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ABSTRACT

A crucial issue surrounding the feasibility of fast ignition, an alternative inertial confinement
fusion scheme, is the ability to efficiently couple energy from an incident short-pulse laser to a
high-density, pre-compressed fuel core. Energy transfer will involve the generation and
transport of a relativistic electron beam, which may be subject to a number of instabilities such
as the two-stream, Weibel, and filamentary instabilities that act to inhibit energy transport. This
research addressed these issues by investigating the three main phases of the electron transport
process: hot electron generation in the cone and the extent of confinement along the cone
surface, linear instability growth in the outer plasma corona, and the nonlinear saturated state in
the inner plasma corona. Analytical and computational models were constructed to include
relevant physics that had been excluded from previous models, such as kinetic and collisional
effects, and included use of a sophisticated particle-in-cell code (LSP).

During the initial phase of transport, our simulation results showed that contrary to experimental
claims, hot electron surface confinement is only a minor effect and the cone target angle is a
minimal concern for design considerations. The discrepancy was attributed to a phenomenon
known as escaping electrons and the enhanced intensity of electrons measured along the surface
was attributed to target geometry, rather than surface confinement. The second phase of
transport was modeled analytically with the Vlasov-Krook-Maxwell formulation, which
included collisional effects, various assumed theoretical distributions, and a data fit obtained
from a simulation of the laser-plasma interaction. Our primary results indicated that collisions
generally suppress growth but do tend to enhance filamentary instability growth at some
wavelengths; however, due to the large temperature of the data fit, the overall growth rates are
relatively small for fast ignition considerations. Analysis of the saturated regime, including
particle orbits, revealed similar conclusions that instabilities can be safely neglected for fast
ignition conditions, especially in the high density region of the fuel, which would otherwise
need to resolved at great computational expense.
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Chapter 1

Introduction

1.1 The Case for Fusion Energy

The quest for an abundant and environmentally safe source of energy for future

generations has existed in the scientific community for many years, but only in the last half

century has this issue begun to pervade social, economic, and political arenas. Initially,

mankind required energy only to sustain life, the sun being a sufficient source for the first 5-10

million years of human existence. However, secondary energy sources have gradually evolved

throughout societies to not only help sustain life, but to also enhance it. Beginning with the first

controlled fire, these energy sources have advanced in number and sophistication to match the

growing demand and energy consumption of world populations. As a result, secondary energy

sources have now become essential for the security and economic well-being of nations across

the globe.
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Fig. 1.1. World primary energy production by source (2004) [1].

Currently, approximately 85% of the world's energy production and consumption is in

the form of fossil fuels, such as coal, oil, and natural gas (see Fig. 1.1). Although this form of

energy has much appeal in its ability to be efficiently converted to commercial power, it has the

shortcoming of being a non-renewable or exhaustible energy source. More specifically, if world

nations were to continue to consume energy at the current rate, oil and gas could only supply all

energy needs for approximately the next 100 years and coal for about the next 200 years.

Although one might initially infer from this statement that fossil fuel depletion is more of a long

term problem, there are some important underlying issues to consider. For example, not only is

the world population ever increasing, but society is also always looking for ways to improve its

quality of life, both of which will result in an increasing rate of energy consumption per capita

and, consequently, shrinking the already bleak window available for fossil fuel use. Finally,

one must also be aware of the ever increasing damage that fossil fuel emissions have on the

environment. Not only has rising atmospheric concentrations of CO2 and other greenhouse

gases from the burning of fossil fuels contributed directly to pollution and global warming, it

has also caused significant unwanted changes in global climate, further diminishing the appeal

of fossil fuels [2].



Given the rather long and disapproving list of attributes ascribed to fossil fuels as an

energy source, one might look to renewable sources of energy such as solar radiation,

wind, and hydro. Although these alternative forms of energy do contribute to the world energy

consumption and are substantially less harmful to the environment, their contribution is only

less than 8% due to their inability to be converted efficiently to commercial electricity (see Fig.

1.1). Unlike fossil fuels, which can be easily burned, converted, and transported to any location,

renewable forms of energy require the source, such as the sun, wind, or water, to exist near the

site requiring power, making them currently somewhat less efficient and useful [2].

An alternative to the non-renewable and renewable sources of energy that makes up the

final 6.5% of current world energy consumption is nuclear fission (see Fig. 1.1). Unlike the

more conventional energy sources, nuclear fission cannot be easily classified as a renewable or

non-renewable energy source. Nuclear fission power utilizes uranium as its primary fuel, and

given the United States' current policy of a once-through cycle with no fuel reprocessing,

reactors are currently designed only for exhaustible energy production. Because of these

political constraints, only about 2.3% of the uranium fuel that is of the fissionable type (235U) is

able to be utilized. Granted, one might argue that if fuel reprocessing were implemented, the

energy content of the uranium could be substantially increased and this, combined with the

absence of greenhouse gases that contribute to pollution and global warming, might make

nuclear fission an appealing energy source. However, nuclear fission power does produce

significant amounts of radioactive waste that has created additional political and societal

objections [2].

So based on this analysis of current world energy production, one might cast a

seemingly grim outlook on alternative energy sources for future generations. However, one

promising energy source remains for which a strong case can be made...nuclear fusion energy.

Nuclear fusion is the process by which light nuclei combine to form a heavier nucleus, releasing

energy proportional to the mass difference of the reactant nuclei and the product nuclei,
according to the formula E = Jmc2 . The primary fuel components for fusion consist of

deuterium and tritium, both isotopes of hydrogen that can be extracted from sea water.

Although tritium makes up only about 10-15% of sea water, deuterium is readily abundant,
making up about 0.015% and endowing the world's oceans with a seemingly infinite source of

fuel for fusion power. To add to its list of attributes, fusion energy is not only free of



greenhouse gases that contribute to pollution and global warming but is also relatively low in

radioactive waste products. So the only challenge that remains is how to produce and harness

fusion energy in a controlled way and to efficiently distribute it as commercial power to world

nations [2].

1.2 Basic Fusion Principles

The most fundamental attribute that makes fusion superior to other energy sources, such

as fossil fuels, is the process by which energy is released. Whereas fossil fuels utilize chemical

processes that achieve energy gain through the rearrangement of outer valence electrons, fusion

achieves energy gain through the rearrangement of nucleons in the nuclei of the interacting

species. Because this rearrangement of nucleons is due to the strong force over distances of a

few Fermi compared to electromagnetic forces over distances of a an angstrom for electron

rearrangement, the typical energy release from fusion reactions, which is around several MeV,

is approximately six orders of magnitude larger than the chemical reactions that make up the

burning of fossil fuels. More specifically, if one were to translate these energy equivalences

into fuel,

Fossil Fuels = Fusion

(10 6 tons of oil) (0.2 tons of Deuterium)

This enormous difference in energy release will similarly translate into fuel recovery,

transportation, and the generation of waste [2].

