may have

non-zero routes in the first and second set. In this case, any of the routes in the

third set should be distributed into either of the first two sets, carrying the strategy

of reducing head-of-line blocking and balancing the load, i.e., the number of flows per

VC. If either the first or the second set is empty or both are empty, then there is

greater flexibility to reduce head-of-line blocking and to balance the number of flows

per VC. In other words, the more routes the third set has, the more choice we have

in assigning VCs at each link, because every flow in the third set can go into either

of the two VCs.

VC allocation is carried out to best reduce head-of-line blocking and to balance

the number of flows per VC. The details of the procedure are described in [27]. The

following is a summary of the steps.

1. The algorithm searches for a VC that only contains flows which have shared a

VC with the flow that is currently being allocated a VC. If this VC exists, the

flow is assigned to the VC. This check is done because there is no advantage in

assigning another VC to this new flow since head-of-line blocking may already

exist between the new flow and all the flows that were in the VC because they

have shared a VC before.



2. The algorithm looks for an empty VC. If found, the new flow is assigned to this

empty VC.

3. The algorithm looks for a VC that contains a flow that has shared a VC with

the flow that is to be assigned a VC. If such a VC is found, the new flow is

assigned to the VC.

4. The algorithm assigns the new flow to the VC that contains the minimum

number of flows.

Sharing between flows for this particular VC is updated after each iteration. This

procedure above is repeated for each flow utilizing the given link. And this is repeated

for each link.



5.3 Implementation of Bandwidth-Sensitive Mini-

mal Routing Using Dijkstra's Algorithm

There are a few implementation changes which need to be made to Dijkstra's Routing

Algorithm described in Chapter 3 in order to generate minimal routes.

5.3.1 Elimination of Turn Model Constraint

First of all, the turn model does not need to be used because our final routing does not

need to be deadlock-free. Shim's paper [27] proves that a set of minimal routes can be

made deadlock-free by using 2 virtual channels. There are 8 different combinations of

turns that can appear in minimal routes given a set of source to destination pairs on

a 2-D mesh. We can assign 4 of them to one virtual channel, which contains all the

routes that satisfy the West-First turn model, shown in Figure 5-1. We then assign

the other 4 of them to the other virtual channel, which contains all the routes that

satisfy the North-Last turn model, shown in Figure 5-2. Therefore, we also do not

need to keep track of incoming and outgoing directions during execution.

Figure 5-1: The West-First turn model.

5.3.2 Elimination of Four States per Node

Since we do not need to keep track of the directions at each node along a particular

route, we do not need to keep four states per node. The reason why these were needed



Figure 5-2: The North-Last turn model.

in the previous design was because at each node, we wanted to keep a separate state

for the routes from all four directions, as was described in Section 3.4.

5.3.3 The Addition of Making Some Progress at Every Step

We want our routes to be minimal, which means the route has the smallest number

of hops possible. In order to guarantee minimal routing, we enforce frequent checks

of the distance between the current node and destination. At each node, we check

the distance left to the destination, and designate this dl. For every node adjacent to

the current one, we calculate the distance between this node and the destination and

call this d2. If dl > d2, the node is a potential candidate for our minimal route and

should be relaxed if needed. If not, the partial route cannot make a minimal route

and thus invalid. In this case, we add positive_infinity to the weight of the edge

to make sure it is never relaxed or chosen by our routing algorithm.

5.3.4 The Need of 100 Iterations

Though constrained to minimal routing, there are still many viable paths from a

source to a destination. Figure 5-3 shows 4 possible minimal routes from S to D

where S and D are 2 units in length and 2 units in width apart from each other.

Given many choices of routes for each source to destination pair, the route chosen

will affect the routing process of the next flow. The route that is then chosen for this

flow will affect the routing process of the next, and so on. In other words, the routing



order still matters in this case. This is the reason why 100 iterations are still desired

and needed to reduce the effect of the routing order and to achieve a set of close to

globally optimal routes.

