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Abstract

In most spoken dialogue systems, the human speaker interacting with the system
must wait until after finishing speaking to find out whether his or her speech has
been accurately understood. The verbal and nonverbal indicators of understanding
typical in human-to-human interaction are generally nonexistent in automated sys-
tems, resulting in an interaction that feels unnatural to the human user. However,
as automatic speech recognition gets incorporated into web-based and portable in-
terfaces, there are now graphical means in addition to the verbal means by which a
spoken dialogue system can communicate to the user.

In this thesis, we present a multimodal web-based spoken dialogue system that
incorporates incremental understanding of human speech. Through incremental un-
derstanding, the system can display to the user its current understanding of specific
concepts in real-time while the user is still in the process of uttering a sentence. In
addition, the user can interact with the system through nonverbal input modalities
such as typing and mouse clicking. We evaluate the results of a comparative user
study in which one group uses a configuration that receives incremental concept un-
derstanding, while another group uses a configuration that lacks this feature. We
found that the group receiving incremental updates had a greater task completion
rate and overall user satisfaction.
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Chapter 1

Introduction

This thesis explores the use of incremental speech understanding in a spoken dialogue

system to display real-time understanding to a human user while he or she is speak-

ing. Furthermore, once the speaker has completed an utterance, the system resolves

its current understanding with contextual information stored in its discourse as con-

text. We introduce FlightBrowser, a multimodal, spoken dialogue web application

that provides information about airline flight schedules. In order to measure the ef-

fects of displaying the system's comprehension to the user, we perform a comparative

study using two different configurations of the FlightBrowser system-an enhanced

configuration that displays the information provided through incremental speech un-

derstanding, and a baseline configuration that does not display this information. We

report the results of this study based on the completion rate of assigned tasks, system

usage, and user satisfaction based on a post-study evaluation survey.

1.1 Incremental Understanding in Humans

A. spoken dialogue system is a system that uses automatic speech recognition while

retaining information about the entire verbal exchange internally as context. In many

of these spoken dialogue systems, the most common scenario is that a human user ut-

ters a sentence to the system; then, once the user has finished speaking, the speech is

processed and the system responds accordingly to the user input. During the few sec-



onds of processing and the subsequent system response, the user may wonder whether

the system has accurately recognized the utterance. This back-and-forth style of in-

teraction results in a dialogue that often seems unnatural to humans, especially those

whose experience with human-machine speech interaction is limited. In a dialogue

between two humans, it is typical for the listener to provide verbal and nonverbal in-

dicators of understanding to the speaker. This can be achieved by using vocalizations

such as "uh-huh," more meaningful words such as "okay" and "wow," or nonverbally

through gestures, facial expressions, and head-nodding [44]. Providing these verbal

or nonverbal cues to the speaker is commonly referred to as back-channeling, a term

coined by Yngve in [42].

In a unimodal spoken dialogue system where speech is the only modality for send-

ing and receiving information, the system is unable to convey its current understand-

ing to the human user until after a completed spoken utterance. Thus, the typical

turn-taking model of a unimodal system is vastly different from that of a human-to-

human interaction, since back-channeling does not occur. A human expects to receive

some feedback from the listener at certain points during each sentence-often when

new, significant pieces of information have been added to the current context. This

type of verbal comprehension is referred to as incremental understanding. Chater

et al. describe incremental understanding as the process by which humans analyze

speech (or written text) in a piecewise manner as it is received [6].

Neurolinguistic research provides evidence that the human mind interprets lan-

guage incrementally as proposed by Chater et al. In [40], Tanenhaus et al. describe

an eye-tracking experiment in which the subject is given an image to view while the

researcher dictates a sentence about an object in the image, describing it by its phys-

ical characteristics and relative position within the image. This study indicates that

eye movement occurs incrementally at specific places in the sentence where the sub-

jects' overall understanding increases. In addition, this study shows that sentences

containing ambiguous phrases result in additional incremental eye movement as extra

steps of incremental understanding are needed to resolve contextual ambiguity.

To illustrate the piecewise language analysis that is characteristic of incremental



I would like a flight - from Boston - to San Francisco - departing on Friday - in
the morning - at eight o'clock - on American Airlines.

Figure 1-1: Illustration of incremental understanding. The dashes (-) represent
locations in the sentence where the discourse is incrementally updated.

understanding, take the following sentence in Figure 1-1. In this example, we are

presented with a typical flight reservation query from a FlightBrowser dialogue: "I

would like a flight from Boston to San Francisco departing on Friday in the morning

at eight o'clock on American Airlines." This utterance can be divided into pieces,

delimited here with a dash (-) such that each piece represents an incremental update

to the context. In an automated system, these dashes would be analogous to the loca-

tions within the sentence where the real-time understanding would be incrementally

updated.

1.2 Web-Based Interfaces and Multimodality

The Internet has gained popularity over the past decade as a medium for speech-

enabled interfaces due to the advances in speech technology and the expanding avail-

ability of high-speed Internet access. An application that performs speech recognition

over the Internet has several advantages compared to its telephone-based counter-

part. One advantage is that the Internet provides a much larger potential audience

for research subjects. Another potential advantage is that tasks such as speech tran-

scription that require human effort can be "crowdsourced" to Internet users. For

example, Paek et al. of Microsoft describe the use of the crowdsourcing web site,

Amazon Mechanical Turk1 , as a way of aggregating human-transcribed data for a

directory assistance corpus [31].

In addition to the benefits for data collection and analysis, the multimodal capa-

bility of the Internet adds a new dimension to the user experience. One example of

multimodality is the use of graphics to present additional information to the user, or

1Amazon Mechanical Turk, http://www.mturk.com



information that would otherwise take an excessive amount of time to depict verbally

through speech synthesis. Multimodality can be further exemplified by web-based ap-

plications of speech recognition technology in cell phones, cars, and global positioning

systems (GPS). The advantages of a graphical, multimodal interface and the potential

for future portable applications were the motivation behind implementing a graphical,

web-based version of our pre-existing telephone-based flight schedule system.

FlightBrowser, our graphical web application centered around a previously-devel-

oped flight reservation dialogue system, implements incremental speech understanding

similar to the phenomenon observed in human language understanding. In the con-

text of automatic speech recognition, incremental speech understanding, or incremen-

tal understanding, involves taking partial recognition hypotheses of the incomplete

sentence while a user is speaking a sentence, then using natural language processing

techniques to parse the incomplete sentence into a set of keys and values. These

keys represent important domain-specific information from the utterance, which will

be termed as concepts in this thesis. In the flight reservation domain, examples of

concepts would be the source and destination airports, airline, departure time, etc.

The key-value representation produced through incremental speech understanding is

then converted into graphical output that the user observes while uttering a sentence.

Furthermore, after the sentence has been processed by the dialogue manager,

the system updates the values of those keys with context-resolved values by a pro-

cess called context resolution, illustrated in Figure 1-2. In this example, we see the

incremental updates made to the domain-specific concepts. Once the utterance is

complete, the concepts are updated with the context-resolved values. For example,

the airports (Portland, Miami) and airline (United) are converted to their respective

IATA 2 airport codes (PDX, MIA) and airline code (UA). Also, the date Thursday

is converted to a full date (Thursday May 21) after being processed by the dialogue

management component, and the ambiguous time 8:00 a.m., which could be either

a departure or arrival time, is chosen to be a departure time based on contextual

system knowledge.

2International Air Transport Association



I want to book a United flight from Portland to Miami on Thursday at six a.m.

Source Source. Source: Portland Source: Portland Source: Portland Source: Portland
Destination: Destination: Destination: Destination: Miami Destination: Miami Destination: Miami
Date: Date: Date: Date: Date: Thursday Date: Thursday
Time: Time Time Time: Time: Time 65:00 amn.
Airline: Airline: Un~led Airline: United Airline: United Airline: United Airline: United

Incremental Key-Values Discourse Context-Resolved Values
(during the user utterance) (after the user utterance)

Source: Portland Source: PDX
Destination: Miami Destination: MIA
Date:Thursday Date:Thusday May 21
Time: 6.00 a.m. Time: departing 6:00 am.
Airline: United Airline: UA

Figure 1-2: A key-value representation of real-time incremental understanding and
post-utterance context resolution. The bold values represent updates to the key-value
concept representation.

This web-based spoken dialogue system is multimodal in the way that it presents

information to the user, and also in the way that it receives information from the user.

That is to say, this system accepts speech input and produces speech output while also

providing alternative modalities for sending and receiving data. The FlightBrowser

interface can either present the data graphically through text and images, or audibly

through speech synthesis. When interacting with the system, a user may communicate

with the system using the modalities of speech, typing, and mouse clicking.

In addition to conveying real-time understanding, FlightBrowser includes several

other multimodal features. One example of a multimodal feature is the graphical

list of flights that meet a set of constraints provided by the user. The user may sort

this list of flights by criteria such as price, departure time, or duration by clicking

on their corresponding links in the document. Also, the user may click on a specific

flight and refer to that flight through speech. Implementing this feature allows us

to increase the number of flights of which the user may speak without lengthening

the synthesized speech output, and without forcing the user to commit information

to memory. Thus, incorporating automatic speech recognition into web-based and

portable systems gives the user more versatility than a speech-only interface and

enables the creation of more complex conversational interfaces.



1.3 Problem Statement

In this thesis, we describe the design of FlightBrowser, a graphical web-based interface

that extends the functionality of our pre-existing telephone-based spoken dialogue

system. We describe the process of modifying the infrastructure of our original system

in the following ways:

* designing a graphical interface to supplement the information provided in the

original speech-only system,

* enabling support for multimodal input from our graphical interface, and

* implementing incremental speech understanding as a means of providing visual

feedback to the user.