Of the many different fusion processes by which light nuclei could fuse into heavier

nuclei and release energy, only a few could be considered feasible for energy production [3];

namely,

D + T - 4He (3.5 MeV) + n (14.1 MeV) (1.1)

D + D -, 3He (0.82 MeV) + n (2.45 MeV) (1.2)

D + D -* T(1.01 MeV) + p (3.02 MeV) (1.3)



n + 6Li -- 4He (2.1 MeV) + T(2.7MeV) (1.4)

At first glance, one might consider producing fusion energy using the above reactions by

shooting a beam of nuclei, such as deuterium, at a target made up of, say tritium. Although this

approach, which is commonly referred to as beam fusion, does trigger fusion reactions, it also

allows for a significant amount of Coulomb scattering, causing many of the beam particles to

lose their energy in the target before achieving fusion [4]. As a result, this approach is not a

feasible option for power production.

However, one can instead achieve net energy production by a process known as

thermonuclear fusion, in which a plasma of light nuclei from the above reactions is heated to a

sufficiently high temperature. Through this approach, if one is able to keep the plasma confined

for a sufficient period of time and at a certain temperature and density, the particles will be able

to undergo Coulomb collisions such that their kinetic energy gets redistributed and fusion

reactions will occur after a sequence of collisions. For thermonuclear fusion to be a feasible

source of power, though, the fuel must advance through a series of stages: ignition, burn, and

then break-even. Ignition occurs when a certain temperature is reached such that no further

external energy input is required to sustain internal heating by fusion reactions. This

temperature, though, will depend on the fusion fuel, as well as relevant loss mechanisms such as

bremsstrahlung. Once the fuel reaches ignition, it will continue to burn without external aid

until conditions are no longer feasible. If the fuel is able to burn long enough such that the total

energy produced is equivalent to that needed to initiate ignition and burn, then break-even is

achieved [4].

In order to evaluate the efficiency of a fusion reactor or process, one defines a

fundamental quantity known as the gain of the process. The gain consists of the ratio of the

total energy produced by the reaction to the total external energy needed to trigger ignition. For

all types of thermonuclear fusion processes, the gain is normally a function of the density of the

fuel and the amount of time it is contained. More specifically, higher densities will allow the

fuel to retain a high enough system energy to sustain fusion burn than lower densities, while

longer containment times will allow more fuel to undergo fusion bum than would shorter

containment times. At present there are two main approaches to plasma confinement that seek

to satisfy these parameters: magnetic confinement and inertial confinement [4].



Magnetic confinement is an approach to controlled fusion by which strong magnetic

fields are used to confine particles and force them to move only in the direction of field lines

while heating occurs. In order to achieve high gains, this approach utilizes relatively long

confinement times (0.1 seconds), while the densities for magnetically confined plasmas are

relatively low (1015 cm-3). One typically refers to the Lawson criteria as the condition for

sustained operation in a magnetic confinement fusion device

nr _ 2 x 1014cm -3 s, (1.5)

where n is the density and r is the confinement time. Because plasma confinement is largely

dependent on the magnetic field configuration, many magnetic fusion devices have been

explored, such as tokamaks, spheromaks, stellerators, reversed field pinches, etc. [4].

In contrast, inertial confinement fusion is an approach to controlled fusion by which

confinement is achieved through mass inertia, rather than any external means. A plasma is

assembled in a small spherical volume while high power lasers are used to compress and ignite

the assembled fuel. Unlike magnetic confinement fusion, this approach utilizes very high

densities (1025cm -3) to achieve high gain, while confinement times are relatively short (10-10

seconds). One can derive a condition for sustained operation in an inertial fusion device

analogous to the Lawson criterion

pR - 0.2- 0.5g / cm 2, (1.6)

where p is the fuel density and R is the hot spot radius, which will be discussed in more detail in

the section that follows [4].

1.3 Inertial Confinement Fusion

The scheme now known as inertial confinement fusion was originally proposed by

Knuckles et al. in 1972, marking the year zero of inertial fusion research [5]. Although

variations and advancements have been made on this original scheme in the past several



decades, all are still based on the fundamental idea of using a laser driven implosion of a

cryogenic fuel sphere to achieve the necessary compression and heating needed for ignition [5].

Although some early schemes for inertial confinement fusion considered volume ignition, in

which a solid fuel target is heated to necessary fusion conditions, large external energy

requirements led to the abandonment of this method in favor of "hot spot ignition." Whereas

volume ignition consists of heating an entire solid fuel sphere, hot spot ignition relies on heating

a hollow shell of fuel such that only a small part of the target, the hot spot, is heated to fusion

conditions and a burn wave propagates outward to heat the surrounding fuel, leading to higher

gains [4].

A typical fuel target designed for hot spot ignition using the D-T fusion reaction,

depicted in Fig. 1.2, consists of a hollow spherical shell of plastic with an inner layer of

cryogenic D-T and a D-T gas fill.

2.34 mm Polystyrene
2.12 mm Plastic

1.80 mm Solid
DT Ice

DT Gas

400-MJ IFE Capsule Dimensions

Fig 1.2. Fuel composition and geometry for a typical spherical ICF target [6].

In a typical implosion, the target will undergo four phases to achieve hot spot ignition: ablation,

compression, ignition and burn. During the initial phase, laser beams are launched at the target

with the goal of heating the outer surface such that energy is delivered to the target uniformly.

As the outer surface then expands, or ablates, outward, an inward, rocket-like effect drives the

fuel towards the center in order to conserve momentum. As the fuel travels inward and the

remaining fuel is compressed, shock waves act to equalize pressure throughout the target. More

specifically, in this final stage of compression, the fuel consists of two distinct regions, as



Fig.1.3. Fuel density and temperature configuration at the final stage of compression

consisting of a low-density central hot spot and a high-density cold shell [6].

shown in Fig. 1.3, an outer region of dense, cold fuel and a central region of hot fuel, containing

the remaining 2-5% of the fuel mass. For ignition to occur, the equivalent Lawson criteria and

temperature for inertial confinement must be reached: a hot spot with an areal density of pRhot

0.2-0.5 g/cm 2 and a temperature of 5-10 keV. At these conditions, the 3.6 MeV alpha

particles produced from the D-T fusion reactions have a range just large enough to stop within

the hot spot to raise the surrounding fuel temperature and trigger a burn wave to propagate into

the outer region of cold fuel [6].