D

Figure 5-3: Four possible minimal routes from S to D where S and D are 2 units in
length and 2 units in width apart from each other.
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5.4 Dijkstra's Routing Algorithm in Minimal Rout-

ing with Favored Turns

Shim's paper [27] discusses that if we are using West-First and North-Last turn models

as shown in Figure 5-1 and 5-2, there are 4 minimal routes that fit into both turn

models. These 4 turns are shown in Figure 5-4. The idea is to get as many minimal

routes that are solely composed of these four turns as possible as these minimal routes

can be assigned to either virtual channel. (Given two virtual channels, one virtual

channel has all the routes satisfying the West-First turn model, and the other has

routes satisfying the North-Last turn model.) The more of these minimal routes we

have, the more routes we have where we can choose which VC to assign it to. And so

we can dedicate more effort to reducing head-of-line blocking by reducing the amount

of sharing and splitting.

Figure 5-4: The four (out of possible eight) different one-turn routes on a 2-
dimensional mesh that conform to both the West-First and North-Last turn model.

We call the routes that are solely composed of any of the four turns shown in

Figure 5-4 favored routes. Note that the favored routes can only make one turn. In

Figure 5-5, the solid path is a favored route because it only contains the east-north

turn. The dotted path, however, is not a favored route because it also makes a north-

east turn. Favored routes (solid path) can only make one turn along the path from

source to destination. A route that zig-zags (dotted path) can never be a favored

route.



D

o 0

O 9- --

Figure 5-5: Two routes to illustrate favored routes. The solid route is a favored route
while the dotted route is not.

5.4.1 Implementation For Favoring Four Turns

We want to end up with a set of routes that have as many favored routes as possible,

but at the same time a low MCL and low congestion. We do not wish to modify the

weight of a favored route. If we did, the weights would be determined both by the

residual capacity of the link and the position of the nodes the route has gone though,

two completely unrelated criteria. How the weights should be reduced in order to give

priority to the favored route is not clear. We do not want to compromise MCL and

low congestion to get more favored routes. Instead, we only want to give priority to

those favored routes. Given a source node and a destination node that are not in the

same row or column, we can only find one possible favored route. We calculate and

update the residual capacities and weights along all links traversed by this favored

route. We then relax and put each node into the heap in the same way as Dijkstra's

Routing Algorithm.

With all the nodes and edges along this path already explored, we run Dijkstra's

Algorithm in Minimal Routing as we did before: exploring all possible minimal routes

from source to destination; if the condition for relaxation is satisfied, that is, if the

sum of the weight of the parent node and the weight of the edge is smaller than the



current weight of the node, then relax that edge by setting the weight of the current

node to be the new smaller weight and change the parent node pointer. Finally change

the weight of the node in the heap. We keep doing this for all possible minimal paths.

This method gives priority to favored routes. In the case of having two minimal paths

with same lowest weight, if one of these is a favored route, then this favored route is

guaranteed to be chosen by this implementation. The reason is that all the distances

of the nodes on this favored route have been initialized. Later on if there is another

path that results in the same lowest weight at the destination, the destination node

will not be relaxed and its parent pointer will still use the favored route.

The favored route is only chosen when it does not contribute any more to conges-

tion given the flows that are already routed on the mesh. A favored route will not be

chosen if there is another path that can result in a lower weight at the destination. In

this case the path will be relaxed along the new path and our algorithm will output

the path with the lowest congestion.

5.4.2 Advantage of this Implementation

The initialization step saves us from having to constantly relax and update the heap.

If we did not initialize the graph with the favored minimal route, and instead we

ran Dijkstra's Algorithm in Minimal Routing without this initialization many more

checks would be required. Every time an edge is to be relaxed the algorithm would

proceed normally, updating the weight parent node pointer appropriately. The extra

check is needed when the sum of the weight of the parent node and the weight of the

edge is the same as the weight of the current node. Here we must check if the new

route is a favored route and if so, we need to relax the edge to replace the old route

with this new favored route. There is no need to update the weight as it stays the

same. This implementation is not as efficient, because we have to relax every time we

see a smaller weight at a node less than the current weight of the node. Furthermore,

every time we find the weights are equal and we have a choice over routes we would

have to check the position of every node on the route to decide if the new route is a

favored one. With initialization, if the favored path has the lowest weight, we do not



need to relax at all. Even if the favored path does not have the lowest weight, we

may still save ourselves from relaxing and updating as frequently.