Furthermore, we will study and quantify the effects of a specific multimodal fea-

ture in the FlightBrowser web application-namely, the text fields that provide real-

time incremental feedback to the user and their corresponding recording buttons for

concept-specific corrections. We describe a comparative user study consisting of two

subject groups, each using a different configuration of the FlightBrowser system. One

group interacts with an enhanced version of the system that includes incremental un-

derstanding and context resolution via text fields, while the second group interacts

with a baseline configuration that is deficient of these recording buttons and text fields

for incremental feedback. This thesis will explore differences between the groups in

such categories as multimodal feature usage, task completion, and user satisfaction.

1.4 Overview

The remainder of the thesis is structured as follows: Chapter 2 will mention related

research in telephone-based dialogue systems, multimodal and web-based dialogue

systems, and interfaces that implement incremental understanding; Chapter 3 will

describe the underlying web server framework and the various components that com-

bine to create the conversational interface; Chapter 4 will elaborate specifically on



the FlightBrowser web application, describing its back-end design, graphical layout,

and noteworthy features, while also describing our implementation of incremental

understanding; Chapter 5 will discuss the setup of a user study comparing the two

different configurations of the FlightBrowser system, with an analysis of the results;

and finally, Chapter 6 will include a discussion of the results of this research, with

concluding remarks and suggestions for future directions of research.
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Chapter 2

Related Work

This chapter will describe work related to the research presented in this thesis. We

begin by discussing previous work with telephone-based spoken dialogue systems that

utilize a single modality for input and output. Next, we will discuss examples of

multimodality in a wide range of spoken dialogue systems. Then, we will cover

several implementations of incremental understanding in spoken dialogue systems.

2.1 Telephone-Based Systems

There have been previous studies with telephone-based spoken dialogue systems in

which speech is the sole modality for both input and output. Several such uni-

modal telephone-based systems have been developed by the Spoken Language Sys-

tems Group (SLS) at the MIT Computer Science and Artificial Intelligence Labo-

ratory (CSAIL). One example of a telephone-based system is JUPITER, a spoken

dialogue system that retrieves weather forecasts for specific cities [14, 47]. Another

example is the MERCURY system [36, 38, 39] for scheduling airline flight reserva-

tions that serves as part of the FlightBrowser infrastructure. Both of these systems

involve a goal-oriented, domain-specific interaction between a human and a machine.

The human has a specific goal to fulfill and the machine must understand the user's

speech to assist him or her in accomplishing this task. Therefore, the system must be

equipped to handle a multitude of possible responses in the user's natural language,



while also possessing a mastery of the domain-specific vocabulary.

Another domain-specific telephone-based conversational system is the one de-

scribed by Gorin et al. of AT&T Labs [15] for troubleshooting and providing assistance

for telephone-related issues. In this system, the user is asked the open-ended ques-

tion "How may I help you?" After the user phrases a question or request concerning

a telephone-related problem, the system either provides the requested information

to the user, or, for more complicated queries, redirects the user to the appropriate

human agent.

Displayless conversational interfaces such as the aforementioned telephone-based

systems have several drawbacks. For instance, Zue et al. explain that since speech

synthesis is the only way to portray information to the user in a unimodal system, this

information must be very descriptive; however, it must be presented in manageable

amounts, as several consecutive sentences of synthesized audio output may overwhelm

the user cognitively [47]. As a result, a graphical display as part of a conversational

interface allows for more efficient communication with the user, while also improving

the user experience by shortening the amount of time spent on synthesized speech.

As Internet bandwidth continues to increase, most notably for portable devices,

the Internet is rapidly becoming a more desirable medium for spoken dialogue sys-

tems. One primary advantage of web-based multimodal dialogue systems over their

telephone-based counterparts is the graphical component of the interface. Often it

takes a user much less time to read information or view images on a screen than it does

to listen to identical information presented by means of synthesized audio output. A

significant advantage is that the information displayed remains on the screen, thus

the user does not need to commit it to memory. Furthermore, tasks are often made

easier by combining speech with another modality, i.e., using the second modality to

provide additional context to the spoken utterance. Hence, the multimodal capabil-

ity of a web-based system, when effectively exploited, saves time when carrying out

certain tasks in a spoken dialogue system. The following section elaborates on some

of the previous work with multimodal speech interfaces.



2.2 Multimodal Systems

Many attempts have been made to combine multimodality with automatic speech

recognition technology. Microsoft's MiPad (Multimodal Interface Pad) [7] is a per-

sonal digital assistant (PDA) that has a multimodal speech interface. MiPad can

receive input through speech or pen modalities. The graphical display shows the

user how the system has interpreted the user's intentions, so that corrections can be

carried out through the appropriate modality if necessary.

Another example of a multimodal system is MATCH (Multimodal Access to City

Help), developed by Johnston, Bangalore, et al. of AT&T Labs [4, 24, 25]. MATCH,

a system that provides information about subways and restaurants in New York City,

has been implemented on a tablet computer and a kiosk. The MATCH system can

receive speech and pen input (or touch-screen input for the kiosk version) simultane-

ously and can portray information graphically or through synthesized speech output.

City Browser [20, 21] is a web application developed by Gruenstein et al. of SLS

that is similar to MATCH in its functionality. The City Browser interface provides

information for various metropolitan areas rather than a single city and can receive

speech, pen, or mouse input. It has been incorporated as an application for a tablet

computer and as an automotive human-machine interface [19].

Another application of multimodality in a spoken dialogue interface is a home en-

tertainment system, also developed in SLS by various researchers [17]. This project

takes spoken input from a smart cell phonel to retrieve information about television

program schedules, displaying it on a remote graphical output device, e.g., a televi-

sion or computer monitor. As illustrated by the wide variety in both the functional

domains of the multimodal systems listed here and the devices on which they are im-

plemented, multimodality serves as a way of enriching the conversational experience

and expanding the reach of automatic speech recognition technology.

'We use the term "smart cell phone" to refer to a cell phone with enhanced capability.



2.3 Incremental Understanding

There have been previous implementations of incremental understanding in multi-

modal systems. Higashinaka et al. [23], Miyazaki et al. [29], and Nakano et al. [30] of

NTT Laboratories in Japan describe a meeting scheduler that incrementally accepts

sentence fragments in real-time, updating the information stored in the discourse af-

ter new information has been provided. Fink et al. of the University of Bielefeld in

Germany describe a method of incremental understanding applied to a virtual reality

environment [9]. In this system, incremental speech understanding is combined with

sensor-tracked hand gestures, creating an interface in which a user assembles virtual

parts such as tires, metal pipes, and engines to design a personal transport vehicle in

the virtual environment.

G6mez Gallo [10, 11], Aist [1, 2, 3], et al. of the University of Rochester describe

Fruit Carts, an incremental spoken dialogue system in which the user's objective is

to match a configuration of fruits and geometric shapes. In a similar small-domain

implementation of task-driven incremental understanding, Gruenstein of SLS has de-

veloped an incremental web-based interface, Shape Game, where the goal is to match

a pattern of shapes by moving and modifying a separate set of shapes [16]. Both

of these systems attempt to portray the user's intentions on the screen in real-time,

assuring the user of the system's understanding, and enabling the user to make any

necessary corrections before the end of a spoken utterance. As a follow-on to Shape

Game, several related games are being developed by other students in the SLS group

for language learning applications, for example, Word War [28] and Rainbow Rummy

[43].

There are several possible motivations for implementing incremental speech under-

standing in a conversational interface. One motivation for incremental understanding

is the ability to stream continuous speech input from the user, updating the discourse

in real-time so that multimodal actions are contextually coherent. Another possi-

ble motivation of incremental speech understanding is to display the user's perceived

intentions in real-time so that speech recognition errors can be pinpointed and cor-



rected before the end of a spoken utterance, if necessary. The motivation behind the

FlightBrowser system is to show the system's internal representation of the user's

speech content in real-time, and also to demonstrate the process of context resolution

once the user has stopped speaking.

2.4 Chapter Summary

As shown in this chapter, there have been several telephone-based spoken dialogue

systems that were developed when the telephone was the most effective medium for

conversational interfaces. However, as the Internet becomes more capable of support-

ing the required bandwidth for audio streaming and playing, especially in portable

devices such as smart cell phones and PDAs, many of these unimodal telephone-based

systems are being replaced with web-based systems. This has catalyzed the develop-

ment of multimodal systems that can present and receive information from a variety

of non-speech modalities to supplement the speech input. In the next chapter, we

will describe the system components that serve as the back end of the FlightBrowser

system. Then, Chapter 4 will provide more detail about the specific multimodal ca-

pabilities of our system, including our implementation of incremental understanding,

and Chapter 5 will describe a user study that aims to quantify the effects of displaying

the system's internal understanding to the user.
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Chapter 3

System Components

In this chapter, we describe the overall system architecture and components that make

up the back end for the FlightBrowser interface. Figure 3-1 is a block diagram outlin-

ing the relationships among these components. We begin this chapter by describing

the spoken dialogue component of the back end. First, we will describe our transi-

tion from the GALAXY hub-based client/server architecture for the spoken dialogue

system to a version that does not use a centralized hub for communication. Then,

there will be a description of the various modules that compose the spoken dialogue

system, including automatic speech recognition, natural language understanding and

generation, discourse context tracking, dialogue management, and speech synthesis.

Finally, we describe the WAMI toolkit for developing web-accessible multimodal in-

terfaces, the basic framework for connecting the GUI (graphical user interface) server

and client via a web server.

3.1 Client/Server Architecture

Our flight reservation spoken dialogue system consists of several interconnected com-

ponents as shown in Figure 3-1. In the "Spoken Dialogue System" block in the figure,

the natural language understanding, discourse context tracking, dialogue manage-

ment, and natural language generation are surrounded by a dashed box. These com-

ponents are represented internally by a set of declarative knowledge that is known
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Figure 3-1: Block diagram of the FlightBrowser system.

at, runtime and procedural rules that are executed based on information provided

via conversation with a human user. In order to connect the various system mod-

ules, our flight reservation dialogue system had originally been using the GALAXY

client/server architecture, based on a centralized programmable hub server [37]. How-

ever, during the course of this project we consolidated this system into a hubless

client/server architecture for greater compatibility with mobile devices. In this sec-

tion, we will describe the architecture of our spoken dialogue system, first describing

the original hub-based GALAXY system, then explaining the changes implemented

for our recently-developed hubless architecture.