This process by which the fuel is compressed to a state of pressure equilibrium is known

as isobaric compression. At present, there are two existing approaches to inertial confinement

fusion that seek to utilize isobaric compression to achieve ignition: direct drive and indirect

drive. The direct drive approach to ICF, shown in Fig. 1.4(a), consists of shining laser beams

directly onto the surface of the fuel capsule, relying on the laser energy to be transferred to the

target via a number of absorption mechanisms such as inverse bremsstrahlung. Although direct

drive is currently one of the primary approaches being explored, it does place rather stringent

requirements on high precision drive symmetry and compression [6]. On the other hand,
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x rays

Au Hoh~a t

Laser Beams Diagnostic hole
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Fig.1.4. Two main approaches to conventional ICF. (a) Direct Drive relies on uniform

laser irradiation onto the fuel pellet. (b) Indirect Drive relies on x-rays produced from

laser interactions with the inner walls of a hohlraum [6].

indirect drive, shown in Fig. 1.4(b), seeks to achieve capsule implosion indirectly using thermal

radiation inside a cavity, known as a hohlraum. The most common hohlraum geometry consists

of a cylindrically symmetric cavity made of a high-Z material such as gold with laser entrance

holes at each end. When laser beams enter the entrance holes on the axis, they interact with the

inner surface of the wall, where they are then converted to x rays that reradiate to drive the

capsule implosion. Because black body radiation is uniform and isotropic, this method ensures

symmetric capsule drive. However, like direct drive, this scheme does have its drawbacks. By

indirectly driving the capsule implosion, one incurs a significant loss in coupling efficiency

from heating the hohlraum [6].

1.4 Fast Ignition

To evade the subsequent problems with isobaric compression that have plagued

conventional methods of inertial confinement fusion, an alternative scheme known as fast

ignition was proposed by Tabak et al. in 1992 that would instead utilize isochoric compression

[7]. The central theme of fast ignition consists of igniting a pre-compressed fuel core with a

separate external trigger. Although the idea had existed as early as the 1960s, the advancement

of petawatt laser technology in recent years has sparked new interest in the fast ignition concept.
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Until recently, a suitable trigger with the capabilities for ignition had not been available until the
recent development of short, high-intensity laser pulses [4].

The fundamental appeal of the fast ignition concept is its innate ability to decouple
target compression from fuel ignition. With the conventional method of inertial confinement

fusion, the necessity of formation of a central hot spot and its ensuing isobaric conditions

require the entire target to be raised to a given pressure for ignition (see Fig. 1.5(a)). For this to
occur, the two stages of ignition and compression must be coupled together by a spherical

implosion. Although this method has been relatively successful, the coupling of compression

and ignition places extreme requirements on high-precision target design and drive symmetry.

In addition, the subsequent hot spot that is formed is highly hydrodynamically unstable.

Alternatively, fast ignition allows the separation of target compression and ignition into two
separate stages. Whereas fast ignition still requires the target to be compressed to high

densities, as in the conventional method of ICF, it relies on isochoric, or constant density,
conditions, such that the pressure and temperature within the target are relatively constant, as

depicted in Fig. 1.5(b). As one can see, a lower peak fuel density is needed compared to

conventional ICF, allowing for lower driver energies, more fuel mass available for bum, and

Conventional ICF Fast Ignitor

Fast -P
"j Iinjection

of heat

(a) pkBThot p tlBTd.,t (isokbaric) (b) Phot Pcold (isoc :lric)

Fig. 1.5. Comparison between conventional ICF and the Fast Ignitor approach. (a)
Conventional ICF relies on isobaric compression of the fuel pellet. (b) Fast Ignition relies
on isochoric compression of a pre-compressed fuel core [6].



subsequently higher gains. This approach dramatically reduces the symmetry requirements and

may even permit the use of non-spherical fuel configurations [4].

For fast ignition to be scientifically feasible, though, a sufficient amount of laser energy

must be deposited to ignite the pre-compressed fuel before pressure equilibrium can reestablish

itself. Using a 1-D isochoric model, one can estimate the required energy and other parameters

needed for a fast ignition trigger. Namely, consider a sphere of DT fuel that has been pre-

compressed by conventional driver methods to uniform density p, after which the short, ultra-

intense laser pulse is applied that heats a small volume at the fuel surface very rapidly (in a time

t - 10-50 ps) to ignition temperature Th. Since this rapid heating is faster than hydrodynamic

expansion, the density of the small ignition volume where the energy has been deposited

remains almost the same as that of the other pre-compressed fuel. As a result, one can, to a first

approximation, model fast ignition with isochoric conditions. Calculations for an isochoric hot

spot located in the center of a uniform fuel sphere with typical isochoric conditions of pR 0.5

g/cm2 and Th - 12keVhave shown that the ignition energy scales like

Eig = 72/(p *)2 kJ, (1.7)

where p* is the fuel density in units of 100 g/cm 3 [4]. This energy has to be focused to a spot

radius less than the hot spot radius, Rh, in a time shorter than tc Rh/Cs, where cs -2.8 x 107 Th1/2

cm/s is the sound speed and Th the temperature in units of keV. Taking a fuel density p = 500

g/cm3, typical of the fast ignitor approach, we find that we need to deliver Eign = 8 kJ in a pulse

shorter than 20 picoseconds onto a spot of rp 15um. The corresponding power of the ignitor

pulse is Wign Eign/tp 5 x 1014 Wand the intensity Iign -Pign/~ h2 ~ 7x 1019 W/cm2 [4]. With

the advent of short, high intensity laser pulses, achieving these parameters is no longer an

impossible task.

The final challenge that remains is how to efficiently transport this energy to the pre-

compressed fuel core. Based on the previous calculations, if the igniting pulse were to be

delivered by charged particles, they should have a range comparable to or somewhat smaller

than the areal density of the required hot spot, i.e., R < 2p Rh. At present, both electron and ion

pulse scenarios are being considered as potential candidates to carry the laser energy to the



compressed fuel core. Because of their high coupling efficiency to the fuel at the end of their

range, intense laser-accelerated proton beams have emerged as a popular option for energy

transport. Several variations of this technique are currently being considered, but the primary

technical difficulty is how to deliver these beams in the small spot sizes and short pulse lengths

necessary for fast ignition [4]. Alternatively, energy transport via relativistic electron beams is

also an option being considered. Like the proton driven scheme, electron-driven fast ignition

faces a number of challenges, which will be addressed in the section that follows; however, this

option is still a viable candidate for providing the necessary vehicle to spark ignition.

1.5 Electron Transport Issues

For electrons to transport the necessary energy estimated in the previous sections to the

pre-compressed fuel core, relativistic electron beams with currents of the order of 100MA are

required. Although currents of this magnitude are not unheard of, the major challenge to be

addressed is how efficiently these beams can be produced and transported the approximately

100 jtm distance from a density of 1021 cm -3 to 1026cm -3 . At present, the behavior of electrons

in overdense plasmas is not well understood. As a result, there are a number of issues to

consider, namely, the laser-to-electron conversion efficiency, the collimation of the beam, and

electron stopping in the core.

