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Abstract

In this thesis, the possibility of interaction-free quantum measurements with elec-
trons is investigated. With a scheme based on existing charged particle trapping
techniques, it is demonstrated that such interaction-free measurements are possible
in the presence of previously measured quantum decoherence rates, and the efficiency
of the measurement scheme and the absorption probability are estimated. Use of
such interaction-free measurements with electrons in imaging applications could dra-
matically reduce sample damage induced by electron-exposure, which might allow
non-destructive, molecular-resolution electron microscopy.
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Chapter 1

Introduction

Since the development of the first prototype in the early twentieth century, the elec-

tron microscope has revolutionized the field of microscopy and has dramatically im-

pacted many areas of science and engineering. Typical optical microscopy techniques

are limited by the diffraction barrier which constrains the achievable resolution to

roughly the wavelength of the probing light (optical wavelengths range from around

380 nm to 750 nm). Although cutting-edge optical techniques such as Stimulated

Emission Depletion (STED) can now provide resolutions beyond the constraints of

the diffraction barrier, the nanometer or even sub-nanometer scale resolution pro-

vided by electron microscopes gives scientists and engineers the capability of imaging

at length scales currently inaccessible by even the most advanced optical techniques.

The earliest electron microscopes functioned much like simple optical microscopes,

in a transmission mode; a beam of electrons was directed towards and penetrated a

thin sample. The electrons were then focused to form an image by electron optics

(specially designed coils and plates that deflect electron beams via electromagnetic

and electric forces in a fashion analagous to how lenses deflect optical beams) [1].

These transmission electron microscopes (TEMs) and the field of electron microscopy

have evolved considerably since their inception, and nowadays there exist a wide

variety of different TEM techniques involving high voltages and complicated sample

preparation protocols as well as other wholly different methods of electron microscopy

such as scanning electron microscopy. Scanning electron microscopes (SEMs) do not



rely on the transmission of the incident electron through the sample but instead use

secondary electrons produced by the interaction of the incident electron beam with

the sample's surface to generate an image. This variety of different techniques has

allowed imaging down to near atomic scales of a wide spectrum of samples ranging

from semiconductor nanostructures to specially prepared biological specimens.

Despite the great successes of electron microscopy, the application of the tech-

nique to the investigation of biological phenomena or other sensitive specimens has

been limited due to constraints related to the fundamental principle on which the mi-

croscopes operate. Modern electron microscopes still follow the same basic paradigm

of their predecessors: electron beams impinge upon a sample and interact through

transmission, auxilary electron production, etc. Through this interaction information

about the sample is obtained and an image is constructed; however, also through this

interaction the sample is damaged by the energetic incident electrons.

The electrons used in electron microscopy have variable energy levels; however,

for the best imaging energies in the range of keV (and MeV for high-voltage TEMs)

are commonly used [1]. When biological specimens are irradiated by electron beams

of these energies molecular excitation, ionization, and subsequent chemical reactions

occur damaging the structures of the biological complexes [2]. The required elec-

tron exposure, equivalent radiation dosage, and resulting effects for imaging certain

biological specimens with a high-voltage TEM at 1 MeV are given in Figure 1-1.

As is evident in Figure 1-1, the radiation received by samples imaged by electron

microscopes is excessive in biological terms. It has been determined that during the

recording of a single micrograph a specimen can receive a radiation dosage equivalent

to being roughly thirty yards from the explosion of a ten megaton Hydrogen bomb

or to spending five years near a 1-Ci Co60 y-ray source [3]. In recent years new tech-

niques in sample preparation such as cryogenic preparation [4] have allowed improved

imaging of biological samples, yet the problem of radiation damage still remains a

major one, and the ability to image living, not dying, biological samples still remains

out of reach.

In the following thesis, the possibility of interaction-free quantum measurements



Radiation Damage at 1 MV

Resolvable Structures Required Electron Biological Effect
(assuming 10% contrast) Exposure (C/cm 2)

Whole cell (10 gim) 10-10-I0-9 Reproductive Cell Death (animal cells)

Cell nucleus (2 jm) 108 Inactivation of T1 bacteriophage

Tumorvirus (100 nm) 106-10-5 Enzyme Inactivation

Ribosomes (20 nm) 10 4  Stoppage of cell motility (protozoa)

Cell membranes (10 nm) 10 -4 - 1 0 -3

Enzymes (5 nm) 10-3--10 -2

1 nm resolution 10-2-10-1

Figure 1-1: Imaging Requirements and Radiation Damage in Electron Microscopy

with electrons is investigated. Interaction-free quantum measurement is a peculiar

manifestation of quantum non-locality and interference which can allow detection

without interaction. The application of interaction-free measurements with electrons

could dramatically reduce sample damage in electron microscopy by circumventing

the seemingly fundamental restriction of electron microscopes: interaction.

Before going directly into a complete discussion of interaction-free quantum mea-

surement and difficulties in applying the method to electron based applications, it

is instructive to first present the fundamental ideas of the concept through a simple

and familiar example: the double-slit experiment. This instructive introduction is

provided in the following section as well as an outline of the rest of the thesis.

1.1 Imaging with Double-slit Interferometery

From classical intuition, any measurement on an object requires some physical in-

teraction with the object. As discussed, for electron microscopy this interaction has

made the imaging of sensitive samples extremely challenging [5]. Quantum mechan-



ical intuition does not seem to change this fact. From quantum mechanics it seems

that any measurement inevitably changes the state of the system. However, as will be

discussed in more detail in the following chapter this is not always the case. A sim-

ple example illustrating these principles can be found in the well-known double-slit

experiment.

Take a double-slit apparatus illuminated by a beam of single photons (that is

a beam which consists of one photon following another) as illustrated in Figure 1-

2 (the apparatus could equally well be illuminated by single electrons in which the

double-slit could be a filament at a negative voltage followed by a focusing apparatus).

From basic quantum mechanics when the two slits are illuminated by the beam of

single photons (as in the top of Figure 1-2), an interference pattern will form on the

detector as each photon traverses the two slits simultaneously, interferes with itself,

and deposits its energy on the detector to the far right (this is a quantum mechanical

effect as the discussion is focusing on a beam of single photons not a classical light

beam).

. . i t!, --

Figure 1-2: Double-slit experiment. The balls and dashed trajectories are meant to

emphasize the particle-like nature of the photon, and the wavefronts are meant to

emphasize the photon's wave-like properties. The patterns on the far right are meant

to represent the spatial variation in the intensity after many photons have traveled

through the simple interferometer.



If one of the slits is blocked by an absorbing object (as in the bottom of Figure 1-2)

however, then the interference pattern will not be observed at the detector (although

a weak diffraction pattern may be seen). This is because the absorbing object enacts a

measurement on each photon's wavefunction determing whether the photon traversed

the top or bottom slit. If the top slit is the result of the measurement, the photon's

energy is then imparted to the absorbing object. If the bottom slit is the result, then

the photons energy is then spread on the detector screen (with some weak diffraction

due to the propagation from where the measurement was enacted to the detector).

Now imagine that an object is being imaged by this simple double-slit apparatus.

Take the object to be composed of dark, i.e. absorbing or opaque, and white, i.e.

not absorbing or transparent, pixels. If the object is rastered slowly enough across

the top slit, then at the detector occasionally interference patterns will be observed

corresponding to transparent regions of the object or white pixels in front of the

slit, and occasionally interference patterns will not be seen corresponding to opaque

regions of the object or black pixels in front of the slit. In this way a simple black

and white image of the object can be generated.