3.1.1 GALAXY Hub-Based Architecture

The GALAXY architecture consists of a network of servers that intercommunicate

via a single centralized hub server. Each task in the spoken dialogue system has

a separate module in the architecture that connects to the hub. When the system

requests a specific module to perform a task, the hub sends the module a message, or

frame, specifying parameters for the requested task. Once the module has completed

its task, it sends its results back to the hub, which then handles the results accord-



ingly. The separate modules that communicate with the hub are as follows: audio

streaming and playing, automatic speech recognition, natural language understand-

ing, discourse context tracking, dialogue management, natural language generation,

speech synthesis, and database access. Refer to Figure 3-2 for an illustration of these

modules and their interaction with the centralized hub.

Generation

Speech Dialogue
Synthesis Management

Audio Hub Database
Server

Speech Discourse
Recognition Context Tracking

Natural Language
Understanding

Figure 3-2: Diagram of the GALAXY architecture described in [37]. All modules
communicate via a centralized hub server.

The hub executes a hub script that contains a list of the locations (i.e. host

names and port numbers) of the various servers that will communicate with the hub.

The hub script also imports program files that contain a set of hub rules. Each rule

specifies conditions that must be satisfied in order to carry out a specific operation.

These rules also consist of input and output variables for the rule (INPUT, OUTPUT),

parameters that have pre-assigned values (PARAM), variables that are stored into or

retrieved from the discourse history (STORE, RETRIEVE), and variables that are logged

during input or output (LOG_IN, LOG OUT).

Figure 3-3 is an example of a rule in the hub script. The conditions that must be

satisfied for this rule to fire are that there must exist either an incremental key-value

frame or string (:kv_frame :keyvalue), however, no discourse key-value frame

(& !:discoursekv_frame). Then, a frame titled handle_partial containing an

:inputstring and a :paraphrase_string (decoded and generated from the user

speech), and also a :partialframe and :partialresult (renamed from :kvframe

and :key_value, respectively) are sent to the GUI server for further processing. Fur-



thermore, several input variables are stored in a log file of the current session.

RULE: :kv_frame I :key_value & !:discourse_kv_frame --> gui.handle_partial

IN: :input_string :paraphrase_string \

(:partial_frame :kv_frame) (:partialresult :keyvalue)

LOG-IN: :paraphrasestring :partial_result :partialframe

Figure 3-3: Example of a GALAXY hub rule. This rule is analogous to the hubless
dialogue control rule in Figure 3-4.

3.1.2 Hubless Architecture

Although the hub-based architecture is equipped to handle multimodal input, mod-

ifying the code to the existing hub program is often a daunting task when dealing

with simultaneous speech and multimodal input. This problem was mainly due to

ambiguity with the history IDs, reference values that are incremented at the end of

each computer generated response to a user query. These history IDs are not much

of an obstacle when receiving input from one modality at a time. However, when the

user utilizes two modalities concurrently, the manipulation of the history IDs causes

ambiguity when attempting to store or retrieve variables from the session history.

This history ID ambiguity was one motivation behind developing a hubless system

that consolidates the tasks of several GALAXY modules (natural language under-

standing and generation, discourse, and dialogue management) into a single server.

Furthermore, combining these tasks into a single server makes our system more com-

patible with mobile devices for which a more simplified architecture is preferred. The

hubless architecture varies from our original hub-based system because the modules

are stored as libraries contained in a single Python wrapper rather than on separate

TCP ports. Instead of communicating via ports, the various modules communicate

with each other using XML-RPC calls.

In addition to completely remodeling the previous architecture to remove hub

dependence, this transition also required refactoring the hub rules to the dialogue

control rule format and combining these modified hub rules with the existing dialogue

control rules. Figure 3-4 shows an example of such an adaptation. The GALAXY



hub rule shown in Figure 3-3 has been converted to a discourse control rule, removing

the need for the hub program while retaining its previous functionality.

{c rule
:conditions "(:kv_frame I :key_value) & !:discourse_kv_frame"
:variables {c variables

:log_in ":paraphrase_string :partial_result :partial_frame"

:in ":inputstring :paraphrase_string
(:partial_frame :kv_frame) (:partial_result :key_value)"

:program "handle_partial" }
:operation "dispatch_token" }

Figure 3-4: Example of a hubless dialogue control rule. This rule is analogous to the
GALAXY hub rule in Figure 3-3.

3.2 Speech Recognizer

This section will describe SUMMIT, an automatic speech recognizer developed by the

Spoken Language System Group (SLS) [12, 13, 27, 45, 46].

3.2.1 Landmark-Based Segmentation

Many speech recognition systems use fixed-length time windows (frames1 ) to segment

an acoustic waveform [34], evaluating short-term spectral information such as Mel-

frequency cepstral coeffecients (MFCCs) over the window. Then, hidden Markov

models (HMMs) are used to map out the observation space. The SUMMIT recognizer,

in contrast, divides the speech into segments of variable length, representing each

segment as a fixed-size feature vector, whereas a frame-based system would require

an additional processing stage to convert the frame information into a feature vector.

The choice of a segmentation site in SUMMIT is guided by a spectral change detection

algorithm, which detects points in speech where the most constriction or opening in

the vocal tract occurs.

1Not to be confused with the "frame" describe in section 3.1.1.



3.2.2 Modeling and Decoding

SUMMIT has a lexical model that maps words to their corresponding pronunciations.

It is equipped to handle common variations in word pronunciation, which are instan-

tiated via a set of phonological rules. The language model is based on a class n-gram

model which assumes that a word, or class of words, depends statistically on the n- 1

words or classes preceding it. Using these models, SUMMIT discovers the sequence

of words with the best score based on a two-pass search. The forward pass uses a

Viterbi search and the backward pass uses an A* search to decode the speech input.

3.2.3 Endpoint Detection

Automatic endpoint detection is used to detect the beginning and end of the spoken

utterance. For the starting point, the SUMMIT system waits until the energy of the

speech exceeds a certain energy threshold for a brief time window. Similarly, the

ending point of the utterance is determined when the energy of the speech content

falls below a threshold for a brief period of time. Individual frames are sent to the

back end for each of these boundary markers. Endpoint detection is used in the web-

based system to wait for hands-free speech input instead of forcing the user to hold

down a mouse button while speaking. This allows the user to simultaneously utilize

other modalities while speaking, if desired.

3.3 MERCURY Flight Reservation System

The FlightBrowser multimodal web interface makes use of the MERCURY flight

reservation spoken dialogue system, developed by SLS [36, 38, 39]. This section will

describe various aspects of the MERCURY system including its natural language

understanding and generation, and its discourse and dialogue management.



3.3.1 Natural Language Understanding

The MERCURY system has a natural language (NL) understanding component that

parses the decoded utterance from the speech recognition module into a semantic

frame. This frame is used by the discourse module to make changes to the current

context and to determine which conditions will be satisfied to carry out application-

specific operations. This semantic frame parsing is performed by TINA [35], which

carries out this parsing based on MERCURY-specific NL grammar rules. The lex-

icon of MERCURY is composed of approximately 1750 words and the context-free

grammar includes around 1100 nonterminal categories.

Figure 3-5 shows the semantic parsing of the sentence, "I want a flight from

Boston to Miami tomorrow morning" in a tree structure where each node represents

a grammar category. The topmost nodes correspond to more general semantic and

syntactic categories, whereas nodes closer to the bottom of the tree represent more

specific semantic categories. Figure 3-6 shows a linguistic frame for the user-spoken

query, dividing the query into predicates for the source, destination, time interval,

and date. This frame is created from the parse tree, guided by a set of mapping rules.

sentence

fullparse

statement

self wantasbook dirobject

indef flight_event

a_Plight predadjunct

flight fromplace for_place when_node

ifromplace ito_place attime

from a_place to aplace monthdate

uscity_name us_citynamedate_name daytime

i ant a flight from boston to miami tomorrol morning

Figure 3-5: Parse tree for the utterance "I want a flight from Boston to Miami
tomorrow."



{c maybebook

:domain "Mercury"

:topic {q flight

:quantifier "indef"

:numpreds 4

:pred {p source

:topic {q city

:name "boston" })
:pred {p destination

:topic {q city

:name "miami" })
:pred {p time interval

:topic {q timeof-day

:name "morning" })
:pred {p month date

:topic {q date

:name "tomorrow" }) ) )

Figure 3-6: Linguistic frame for the utterance "I want a flight from Boston to Miami
tomorrow."

3.3.2 Discourse and Dialogue Management

An essential component of any spoken dialogue system is the ability to store the

current state of the dialogue, making decisions based on the stored history of the con-

versation. After the user's speech input has undergone automatic speech recognition

and natural language understanding, the resulting linguistic frames are manipulated

to acquire new information about the active conversation. Two modules in the spo-

ken dialogue system are responsible for carrying out this task. The discourse module

aims to understand the user's speech with respect to the context of the conversation,

and the dialogue management module decides what actions to perform based on the

context-resolved user speech.

The discourse is the source of context for the dialogue, consisting of user-presented

information and world knowledge from the flight reservation domain. The discourse

component carries out a context resolution algorithm that determines the meaning of

the user's current utterance based on previous utterances. Included in this algorithm

are stages for determining the meaning of ambiguous phrases such as pronouns (it),

demonstrative noun phrases (this flight), and ordinal phrases (the first one) based

on the context and system initiative. Then, inheritance rules decide which items of



context to remember or forget. Furthermore, references to relative dates like "next

Thursday" are resolved into absolute dates. Finally, the updated history is stored in

a frame that stores all relevant contextual variables from which the system can make

decisions. When the user provides new information to the system with a subsequent

utterance, the discourse begins with an initial state, then a series of rules are exe-

cuted in a precise order, firing based on context-dependent conditions. The context

resolution algorithm of the discourse module is described with more detail in [8].