The idea currently being explored for electron-driven fast ignition is the cone-guided

scheme, depicted in Fig. 1.6. More specifically, recent research has found that electron

transport can be substantially improved by embedding a guiding cone into the side of the fuel

target. The purpose of the cone is to keep a small corridor free of plasma during the initial

compression stage, thus reducing the distance over which the electron beam must be

transported. After an initial stage of compression via conventional long pulse, moderate

intensity lasers, a short-pulse, high-intensity laser is shined into the cone corridor where it

undergoes a laser-plasma interaction. Near the inner edges and partially ablated tip of the cone,

relativistic electrons are produced and accelerated from the point of creation. The hope is that

these electrons will be sufficiently collimated that they can transport the laser energy the

approximately 50-100 pm distance to the compressed fuel core, where they will be stopped and

deposit their energy [4].
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m Petawatt laser pulse
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Fig. 1.6. Cone-guided fast ignition approach. (a) Compression of the fuel pellet via

conventional long pulse, moderate intensity laser beams (b) A petawatt laser pulse

produces a relativistic electron beam which carries the laser energy to the fuel core.

Although the insertion of the cone does improve the relativistic electron beam transport,

the beam will still be subject to a number of micro-instabilities such as the two-stream, Weibel,

and filamentary that act to inhibit energy transport. The initial linear and later nonlinear

growth phases of these instabilities will evolve differently depending on the initial conditions,

the shape of the electron distribution, and collisional effects. Although there is a vast volume of

literature in this area spanning several decades, there has not been an extensive analytical model

including all of the relevant physics necessary to analyze the evolution of these instabilities, nor

has there been comparison of analytical results with a sufficiently robust computer code. This

research will attempt to provide the necessary theoretical and computational tools to analyze

these instabilities for fast ignition relevant conditions.
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Chapter 2

Short Pulse, High Intensity Laser Plasma
Interactions

2.1 Ultra-Intense Laser Technology

It was shown in Chapter 1 that to achieve ignition conditions for the fast ignitor

scheme, approximately 8 kJ of energy must be delivered in a pulse shorter than 20 ps onto a

spot of 1 5pm. In other words, for fast ignition to be feasible, a laser pulse power of

approximately 5x 1014 W and an intensity of 7x 1019 W/cm2 would be needed. Although

petawatt-scale lasers of this type are becoming rather commonplace in the laser fusion field

nowadays, peak intensities of this magnitude have only been made available in the last couple

of decades with the development of chirped pulse amplification (CPA) [4].

As one can see in Fig. 2.1, advances in laser technology have occurred in spurts,
beginning with the first optical kW-scale laser in 1960 [8]. As innovations such as Q-switching

(MW) and mode-locking (GW) were developed in the years that followed, peak intensities



steadily increased until they leveled off in the mid-1970's [9]. Finally, in 1985, a new technique

known as chirped pulse amplification was first applied to lasers and combined with Kerr-lens

mode locking, a technique for accurately generating short fs-scale pulses, which gave laser

technology the needed boost into the uncharted territory of the ultra-high intensity (1018-1021

W/cm2) regime [10,11].
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Fig. 2.1. Advances in laser peak intensity and electron energy [8].

Since peak intensities could, in theory, be boosted simply by increasing the laser power

after it has been generated by adding amplifiers to the chain, one might ask why there is a need

for such advanced technology. The answer lies in the optical components of the laser system,

which can become damaged and/or overheated if the fluence exceeds a level of approximately

0.16 Jcm-2 1/2, where r, is the pulse length in picoseconds. Although this fluence level is

quite limiting, one would still hope to achieve maximum efficiency, which occurs when the

fluence approaches the saturation level of the amplifying medium. For Ti:sapphire, this occurs
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at 1 Jcm-2; therefore, to allow the optical components sufficient time to cool by thermal

conduction, one would use a pulse length of at least 40 ps throughout the amplifier chain. So to

achieve the desired high power without incurring optical damage to the laser components, ultra-

short pulses are first generated in the oscillator, after which they are temporarily stretched

before amplification so that the intensity is low enough in the gain medium so as not to induce

damage. After amplification, the high energy pulse is then recompressed to its original sub-

picosecond length, thus creating the short, ultra-high intensities needed for fast ignition [8]. In

fact, several laser facilities utilizing this technique have even reached intensities as high as 1021

W/cm2 [12].

Although chirped pulse amplification does allow lasers to attain an impressive

range of peak intensities beneficial to fast ignition and many other applications, this technique is

not without its vices. Because of amplified spontaneous emission that can occur with the use of

CPA, a lower-intensity pre-pulse is emitted approximately 100's of picoseconds to nanoseconds

before the main pulse. For classical, moderate-intensity long pulse lasers, this pre-pulse is

insignificant because the intensity is low enough (< 1012 W/cm 2) such that it does not induce

ionization in the target material before the main pulse arrives. However, the pre-pulse for short-

pulse ultra-intense laser systems can actually exceed the threshold for ionization, depending on

laser system's contrast, which is the ratio of intensity of the pre-pulse to the main pulse, and can

range from 10-9 to 10-4 . If the contrast is low enough, a "pre-plasma" is created in front of the

target that the main pulse will interact with, instead of the original high density target surface.

The scale length of this pre-plasma can be approximated by

n
Lpre dn/dx Pre (2.1)

where zpre is the pulse length of the pre-pulse, n is the plasma density, dn/dx is the slope of the

density profile, and c, is the ion sound speed, i.e,

SZ(i + on )
CM (2.2)

(Ton



High contrast (< 10-8) lasers tend to generate short scale-length pre-plasmas on the front surface

of targets of approximately 2-5 microns; however, as the contrast increases into a range greater

than 10-4 , pre-plasmas as long as 100's of microns can be created [13]. For fast ignition relevant

schemes, high contrast laser pulses are preferred because a reduction in pre-pulse/pre-plasma

will allow the main laser pulse to interact directly with the solid high-density target, which has

been used to extrapolate to the high densities relevant to fast ignition configurations [4].

2.2 Relativistic Effects on Ultra-Short Pulse Laser Plasma
Interactions

The fast ignition scenario will rely on the short pulse laser-plasma interaction to

efficiently couple energy to the compressed plasma core. This transfer of energy will take place

via electrons that oscillate in the electric field of the laser pulse, Eo. If one were to write the

dimensionless velocity of these electrons in terms of this field amplitude, as follows

Vosc= P s eEo
c6 e_ o _ eC (2.3)
C mec (OL meC

where coL is the frequency of the laser, this can then be further expressed in terms of the laser

irradiance, I2,

IA 2 (Wym 2 / cm2 )

1.37x10 8  (2.4)

As one can see, for 2L lpmn light, electrons acquire relativistic velocities (fl - 1) for

intensities greater than 1018 W/cm2 . Since it was previously shown that fast ignition will require

peak intensities of the order of 1019 - 1020 W/cm2, relativistic dynamics are essential for proper

consideration of the laser plasma interaction [4]. With this in mind, one might ask what

immediate implications these relativistic effects might have on the laser plasma interaction. For

starters, the usual plasma parameters such as the plasma frequency, the critical density, and the

index of refraction will be modified, as well as the onset of a few new phenomena.



As the laser pulse propagates through the plasma, electrons that are exposed to the

laser's electric field will acquire a relativistically enhanced mass at high intensities. As a result,

the local plasma frequency is modified such that me gets replaced by yme, given by

rel 14 vpe _ np e

O2) e - FLne - "

So in the absence of collisions, if one were to re-derive the dispersion relation for the

propagation of an electromagnetic wave in a plasma, the modified expression would become

(2.6)
.