What is particularly interesting about this double-slit imaging is that the imaged

object is exposed to only half the light intensity it would be in a classical trans-

mission imaging apparatus. When a dark pixel is imaged, roughly half of the total

number of incident photons travel the path without the object to form the classical

intensity pattern on the detector, and roughly half of the total number of incident

photons travel the path with the object to be absorbed. In a typical transmission

imaging setup however all of the incident photons would be absorbed by the dark

pixel. Therefore, the double-slit imaging system discussed above exploits quantum

interference to reduce the exposure of the sample to photons by roughly a factor of

two (with obvious loss of contrast however).

This double-slit imaging system is in essence an interaction-free quantum measure-

ment/imaging (IFM) system. In Chapter 2 interaction-free quantum measurement

will be discussed in greater detail, and other schemes, including one for imaging with

electrons will be disussed. In Chapter 3 a coupled electron trap design which may



be capable of carrying out electron based interaction-free measurements or even mi-

croscopy will be presented and analyzed. Then in Chapter 4 the major limiting factors

in the design will be presented along with an analysis of the potential performance of

the imaging system. Finally, Chapter 5 will include conclusions and a brief outlook

on future work.

Finally, before jumping into the following chapters it should be noted that this

thesis is not a complete and detailed account of the work done by the author in

this area to date. This thesis is more of an abbreviated description of the ideas and

relevant calculations and serves the purpose to instruct an audience in a broader

sense rather than to list in painful detail every calculation. Important details have

been glossed over in many cases for brevity and clarity in the presentation. For more

details on particular simulations or calculations the author may be contacted.



Chapter 2

Interaction-free Quantum

Measurement

As mentioned in the preceding chapter, classical and quantum intuition both seem

to imply that a measured system is always affected by the measurement process.

However, as illustrated with a simple thought experiment involving a double-slit

interferometer, quantum interference may be exploited to reduce the "amount" of

interaction ("amount" of interaction refers to amount of energy exchanged in inter-

action) involved in a particular measurement (in the previous example the number

of photons absorbed by the measured object was reduced by a factor of two). As it

turns out, with slightly more clever interferometric techniques quantum interference

can be used to reduce the "amount" of interaction (energy exchange in interaction) to

zero. In the discussion in the following chapter these more clever interferometric tech-

niques will be discussed. The canonical Mach-Zehnder interaction-free measurement

protocol will be presented as a standard introduction to interaction-free quantum

measurement. A specific high-efficiency interaction-free measurement setup will then

be discussed along with it's key ingredient: the quantum Zeno effect. Finally, general

high-efficiency interaction-free measurement with two-state systems will be analyzed,

and a basic setup for interaction-free measurment with electrons will be presented.



2.1 The Mach-Zehnder Implementation

Interaction-free measurement is commonly traced back to a famous set of "negative-

result" thought experiments in which the non-observance of a particular result acts

itself as a measurement that leaves the system undisturbed i.e. an interaction-free

measurement [61. These thought experiments were later extended into a realistic mea-

surement scheme involving a Mach-Zehnder interferometer [7]. This Mach-Zehnder

scheme has become the classic example of interaction-free measurement, so fittingly

it is discussed here before more involved schemes are analyzed.

In accordance with its name the Mach-Zehnder interaction-free measurement

scheme conists simply of a tuned Mach-Zehnder interferometer with an incident beam

of single photons. The setup is illustrated in Figure 2-1. The interferometer has the

bottom or top arm either open or blocked by the object being measured (on the left

in Figure 2-1 the bottom arm is open, on the right it is blocked). To make things

dramatic, in the original proposal [7] the objects imaged in the thought experiment

were bombs (as in Figure 2-1) with single photon detectors as triggers, and the idea

was to distinguish operational weapons from duds.

M 
DI

Bi B0 
D2

Figure 2-1: The Mach-Zehnder Interferometer and Interaction-free Measurement [8].
The label "M" indicates a mirror, the label "B" indicates a beam-splitter, and the
label "D" indicates a detector. The dark line and arrow indicate the path of the
photons in the interferometer.

Let the reflectivity, R 1, of the first beam-splitter equal the transmistivity, T2,

of the second, and let the relative phase shift be ir/2 between a wave reflected and

transmitted by the beam-splitter (this phase shift need not be r because the reflection



could be a result of a series of complex internal reflections in a thin dielectric slab

[9]).

With both arms open (the left in Figure 2-1) the relative phase shift between a

photon traveling through the bottom arm versus the top arm and reaching detector

D1 is 7r/2 - r/2 = 0 while the relative phase shift between a photon traveling through

the bottom arm versus the top arm and reaching detector D2 is 7r/2 + 7r/2 = i7. So

with both arms open the there will be complete destructive interference (note the

importance of R 1 = T2 here) at detector D2 i.e. no photons will be measured at D2

and constructive interference at D1 i.e. every photon sent into the interferometer will

be measured at D1 (assuming no losses).

If an object, which is assumed to be a perfect absorber, is placed in the bottom

arm of the interferometer (the right in Figure 2-1) the interference is lost. As in the

case with the double-slit interferometer the absorbing object enacts a measurement

on each photon and partially collapses each incident photon's wavefunction to one

arm of the interferometer (in the case illustrated above the top arm). Therefore, the

incident photon can now be measured at either detector D1 or D2.

The discussion so far has all been simple, straightforward quantum mechanics;

however, it becomes interesting when one notes that if a single photon is sent into the

Mach-Zehnder interferometer and is measured at D2, then there must be an object

in the bottom arm of the interferometer and the photon must never have interacted

(exchanged energy) with it [7]. So, the presence of an object can be detected without

ever interacting with the object.

A simple efficiency figure of merit can be defined for this interaction-free measure-

ment system. The efficiency can be defined as the probability of correctly determining

the presence or absence of an object blocking the bottom arm of the interferome-

ter [10]. Assuming the a priori probabilities of there being a blocking object are

P(present) = P(absent) = , the efficiency can be written,

r = -(P(D1|absent) + P(D2present)) (2.1)
2



Where P(D1|absent) and P(D21present) denote the probability of measuring a

photon at D1 and D2 given the absence of an object and the presence object respec-

tively. From the above discussion clearly P(Dllabsent) = 1 as with no object present

there is complete destructive interference at D2. Also from the above discussion,

P(D21present) = (1 - RI)T2 = (1 - R 1)R 1 . Using these expressions the efficiency is

rewritten below and the maximum efficiency can easily be seen to be nrmax = 3/4 with

R, = 1/2.
1

7= 2 (1 + Ri - R1) (2.2)

One other figure of merit is important in characterizing the interaction-free mea-

surement system. That is the probability of absorption by the object Pabs. For the

above system the absorption probability is clearly Pabs = R 1, and so for the case of

maximum efficiency Pabs = 1/2. For an interaction-free imaging system the exposure

the imaged sample receives is proportional to the absorption probability, so for an

electron microscopy system based on the above scheme the electron exposure would

be reduced by a factor of two (when operating at maximum efficiency).

This system is the canonical example of interaction-free measurement. Its coun-

terintuitive results have been verified experimentally with phtons and neutrons in

Mach-Zehnder structures [11, 12, 13]. Although important from a pedagogical point

of view, the system has clear deficiences. In particular, r < 3/4 and as this limit is

approached Pabs -+ 1/2. For interaction-free measurement to be practical in reduc-

ing sample exposure in electron microscopy a more efficient implementation with less

absorption is necessary.

2.2 High-Efficiency IFM

Making use of one of the odder effects in quantum dynamics: the quantum Zeno effect,

an IFM scheme with efficiency arbitrarily close to unity and absorption negligibly

small can be devised. In the following section a simple phenomenological discussion

of the quantum Zeno effect (paralleling the discussion in [14]) is presented and then

a particular high-efficiency IFM system [15] is introduced.