The dialogue management module [38] has built-in strategies for requesting infor-

mation based on the current context. One example of its strategies is that it asks

questions regarding the flight details until there is enough information to carry out

a query. The system requires all of this information before it can retrieve results

from an external online database of flights. This information can be provided by the

user all in one utterance or in any particular order over several utterances. If the

system has not yet contacted the database and the discourse is still missing one of

the required pieces of information, the system requests the missing piece(s) of infor-

mation from the user. Since the dialogue control consists of an ordered set of rules,

the system requests the destination, source, and date exactly in that order, although

the user may choose to supply the information in any arbitrary order. Figure 3-7 has

an example of the dialogue rules associated with filling in flight details. Once there is

enough information to perform a database query, another set of rules are processed

to control how the system will present the database results in a verbal summary.

{c rule
:conditions ":num_found <0 & !:destination"
:operation "need_destination" }

{c rule
:conditions ":num_found <0 & !:source"
:operation "need_source" }

{c rule
:conditions ":num_found <0 & !:date"

:operation "need_date" }

Figure 3-7: Example of a set of dialogue control rules.



3.3.3 Natural Language Generation

At the end of the context resolution and dialogue management stage, a reply frame is

generated containing the information that will be used to generate a verbal response.

In the natural language generation step, this reply frame is converted into a reply

string and a synthesis string using GENESIS [5].

3.4 Speech Synthesis

In order to produce a "conversational" experience for the user, we supply natural

language speech output to the user by means of a speech synthesizer. Based on the

runtime configuration, this system uses one of two speech synthesizers. We incor-

porate the DECtalk [22] and ENVOICE [41] systems for speech synthesis, though

we can potentially support a wide-range of text-to-speech (TTS) synthesizers. For

DECtalk, a TTS synthesizer, we provide a synthesis string that is identical to NL

string produced by GENESIS. However, for the ENVOICE synthesizer, the synthesis

string is composed of a series of parameters that represent the audio files that will

be concatenated for synthesis. See Figure 3-8 for an illustration of reply string and

synthesis string generation.

During the course of this research, we changed the speech synthesizer from EN-

VOICE to DECtalk, which results in an obvious trade-off. Although DECtalk is

more versatile in producing any arbitrary speech output, most people would state

that DECtalk sounds uncomfortably robotic. The ENVOICE synthesizer has a more

pleasant voice, however, it is only trained to pronounce a limited number of phrases.

This limitation of ENVOICE hinders future expansion of the MERCURY system,

therefore a more versatile synthesizer is preferred for future development.

3.5 WAMI Toolkit

The WAMI toolkit for web-accessible multimodal interfaces, developed in SLS, is

a publicly available framework that allows software developers to create interfaces



{c need_date

:continuant {c empty }

:domain "Mercury"

:topic {q iflight

:pred {p source

:topic {q city

:name "SEA" } }

:pred {p destination

:topic {q city

:name "NYC" } } } }

Generated text string (for conversation box and DECtalk speech synthesizer):

Okay, from Seattle to New York City. What date will you be traveling?

Figure 3-8: Example of natural language generation from a reply frame for the utter-
ance "I want to book a flight from Seattle to New York City."

utilizing automatic speech recognition technology [18]. Through this framework, it

is relatively simple to develop a prototype for a speech-enabled, multimodal web

interface. Users may access these interfaces over the Internet with any standard web

browser, which allows for systems that are usable on alternative computing devices

that access the Web. The WAMI toolkit uses AJAX (Asynchronous JavaScript and

XML) technology, which has been popularized recently due to the rich, dynamic web

pages it is capable of producing. WAMI has been the foundation for several other SLS

speech-enabled web applications, such as City Browser for geographical knowledge of

metropolitan areas [19, 20, 21], the Word War game for second language acquisition

in Mandarin [28], and a home entertainment system [17]. Refer back to 3-1 to view

the relationship between separate components in our WAMI-based system design.

3.5.1 GUI Client/Server Communication

A WAMI-based system consists of a GUI server and client. The GUI client serves

as the front end of the application, part of which composes the graphical interface

that the user interacts with. The GUI client is composed of the audio controller

(described in the following section), a GUI controller, and the application GUI itself.

The application GUI is what visually appears to the user, built on a foundation of

HTML, CSS (Cascading Style Sheets), and JavaScript. The GUI client and server

communicate with each other by means of a Java EE (Java Enterprise Edition) HTTP



web server. The GUI controller module, which has a JavaScript code base, serves as

the pathway to the back-end GUI server through the HTTP web server. The GUI

server handles the back-end application logic, receiving messages from the spoken

dialogue system in the form of frames. The GUI server and client communicate with

each other through XML messages sent over the web server.

3.5.2 Audio Controller

The WAMI framework includes an audio controller as part of the GUI client. The

audio controller usually consists of a Java applet that connects to the sound card or

audio device of the client computer. This sound card or audio device is used for both

input and output. For input, the audio device records as the user speaks into the

microphone and streams this data directly to the speech recognizer in the back end.

Furthermore, once the user utterance is complete, the system streams output to the

audio device directly from the speech synthesizer.

3.5.3 Logging and Annotation

The WAMI system also has built-in capability on the server side for logging the current

session to a database. Included among these database entries are the waveforms for

the user utterances, N-best hypotheses for these utterances, and logged occurrences

of application-specific events. In addition, the WAMI toolkit provides an interface by

which a researcher can annotate a user session and evaluate the system's ability to

provide a correct response to a spoken query.

3.5.4 User Group Management

In addition to the logging and annotation capability, a utility has been developed to

manage groups of users participating a user study [43]. Using a database for storage,

user information is recorded, classifying users into groups that have distinct sets of

tasks or application parameters. Users log into the system using an email address to



receive their personalized or group-specified settings. We will discuss the user group

management more in Chapter 5, where we discuss our FlightBrowser user study.

3.6 Chapter Summary

Over the past few years, advances in web technology have expanded the capabilities

of online interfaces. Whereas in the past, the use of third-party applications was

required to create dynamic interfaces, now AJAX techniques allow for dynamic page

manipulation without having to reload the page [32]. Although a special application

(Java, Adobe Flash, etc.) may still be needed for tasks such as audio streaming and

playing, the dynamic page manipulation using AJAX provides an ideal situation for a

multimodal spoken dialogue system. XML messaging between the HTML/JavaScript-

based GUI client and the Java GUI server enables the real-time use of multimodal

input and dynamic page changes necessary in the FlightBrowser system.

The greater ease, in addition to an increase in connection speeds, have allowed

us to implement an interactive interface for the pre-existing telephone-based MER-

CURY flight reservation system, thus broadening the potential audience of users.

This required some modification to the architecture of the original system, replacing

our hub-based system with a hubless system to better support multimodal input. In

the next chapter, we will describe the functionality and layout of the graphical user

interface from both the server and client side, and also explain how we dynamically

update the interface.
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Chapter 4

Layout and Functionality

One of the accomplishments of the FlightBrowser project is the development of a

graphical interface for the MERCURY flight reservation system. Although the Web-

GALAXY [26] interface implements a graphical version of the MERCURY system, the

multimodality of this system mainly serves to mimic the speech output in a graphical

format. The FlightBrowser system extends this multimodal capability by providing

additional content not presented in the speech output, and allowing the user to speak

about items that appear on the screen. In addition, FlightBrowser gives the user the

ability to provide additional context to the speech input by using a second modality

such as typing and mouse clicking. Thus, the system presented in this thesis in-

corporates multimodal functionality comparable with the multimodal conversational

interfaces listed in Chapter 2.

FlightBrowser goes a step further by portraying real-time incremental speech un-

derstanding as a way of back-channeling to the human speaker. The graphical com-

ponent is utilized as a way of providing graphical feedback that portrays the user's

intentions. Incremental understanding has been applied to several domains, such as

task-driven games ([3], [16], [28], and [43]), a meeting scheduler [23, 29, 30], and a

virtual reality environement [9]. However, no attempts have been made to accom-

plish incremental understanding in the flight reservation domain, a useful application

of automatic speech recognition technology and research.

In this chapter, we will describe the framework of FlightBrowser and how it in-
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Figure 4-1: Screenshot of the FlightBrowser graphical interface, which consists of

the speech input button (top-left), conversation box (top), concept text fields (left),
concept recording buttons (far-left), partial itinerary (bottom-left), and flight infor-

mation region (bottom-right).

teracts with the components described in the previous chapter. We will describe

FlightBrowser starting from the outside, then continuing inward. That is to say,

we will begin by describing the graphical layout of the GUI client, then continue

by describing its multimodal interaction with the GUI server, and finally describe

the interaction between the GUI server and other back-end components such as the

database and spoken dialogue system. Furthermore, we will explain the process of

implementing incremental understanding as a means of visual feedback to the human

user.

4.1 Graphical Layout

In this section, we will describe specific features of the FlightBrowser graphical in-

terface. A screenshot of the interface appears in Figure 4-1.

--

....... BY . . Dpp
..'

' 1 ' .. " ..Tim* 4. 7-r t A s:"
pleae..



The audio device is in an idle state,
settings waiting to be activated by the user for

audio input.

The audio output device is currentlyLnJ being used to transmit synthesized
speech data.

The system is using the audio input
device to determine exactly when the
user begins speaking.

The system is currently recording

speech data from the audio input de-
vice.

Figure 4-2: Speech input button states.