5.5 Four Turn Model Pairs for Minimal Routing

The West-First and North-Last turn model pairs can be rotated four times, each time

with different turns being disallowed. Figure 5-6 shows the four turn model pairs and

the favored minimal routes that satisfy both the West-First and North-Last turn

model.

WF NL Favored
Routes

no rotation I Lr L

rotate

counterclockwise
once

rotate .

Scounterclockwis '.i I
twice i..2 A

counterclockwise
3 times A . ......

Figure 5-6: West-First and North-Last turn models rotated 90 degrees zero to three
times to form four turn model pairs. The column WF shows the West-First turn
model rotated 90 degrees zero to three times. The column NL shows the North-Last
turn model rotated 90 degrees zero to three times. The last column shows the favored
minimal routes that can be assigned to either virtual channel.

Since we can look at the turn model pairs four different ways and the set of favored

turns are different in every case, we should run Dijkstra's Algorithm in Minimal

Routing four times based on the four orientations of the turn model Pairs. For each

choice of turn model pair, we should have more favored routes where we have a choice

in VC allocation than if we do not favor any routes.



5.6 Routes Selection for Dijkstra's Algorithm in

Minimal Routing

We should also run Dijkstra's Algorithm in Minimal Routing with no favored turns

applied. This way we end up with five sets of routes: four sets of routes with favored

turns, and one set of routes with no favored turns. The selection process is done the

same way as described in Section 3.6. We pick the routes with the minimum MCL

and the lowest congestion.
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Chapter 6

Performance Comparison Between

Dijkstra's Routing Algorithm and

Dijkstra's Algorithm in Minimal

Routing

Dijkstra's Routing Algorithm and Dijkstra's Algorithm in Minimal Routing are two

ways to solve a routing problem. Dijkstra's Routing Algorithm tries to reduce conges-

tion of the network and produces a set of deadlock-free routes. Dijkstra's Algorithm

in Minimal Routing also tries to reduce congestion of the network, but produces min-

imal routes that are not deadlock-free. The routes need to go through virtual channel

allocation, which reduces head-of-line blocking, and we require at least 2 VCs to

make the routing deadlock-free. We were interested in comparing the two algorithms'

performances. Simulation results are shown in Section 6.2 for the four benchmarks

when 2 VCs are used in both routing algorithms. Performance is also compared and

analyzed when more VCs are available. Simulation results are shown in Section 6.3

for H.264 with multiple VCs for both routing algorithms.



6.1 Channel Load Comparison

The MCL for routes produced by Dijkstra's Routing Algorithm and Dijkstra's Algo-

rithm in Minimal Routing, is shown in Table 6.1.

Traffic Dijkstra's Routing Algorithm Dijkstra's Algorithm in Minimal Routing

transpose 75 75
bit-complement 100 125

shuffle 75 75
H.264 124.54 174.07

Table 6.1: Comparison of MCL in MB/second for two variants of routing algorithms
based on Dijkstra's Algorithm.

6.2 Performance Comparison of 2 VCs on Four

Benchmarks

With the simulator configured as described in Chapter 4, simulations were run for

Dijkstra's Routing Algorithm with dynamic VC allocation and Dijkstra's Algorithm

in Minimal Routing, with static VC allocation with 2 virtual channels being used

for the four benchmarks introduced in Section 4.1.2. We chose 2 virtual channels as

this is the smallest number that allows Dijkstra's Algorithm in Minimal Routing to

produce deadlock-free routes. The static virtual channel allocation process described

in Section 5.2 with 2 VCs is used for the routes produced by Dijkstra's Algorithm

in Minimal Routing to make the routes deadlock-free. The performance is shown in

Figures 6-1 to 6-4. 1

The results show that the performance of Dijkstra's Routing Algorithm and Di-

jkstra's Algorithm in Minimal Routing are very close to each other; they both signif-

icantly outperform XY/YX. This is not surprising, because they both iteratively and

heuristically reduce heavily congested links.