2.2.1 The Quantum Zeno Effect

The quantum Zeno effect is the inhibition of quantum transitions by frequent mea-

surement. The result is counterinuitive yet arises simply as a dynamical effect of

unitary evolution [14]. Consider a system prepared in a state ju) at some initial time

t = 0. Evolution according to the Schr6dinger equation will lead to a superpostion

of this initial state with some collection of orthogonal states Ivk) with respective

amplitude a,(t) and ak,,(t),

I I (t)) = au(t) Itu) + >3 avk(t) vk) (2.3)
Vk AU

The probability of finding the system in the initial state at a later time t > 0 is then,

P(t) = la,(t)|2 = I (ul exp (-iHt) ju) 12 (2.4)

Expanding the exponential in powers of t,

P(t) = 1 - (AH) 2t 2 + O(t 4 ) (2.5)

Where (AH)2 = (uI H 2 Iu) - (ul H Iu) 2 . Now making N measurements in some time

interval (with N large enough to neglect the O(t4 ) term), the probability of finding

the system in the initial state is,

P(t) 1 - (AH) 2 (t)2)N

t2

21 -(H)

1

The last approximation holds as N goes to infinity. So, from the simple argument

above, repeated measurements can inhibit the evolution of a system. This is the

essence of the quantum Zeno effect.



2.2.2 The High-Efficieny IFM Interferometer

The quantum Zeno effect is central in high-efficiency interaction-free measurement as

the measured object will enact repeated measurements on the wavefunction of the

interrogating photons or electrons and a quantum Zeno type effect will determine the

outcome of the IFM. Consider the particular interferometer displayed in Figure 2-2.

D2

Figure 2-2: High-efficiency Interaction-free Measurement [8]. The image shows an
interferometer that implements the high-efficiency, quantum Zeno IFM protocol for
NBs = 4. Again the flats represent mirrors, the boxes represent beam-splitters, the
"D's" represent detectors, and the black lines and arrows represent the direction and
propagation of single photons.

Let the number of beam-splitters in the interferometer be NBS (in the above case

NBs = 4). Then let the reflectivity of each beam-splitter be RBS = cos2 (7r/2NBs)

(the transmittance of each beam-splitter is then TBS = sin 2(w/2NBs)). A photon in

the lower arm of interferometer is described by the ket IL), and a photon in the upper

arm the system is described by IU). A photon in the state a IL) + b IU) is transformed

by one of the beam-splitters like,

a L) + b JU) -- (aRBs + b T s) L) + (aTIs + b S ) U) (2.6)

Since a2 + b2 = 1, one can write a = cos and b = sin0. Then plugging these

expressions in to the above equation and using the specified values of RBs and TBS

one finds that each beam-splitter transforms the system like,



cos 0 L) + sin 0 U) -> (cos 0 cos (r/2NBs) + sin 0 cos (r/2NBs)) IL)

+(cos 0 sin (wr/2NBs) + sin 0 cos (r/2NBs)) U)

= cos (0 - 1r/2NBs) IL) + sin (0 + 7/2NBs) IU)

The operation of each beam-splitter is analgous to a rotation operator that rotates

the state vector of the system (in the IL) , U) basis) by an angle of 7/2NBs. Therefore,

going through NBS beamsplitters is equivalent to cascading NBS rotation matrices,

so the system will be rotated by 7r/2 radians in the the IL), U) basis. So, a photon

entering in the lower arm of the interferometer, as in Figure 2-2 (that is with an initial

state of IL) = cos (0) IL) + sin (0) U)) will emerge from the NBS beam-splitters in the

upper arm of the interferometer (in state IU) = cos (7r/2) IL) + sin (7/2) U)).

It is clear then that for a single photon initially starting in the lower arm of

the interferometer (state IL)) propagation through NBS beam-splitters will result

in destructive interference at detector D2, and photons will only be measured at

D1 (the state of the photon after NBS beam-splitters is JU)). However, like in

the Mach-Zehnder implementation, if a perfect absorber is placed in the upper arm

of every interferometer this destructive interference is destroyed, and the probabil-

ity of measuring the photon emerging from detector D2 becomes P(D2lpresent) =

RsBS = Cos2NBs (r/2NBs). This measurement of a photon at D2 then consitutes

an interaction-free measurement of an object in the upper arm of the interferometer.

(Although in the illustration it appears that an object would need to be inserted

above each beam-splitter, in actual implementations [15] photons are cycled through

a single beam-splitter).

The efficiency of the interaction-free measurement and the probability of the object

absorbing a photon can now be calculated. From the preceeding discussion it is clear

that P(Dllabsent) = 1 and P(D2present) = Cos2NBs (r/2NBS). So, the efficiency can

be written (again assuming equal a priori probabilities of the absence and presence

of an object),



1
l = 2 (1 +Cos 2 NBs (7/2NBs))2

1 - -- (2.7)
8NBS

The second expression is a Taylor expansion of the first for large NBS. So, clearly

the efficiency approaches unity as the number of beam-splitters grows. So with ar-

bitrarily high probability the above scheme can be used to determine the presence

of absence of an absorbing object without interaction. The probability of absorption

can be calculated to be,

Pabs TBS+ RBSTBS RBSTBS + ...- + BS 2 TBS
NBS-

2

= sin 2(/2NBS) Z cos2 k(/2NBS)
k=0

7F2

4NBs (2.8)

So as NBs grows very large, the absorption probability goes to zero. Clearly, the

above system meets the necessary requirements for effective interaction-free imaging:

high-efficiency and low absorption probability.

Stepping back from the details, the operation of this system can easily be un-

derstood physically. The reflectivity of each beam-splitter is high, or thinking of the

interferometer as a two-state system, the coupling between the two-states is small. So,

only a small portion of the photon wavefunction will transmit at the beam-splitters.

The small portion that transmits will then be absorbed by the object. However, since

only a small amplitude transmits the probability that the object actually measures

the presence of the photon and absorbs it is very small. Instead the interaction with

the object just collapses the small transmitted amplitude and restores the wavefunc-

tion to its original state. This repeated collapse to the initial state is the quantum

Zeno Effect in action. The above system has been experimentally developed using



photon polarization states, and efficiencies of 73% have been observed [15]. Addi-

tionally, a similar high-efficiency IFM system has been proposed and experimentally

demonstrated in a simple Fabry-Perot structure with similar efficiencies [16, 10].

2.3 Two-state IFM and Electrons

As alluded to at the end of the preceeding section, the only requirement for a high-

efficiency, quantum Zeno IFM scheme is a two-state system. To reinforce this point,

consider a simple 2x2 Hamiltonian with diagonal elements E and off-diagonal, cou-

pling elements hA. The Hamiltonian will have symmetric, I4,), and anti-symmetric

eigenstates, Ia), with energies E, = E - hA and E, = E + hA respectively. From

basic quantum mechanics, the evolution of such a system goes as,

hA E sin(At)

The general high-efficiency IFM protocol is formed by applying the quantum Zeno

effect to this system. The protocol is as follows. Prepare the system in one of the

projection states, that is in one of the superposition states 2(IOs) O |a)) (in the

context of a double-well, these are the classical-looking spatially localized states). Let

the system evolve for some small period of time then interrupt the evolution with an

object and repeat this process. Finally, at t = 7r/2A measure the state of the two-

state system. If the object is transparent the evolution will have been left alone and

the system will have evolved into the other projection state. However, if the object is

opaque the system's coherent evolution will have been repeatedly inhibited and, with

very high probability (if the repetition rate is made high enough), the system will be

in the initial projection state as predicted by the quantum Zeno effect.