4.1.1 Speech Input Button

The speech input button is an embedded Java applet, positioned in the upper-left cor-

ner of the window, through which the user can instruct the system to begin recording

speech input or to stop producing synthesized speech output. The button displays

a text label and color coding for the current status of the audio device. The four

possible states of the audio device-Click to Talk (Waiting), Stop Playing, Listen-

ing, and Recording-are outlined in Figure 4-2. When the audio device is in the

Listening or Recording state, the amplitude meter monitors the level of the user's

speech. This amplitude meter is a way to ensure that the audio device is working

properly. If necessary, the settings can be adjusted to toggle between different audio

input and output devices. Also, the settings can be adjusted to increase or decrease

the amplitude of the audio input, or tweak the voicing threshold used for endpoint

detection.

4.1.2 Conversation Box

The conversation box is a text area located at the top of the window that provides

a text transcript of the dialogue between the system and the user. This text area is
automatically updated at the end of a spoken utterance or a text input entry, or when



Destination:1

Figure 4-3: Screenshot of the concept recording button and text field for the "desti-

nation" concept.

the system responds with synthesized text output. Also, intermediate replies, which

are not vocalized using the speech synthesizer, are displayed in the conversation box

while the system accesses the third-party flight database.

4.1.3 Concept Text Fields

The concept text fields, located in the left side of the window, store information about

concepts extracted from the user's speech. The domain-specific concepts displayed to

the user are: source, destination, airline, date, and time. These text fields are auto-

matically updated in real-time as MERCURY sends incremental key-value pairings

for each concept. Once the user has finished speaking, these text fields are updated

with context-resolved values. Another functionality of the concept text fields is the

ability to type information about a specific concept rather than speaking. The system

allows full names (Los Angeles) and abbreviations (LAX).

4.1.4 Concept Recording Buttons

In addition to the concept text fields, each concept has its own recording button that

the user may press to begin recording. This is slightly different from merely pressing

the speech input button because the additional context of the selected concept is sent

alongside the speech data. For example, a user may click the recording button for

the destination concept field and speak the one-word phrase "Atlanta." This feature

allows phrases that would be ambiguous without additional context (Atlanta could

have been either a source or destination) to be correctly interpreted with regard to

the context. A concept recording button along with its corresponding text field is

shown in Figure 4-3.



4.1.5 Partial Itinerary

The partial itinerary frame, located on the left panel of the window, provides a chrono-

logical list of all the flights that have been booked by the user in the active session.

Each itinerary entry in the list contains important flight information including the

source and destination airports, departure and arrival times in their respective local

time zones, flight number, airline, and aircraft type. The entries are collapsible such

that when the user clicks on the information for a specific flight, the information from

that flight collapses into a more concise format.

4.1.6 Flight Information Region

The flight information region, occupying the largest window area of all graphical

components, serves primarily to portray two different types of data to the user. The

flight information region is used to display the current set of flights that meet the

user's constraints, or the final itinerary when the user has finished selecting all flights

for an entire trip.

First, the flight information region displays information about the current set of

flights that the user may choose to add to the itinerary. When the system has a set

of flights to present to the user, it is shown graphically in a table similar to Figure

4-4. The price, source and destination airports, and connecting airports of each flight

are displayed in columns. Each flight is displayed as a horizontal bar whose length is

proportional to the duration of the flight. The horizontal bar is divided into segments

to indicate layovers and connecting flights. Furthermore, these segments are color-

coded to distinguish layovers and distinct airlines. The user may scroll the mouse

over a particular segment to retrieve more information about that segment, both for

flight segments and layover segments. Also, the user may sort the graphical list of

flights by price, number of stops, departure or arrival time, airline, or duration.

Secondly, the flight information frame is used to display the final itinerary once

the user is done booking flights. Similarly to the partial itinerary displayed on the

left, the final itinerary has specific information about each individual flight in the
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Figure 4-4: Example of a list of flights shown in the flight information region. Each

flight is displayed as a horizontal bar whose length is proportional to the duration

of the flight. The horizontal bar is divided into color-coded segments to indicate

layovers and connecting flights. Users may select a flight by clicking, find out more

information about a flight by hovering, or sort flights by clicking on a certain sorting

hyperlink.

entire trip. See Figure 4-5 for an example of a final itinerary.

4.2 Event Handling and Messaging

In this section, we will describe the process by which a message is sent from the

client side to the server side of the application, and vice versa, describing the steps

that occur along the way and specific examples of such events. Figure 4-6 displays

the chain of modules that pass along messages. This bidirectional chain of modules

allows us to define two specific types of events in the FlightBrowser system. User-

initiated events originate from the client-side of the module, usually involving the use

of a specific modality; system-initiated events originate from the server-side, usually

involving some change to the graphical layout.

4.2.1 User-Initiated Events

In order to carry out application-specific events, a message must be sent via the web

server to communicate with the server side of the GUI. Oftentimes, these events are



Itinerary

BOS to tAH
Flight #: 683
Airline: CO (Continental Airlines)
From: BOS (Boston, MA)
To: IAH (Houston, TX)
Departure Time: 2009-05-22 08:00AM GMT-0300
Arrival Time: 2009-05-22 10:50AM GMT-0400
Aircraft Type: Boeing 737

IAH to BOS
Flight#: 282
Airline: CO (Continental Airlines)
From: IAH (Houston, TX)
To: BOS (Boston, MA)
Departure Time: 2009-05-24 08:50AM GMT-0400
Arrival Time: 2009-05-24 01:38PM GMT-0300
Aircraft Type: Boeing 737

Total Price: $1157.70

Figure 4-5: Example of a final itinerary shown in the flight information region.

User-initiated Event - - System-initiated Event

Application GUI GUI Controller Web Server GUI Server _ Spoken Dialogue System

Figure 4-6: Messaging chain of the FlightBrowser system. User-initiated events prop-
agate from client to server, whereas system-initiated events propagate from server to
client.



driven by a user's interaction with the system, for example, the use of a multimodal

feature in the interface. This user event sets off a chain of communication that extends

from the browser and eventually propagates back to the spoken dialogue system.

The client side of the application consists of the graphical user interface and func-

tions that handle specific events in the web application. This part of the application

consists mostly of HTML and CSS to create the visual layout and JavaScript to han-

dle dynamic changes to the layout and other behind-the-scenes functions. When the

user initiates an event-for instance, clicking on a specific flight in the list of flights-

parameters are sent to an XML message generator in the GUI controller, which in

turn transmits the message over the web server to the server side of the GUI. Once

the message is received by the GUI server, the message is then converted into the

frame format and sent as input to the spoken dialogue system. The spoken dialogue

system uses the content of this frame as additional context, or to execute an action.

In the FlightBrowser system, situations in which messages are passed from the

front end GUI to the back end dialogue system include the multimodal actions of

typing into a text field, clicking on a recording button, clicking on a flight, and

sorting a list of flights.

4.2.2 System-Initiated Events

User-initiated events transmit information to the back end; however, the back end

also has information to convey in the reverse direction. Various pieces of information

must travel from the server side to the client side. System-initiated events generally

originate from the spoken dialogue system as a frame. The information contained in

this frame propagates along the chain by first parsing the information from the frame

in the GUI server, then executing actions in the GUI server based on the content of

the frame, and then packaging the information as an XML message, which is sent

over the HTTP web server to the GUI controller on the client side. Finally, the GUI

controller converts the contents of this message into graphical content by parsing the

XML message.

Examples of system-initiated events include displaying a transcription string in the



conversation box, displaying a list of flights, showing a partial or final itinerary, and

conveying visual feedback via incremental understanding and discourse resolution.

4.2.3 Audio Streaming Events

During audio streaming events, data is passed directly to the speech recognizer or

synthesizer when streaming audio input or output, respectively, rather than through

the messaging chain. Meanwhile, additional messages are passed via the messaging

chain to the spoken dialogue system whenever the state of the audio device changes.

4.3 GUI Server Functionality

There are several functions that occur on the server side of the FlightBrowser inter-

face. This section describes some of the server-side computation that takes place.

4.3.1 Database Access

There are primarily two situations in which we would like to connect to a third-

party database for flight-related information. Database queries are performed when

the system has obtained at least the source, destination, and date of a flight from

user input. In addition, when the user is ready to receive the final itinerary for a

complete trip, we contact the external database to determine the total price of the

user's selected flights. When the system has enough information to perform a query,

the dialogue system transmits a message to the GUI server, specifying the details of

the current flight query (or, list of flights for the itinerary pricing case) as parameters.

The database module uses these parameters to create an XML message that connects

to the external database. This database returns with an XML message containing

information about flights that meet the given constraints, or the price of a set of

flights for the final itinerary. This message is repackaged into a frame that is sent to

the GUI server for further processing.



4.3.2 Flight Information Extractor

After the frame containing flight information is sent from the database to the GUI

server, some processing occurs that stores the frame of flights into a list of trip objects.

Since a trip may require multiple flights to get from the source to the destination,

each trip object stores an ordered list of leg objects, where each leg represents a piece

of the trip separated by a stopover or connection. In addition to this list of flights,

each trip object stores the total price, the number of legs, and a trip index designated

by the spoken dialogue system to distinguish it from other trips. Leg objects contain

information about the source and destination, departure and arrival times, airline,

flight number, aircraft type, and duration. Trip objects can be sorted by a specific

criterion. By default, trip objects are sorted by price, however, the user has the option

to sort flights (trip objects) by a different criterion, if he or she so chooses.

4.3.3 Flight Code Hash Tables

In order to provide more meaningful output to the human user, we must substitute

the IATA abbreviations we receive from the external flight information database with

their lengthened names. The GUI server includes several hash tables for mapping an

abbreviation to a full name. We use these hash tables to display full names for airlines,

airports, and aircraft types. In the graphical display, the more commonly known full

names are usually expressed in parentheses next to their abbreviated counterparts

in partial and final itineraries. This allows us to convey both the abbreviations and

full names of destinations and airlines, data that the MERCURY system does not

provide to the user on its own (i.e. without graphics). Additionally, if the user types

an abbreviation into a text field, these hash tables are used to convert the abbreviation

into a lengthened name to be sent to the spoken dialogue system.