1DJK MIN is the simulation result for Dijkstra's Algorithm in Minimal Routing. DJK is the
simulation result for Dijkstra's Routing Algorithm.
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Figure 6-1: Performance comparison for bit-complement on a router with 2 VCs.
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Figure 6-2: Performance comparison for transpose on a router with 2 VCs.
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Figure 6-3: Performance comparison for shuffle on a router with 2 VCs.
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Figure 6-4: Performance comparison for H.264 on a router with 2 VCs.



It can be observed that static VC allocation on the routes produced by Dijkstra's

Algorithm in Minimal Routing performs better than the dynamic VC allocation used

on routes produced by Dijkstra's Routing Algorithm. This is because static VC

allocation reduces head-of-line blocking much more effectively than dynamic VC al-

location. In the case shown in Figure 6-2 and 6-3 when both the routes produced by

Dijkstra's Routing Algorithm and Dijkstra's Algorithm in Minimal Routing have the

same lowest MCLs (in this case, 75), Dijkstra's Algorithm in Minimal Routing with

static VC allocation with 2 VCs performs better.

For the case of bit-complement, as shown in Figure 6-1, Dijkstra's Algorithm in

Minimal Routing produces a set of routes with a larger MCL (125) than that of

Dijkstra's Routing Algorithm (100). In the case of bit-complement, all the routes

have little head-of-line blocking so MCL is the dominating factor. Routes produced

by Dijkstra's Routing Algorithm consistently perform better than routes produced

by Dijkstra's Algorithm in Minimal Routing as its routes have a lower MCL.

In the case of H.264, as shown in Figure 6-4, Dijkstra's Routing Algorithm, which

has an MCL of 124.54, performs better than Dijkstra's Algorithm in Minimal Rout-

ing, which has an MCL of 174.07, under low network traffic. However, its performance

degrades when the network is heavily congested. In this case, static VC allocation

dramatically helps Dijkstra's Algorithm in Minimal Routing in reducing head-of-line

blocking. Since flow arbitration is more fair with our static VC allocation scheme,

routes produced by Dijkstra's Algorithm in Minimal Routing have a higher through-

put for almost all the input injection rates. Note that for a small range when the

injection rate is low, i.e., when the network traffic is moderate as shown in Figure

6-5, routes produced by Dijkstra's Routing Algorithm perform better than routes

produced by Dijkstra's Algorithm in Minimal Routing. This is because head-of-line

blocking is not as big of an issue when there is light traffic, so the performance is

dominated by MCL (lower MCL corresponds to better performance). On the other

hand, when the network is heavily congested, head-of-line blocking becomes a greater

concern than MCL, so routes produced by Dijkstra's Algorithm in Minimal Routing

with static VC allocation perform better. Since static VC allocation reduces head-



of-line blocking more effectively, routes produced by Dijkstra's Algorithm in Minimal

Routing perform better under congested network traffic, despite having a higher MCL.

H.264 2VC

0 1 2 3 4 5
Offered Injection Rate (packets/cycle)

Figure 6-5: A zoomed
injection rate.

in version of Figure 6-4 to show the performance at low input

It is of note that all routes produced by Dijkstra's Routing Algorithm for the three

synthetic benchmarks (Figure 6-1, 6-2, 6-3) are minimal even without the minimality

constraint during routing. The fact that routes produced by the two algorithms are

similar corresponds well with similar simulation results.



6.3 Performance Comparison of Multiple VCs

Static VC allocation is applied to routes produced by Dijkstra's Routing Algorithm.

Since the routes are deadlock-free by themselves, we only need to apply the VC

allocation method described in Section 5.2 to reduce head-of-line blocking.