This general two-state IFM protocol can be applied to a two-state system with

electrons. Consider two ring shaped electron guides each with radius R and vertically

stacked with a separation of Az as shown in Figure 2-3. The ring shaped electron

guides create a two-dimensional confining potential in the r' and F directions that



restricts the motion of electrons solely to the tangential direction along the circum-

ferences of the rings i.e. the 0 direction. The potential Ueff (r, z) corresponds to this

confining potential and also couples the two ring shaped guides with a double-well

potential in the F direction.

Z

ue ff
IT)

IB)- #

Figure 2-3: Coupled Electron Ring Guides. The colorful wavepacket illustrates the

amplitude of the circulating electron. The guide potential Ueff(r, z) couples the

localized electron states IT) and IB) in a double-well potential.

Due to the double-well potential in the direction, the two lowest energy states

of the electron in the r-z plane (i.e. the transverse ground and first excited states)

correspond to a symmetric state I,) with energy E, and an anti-symmetric state

II,a) with energy Ea. States which correspond to spatial localization of the electron

in the top ring and the bottom ring can be expressed as IT) = (1T,) + ITIa))/IV and

IB) = (I ,) - I''a))/V respectively. As expected these states are similar to those

that exist for the simple 2x2 Hamiltonian discussed above.

When the energy splitting 2hA Ea - E, is sufficiently small, the double-well can

be approximated as a two-state system. Then the circularly propagating electron in

Figure 2-3, initially prepared in a localized state in the top ring, undergoes undamped

oscillations between the states IT) and IB) (in agreement with the time dependence

of the simple two-state system discussed previously).

The time-dependent probabilities of the electron occupying the top versus the

bottom rings are then given by PT(t) = cos 2(At) and PB(t) = sin 2(At) respectively.

Defining TC as the time required for the electron to complete one circulation about

the rings, it takes the electron N = r/(2A7c) circulations to transfer from one ring



to the other.

Consider the setup in Figure 2-4: an electron is injected into the top ring trap

(initially prepared in IT)), and an object composed of opaque and transparent regions

(i.e. pseudo black and white pixels as discussed earlier) crosses the electron's path in

the bottom ring. Again, opaque (transparent) regions have a probability of electron

transmission near zero (one). It should now be mentioned that this opaque and

transparent idealization is reasonable with regard to the electron imaging system of

interest as in high-energy TEM, staining or immunolabelling thin specimens with

heavy metal solutions or metal nanoparticles allows one to achieve significantly high-

contrast transmission (see Figure 2-4 part b), where metals almost completely block

electron transmission while the rest of the thin specimen becomes highly transparent

to electrons at high kinetic energies [17].

With a transparent region of the object in the bottom ring (i.e. a white pixel

in Fig. 2), the evolution of the circulating electron wavepacket is unaffected. After

N circulations the electron transfers entirely from state IT) to state IB) i.e. the

probability of measuring the electron in IB) after N circulations given the presence

of a transparent region is P(Bltransparent) = PB(NTC) = 1.

If an opaque region of the object (i.e. a black pixel in Fig. 2) blocks the electron's

pathway, however, the coherent transfer of the electron between the rings is prevented.

This is again just a manifestation of the quantum Zeno effect. After being injected

into the top ring the electron begins to evolve from IT) to IB), but after a time TC

the presence of the opaque region forces a measurement on the spatial state of the

electron. If ATc is small (i.e. N is large), the electron's wavefunction is projected

back to the top ring with a high probability of PT(TC) = COS2 ATc - 1-r 2 /4N 2 . With

each circulation around the ring, this measurement process is repeated, and after N

circulations the electron remains in IT) with a probability of PT(TC)N = COS 2N AT

1-7r2/4N. Thus, after N circulations and given the presence of an opaque region, the

probability of measuring the electron in IT) is P(Tlopaque) = PT(Tc)N  1 - 7r2/4N,

and the probability of the electron being absorbed or what will from now on be

referred to as scattered by the object is Pscat=1-P(Topaque)z7r2/4N.
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Figure 2-4: Interaction-free Imaging with Electrons. a. The grid in the lower ring
is the object being imaged, which is composed of opaque and transparent regions
(i.e. black and white pixels). b. Example of high-contrast TEM imaging at 100 keV.
Gold nanoparticles labeled with antibody against vesicular monoamine transporter
appear as black dots while the rest of the tissue in the background is significantly
transparent to the incident electrons. The image contrast is reduced to make the
background visible. Image courtesy of Kathryn Commons of Harvard.
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By measuring which ring the electron is in after N circulations, the presence of an

opaque or transparent region of an object in the bottom ring can then be determined

with vanishing probability of scattering from the object. An image of an object

composed of opaque and transparent regions can then be generated by rastering the

object across the electron's path in the bottom ring where the electron beam width

in the r-z plane dictates the pixel resolution.

The efficiency r of this interaction-free imaging can now be calculated. Assum-

ing (as always in this work) the a priori probabilities of a region being opaque or

transparent are equal i.e. P(opaque) = P(transparent) = 1/2, the efficiency takes

the typical form, r = 1 (P(Tlopaque) + P(B transparent)). For the system in the

preceding discussion, the efficiency is then (note the similarity between this efficiency

and that for the high-efficiency IFM interferometer),

7 = (1 + Cos2N(Ac))
2

7r.2

1 - (2.10)
8N

The scattering probability also follows simply,

Pscat = 1 - Cos 2N (ATC) 4N (2.11)4N

By making N large, this efficiency can be made arbitrarily close to one and the

scattering probability can be made arbitrarily close to zero: opaque and transparent

regions can be distinguished with arbitrarily high probability without scattering.

In concluding this chapter, the overall simplicity of the above scheme should be

stressed once more. The basic concept is very simple. Two ring shaped electron

guides are coupled such that for an electron in the rings each circulation results in

a small portion of the electron's wavefunction tunneling from one projection state

to the other as the two-state system coherently evolves from one ring to the other.

However, with an inhibiting object, i.e. a black pixel, blocking a portion of one of the

rings this coherent tunneling is prevented, and the electron will remain in the initial



projection state.

The above sketch of a design constitutes a high-efficiency IFM scheme that may be

amenable for use with electrons. The main possible hinderances are technical issues

associated with designing the electron ring guides and issues concerning quantum

decoherence effects. These two main area are discussed in the following Chapters 3

and 4 respectively.



Chapter 3

Electron Trap Design

In the preceeding chapter a design was presented for an electron based IFM imple-

mentation that may present a route towards non-destructive electron microscopy. A

key element to this general design was an electron trapping structure that could stably

confine electrons and allow for them to coherently tunnel. In this chapter the basics

of electron, and more generally charged particle, confinement are briefly reviewed in

the context of the common radiofrequency quadrupole Paul trap, and then the re-

quirements specified by the electron IFM design are met through a novel combined

(hybrid Paul-Penning) trap structure.

3.1 Introduction to Charged Particle Traps

The non-trivial nature of the problem of trapping a charged particle is easy to un-

derstand. From Gauss's law in electrostatics the divergence of the electric field in

a charge-free region vanishes, V - E = 0. Since F QE, where Q is the particle

charge, the divergence of the force on a charged particle due to an external field must

vanish as well, V . F = 0. Therefore, there can be no local minima in the force-field

the particle sees. This is a simple result for harmonic functions from complex anal-

ysis, and in the context of electrostatics is known as Earnshaw's theorem [18]. The

stable confinement of a charged particle is thus not an entirely simple problem, and

radiofrequency fields or combinations of magnetic and electric fields must be used for



confinement.