4.3.4 Incremental Aggregator

The FlightBrowser GUI server records the system's current understanding of domain-

specific concepts through the process of incremental understanding and discourse



resolution, which we will discuss in the next section. Several incremental key-value

frames are sent from the spoken language system to the GUI server during the user's

spoken utterance, and a final context-resolved frame is sent at the end of the utterance.

The GUI server stores a hash table that maps a concept to its value. The source,

destination, airline, and date key-values map directly to stored concepts in the GUI

server. However, there are several key-value pairings from the spoken dialogue system

that represent the time. The time can be exact or inexact; and it can be a departure

time, arrival time, or neither. The GUI server stores the key accordingly based on

the type of pairing used to represent the time. Furthermore, phrases like "in the

afternoon" are stored in the incremental aggregator as "afternoon," but represented

in the spoken dialogue system as a fixed time window (in this case, afternoon is

converted to "between noon and 6:00 p.m.").

4.4 Incremental Understanding and

Context Resolution

In this section, we will discuss the process by which incremental understanding and

discourse resolution occur and how this information gets sent to our incremental

aggregator.

4.4.1 Incremental Recognizer Updates

In a system that does not implement incremental understanding, the N-best hypothe-

ses for the processed speech are not determined until the end of the utterance. The

difference between the incremental capability in SUMMIT and speech recognizers

without this capability is that in SUMMIT, the N-best hypotheses are evaluated

while the user is still speaking. For a complete utterance, SUMMIT performs a

Viterbi backtrace. However, when performing a Viterbi backtrace on an incomplete

utterance, we relax the constraint that the ending state is a terminal state [16]. Re-

laxing this constraint allows the recognizer to send partial updates after each audio



chunk instead of waiting for the utterance to be completed. There is one issue with

sending these incremental updates from the recognizer. The final word of the in-

complete sentence may be truncated, which often leads to recognition errors in the

incremental updates, which spill over into the graphical display. However, despite

the likelihood of error on the final word, the error is usually self-corrected by the

end of the utterance, once more audio has been streamed to the recognizer and the

truncated word becomes complete.

4.4.2 Incremental NL Understanding

After the partial hypothesis is decoded, the partial sentence gets sent to TINA, our

natural language understanding module [35]. The process of extracting keys and val-

ues from a decoded user utterance required us to create a special key-value extraction

language in the MERCURY domain. TINA incorporates this extraction language

to parse an incomplete utterance into a set of keys and values, which correspond to

the concepts that our system conveys graphically. Finally, these keys and values are

packaged into an incremental key-value frame, and sent to the incremental aggrega-

tor in the GUI server for storage and manipulation. See Figure 4-7 for a series of

incremental key-value frames.

4.4.3 Context Resolution

After the user utterance is fully decoded by the recognizer, the NL system processes

the resulting N-best list and produces a key-value representation of the hypothesis it

selects. The final key-value frame of the completed utterance is sent to the discourse

module for context tracking. After a series of context resolution rules are carried

out, the discourse is updated, forgetting or remembering previous context items as

deemed necessary. The cities and airlines are replaced with their corresponding IATA

abbreviations, the date is replaced with an exact date, and the time is converted to a

precise interpretation. The resulting frame is sent to the GUI server and is handled

similarly to the key-value frame supplied via incremental understanding. See Figure



"01 would like a flightO from Houstone to Las Vegas@ on FridayO morning 0."

{c handlepartial

:partial frame {c eform
:clause "no parse"

{c handlepartial

:partial f rame {c eform

:clause "maybebook"

:flight qu3ant "indef"

:source "Houston"

:destination "Las Vegas"

:dawhen "morninag"

:when "mirning"
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00000
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Figure 4-7: A series of incremental (partial) key-value frames for the sentence, "I
would like a flight from Houston to Las Vegas on Friday morning." The first key-value
frame, labeled 0, is a no-parse, since the sentence does not contain enough information
for parsing. Subsequent incremental key-value frames (1-5) are sent while the sentence
is spoken and more information becomes available for parsing. Later frames contain
more information than previous frames.



4-7 for an example of post-utterance context resolution.

Source: IBoston Source: JBOS

Destination: IMiami Destination: IMIA

Airline: jAmerican Airline: AA

Date: Ifriday Date: Ifriday MAY 29

Time: jmoming Time: Ideparting in moring

Figure 4-8: Example of post-utterance context resolution based on incremental key-

value pairings.

4.5 Chapter Summary

In this chapter, we have presented details about the FlightBrowser system from both

the client and server side. This system has several advantages over the speech-only

MERCURY system that it extends. One advantage is that the user does not have

to commit a large quantity of information to memory, as in a unimodal system. On

the telephone-based MERCURY system, a user would most likely need to write down

information about the active selection of flights in order to make an informed decision.

Similarly, a user would have to retain information about flights that have already been

added to the itinerary. The graphical layout lightens the user's cognitive load through

its visual output.

FlightBrowser is an information-rich display that lessens the amount of time spent

streaming synthesized audio. The system remains conversational; however, the system

does not need to "ramble" in order to recite large amounts of information since that

information can be conveyed visually rather than verbally. The most notable example

of an information-rich feature is the graphical list of flights, which uses horizontal bars

proportional to the duration of the flight and color-coding to produce a glanceable

environment, taking advantage of the human ability to quickly decode visual stimuli.

Incremental understanding is an additional method for exploiting the human capacity

for visual stimuli, allowing the user to confirm that the system has satisfactorily



understood his or her speech before listening to the system's response.

In the next chapter, we will describe the results of a comparative user study that

tests two different configurations of our system; the following chapter will include a

discussion of these findings.



58



Chapter 5

User Study

We would like to explore the effects of displaying the system's current understanding

to the user while he or she attempts to perform flight reservation tasks in our system.

This user study is similar to the experiments in the Fruit Carts domain presented by

Aist et al. in [2]. In their experiments, the dialogues of 22 subjects were collected-11

from a nonincremental system and 11 from an incremental system. Further analysis

indicated that subjects using the incremental system completed tasks more quickly,

and also that there is a positive correlation between incremental system use and user

satisfaction.

In this user study of the FlightBrowser system, we would like to compare a baseline

configuration of the system with an incremental configuration. We analyze the results

based on rate at which tasks are completed and ratings given to the system by subjects

after using the system. Also, we elaborate on key differences in system feature usage

between the two groups.

5.1 User Study Setup

This section describes the setup of our user study, going into detail about the user

groups, different configurations (baseline and incremental), and flight reservation as-

signments. We also describe the user group management utility by which a user signs

up for a study and performs a set of tasks.



5.1.1 Subjects and User Groups

To set up our experiment, we gathered 20 subjects-composed of students and fac-

ulty from the MIT community-and randomly divided these subjects into two user

groups containing 10 subjects each. The groups were divided as such to compare

two different configurations of the FlightBrowser system. One group makes use of a

baseline configuration that lacks the text fields that provide incremental visual feed-

back of specific concepts and subsequently, their context-resolved values. The second

group uses an incremental configuration that includes the text fields that provide

incremental feedback and context resolution. Figures 5-1 and 5-2 provide examples

of the two layouts tested in our user study. All users were brought to the Spoken

Language Systems (SLS) laboratory for the experiments. After completing the user

study, each subject was compensated with a $10 Amazon gift certificate.

5.1.2 User Group Management

This user study involved using a utility, developed by Yoshimoto of SLS, that allows

us to assign users to groups using the baseline or incremental configuration to keep

track of each user's progress using the FlightBrowser system [43]. This management

tool allowed us to design our user study by creating a specific sequence of variables

that get entered into the query string in the FlightBrowser URL; one of these variables

determines whether our system is configured with a baseline or incremental layout.

A user logs into the system with his or her email address as shown in Figure 5-3.

Each user group has its own login screen. Once the user logs in, we assign a unique

user ID and the specific group ID based on the particular login screen; we use these

IDs rather than email addresses to identify users during data analysis. The user sees

a set of five tasks to be completed: four of which are flight reservation assignments,

and a final task that is a user evaluation survey.



FlightBrowser
C A L SPOKEN LANGUAGE SYSTEMS GROUP

system: I have 3 nonstop American flights: a flight arriving at 10:45 a.m., a flight arriving at
1:20 p.m.. and a flight arriving at 9:30 p.m. Would one of these work?
system: okay, flights from Miami to Boston arriving between 5:00 am and 11:00 pm on
Saturday May second. One moment please.

BOS to PHL (US 3557)
Flight #: 3557
Airline: US (WS Ailways)
From: OS (Boston, MA)
To: PHL (Philadelphia, PA)
Departure Time: 2009-04-30 05:30AM GM
Arrival Time: 2009-04-30 06:51AM GMT-0
Aircraft Type: Canadair Regional Jet

PHL to MIA (US 763)
Flight #: 763
Airline: US (US Airways)
From: PHL (Philadelphia, PA)
To: MIA (Miami. FL)
Departure Time: 2009-04-30 09:55AM GM
Arrival Time: 2009-04-30 12:53PM GMT-0
Aircraft Type: Boeing 737
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Figure 5-1: Baseline configuration.

> FlightBrowser
CSAl L SPOKEN LANGUAGE SYSITEMS GROUP

Source: 4IA

U Destinaton: Pos
Airline: I

Date: saturday MAY 2

Time: arring anytime

BOS to PHL (US 3557)
Flight #: 3557
Airline: US (US Aiways)
From: BOS (Boston, MA)
To: PHL (Philadelphia, PA)
Departure Time: 2009-04-30 05:30AM GMT-0400
Arrival Time: 2009-04-30 06:51AM GMT-0400
Aircraft Type: Canadair Regional Jet

PHL to MIA (US 763)
Flight #:763
Airline: US (US Airways)
From: PHL (Philadelphia. PA)
To: MIA (Miami, FL)
Departure Time: 2009-04-30 09:56AM GMT-0400
Arrival Time: 2009-04-30 12:53PM GMT-0400
Aircraft Type: Boeing 737

system: I have 3 nonstop American flights: a flight arriving at 10:45 a.m., a flight arriving at
1:20 p.m., and a flight arriving at 9:30 p.m. Would one of these work?
system: okay, flights from Miami to Boston arriving between 5:00 am and 11:00 pm on
Saturday May second. One moment please.