6.3.1 H.264 with Private Channels

Figure 6-6 shows the simulation results with 8 VCs on XY, YX, Dijkstra's Routing

Algorithm and Dijkstra's Algorithm in Minimal Routing. In this experiment, all

the flows have private channels, so there is no head-of-line blocking problem for any

route. As can be observed, routes produced by Dijkstra's Routing Algorithm and

Dijkstra's Algorithm in Minimal Routing consistently perform better than XY/YX

routes because they both have lower MCLs compared to XY/YX, and try to balance

bandwidth over the whole mesh. Since there is no head-of-line blocking issue, the

instability of the routes produced by Dijkstra's Routing Algorithm shown in the H.264

simulation with 1 VC depicted in Figure 4-6 disappears. Total throughput grows

as the input injection rate increases. Under light traffic shown in Figure 6-7, routes

produced by Dijkstra's Routing Algorithm perform better for a short range due to the

fact that it has a lower MCL (124.54). However, when the network is congested, routes

produced by Dijkstra's Algorithm in Minimal Routing perform better despite having

a higher MCL (174.07). This is because even though Dijkstra's Routing Algorithm

does better load-balancing, the routes produced by it are not minimal, which causes

more interaction among flows, which leads to congestion under heavy traffic load. On

the other hand, Dijkstra's Algorithm in Minimal Routing does good load-balancing,

and produces minimal routes, taking the best of both worlds.

Therefore, we can conclude from the above simulation results that under moderate

traffic, there is a direct correlation between MCL and performance when each flow has

a private channel; the lower the MCL, the better the performance. However, under

heavy traffic, the effect of MCL decreases, and other factors such as head-of-line

blocking, load-balancing, and number of hops dominate the performance.
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Chapter 7

Conclusion and Future Work

Dijkstra's Routing Algorithm and Dijkstra's Algorithm in Minimal Routing were

experimentally shown to outperform dimension-order routings such as XY and YX.

The performance advantage is obvious, but we need to acquire the knowledge of rough

bandwidth requirements of the application ahead of time and also need to compute

the routes offline. For applications that we can profile or have the knowledge of

communication requirements ahead of time, bandwidth-sensitive oblivious routing

would be suitable for its obvious performance benefit.

Sometimes it is difficult to get rough bandwidth requirements for each flow.

Bandwidth-sensitive oblivious routing would still perform well if we know all the

high flow demand or latency critical paths, because we can just route using these

paths.

Even though the performance between Dijkstra's Routing Algorithm and Dijk-

stra's Algorithm in Minimal Routing are similar, Dijkstra's Routing Algorithm should

likely to be chosen when 1) there are less than 2 VCs or 2) when the set of routes

generated has a lower MCL than that of routes generated by Dijkstra's Algorithm

in Minimal Routing, and the application is running under moderate traffic. Dijk-

stra's Algorithm in Minimal Routing should likely to be chosen otherwise to get the

best performance. In either case, static VC allocation should be used to achieve

better performance by reducing head-of-line blocking. Under moderate traffic, MCL

and head-of-line blocking of the routes together determine the performance. Under



heavy traffic, head-of-line blocking, load-balancing and number of hops determine the

performance.

When each flow has a private channel, the MCL is the only factor affecting perfor-

mance under moderate traffic. If we have a large number of virtual channels available

to guarantee private channels and the application is running under light traffic, we

should concentrate all our efforts on reducing the MCL and balancing the load well.

Dijkstra's Routing Algorithm is the best method at effectively reducing the MCL.

All of the experiments in this thesis were performed using a cycle accurate simu-

lator that was used to only simulate packet generation, consumption and communi-

cations. In real applications, data has dependencies which may affect communication

drastically. Future work should be done running real applications on a simulator and

modeling data dependencies to verify the advantage of bandwidth-sensitive oblivious

routing.

In addition, routing is not the only step that has to be completed before running

applications. The placement of the modules would affect the routing result. Having

a bandwidth-adaptive network may make our bandwidth-sensitive oblivious routes

perform even better, or worse. Future work involves finding a graceful way to combine

placement, routing, and building a bandwidth-adaptive network.



Appendix A

Acronyms

Meaning

Average Channel Load

Average FLow Competition Per VC

Cycle Dependency Graph

Dimension-Order Routing

Maximum Channel Load

Mixed Integer-Linear Programming

Processing Element

Virtual Channel

Weighted Ordered Toggle

Defined In

3.6

3.6

2.4.1

2.2.1

3.2

3.2

2.1

3.6

2.2.2

Term

ACL

AFC

CDG

DOR

MCL

MILP

PE

VC

WOT
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