Most common charged-particle traps can be divided into two main categories: Paul

Traps and Penning Traps. Paul traps (also referred to in the following as quadrupole

RF traps) exploit radio-frequency fields to create a stable potential minima to confine

particles. Penning traps use a combination of electric and magnetic fields to confine

charges. In the following design a hybrid Paul-Penning trap, known as a combined

trap, will be used for electron confinement. While the underlying physics of the Pen-

ning trap can be analyzed in a relatively straighforward fashion, the electrodynamics

and quantum mechanics of the Paul trap becomes complicated because of the time-

varying nature of the potential. However, by way of a simple approximation, the

physics of this oscillating potential can be summarized compactly in a static pseu-

dopotential or effective potential [19, 20]. This approximation will be essential for the

following discussion, and thus before going further this fundamental approach will be

reviewed.

Imagine a mass M with charge Q moving in an inhomogeneous high-frequency

electric field. Consider the motion of the particle (following [21]) in a field having

static component Eo(z) and high-frequency component EQ(x, t) = EQ() cos Qt such

that, although I E I IEo0 , the amplitude of the particle oscillation uner the action of

EQ is small. This is known as the adiabatic condition [20]. The motion of the particle

will then consist of a small amplitude oscillation, or micromotion, at frequency Q

superimposed over some smooth average motion, or secular motion. The position

coordinate of the particle can then be denoted,

x(t) = X(t) + ((t) (3.1)

Where X(t) is the secular motion, and ((t) is the micromotion. Expanding the field

in powers of ( and keeping only linear terms, the following equation of motion is

obtained,

d2 X d2(- Q dEo dE co (3.2)
dt 2+ dt2  - Eo+( + EQ cos Qt + cos t (3.2)dt2 2 dx dX



The crucial step in the effective potential development is then to identify that the

rapidly oscillating and smoothly varying terms must seperately satisfy the equation.

This results in,

d2X Q Q2 dEQ
dt2  - Eo - M (E cos2 Qt) (3.3)
dt2 M 2p2 dX

Where the brackets denote a time average. It then simply follows that the secular

motion is determined by an effective potential or pseudopotential,

Ue f = U = E (3.4)

As it turns out not just the classical trajectory, but the quantum mechanics inside the

trap can be accurately approximated by this pseudopotential for both normal Paul

[22] and combined type traps [23]. However, in analyzing the quantum or classical

mechanics of a charged particle in a trap in the context of the pseudopotential, care

must be taken to ensure that the appropriate assumptions are met [24]. Now that

the problem of charged particle trapping and the basic physics have been introduced,

the relevant trap structures for the following design will be presented.

3.2 The Linear-Planar Paul Trap

The Paul trap is a charged particle trap which relies on radiofrequency electric fields

to produce a stable pseudopotential minima for a confined particle. Since the pseu-

dopotential is proportional to the square of the amplitude of the oscillating field, it

is logical to oscillate a quadrupole field, as such a field will lead to a simple harmonic

restoring force. The appearance of this harmonic restoring force can easily be un-

derstood by looking at the quadrupole potential, 0 = -y(Ax2 + By 2 + Cz2), where

A + B + C = 0 to satisfy Laplace's equation. The electric field will be proportional to

the gradient of this potential, and the ensuing square magnitude of the field, which

is proportional to the pseudopotential, will clearly create a harmonic type potential.

The quadrupole field used by Paul traps can be very accurately created using hy-



perbolic electrode surfaces. However, more practical rod or box electrodes can also

be used as such structures create a dominantly quadrupole moment near their center

[19, 20].

The linear trap is a particular kind of Paul trap in which the RF fields are used

to create a pseudopotential minima in a plane, for example the x - y plane, and the

particle is free or confined by a simple static field in the third orthogonal direction, the

z-direction for example [Ghosh95,Major05]. An illustration of the electrode structure

for a simple linear Paul trap is shown in Figure 3-1. Also in Figure 3-1, the effective

potential created by the four-rod linear Paul trap is illustrated.

a) b)

Minimum RF electrode

RF (trap axis)

Conntrol
Control
electrode Local

Ions maximum

Figure 3-1: Paul Trap Basics. a. Illustration of the arrangement for a simple four-rod
linear Paul trap [25]. b. The effective potential formed by such a four-rod structure
[25]. The black indicates low potential and the lighter shades are increasing values of
potential with white being a cutoff value.

Recently it was demonstrated that the perfect hyperbolic geometry and its variants

such as the four rod geometry shown in Figure 3-1 could be deformed drastically and

a strong quadrupole moment could still be maintained [25]. Exploiting this property,

linear Paul traps in which all the electrodes lie in a single plane have been constructed

[26, ?]. These linear-planar Paul traps will be used to create the particular trap

structure for the electron based IFM design. The effective potential for a linear-

planar Paul trap is presented in Figure 3-2.



S I - 1II 1 1 1 1 _ I, I

Figure 3-2: Linear Planar Paul Trap Effective Potential [25]. The gray electrodes
are RF and the white are DC (ground). Again black indicates low potential and the
lighter shades are increasing values of potential with white being a cutoff value.

3.3 The Combined Trap

The combined trap is hybrid Paul-Penning trap. It uses radiofrequency electric fields

and a magnetic field to confine charged particles. The functionality of the combined

trap is most easily understood from the perspective of a Penning trap. The Penning

trap uses a static quadrupole field to confine charged particles in an axial direction.

In the radial direction this quadrupole field is repulsive. However, if a magnetic field

is applied and aligned with the axis of confinement, then the Lorentz force will act

to return escaping particles, and charged particles will orbit in epitrochoids around

the axis of confinement. An epitrochroid is the path traced by a point on a circle

rolling around another circle. The motion that results from the small, rolling circle

is called the cyclotron motion, and the motion from the larger, static circle is called

the magnetron motion.

The combined trap is essentially a Penning trap with RF, instead of static, poten-



tials applied to the electrodes. With the RF potentials the force on the charge at the

center of the trap is no longer repulsive in any direction. The combined trap applies

the strong confinement of a Paul trap to a Penning trap. The trap structure design

for electron IFM that follows is a combined trap, but its operation will most resemble

that of a Paul trap. The quantum mechanics however will be more detailed than

those of the Paul trap because of the additional magnetic field. In this way, while the

operation is Paul-like, the quantum mechanics is more a combination of the Paul and

Penning quantum mechanics. In the following, the quantum mechanics of the com-

bined trap is discussed first from a Penning-like perspective, and then from a more

useful coherent state perspective in the context of a semiclassical approximation.

3.3.1 Basic Combined Trap Quantum Mechanics

The quantum mechanics in the combined trap becomes more sophisticated than that

in the Paul trap because of the addition of a magnetic field. The following discussion

follows closely [20] but uses the effective potential following [23]. Take a particle

of mass m and charge -e, an electron, confined in a combined trap with effective

potential Ueff(r, z) (working in cylindrical coordinates). The Hamiltonian for this

system can be written,

1
H =2 ( + eA) + Ueff(r, z) (3.5)

2m

Where = -ihV is the momentum operator and A is the vector potential. If the

magnetic field is aligned along the 2 direction, B = (0, 0, Bo), then this vector po-

tential can be written in the Coulomb gauge as d = (0, r, 0). Plugging in these

expressions, the Hamiltonian becomes,

H = _ -m cr2 + Uff (r, z) (3.6)
2m 8 2 8O

Where the cyclotron frequency has been defined as w, = eBo/m. Now this Hamil-

tonian is not amenable to a typical separation of variable scheme since the 0/DO

term (proportional to the z componenet of angular momentum) couples the radial



coordinate with the angular one. A typical remedy to this coupling is to go into the

eigenbasis of Lz and separate solutions to the time-independent Schr6dinger equa-

tion like 4 1(r, 0, z) = r-1 /2R(r, z) exp(-ilO). The downside to this method is the

direct correspondence between the classical and the quantum seems lost as now the

electrons are expressed as plane waves spread out on a ring, and although a superpo-

sition of such plane waves could give a simple wavepacket picture, that would require

solving the Schr6dinger equation for 01 for many different values of 1. Additionally,

although it is not transparent from the above formulation, the solutions expressed as

plane waves in the 9-direction result in solutions to the radial part of the equation

that in no obvious way converge in the appropriate summation to the semiclassical

wavepacket picture.