Figure 5-2: Incremental configuration.



0 FlightBrowser
C S A I L SPOKEN LANGUAGE SYSTEMS GROUP

Thank you for your interest in FlightBrowser !

Sign Up For An Account for Task Group 1

FlightBrowser is a research prototype, developed by the Spoken Language Systems Group at M.I.T.'s
Computer Science and Artificia Inteigence Laboratory. Signing up for an account will give you immediate
access to this system An emai wil also be sent to you with a password should you need to log back in to the
site later. Questions can be directed to the Spoken Language Systems Group at i~ihbrowsercsaiLmited.

E-ma I

Figure 5-3: Login screen for user study participants.

(a FlightBrowser
C S A I L SPOKEN LANGUAGE SYSTEMS GROUP

FightBrowser is a convrsational research prototype which lets you speak naturaly to obtain information
about A schedles.

* Click the 'Cick to Talk' button and and then speak into your computer's microphone (e.g., 7 want
to go from Boston to San Francisco next Wednesday morning. )

* To enter an inividual concept, you can click on one of the smmiler green microphone icons and spea
(or select the fildd and type your input).

* You can highdiht indiv fialfight entries in the display, and refer to them by voice (e.g., "book this
flight').

* You can say "go back"or "start over"if the system gets confsed.
* Any other questions or comments? Send email to flightbrowser@csail.miLedu

By using the system, you agree to the fillowing statement I undestand that all interactions with the
'ystem are loggedfor research purposes.

Figure 5-4: Instruction box displayed at the beginning of a user session.

Figure 5-5: Example of a task box displayed at the beginning of a user session.



5.1.3 Instructions

Once the user has logged into the system, and has received the set of assigned tasks,

the user clicks on a specific task, and elects to "Start Assignment." This loads the

FlightBrowser graphical interface along with two pop-up boxes that appear at the

beginning of a task. Users are naive in the sense that they know nothing about the

system prior to using the system, other than a brief overview of its main functionality,

i.e., it is a graphical flight scheduling interface. The first pop-up box provides a set

of general instructions for using the system, as shown in Figure 5-4. The second

pop-up box includes the specific task to be performed for this session, which we will

enumerate in the next section (also see Figure 5-5). Furthermore, we include two

buttons that allow the user to view the general instructions or assigned task at any

point during the current session.

5.1.4 Assigned Tasks

Both the baseline and incremental groups are given an identical set of four tasks,

and asked to perform as many tasks as possible in a span of 25 minutes. A task

is considered to be completed when the user has obtained a final itinerary from the

system that satisfies the given task. These tasks are designed such that the difficulty

increases as the user becomes more familiar with the system. These tasks must be

performed in order unless the subject absolutely gives up on completing a specific

task, and elects to skip it. The tasks, presented in their proper order, are as follows:

1. Schedule a round trip from an east coast U.S. city to a west coast U.S. city on

your favorite airline.

2. You are looking for the cheapest round trip from a northern U.S. city of your

choice to a southern U.S. city of your choice. You would prefer non-stop flights

for both the forward flight and the return flight.

3. You would like to take a vacation in Europe for an indefinite amount of time.

Set up a one-way flight from a U.S. city to a city in Europe.



4. You have a busy weekend ahead of you. You have a business conference to

attend on Friday afternoon in Chicago. Then, you must attend your best friend's

wedding in Baltimore on the following day. Finally, you must return home so

that you can get to work on Monday morning. Schedule a trip that takes you

from home to the business conference, then to the wedding, then finally back

home.

5.2 Significance Testing

For the remainder of this chapter, we will analyze the results of this user study.

In order to quantify the statistical significance of some of the comparative results

presented here, we will conduct a two-tailed t-test with 18 degrees of freedom, denoted

as v. This particular test of statistical significance was chosen due to the relatively

small sample size and also due to the fact that the mean and standard deviation of

our two samples is unknown a priori. The value of v is calculated by taking the

total sample size of 20 across both user groups, then subtracting 2 from that number

since the test is two-tailed. Using the t-distribution with v=18, we evaluate the t-

statistic and its resulting p-value to determine statistical significance for each user

group comparison. A lower p-value is an indication of higher statistical significance.

5.3 System Usage (Baseline vs. Incremental)

In this section, we will compare system feature usage of subjects using the baseline

versus those who used the incremental system. Overall, we found that those using

the baseline system were more likely to use the features of history revision, flight

clicking, and flight sorting, which we will discuss below. Table 5.1 and the left side

of Figure 5-6 provide data on the usage of system features shared between the two

user groups. A user is given a value of 1 if the feature was used at least once during

the user session, and given a value of 0 otherwise.



System Feature Usage

Baseline vs Incremental Incremental Only

0 i

0 .2 -i ..................... ........ .......... ............. .. ........ ............ .......... ....... ...

aring f Sorting Fights Concept Recording
Revertin History Cckiddng Fights Concept Field Typing ancrementa Understanding

Figure 5-6: System feature usage results from user study. This graph shows the
percentage of users that used a specific feature in the FlightBrowser system. The left
side of the graph shows the usage of features that were available in both the baseline
and incremental configurations, whereas the right side of the graph shows features
that were exclusively available in the incremental configuration.

Feature Baseline Incremental Baseline Incremental t-statistic Two-tailed
Mean Mean Std. Dev. Std. Dev. p-value

Reverting History 0.5 0.3 0.53 0.48 0.88 0.39
Clearing History 0.5 0.1 0.53 0.32 2.06 0.05
Clicking Flights 0.7 0.4 0.48 0.52 1.34 0.20
Sorting Flights 0.5 0.1 0.53 0.32 2.06 0.05

Table 5.1: System feature usage (baseline vs. incremental).

5.3.1 Reverting and Clearing History

In this user study, we found that those using the baseline system were more likely than

incremental users to utilize history revision. There are two types of history revision

events: reverting history (i.e., "going back") or clearing history (i.e., "starting over").

These events are usually used when the system makes a mistake and attempts to act

on this misunderstood speech. The more frequent usage of history revision events

suggests that those using the baseline configuration were more likely to encounter

errors that they do not feel comfortable trying to correct with a follow-up utterance.

5.3.2 Clicking and Sorting Flights

Furthermore, we found that subjects using the baseline configuration were more likely

to use the flight information table in the display to click on flights to refer to them

through speech. Also, those using the baseline system were much more inclined to use

the sorting feature for the flight information table. This indicates that those using



the incremental system were more likely to allow the system to suggest flights since

it could visualize what the system currently understands. Those using the baseline

system usually carried out less specific queries, then narrowed their search down using

sorting and clicking.

5.4 System Usage (Incremental Only)

In this section, we discuss the frequency of usage for several features that were exclu-

sively available in the incremental configuration of the FlightBrowser system. This

includes concept field typing and recording, and also the usage of visual feedback

provided through incremental understanding and context resolution. Table 5.2 and

the right side of Figure 5-6 provide data on the usage of system features that are

exclusive to the incremental configuration. Like in the previous section, a user is

given a value of 1 if the feature was used at least once during the user session, and

given a value of 0 otherwise.

Feature Mean Std. Dev.
Concept Field Typing 0.1 0.32

Concept Recording 0.6 0.52
Incremental Understanding 0.9 0.32

Table 5.2: System feature usage (incremental only).

5.4.1 Concept Field Typing

Out of the 10 participants who interacted with the incremental version of the system,

only one participant used the typing feature. Most users were not aware of this

feature, though it was exemplified in the initial instructions provided when the user

loads the page. One reason could be that since these text fields are shared with

output from FlightBrowser's incremental understanding and discourse resolution, it

is not intuitively obvious that these text fields can also be used for input.



5.4.2 Concept Recording

Five out of the ten subjects using the incremental system used the small microphone

icons for concept recording. There were two different styles of using the concept

recording buttons. Some used the concept recording buttons to make a single cor-

rection when a misrecognition occurs, whereas others used the concept recording

buttons nearly exclusively, interacting using one or two word utterances for each con-

cept rather than using the main speech input button and speaking a much longer

sentence.

5.4.3 Incremental Understanding

Ninety percent of the users stated that they noticed the text fields being filled in

real-time as they were speaking or post-utterance, using this information to check

the system's current understanding. Based on the higher usage of history reversion

and clearing shown in the baseline group, we can hypothesize that being able to

perceive the system's visual understanding prevented incremental configuration users

from having to go backward in history during a session. The large percentage of users

who noticed the visual output of the system's understanding may explain why less

users in the incremental group necessitated the use of history revision. Furthermore,

it may explain why the baseline users who lacked incremental understanding more

frequently used some of the multimodal features such as clicking and sorting flights.

5.5 Task Completion

Subjects who interacted with the baseline system had less information from which to

verify the system's understanding. As a result, several baseline users ran into errors

which forced them to start over or go backward in history. Two baseline users were

only able to complete one task, possibly because it is harder to assuage an error when

it occurs in the baseline system. Overall, users of the incremental system were able

to complete more tasks in the 25 minute period than the baseline group. One can



argue that being able to see the system's understanding prevents having to revert to

a prior state in the system, and makes it easier for users to complete tasks. See Table

5.3 and Figure 5-7(a) for data on task completion.

Baseline Incremental Baseline Incremental t-statistic Two-tailed
Mean Mean Std. Dev. Std. Dev. p-value

Task Completion 3.3 3.8 1.25 0.42 1.2 0.25

Table 5.3: Task completion (out of 4 tasks) between baseline and incremental groups.