2o = k 2 2 -Jope

Y

As one can see in Fig. 2.2(a), the relativistically enhanced mass has created an "induced

transparency." Whereas in the non-relativistic limit, a laser pulse with frequency oL could not

propagate, the plasma becomes transparent to the same laser pulse for relativistic intensities due

to a local lowering of the plasma frequency [4].

(2.5)
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This relativistically enhanced electron mass has a similar effect on the critical density of

the plasma. As the laser pulse propagates up the density gradient of the underdense plasma, it

eventually reaches a point (density) at which the wave number becomes imaginary and the laser

pulse can no longer propagate. This is conventionally defined as the critical density, nc, which

can be derived by setting the laser frequency equal to the plasma frequency, i.e.,

2 422 _cr
oL = (2.7)

2me

which can be re-expressed in terms of the critical density as

1.1x10 21  -3
nC =r 2 cm (2.8)

As one can see in Fig. 2.2(b) and equation 2.8, the implication of the gamma factor is that for

relativistic intensities (y > 1), the laser pulse can penetrate deeper into the plasma to higher

density regions [13].

In addition to plasma parameter modifications, other nonlinear optical effects can arise

when relativistic dynamics are included, such as self-focusing of the laser pulse [14,15,16]. In

other words, as laser intensities are increased, the plasma is able to act on the beam like a

positive lens with a tendency to focus it. However, because diffraction, a competing effect, can

act to defocus the beam, there exists a critical power above which relativistic self-focusing will

dominate. A rough estimate of the critical power can be derived from simple geometrical

arguments [8] (shown in Fig. 2.3) and by also assuming the laser beam has a radial profile given

by

2 2

a(r) = aoe-2 /2, (2.9)

where ao is the dimensionless light amplitude, eAo/m c2, and cr0 is the radial spot size to which



Fig. 2.3 Geometry of relativistic self-focusing versus defocusing due to diffraction [8].

the laser has been focused. From the standpoint of defocusing due to diffraction, one can

estimate the divergence angle of the beam from the geometrical picture by [17]

dR ro  1
d dZ ZR k o  (2.10)

where ZR is the Rayleigh length, which is defined in this geometry as

ZR (2.11)

Focusing, on the other hand, can be derived by first considering the modification of the

index of refraction of the plasma due to the relativistic mass increase. As was mentioned

previously, the local plasma frequency is reduced at high intensities, shown by the extra gamma

factor in its formulation. The corresponding effect on the index of refraction of the medium can

be computed by

(r)- k = 12(r) (2.12)
Co()



As one can see from this expression, for y > 1, dq / dr < 0, which is the classical

optical definition of a "positive" focusing medium. To put this into more geometrical terms,

one can re-express this in terms of the phase velocity of the wave fronts passing through the

focusing medium as

v, (r) 1 (r)S(r) 1+ P (1 (r)(2.13)
c rq 20 2  4

where y(r) has been approximated by 1 + a2 (r) / 2. Geometrically, one can see from both

this expression and Fig. 2.4 that the phase fronts will travel more slowly at the center, giving a

difference in phase velocity of

Avp(r) O 2 -r2 (2.14)
- = - aoe (2.14)

c 80 2 
0

One can compute the maximum focusing angle of the beam by recognizing from Fig. 2.4 that

the rays of the phase front will bend by an amount determined by their relative path difference,

i.e.,

AL = vp t = Z = aR (2.15)

which can be solved for a maximum focusing angle, a, of

a -- a (2.16)
V-8-6
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Figure 2.4 Bending of the phase fronts near the central peak intensity due to relativistic

self-focusing [8].

So one can deduce that self-focusing will cancel diffraction when a = 0, yielding the inequality

a2 C >O j 8. (2.17)

Since power is proportional to ao r0 , this yields an approximate critical power threshold [8].

Although this derivation is somewhat simplistic, it is in reasonable agreement with more

exhaustive derivations that utilize the nonlinear Schrddinger equation that can be found in the

literature and quote a critical power of [14,15,16]

P,=17.5 - GW . (2.18)

The ponderomotive force is yet another phenomenon in laser plasma interactions that

must be revisited in the short pulse high intensity laser regime. In general, the ponderomotive

The non-relativistic (v << c) form of this force is normally expressed as [8]



2

Fpnonrel - 1 pe , oV E 
2 (2.19)2 coo

where cop is the local plasma frequency, coo is the laser frequency, and E is the local electric

field. As one can see in Fig. 2.5, the physical implications of this force are to push electrons
away from regions of high intensity. In other words, an electron that initially sits near the peak
of the radial intensity profile of the laser will experience a force to lower intensity regions.
However, this idea of a purely transverse acceleration does not exist when relativistic effects are
included. At higher intensities, the relativistically correct expression becomes [18,19]

Fp,re = -mc 2 V(" -1), (2.20)

where y = 1+ p 2 /m2C2 . As one can see in Fig. 2.5, what this means physically is that at

relativistic intensities, the ponderomotive force develops a longitudinal component such that

electrons acquire a forward motion in the direction of the laser, in addition to their transverse

motion.

Yt "IEy(r)
X

Fig. 2.5 Physical depiction of the ponderomotive force due to a focused beam [8].

Laser hole boring is another effect that can arise for relativistic intensities. However,

unlike the other phenomena that have been mentioned, it does not occur solely from relativistic

effects and can arise due to other situations such as final focal spot sizes. In sum, hole boring is
an effect due to pressure balance first studied by Wilks et al. that occurs when tightly focused

light bores a hole through overdense plasma on an ultra-short timescale [20]. For this to occur,
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the light pressure must be much greater than the plasma pressure, which then causes the plasma

to be pushed inwards toward the focal spot. The end result is the formation of an electrostatic

bow-shock and a density discontinuity that moves inward with approximately constant velocity

[8]. Laser hole boring has been verified both in 2D PIC simulations and also in short pulse high

intensity laser experiments [20,21].

2.3 Ultra-Intense Laser Plasma Energy Coupling

One of the key issues critical to the success of fast ignition is the efficient

coupling of energy from the short, high intensity laser pulse to the pre-compressed core.

However, the laser energy deposition in short pulse, high intensity laser plasma interactions is

starkly different from that of classical long-pulse, moderate intensity lasers. Specifically, during

the usual long-pulse interactions well-known to the ICF community, the laser heats the plasma

such that the impending pressure causes it to blow off or ablate away at approximately the

sound speed, c, = Z*'Te / m . As the plasma expands, a region of coronal plasma is formed in

front of the target with an exponentially decreasing density profile whose scale length can be

approximated by

L = CTL 3 r Tjs A (2.21)

In typical ICF experiments, this scale length can be quite long, with coronas extending 100s of

microns in front of the plasma and is where most of the laser absorption will take place. For

classical long pulse lasers of this type, energy transfer will occur via collisions by the well-

known and dominant absorption mechanism of inverse bremsstrahlung. Specifically, as the

laser propagates up to the critical surface, its electric field accelerates electrons within the beam

volume, though for a given laser cycle, there is no net acceleration. However, in reality,

stochastic effects will prevent electrons from completing a full cycle, which will then allow

them to acquire a net acceleration. This net acceleration can be translated into a temperature,

after which the electrons will then couple to the ions and subsequently transfer energy [8].