3.3.2 Coherent States in the Combined Trap

The preceding discussion demonstrated the need for an alternative to the ordinary

separation of variables approach to the combined trap quantum mechanics. Such an

alternative is demonstrated in the following section in which a clear picture of the

wavepacket mechanics of the problem is presented in a kind of semiclassical formula-

tion. It is similar to the development of coherent states in a simple electron cyclotron

orbit about a constant magnetic field as presented in [27].

Take the Hamiltonian developed in the preceeding section, equation 3.6. Instead

of moving to the eigenbasis of Lz and seperating solutions, the solutions to the time-

dependent Schr6dinger equation can be written in the form,

(r, 0, z) = exp(-iwt a)r-1/20(r, 0, z)T(t )  (3.7)

Plugging this solution in to the time dependent equation and canceling the exponen-

tial factors, the resulting Hamiltonian is then similar to the form of equation 3.6, but

with the sign in front of the 8/09 term flipped,

h 2  1 ihwc

$2 2H = V -+-mwcr + + Ueff(r, z) (3.8)
2m 8 2 00



The impact of this sign flip is not immediately obvious; however, the function of

the exponential factor can be understood physically. The exponential factor can be

rewritten as exp(wctLz/h). This term is just the familiar rotation operator. It rotates

a ket about an angle wct. Therefore, the rotation operator that was applied just

serves to force the electron to circulate the ring at the classical cyclotron frequency.

After seperating the temporal and spatial components of the remaining solution, the

Schr6dinger equation reads,

h 2 2  2 L2  h2/4Eo(r, 0,( , z) + (r, , z)
2m r 2  az2 2mr2(rZ) 2mr 2

1 1
- -wcLz(r, 0, z) + -mw 2r20(r, 0, z) + Uff /(r, 0, z) (3.9)2 8 c

Now a semiclassical approximation can be applied such that the quantum mechan-

ics in 0-diretion is replaced by classical mechanics. This approximation is justifiable

since the electron wavepacket in the IFM system will be moving at a high velocity in

the 0-direction and therefore will have a very small wavelength and thus somewhat

classical behavior in this direction. This semiclassical approximation functions to

replace 0-dependent quantities with expected values and eliminate the 0-dependence

of the Schridinger equation. Mathematically this can expressed as,

(r, 0, z) = azR (r, z)e - o  R(r, z)Y(O) (3.10)

Then inserting this into the Schrdinger equation and multiplying by Y*(O) and

integrating over 0, the resulting Schr6dinger equation is,

2 02 02) L22/4
ER(r, z) h2  + R(r, z) + Lz)R(r, z) h2 /4

2m (Or 2 z 2  
2 m r, 2mr 2

1 1
2 --w(Lz) R(r, z) + -mwCrT2R(r, z) - UefR(r, z) (3.11)

Now the expected values of Lz and L2 can be replaced with the corresponding



expected values of the mechanical angular momentum, Lmck. The canonical angular

momentum is related to the mechanical angular momentum in this case by the sim-

ple relation Lz = Lmck - B r2 . After this replacement the complete potential the

semiclassical electron feels can be written as,

V(r, z) = (L C + mw2r2 +Ueff(r,z) (3.12)
2mr2  

2

Where the h2/8mr 2 term has been neglected since it is much smaller than the

semiclassical centripetal potential contribution. This potential takes a very simple

form of a centripetal component plus a confining magnetic component. It also gives

the correct cyclotron orbit radius and wavepacket behavior that naturally corresponds

with the expected classical motion. The above development will be important in the

following discussion of the trap design for electron IFM.

A final important note concerning the potential given above is that in the radial

direction the electron is confined in part by the magnetic portion, which looks like

a harmonic oscillator of frequency we, and in part by the radial confinement pro-

vided by the effective potential Ueff (r, z). In the following trap design the cyclotron

frequency is far greater than the effective frequency of the effective potential in the

radial direction, so the dominant term in the radial potential is due to the magnetic

confinement. This is important because if the potential can be approximated as the

sum of a radially dependent term and a axially dependent term then the solutions

can be seperated again. This time into a radial and axial part.

3.4 The Double-well Combined Trap

In the electron IFM design, a system more complicated than a normal electron trap

is necessary. A structure that can stably confine high velocity electrons and allow for

coherent tunneling of the electrons between two trapped states is required. In the

following, the tunneling of an electron between a double-well potential is reviewed to

get a feel for the length and energy scales requisite for coherent tunneling at a high

rate. Then an actual trap structure that will allow such tunneling and confinement



is presented.

3.4.1 Double-well Tunneling

Briefly returning to the quantum mechanics of the combined trap, it was mentioned in

the previous section that the strong magnetic confinement of the electron allows the

separation of the Schr6dinger equation into a radial and an axial part. This means

that if the effective potential takes on some complicated double-well form in the i-

direction then the tunneling rates can be solved by simply looking at the analagous

one-dimensional problem. Therefore, in the following discussion of tunneling only the

one-dimensional case is considered.

Consider a double-well potential where w is the characteristic frequency of the two

wells when they are far apart, and the two potential minima are located at ±a. Such

a potential can be written as,

mw 2

V() = 8a2 - a)2 (x + a)2  (3.13)

This is the canonical double-well potential, and there are a variety of different the-

oretical treatments. The two most popular of these theoretical treatments are the

semiclassical WKB approximation and the path-integral based instanton approxima-

tion. The WKB method has inherent errors associated with the connection formulae

[28], so the instanton approximation is more accurate [29].

The instanton approach involves Wick rotating the path integral description of

the tunneling to imaginary time, and then looking at the resulting Euclidean path

integral. If the dimensionless parameter 77 is defined as,

7/ (3.14)

Then the instanton result can be summarized as [30],

4hw 2
AE = exp(- ) (3.15)
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Where AE is the energy splitting between the ground state and first excited state in

the double-well (that is the splitting between the first symmetric and anti-symmetric

states). Now in the following chapter the imperfections of the electron IFM system

will be discussed, and, summarizing the results for now, the coherent lifetime of the

electron in the trap will be roughly 1 ps in the system. Using the above treatment of

the tunneling problem, the desired length scale, a, and barrier height, V = mw2a2/8,

can be estimated. The predicted length scale is roughly a - 1pm, and the predicted

barrier height is around Vo - 10-'eV. Although these estimates are not entirely

reliable (on the ns timescale and pm length scale the small r approximation inherent

in the instanton approach breaks down), they provide a good starting point for the

numerical approach in the following section.

3.4.2 The Double-well V-Trap

The requirements for the trapping structure in the electron IFM design are now clear.

For tunneling, the trap must form two wells seperated by roughly several micrometers

with an adjustable, and very low-noise, barrier in between. For more practical matters

the trap should provide some open access so a sample can be inserted and rastered,

and so electrons can be injected and detected. Additionally, the electrons must be able

to move through the ring trap structures at a high velocity and maintain stability.

These requirements can be met by combining two linear planar Paul traps into a

v-type shape and adding a magnetic field.

The essential idea is to start with two adjacent linear planar Paul traps and

then fold them towards each other, into a v, so that the trapping minima become

close. It turns out this idea is feasible and creates a potential that in one direction

looks strongly like the canonical double-well potential. Additionally, since the barrier

arises in a somewhat natural sense (it is not due to an additional electrode), it is fairly

resiliant to noise on the electrodes, and V0 can be controlled at the level of 10-seV.