5.6 Post-Study Evaluation Survey

In this section, we will discuss the results of a post-study evaluation survey. The

survey is given immediately after the user has completed all tasks or has exceeded

the time allotment. The user rates a certain aspect of our system on a scale of one to

five, where five represents the most favorable score. We present these user-evaluated

aspects of the system in order of increasing statistical significance. However, due to

the small number of users, none of this data is statistically significant, since p > > 0.05.

See Table 5.4 and Figure 5-7(b)-(f) for user evaluation data.

Feature Baseline Incremental Baseline Incremental t-statistic Two-tailed
Mean Mean Std. Dev. Std. Dev. p-value

Speech Understanding 3.9 3.8 0.99 1.03 0.22 0.83
Usability 3.4 3.3 0.97 0.82 0.25 0.81

Graphical Appeal 3.8 3.5 0.92 1.51 0.54 0.60
Task Difficulty 4.3 4.5 0.82 0.53 0.65 0.53
Overall Rating 3.0 3.5 1.41 0.85 0.96 0.35

Table 5.4: System ratings given by baseline and incremental groups during post-usage
evaluation.

5.6.1 Speech Understanding

Each user was asked to indicate how well our speech understanding performed during

the user study. Both groups rated the speech understanding of our system similarly.

In this case, it seems that the incremental configuration did not significantly impact

a user's opinion about the speech understanding ability of our system.
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5.6.2 Usability

Each user was also asked to rate the usability of the FlightBrowser system. Like the

speech understanding responses, both groups provided similar answers for usability.

This suggests that the incremental configuration did not significantly impact the

user's opinion about the usability of the system. However, this could also be a result of

incremental users not fully utilizing the multimodal features. Maybe if an incremental

user exploited more the multimodal features, he or she would have given the system

a higher usability rating.

5.6.3 Graphical Appeal

For graphical appeal, baseline users were more inclined to give a high rating. This

may suggest that even though our incremental system is more functional and leads

to a higher task completion rate, its layout may be less appealing visually. Also,

as noted by the data in Tables 5.3 and 5.4, many incremental users did not fully

utilize FlightBrowser's multimodal capability. Baseline users seemed more likely to

explore its multimodal features, although the incremental group had access to the

same features, plus additional features. Perhaps the extra cognitive load of having

more input choices for audio recording led to the lower score in the incremental group.

5.6.4 Task Difficulty

Users of the incremental configuration gave a generally higher rating for tasks. That

is to say, incremental users found tasks to be slightly easier than those in the baseline

group. This data seems consistent, considering that the incremental group were able

to perform more tasks in the allotted 25-minute time period.

5.6.5 Overall Rating

Overall, users that interacted with the incremental system were more likely to give

the system a high rating. This was the most statistically significant result of the



user evaluation, and thus our most profound distinction between the two user groups.

Incremental users may have provided a higher overall rating as a result of the higher

completion rate and lesser perception of task difficulty. We will explore the correlation

between these statistics in the next section.

5.7 Correlation

For further illustration, we have calculated the correlation between some of our most

significant distinctions in the two user groups. We have selected the task completion

rate, task difficulty, overall rating, and usage of history clearing for cross-correlative

comparisons, depicted in Table 5.5.

Task Task Overall Clear History
Completion Difficulty Rating Usage

Task Completion - 0.62 0.44 -0.14
Task Difficulty - - 0.40 -0.27
Overall Rating - - - -0.07

Clear History Usage -

Table 5.5: Correlation between several statistics collected from user study data.

In our results, there appears to be a (weak) negative correlation between using the

history clearing (start-over) feature and the values for task completion, task difficulty,

and overall rating. This is expected since having to start over indicates a negative per-

formance of our system. The most outstanding correlation involving history clearing

is the negative correlation between history clearing and task difficulty (where a high

rating represents easier tasks). Therefore, users that carried out a history clearing

command found their tasks to be more difficult.

Furthermore, we found a moderate positive correlation between the overall rating

and task completion, meaning that those who completed more tasks were more in-

clined to rate the system highly. There is also a moderate positive correlation between

overall rating and task difficulty; users who found the tasks to be easy also gave the

system a higher overall rating. However, the strongest correlation that we found in



our results was the positive correlation between task completion and task difficulty-

those who completed fewer tasks also expressed that these tasks were rather difficult.

5.8 Chapter Summary

In this chapter, we have documented the results between the baseline and incremental

configurations of the FlightBrowser system. When taking system usage into consid-

eration, baseline users were more likely to revert or clear the history when confronted

with recognition errors in the system, which may indicate that incremental feedback

makes the user more confident with the system's speech recognition and understand-

ing. Furthermore, baseline users were more likely to use the features of flight clicking

and sorting than incremental users. The clear distinction between two groups in the

usage of flight sorting and clicking show that incremental users, though presented

with more multimodal features, were more comfortable with using speech exclusively

to communicate with the system.

Additionally, an incremental user, completed more tasks on average than a baseline

user, possibly due to the visual understanding conveyed on the screen. Perhaps as a

result of this higher rate of task completion, incremental users also rated the system

more highly overall, and found tasks to be easier to complete. In the next chapter we

will discuss the implications of the work presented in this thesis and our user study

findings, with suggestions for future directions of research.



Chapter 6

Discussion

In this thesis, we have described the transformation of a telephone-based spoken

dialogue system into a more functional web-based version. The MERCURY flight

reservation system in its telephone-based form was limited in its capability, mainly

because of its absolute dependence on spoken input and output, which incurs restric-

tions on the type of information that can be understood or conveyed. One example

of a restriction in its telephone-only version is the number of flights that the system

provides as for the user to choose from. In the unimodal system, we could only rea-

sonably describe four flights at a time to the user. Presenting more than this amount

would require excessive memorization from the user, which is undesirable for any con-

versational interface. Additionally, it would take extensive speech synthesis to convey

this information to the user. However, now that we have developed a graphical dis-

play upon which to store information, we have expanded the number of flights from

four to fifty, and eliminated the need for the user to memorize flights.

Another example of the enhanced capability provided by our graphical interface is

the process of incremental understanding, by which the user receives real-time visual

feedback of the system's comprehension. Encountering similar results to the Aist et

al. experiment [2], our user study reveals that there is an added benefit to making

the user aware of what the system is "thinking." The advantage of sending visual

feedback of the system's understanding manifests itself in the rate of task completion

and overall user satisfaction.



Based on our results, we can hypothesize that conveying the system's understand-

ing on the screen gives the user more clarity and confidence regarding the accuracy

of our speech recognition and natural language understanding, as shown by the less

frequent usage of history revision commands among incremental users. Another dis-

tinction between the two groups was the more pervasive usage of multimodal features

in the baseline group that did not receive incremental understanding. This shows that

perhaps incremental users were comfortable interacting with the system exclusively

with speech when the system's understanding was visible.

6.1 System Improvements

As a result of text-based responses in the user survey, there are several changes that

we would like to implement in the near future to further enhance the capability of

the FlightBrowser system. One major change that we would like to implement is to

replace our current speech synthesizer. During the user study, many users commented

on the robotic-sounding voice produced by the DECtalk [22] synthesizer. Thus, we

would like to utilize a more user-friendly speech synthesizer, which may arguably

improve the user experience.

In addition, our spoken dialogue system has several discrepancies as a result of

the more extensive data provided graphically. For instance, although the system

provides prices for all flights listed, this information is known only by the GUI server,

but not the dialogue system. Therefore, if a user desires to add the cheapest flight

to the itinerary, he or she cannot verbally ask for the cheapest available flight. This

problem is an artifact because the original system was unable to look up the price

until the entire itinerary was finalized. Therefore, the user must instead select that

flight by sorting the graphical list, selecting the cheapest flight, then referring to it by

speech. This duality is certainly nonintuitive for a naive system user, so appropriate

changes must be made to accommodate queries that involve price.

We would also like to implement several new multimodal features as an improve-

ment to the graphical interface. One implementation is allowing the user to double-



Figure 6-1: FlightBrowser on an Apple iPhone

click on a specific flight to add it to the itinerary, rather than single-clicking on a

flight and referring to it through speech. Additionally, adding buttons to the inter-

face for reverting and clearing the history would be beneficial. In both of these cases,

we would still interact with the spoken dialogue system in the back end using natural

language (e.g. "book this flight," "start over," "go back"), but this information will

be hidden from the user. This relieves the user from having to provide speech input

for such commands.

6.2 Portable Devices

However, this raises doubts to the importance of speech input. If input can be pro-

vided effectively through other modalities such as typing and mouse clicking, how

necessary is the speech input? Although it can be argued that alternative modalities

may work more effectively on a standard computer, on a small portable device such

as a smart cell phone, speaking is often the quickest way to send information to the

system. On these devices, the additional features for typing, pressing buttons, and



touching the screen serve the purpose of supplementing the more essential speech

information. Since smart phone interfaces are more speech-centric, an integral part

of future development in the FlightBrowser system should be to increase its compati-

bility with mobile devices. Figure 6-1 shows a picture of the FlightBrowser interface,

viewed on an Apple iPhone.

6.3 Incremental Understanding and

Back-Channeling

In addition to improving its compatibility with portable devices, there are several

possible directions for the FlightBrowser project with regards to incremental under-

standing. An alternative way of implementing incremental understanding would be

to portray its understanding using symbols rather than text. Perhaps, a user may

respond more favorably to a symbolic representation of its understanding rather than

a textual one. Futhermore, a future implementation of incremental understanding

may involve adding a videorealistic speech-guided facial animation [33] to the graph-

ical layout, which may use facial expressions, and even vocalizations, as a way of

incrementally back-channeling as the user is speaking.



Appendix A

User Study Data

In this appendix, we provide the complete numerical data from the user study de-

scribed in Chapter 5, documenting the task completion, system feature usage, and

user evaluation results. For convenience, the users have been sorted by group ID, for

which a 0 represents a baseline system user, and a 1 represents an incremental system

user.
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