Unlike the classical long-pulse laser plasma interaction, energy absorption for short

pulse, ultra-intense lasers is not quite so simple. Because of their short pulse length, these laser

pulses do not have time to produce the long scale-length plasma corona in front of the target.

For example, if a 100 fs Ti:sapphire laser pulse, which is typical of short-pulse laser systems

today, were to heat the target to a few hundred eV, one could deduce from equation 2.21 that a

pre-plasma of the order of 0.01-0.1 microns would form in front of the target, which is quite

steep compared to the 100 micron or so coronas that form in front of the long-pulse targets. As

a result, laser energy can be deposited much closer to the target surface at higher densities.

However, unlike the classical long-pulse systems, absorption does not occur via collisions.

Because the temperature rise in these interactions occurs on such a short time scale, the collision

rate is rapidly reduced. More specifically, using simple physical arguments based on classical

heat flow and assuming a constant intensity, one can derive an expression for the surface

temperature of the target which scales like [22]

Te C 14/9t 2/9 . (2.22)

So assuming the collision frequency can be approximated with the Spitzer expression which

scales like Te-3/2, the collision frequency is found to fall off quite rapidly, i.e.,

Vei - -2/3t-1/3 . (2.23)

In addition, a secondary limiting effect noted by Pert can suppress the collision frequency even

further when the electron quiver velocity becomes comparable to the thermal velocity [23].

More specifically, one can derive an effective collision frequency that takes this effect into

account, giving

2

V Vei (V2 + Vt)3/2 (2.24)
Os te



where ve is the thermal velocity and vs is the oscillation velocity. So given these two limiting

effects, laser absorption in the short-pulse high intensity regime cannot rely on collisions. Even

though the usual mechanisms, such as inverse bremsstrahlung, that dominate classical long-

pulse moderate intensity lasers are dwarfed in the short pulse high intensity regime, a number of

collisionless absorption processes turn on in this regime that are capable of coupling laser

energy to the plasma [8].

2.4 Collisionless Absorption Mechanisms

As one moves into the short-pulse, high intensity regime, the highly nonlinear

and complex nature of the laser plasma interactions give rise to a number of collisionless

absorption mechanisms. However, unlike the classical long-pulse, moderate intensity regime,

this complexity makes it rather difficult to determine which mechanisms are dominant and

where the energy actually gets absorbed. As will be described in the paragraphs that follow,

collisionless absorption mechanisms in this regime depend on a number of issues such as laser

intensity, pre-plasma scale length, angle of incidence, etc.

One of the oldest and well-known forms of collisionless absorption that can arise in laser

plasma interactions is resonant absorption [24]. Although this absorption mechanism can also

exist in the classical long pulse moderate intensity regime, it is not quite as dominant as inverse

bremsstrahlung. The physical picture normally associated with this mechanism is that of a p-

polarized laser pulse that propagates up to the critical surface of the plasma where it then

resonantly excites electron plasma waves. These waves will then grow for a few laser periods,

after which they will be damped by collisions at low intensities characteristic of conventional

ICF experiments or by particle trapping and wave breaking at high intensities characteristic of

the fast ignitor scheme [25]. Resonance absorption tends to be a maximum at oblique angles of

laser incidence and for long pre-plasma density scale-lengths [8]. As a result, it is unclear how

dominant this mechanism is for the short laser pulses relevant to fast ignition since these laser

plasma interactions tend to have rather steep density gradients, as explained previously.

Another mechanism known as Brunel absorption or vacuum heating can arise in the

short pulse high intensity regime that is quite similar to classical resonant absorption, the main

difference being that it arises in short-scale length pre-plasmas [26]. Like resonant absorption,
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electrons are driven into the plasma by the electric field of the laser pulse along the density

gradient. However, for scale lengths less than the laser wavelength, resonance cannot exist,

though there is still a way to couple the laser energy to the plasma. More specifically, the

physical picture of Brunel absorption is one in which the short scale length of the plasma allows

electrons near the edge to be directly exposed to the laser electric field. In other words, a

thermal electron near the vacuum-plasma interface at the right moment of the laser cycle may be

accelerated into vacuum by the laser electric field and as the field reverses direction, it will then

be accelerated back into the plasma. However, because the laser electric field only penetrates

into the plasma to within a skin depth of the overdense plasma, the electron can traverse the

remainder of the target unaffected by the laser electric field, after which it will be absorbed by

collisions [8]. So for the short scale length plasmas expected for fast ignition scenarios, Brunel

absorption may be of great significance.

As was mentioned previously, intensities greater than 1018 W/cm 2 give rise to relativistic

effects which can affect the electron trajectory in the laser fields. It was shown in Section 2.2

that for intensities in this regime, the ponderomotive force develops a longitudinal component

that will push electrons in the direction of the laser. Physically, this occurs when the i x B term

begins to exceed the electrostatic term, which results in purely transverse motion. The

mechanism of energy coupling that arises from this longitudinal component of the

ponderomotive force is known as J x B heating. Unlike Brunel absorption, which utilizes the

electric field of the laser to accelerate electrons, J x B heating utilizes the oscillating

component of the ponderomotive force to accelerate electrons into the plasma at the critical

surface. Given that this absorption mechanism tends to be dominant for laser pulses at normal

incidence and high intensities, it is of particular significance for fast ignition applications [8].

2.5 Hot Electron Generation

As has been shown, a wide range of absorption mechanisms can arise as laser

intensities transition into the high intensity regime relevant to fast ignition. However, because

the interaction physics surrounding each mechanism is so highly dependent on conditions such

as laser intensity, target material, contrast ratio, angle of incidence, pre-plasma scale-length,



etc., isolating a single dominant mechanism in an experiment or simulation could be quite

challenging. Despite the rather lengthy list of competing effects, though, one can safely assume

that the combination of these effects will result in the superheating of some fraction of the

plasma electrons to energies much higher than the initial bulk temperature [8]. Because ultra-

intense laser applications such as fast ignition rely on efficient coupling the laser energy to the

plasma, determination of this hot electron temperature is a crucial issue.

Although a comprehensive theoretical model for determining the hot electron

temperature is not yet possible, a number of authors have derived theoretical scaling laws based

on the assumption of a single dominant absorption mechanism or a single physical concept. For

example, if one were to assume that Brunel absorption (vacuum heating) were dominant for a

given configuration, a simple electrostatic model of the electrons being accelerated directly by

the laser field would yield the scaling law

T" (keV) = 3.17 1 62 (2.25)

where '16 is the intensity in units of 1016Wcm-2 and X. is the wavelength in microns [27].