A depiction of the geometry and of the effective potential are given in Figure 3-3.

Bending the v-shaped configuration into a circle, two ring traps coupled in a

double-well can be made. For a ring radius of 1lmm and typical TEM electron



energies of .100 KeV, the necessary centripetal force for circulation is considerale.

However, a small magnetic field B applied in the ' direction (in this case Bo0  1 T)

can supply the required force and converts the Paul trap arrangement to a combined

trap. Figure 3-3 depicts a cross-section of the effective potential of the v-shaped

arrangement of ring shaped linear planar Paul traps.

Top Ring Trap

Bottom Ring Trap
Minimum

Figure 3-3: V-Trap Geometry and Effective Potential. The image depicts the multi-
layered structure equivalent to the v-shaped trap arrangement but more suitable for
microfabrication. The effective potential Ueff (r, z) is superimposed on the structure;
blue and red colors are low and high potentials, respectively, and white regions have
potentials > 20 meV. Blue and red rectangles are grounded and RF electrodes (gold),
respectively, and green is insulating silicon dioxide. The darker regions are lower
potential and white is higher (with a cutoff). The inset shows an expanded view of
the double-well.

For the trap depicted in Figure 3-3 the dimensions are b = 48.5 pm, a = 24 pm,

and d = 50 pm. The electrode width and spacing are 4 pm. The RF voltage is

driven at a frequency of 10 GHz with a magnitude of 2 V. Near the trap minima the

potential is harmonic with characteristic frequencies of fr, fz = 33 MHz, yielding a

tunneling rate of A' = 21r x 14 MHz and an electron spot size (i.e. resolution) of 19

nm and 1.4 pm in the r' and ' directions (accounting for B = 1 T for R = 1 mm).



The dimensions of the trap, in particular the height b and the electrode width a

(Figure 3-3), can be varied to adjust the positions of the trap minima. The magnitude

of the applied oscillating voltage can be used to tune the tightness of the trap i.e.

the trap's characteristic frequencies f, and fz. Also since the tunneling depends only

on the proximity of the two traps and their strengths, the influence of the electrode

voltage noise on the tunneling time is small. For the example trap, a fluctuation of

100 pV on one electrode results in only about 1% change in the tunneling time.

The simulations were carried out in a standard finite-element solver COMSOL

which was interfaced and looped through an extensive MATLAB routine. Many

different geometric variations were simulated as well as many different cases involving

noisy electrodes. The v-trap structure is fairly sensitive to geometric variations (to

around the 100 nm scale) and fairly insensitive to noisy electrodes.

The double-well combined trap composed of a revolved version of the proposed

v-type trap satisfies all the criteria for electron trapping required by the electron

IFM design, and may be used to make this design possible. In the next chapter

possible deficiencies of this trap arrangement are discussed. Namely the effect of

environmental interactions on the coherent quantum process that occurs in the trap

is analyzed.
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Chapter 4

Design Considerations

In the previous chapter an electron trapping structure that may be capable of con-

fining and coherently splitting electrons for the presented electron IFM design was

presented; however, like any design, the trap has inherent limitations and imperfec-

tions which restrict the achievable efficiency of the system. The following chapter gives

an analysis of the dominant limitations and imperfections: decoherence and heating.

Additionally, the performance of the electron IFM system with the presented trap

structure in the presence of these imperfections is predicted.

4.1 Decoherence

Decoherence is the unavoidable emergence of classical features in quantum systems

due to interaction with the environment. The theory of decoherence is deep and rich

and, over the past two decades, has given new insight into some fundamental axioms

of quantum mechanics [31]. The theory describes the manner in which quantum

systems become effectively classical, so techniques from decoherence theory will be

used in the following discussion to determine how long an electron in the designed

trap structure can be maintained in a coherent spatial superposition before classical

behavior dominates. The main sources of decoherence in the design are determined,

and the resulting timescale for the decoherence of spatially spread electrons in the

trap is found. Additionally, a brief discussion of the impact of decoherence on the



overall efficiency of the system is included.

4.1.1 Image-Charge Decoherence

In the microtrap system the a major source of decoherence will be through image

charge production and dissipation. As the electron travels around the ring it induces

an image charge in the trap electrodes which moves along with it producing a current

in the conductor. This current encounters Ohmic resistance due primarily to elec-

tron scattering in the metal by thermal phonons. The resulting Joule heating and

dissipation disturbs the quantum state of the electron/phonon gas in the metal. The

location of this disturbance depends on whether the electron is in the top or bottom

ring, and thereby the disturbance provides some amount of which path information

which results in the decoherence of the spatial superposition [32, 33]. The essential

problem (not any particular portion of the design) is depicted in Figure 4-1.

Particle Detectorgoo-E

Figure 4-1: A charge passes over a conducting plate at height z and is spatially

superimposed over a distance Ax [33]. An image charge gas is produced at the surface

of the conductor, and the trace left by each respective path results in decoherence of

the spatial superposition.

This image charge decoherence can be phrased in a transparent mathematical

framework. Using the parameters defined in Figure 4-1 and following [33], the joint



wavefunction that describes the state of the electron and the electron-phonon gas in

the metal can be written as |I). The contribution to this joint wavefunction from

the electron taking a single trajectory, T, is

|T) = |Xf) |OE[T]) (4.1)

where lyf) describes the final position of the electron. Then, using the path integral

picture, the total joint wavefunction is described by a sum of all such contributions

from each path, so the probability of measuring the electron's position at final position

Xf is just,

P(xf) = #(x)i)*()x exp((S[T] - S[T'])) (PE[T]I kbE[T']) (4.2)
wi,@ iT T'

where xi and x' are initial positions of the electron, ¢ describes the electron's ini-

tial wavefunction, and T and T' are the trajectories being summed over. It's clear

that when ('E[T]I IkE[T']), the overlap of the wavefunctions of different trajectories,

is unity the expected interference from quantum mechanics results when the super-

imposed electron wavepackets are recombined. This corresponds to the case when

the conducting plate does not distinguish at all between the different trajectories,

hence their wavefunctions overlap entirely. However, when the plate does disntin-

guish between the paths the overlap term is reduced and the interference is slowly

destroyed. This, described in the relevant context of image charge production, is the

general mechanism of decoherence. Environmental interaction selects certain states

and destroys interference.

Now that a general physical picture for image charge decoherence has been pre-

sented the actual impact of image charge decoherence in the IFM design will be

discussed. The action of this image charge decoherence effect on the spatial super-

position of an electron has been theoretically analyzed [33, 34] and experimentally

investigated [32]. From a general perspective, a timescale for decoherence resulting

from a dissipative process can be obtained from the classical relaxation time, Tr, of



the dissipation with the relation [33, 14],

Td = Tr dB(4.3)

Where AdB = h/v 2mkT is the thermal deBroglie wavelength and Ax is again the

distance over which the quantum coherence is maintained (in the electron IFM case,

the separation between trap centers). Using the classical image charge dissipation

rate [35] the decoherence lifetime from image charge dissipation can be estimated as

[33],

4h 2z3

Td,imag = e2kTp(Ax) 2  (4.4)

Where z is, again, the distance from the electron superposition to the trap electrode

under consideration (each electrode will have an image charge and result in decoher-

ence), and p is the resistivity of the electrodes. In the proposed system this formu-

lation of the decoherence time gives Td - 50ps for the v-trap proposed in Chapter

3.