However, Gibbon and Bell extended this model to include electromagnetic effects with support

from PIC simulations to yield the slightly improved scaling law [28]

ThB (keV) z 7(116 2)1/3. (2.26)

Other authors have derived scaling laws based on an assumption of pressure balance

between the laser and plasma, though this is more applicable to long laser pulse configurations.

Specifically, Forslund, Kindel, and Lee used this concept, along with the support of PIC

simulations that ensured an initial pressure balance, to derive the scaling law [29]

TF  (keV) = 14(162 )1/3Te/3. (2.27)

A similar scaling was also formulated by Beg et al. [30] from experimental data, known as the

Beg scaling law, and is given by



(2.28)

Although this scaling law is phenomenological, rather than theoretical, in nature, it has been

widely used for estimating hot electron temperatures for lasers with peak intensities in the

moderate to high intensity regimes.

Finally, one of the more successful scaling laws that has been derived is that of Wilks et

al. and is based on the assumption that J x B heating is the dominant absorption mechanism for

intensities above 1018 W/cm 2. Because the longitudinal component of the ponderomotive force

is the driving mechanism for this type of absorption mechanism, Wilks et al. [20] used the

argument that the hot electron temperature takes the form, T oc ep, where 0, is the

ponderomotive potential. Using this assumption and the relativistic form of the ponderomotive

force, one can write

TW = mc2 (- 1). (2.29)

Since the relativistic gamma factor can be easily re-expressed in terms of the oscillation

momentum, 7 = 1+ p /m 2c 2 , the scaling law then becomes

T W - mc 2  C (2.30)

This can be written more conveniently in terms of the laser intensity as

T, (ke V) 511[(1 + 0.731 2 2_ 1] (2.31)

and is conventionally known as the ponderomotive scaling.

In Fig. 2.6 below, one can see the theoretical scaling laws described above (with the

exception of the Beg Scaling law) which have been superimposed onto experimental data points

from hot electron measurements performed over the last decade. As one can see, there is a clear

T
e g (k V) 2 100( /3, )1/3



dependence on 122 , as was predicted by theory. Additionally, there appears to be two distinct

intensity regimes: a moderate intensity regime (IA2 = 1015 -1017 Wcm-2 umn2 ), in which the

Brunel/vacuum heating scaling laws apply, and a high intensity regime (122 > 108 Wcm-2pn 2 ),

where the ponderomotive scaling applies [8]. In fact, the accuracy of the ponderomotive scaling

at relativistic intensities is quite good.
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Fig. 2.6. Measurements of hot electron temperature from short-pulse, high intensity laser

experiments performed over the last decade overlaid with theoretical scaling laws [8].
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2.6 Hot Electron Transport

In order to satisfy the ignition requirements for fast ignition, it has been shown

that laser pulses of the order of a petawatt will be needed. Translated to particle beam

requirements, this would correspond to electron currents of the order of 100's of mega-amps to

1 giga-amp and/or electrons of the order of an MeV. When dealing with currents of such

extreme magnitude, a number of transport issues such as resistive inhibition, beam-plasma

instabilities, and other current limitations can arise that can act to inhibit efficient energy

transport.

Although the transport of laser energy to the fuel core via a giga-amp electron beam is

an appealing prospect, it is not a realistic one. As Bell et al. pointed out, a beam of this

magnitude cannot exist because the magnetic field it would produce would become unphysical

[31]. What occurs instead is the generation of a return current. As the electrons are rapidly

accelerated by the laser from the focal spot, a large charge imbalance is created since the ions

are essentially immobile on this time scale. Before any more electrons can be accelerated from

the region, the charge imbalance must be compensated. The plasma provides this compensation

in the form of a return current in the opposite direction to approximately cancel the forward hot

electron current and establish current neutrality. As a result, the magnetic field is reduced to

physically reasonable quantities. However, in a cold, solid-density plasma, a finite resistivity

will exist, resulting in the generation of an electric field. Because this electric field is in the

direction opposite of the hot electron beam, it can inhibit transport of the beam.

Another shortcoming to this return current is that the counter-streaming current

configuration it creates is vulnerable to a number of beam-plasma instabilities, namely, the two-

stream, Weibel [32], and filamentary instabilities. These instabilities will evolve through a

linear growth phase, followed by a nonlinear saturated state. For clarity, it suffices to outline

the basic physics and geometry of each instability. The two-stream instability, the simplest of

the three, is a 1D electrostatic instability with the wave vector k aligned parallel to the beam

direction, as shown in Fig. 2.7. When an initial perturbation is applied in the direction of the

counter-streaming beams, a charge density perturbation , 6p, is created that then leads to a

longitudinal electric field perturbation, 6E, subsequently reinforcing the initial perturbation and

creating the longitudinal "electron bunching" phenomenon. The filamentary instability, which



is more of a concern for relativistic beams, is an electromagnetic instability with k aligned

perpendicular to the beam direction (see Fig. 2.7). When an initial perturbation is applied

perpendicular to the counter-streaming beams, a current density perturbation, 6J, is created that

then leads to a magnetic field perturbation, 6B, subsequently reinforcing the initial perturbation

and creating the familiar effect of current filaments. Unlike the two-stream and filamentary

instabilities, the Weibel instability, in its original derivation, is not driven by the counter-

streaming motion of the beams, but is an electromagnetic instability driven by the temperature

anisotropy of the beam distributions [32]. When a beam distribution is initiated with a

perpendicular temperature, T, 2 T , a preponderance of electrons will exist with vthl that will

lead to a perturbed current density, 6J, perpendicular to the beams. This current density will

then generate a magnetic field perturbation, 6B, that reinforces the perturbation along the beam

direction.
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Another obstacle to hot electron beam transport for fast ignition applications is the

Alfvn current limit [33]. As was mentioned previously, currents of the order of a giga-amp and

energies of the order of an MeV will be required to reach ignition conditions for the fast ignitor

scheme. In general, charged currents transported in vacuum face a current limit known as the

Alfvn limit. When this limit is exceeded, the current is capable of generating magnetic fields

large enough such that the Larmor radius of the electrons become smaller than the beam radius.

At this point, the beam electrons are no longer transported in the original direction of the beam.

Quantitatively, this limit is given by

IA =17y kA. (2.32)

So for the 1 MeV electrons required for the fast ignition scheme, the Alfvn limit would be

approximately 47 kA, which is over 20,000 times smaller than the giga-amp currents required

for ignition.