The above analysis was a general one, and it relied on the dominant decoherence

mechanism being the actual dissipation due to the dragging of an image charge. Re-

cently a many-body quantum calculation [34] estimated the dominant decoherencence

mechanism to be due to the production of the image charge itself. This analysis gave

a decoherence timescale of,

64Eoe~hz 2kF AdB 2  (4.5)
Td,imag 2  Ax5 )

Where kE is the Fermi wavevector of the conductor, and ci is the ion dielectric constant

of the conductor. Using this formula in conjunction with a conservative scaling of the

experimental results for image charge related decoherence over semiconductors [32]

predicts Td,imag - 11 ps for the v-trap system desribed in Chapter 3 with a cryogenic

electrode temperature of T - 6 K (cryogenic surface electrode traps operating at 6

K have recently been demonstrated [36]).



It should be noted that the decoherence lifetime is relatively high (ps instead of

ns) because the length of the spatial superposition is much smaller than the length

from the trapping centers to the electrodes. This is another feature of the trapping

structure presented in the Chapter 3 that makes it such a favorable one.

4.2 Heating

Another detrimental effect is electron heating in the trap. Heating occurs when the

trapped electron experiences fluctuating forces due to the noisy fields generated by the

electrodes. When the spectrum of the noisy fields overlaps with the secular motion

frequency of the trap or its micromotion sidebands, significant heating of the trapped

electron may occur resulting in the electron decohering or actually leaping from the

ground-state.

There are two main sources of noisy electric fields: Johnson noise due to the

trap electrodes and external circuitry, and the fluctuating patch potentials due to

random defects on the electrode surfaces [37]. The effect of these noise sources can

be summarized in a scattering rate 10- 1, from the ground to the first excited state as

[38],

0o-1 = sE S(sec) (4.6)
4mbuwsec

where Wsec is the secular frequency of the trap and SE(Wsec) is the spectral density

of the electric field fluctuations. A complete analysis of electron heating in the de-

signed trap structure would be extremely involved and of limited use since the trap

heating phenomena is poorly understood, and the spectral function SE(Wsec) is dif-

ficult to define; however, scaling previous experimental findings for ion traps [37] by

the dimensions and materials of the electron IFM design, the electron heating (the

scattering rate, Fo-1) can be predicted to occur on a hundreds of micro to milli sec-

ond timescale, sufficiently long for the proposed purposes since the tunneling occurs

in nanoseconds. Although the heating is too weak to actually scatter the electrons

significantly in the timescales over which the tunneling occurs the coupling of the elec-



tron to the fluctuating heating fields can result in rapid electron decoherence. Scaling

heating rates measured in similar low-temperature surface-electrode traps [36] to the

trap parameters specified in Chapter 3 and using the relationship between decoher-

ence and heating rate [37] yields a decoherence time of Td,heat t 2 ups. It should be

noted however that this conservative estimate is dependent on fabrication process

[36], so future improvement may be possible.

Although scaling of previous experimental results may give reasonable estimates,

the effect of the patch potential noise is difficult to treat because of the variabilities in

the actual effect and because of the difficulties in modeling the patch potentials. An

approximate upper limit on patch potentials is -100 mV [39], although it can be made

lower. Assuming z - 50pm, the force acting on the electron from a patch is F - 3.2 x

10-1 6N. With an interaction time of around .1 ps ( -patch size/electron velocity), this

results in a momentum kick of pkick - 3.2 x 10- 29. Since this momentum kick is much

smaller than the momentum required to scatter to higher states, Ap = V/mhwsec/2

10- 27Ns, the patch noise should not cause significant heating or scattering of trapped

electrons over the small timescale dictated by the image-charge induced decoherence.

Thus, electron trap heating does not pose any additional constraints on the system

past those presented by decoherence; however, heating is important as a potential

limitation as scaling the trap to much smaller dimensions could present serious heating

effects.

4.2.1 Efficiency Limitations

In the preceding discussion decoherence timescales associated with two different en-

vironmental interactions were computed; however, the effect of these environmental

interactions on the interaction-free measurement process was not calculated. This is

done in the following.

When the coupling to the environment is sufficiently weak and the correlation

time of the interactions is small, a set of Bloch-type equations can be written for

the time evolution of the system's reduced density matrix [40, 41]. This follows by

going into the density matrix description of the quantum dynamics of the system



of interest and simply appending damping terms to each off-diagonal element. The

damping timescale is the decoherence time. Solving these equations for the electron

based IFM design discussed at the end of Chapter 2 i.e. an electron initially prepared

in the top ring of a coupled ring structure, the probabilities of an electron to be in

the top versus the bottom ring can be found to be PT(t) = (1 -t/2D cos 2A't) and

PB(t) = (1 - e-t/ 2 D cos 2A't) respectively where TD is the decoherence time, and A'

is the modified tunneling rate, A' = V 2 - 1/16T.

Using these new expressions for PB(t) and PT(t), the efficiency in the presence of

a decohering environment is found to be,

(N, a) 2 1 (1 + e-(/2 cos(r/N))N 1 + -Na/2) (4.7)

The dimensionless parameter a - ' - TD/TC describes the decoherence strength.

The probability of electron scattering by an opaque region (or the electron exposure

reduction since exposure is proportional to scattering) after N circulations (given the

presence of an opaque region) can likewise be found to be,

P(scat) = 1 - (1 + e- a/ 2 cos(7/N))N (4.8)

The image charge and heating induced decoherence rates can be combined in a
single rate, -1 = T1mag + - 1eat, describing the decoherence due to environmental

interactions. Using the worst-case decoherence estimates above, a conservative esti-

mate for the decoherence time is TD f 1.7 ps. Then with 100 KeV electrons, and

a ring radius of either 1 cm or 1 mm gives a - 1 values of 4.4 x 103 and 4.4 x 104 ,

respectively. Refering to Figure 4-2, one finds corresponding scattering probabilities

P(scat) (and accuracies 7r) of 0.03 (0.98) for a ring trap radius of R = 1 cm and 0.01

(0.99) for a ring trap radius of R = 1 mm. Since sample exposure is proportional

to electron scattering probability, this corresponds to two orders of magnitude reduc-

tion in sample exposure. Such a dramatic reduction in electron exposure could allow

non-destructive imaging of molecular processes such as protein activity [42].
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Chapter 5

Conclusions

There are many engineering challenges that need to be overcome to make an electron

IFM microscopy device practical. The major ones are electron injection and detec-

tion. For efficient injection of energetic electrons, one method could be direct injection

of electrons from a single-electron field emission tip such as a carbon nanotube [43],

and/or the use of a storage-ring in which electrons can be cooled by feedback tech-

niques [44, 45] and then transferred to the imaging ring. Detection can most likely

be done in a number of ways quite efficiently. One method could be to decrease the

voltage on the top or bottom electrodes to eject the electrons outward or downward

into scintillation material blocks or PIN-diode detectors. Additionally, to maintain

electron beam coherence ultra high vacuum (UHV) conditions are necessary. Using

chambers made of ultra thin membranes; biological specimen can be maintained fully

hydrated under UHV conditions for electron microscopy [46, 47]. Beyond these engi-

neering challenges, there is also an intrinsic limitation to the interaction-free detection

of semi-transparencies (materials where the transmission amplitude for electrons is

neither zero, opaque, nor one, transparent) [48].

Although there are challenges, overcoming these challenges does not seem en-

tirely out of reach. Additionally, with the conceivably high efficiency of the electron

IFM, the acquisition time per pixel of the imaging system could be made very small

potentially allowing detection times on microsecond timescales, which may allow non-

destructive imaging of dynamic molecular processes. In summary, the possibility of



non-destructive measurements with electrons even in the presence of worst-case elec-

tron decoherence rate estimates using an interaction-free measurement scheme based

on charged particle trapping techniques has been shown. Interaction-free measure-

ments with electrons can prevent sample exposure to highly energetic and destructive

electrons in electron microscopy, which might allow noninvasive imnaging of dynamic

processes at molecular resolution, opening new frontiers in imaging.
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