Because beam filamentation is an inevitable phenomenon that can arise in the counter-

streaming current scenario, a number of related transport issues begin to develop. As was

mentioned previously, return currents will act to screen the local magnetic field by enveloping

each beam filament. However, because this screening is not perfect, the filaments will

eventually begin to attract one another and coalesce into larger filaments [34]. Although this

coalescence might initially seem like an appealing feature, problems can arise when these larger

filaments approach the Alfvn current limit. The Alfvn limit does not apply globally, but

locally, to beam transport and each current filament is not able to exceed this limit by a rather

large factor. As a result, when the filaments begin to merge, the combined current can become

larger than IA. To rid itself of directed current, the filament then disperses some of its beam

power into transverse energy. Because the filaments loose directed beam power with each

coalescence event, the beam's directed power decreases with time [4]. This phenomenon has

yet to be understood completely and will be one of the issues to be examined in this thesis in the

chapters that follow that will investigate beam transport in the collisionless and collisional

limits.



Chapter 3

Numerical Simulations

Because of the complex, highly nonlinear nature of the conditions expected for fast

ignition, fluid models are insufficient for analyzing hot electron generation and transport. Thus,

in order to incorporate all of the necessary physics, a self-consistent kinetic model is essential.

The simplest kinetic model one could construct for numerical analysis would be that of the

Vlasov equation in which particle species are represented by a six dimensional distribution

function f (, jl) and evolve according to

f a f + 8f
+v -- + q( + -x) 0(3.1)

8t 2 c (3.1)

via continuum methods. However, for most practical purposes, this model is rather unappealing

for numerical simulation due to its intractability for multidimensional problems. Even for one-



dimensional space geometries, several velocity components normally must be retained in order

to properly couple to Maxwell's equations, making the numerical integration still rather

cumbersome [8].

On the contrary, a much more appealing alternative is that of particle-in-cell (PIC)

simulation. Developed in the 1950's and 60's, PIC simulation has become an invaluable tool

for understanding plasmas, specifically in the field of laser-plasma interactions and particle

transport [35]. In addition to enabling one to model kinetic (non-Maxwellian) effects, this

technique has the added appeal of easier numerical implementation. Like continuum Vlasov

codes, PIC codes also solve the Vlasov equation, but rather than discretize in all dimensions,

they only discretize in space and sample the momentum space coordinates by convecting PIC

particles. In the last several decades, PIC codes have evolved in both sophistication and

availability in this field. In fact, these types of numerical experiments are commonly relied

upon before actual (more expensive) laboratory experiments are performed. For the purposes of

this document, results and discussion will be limited to a sophisticated PIC code known as LSP

(Large-Scale-Plasma), though many of its features can be found in several other codes that exist

throughout the research community [36]. The LSP code, which was originally developed by

Mission Research Corporation for use in the ion beam community, is one of the few PIC codes

capable of including all the relevant physics necessary to model the fast ignition transport

problem of interest. LSP is a fully 3D/3V electromagnetic hybrid particle-in-cell (PIC) code

which includes relativistic effects, as well as collisional effects. The code can also be used for

single and multi-dimensional geometries, in either Cartesian or cylindrical coordinate systems,

and has a user settable option of using either an explicit or implicit particle push algorithm, as

will be explained.

3.1 Introduction to PIC simulation

The basic idea behind the PIC method of plasma simulation is the discretization of a

real laboratory plasma in space and time such that its numerical evolution captures the essential

physics of that of the real laboratory plasma. In addition, each charged particle in the system

becomes a homogeneous collection of a large number of real-plasma charges, or macro-particle,

always multiply charged and greater in mass, but with a charge-to-mass ratio that remains the



same as that of the real charge. So unlike a real laboratory plasma, a PIC-simulated plasma

evolves discontinuously using temporal and spatial grids, with the field and particle physics

being recomputed each time step at each spatial grid point using Maxwell's equations and the

Newton-Lorentz equation of motion, respectively. The appeal of PIC simulation lies in the

ability to make mathematical simplifications that are not necessarily physical but allow for

extraction of the essential physics of the problem at hand. For example, the temporal grid is

normally chosen such that it is sufficiently fine grained so as to resolve only the plasma or

cyclotron frequencies of the species of interest for a given problem. Although higher

frequencies may be present, the finer grained behavior can safely be omitted if their information

is not vital to the problem at hand. Similarly, nearly all of the plasma physics that is done

requires only knowledge down to some spatial scale, such as the Debye length, allowing one to

neglect finer grained behavior. So in sum, PIC simulation relies on many mathematical

simplifications that allow for ease of implementation. Although some of these simplifications

can lead to nonphysical effects, one can avoid many of these issues by ensuring that numerical

methods maintain both accuracy and stability and parameters are chosen with care [37].

Although PIC schemes may vary from one code to another, one of the more common

and easily understandable PIC cycles is outlined in Fig.3.1. Each simulation begins with some

set of initial conditions for the plasma, such as particle positions and velocities. Particles are

normally kept track of with some type of serial number or index, such as i in the figure, and may

take on any value in v and x space. Field quantities, on the other hand, are known only at

discrete points located on the spatial grid, which are indexed asj in the figure. So to begin the

cycle, the code must map the local particle positions to the grid in order to compute an initial

charge and current density to be used in Maxwell's equations. This is done with a type of

weighting function which depends on particle positions and describes the effective shape of the

particles. With this weighting, charge and current densities can be used to solve Maxwell's

equations in order to obtain the electric and magnetic fields at the grid points. However,

because the fields are only known at the grid points and the particles are scattered throughout

phase space, the fields must be interpolated from the grid to the local particle positions using the

same type of weighting function. Finally, the particles are then "pushed" and their new
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Fig. 3.1. Schematic of the PIC cycle.

positions and velocities are computed, after which the cycle repeats itself for each time step

until the simulation runs to completion [8,37].

Because the interpolation between the continuous particle positions and the discrete grid

points plays such an important role in computing the particle forces and fields, an accurate

weighting function is desirable. The simplest weighting scheme one could implement consists

of "zero-order" or "nearest-grid-point" weighting. The basic idea behind this type of weighting

is that all particles within one cell width of a given grid point are included in the calculation of

the charge density at that point, resulting in particles of rectangular shape. Although this

scheme is computationally efficient, as it requires only one grid look-up, it has the disadvantage

that density and fields are relatively noisy in space and time due to the abrupt jump in density as

particles pass through the cell boundaries. A more accurate weighting scheme used in most PIC

codes is that of "first-order" or "cloud-in-cell" weighting [38]. In brief, this weighting scheme

linearly distributes particles between grid points such that a larger fraction gets associated with

the nearest grid point. Although this type of weighting does require additional computational

work, it allows for a smoothing of the density and field fluctuations, thus reducing the noise,

compared to zero-order weighting [37]. Higher order schemes are also used, such as the novel

4th order scheme by Y. Sentoku that allows for larger spatial scales compared to the Debye

length, but those are beyond the scope of this work [39].
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3.2 Explicit PIC Algorithm

One of the essential elements of the PIC scheme is the method by which the equations of

motion and Maxwell's equations are solved to both push the particles and solve for the

electromagnetic fields. For an algorithm to be suitable for plasma simulation, it must be both

efficient and accurate. One of the most commonly used PIC algorithms is known as the explicit

or "leap-frog" scheme [37]. The appeal of this scheme is that it is not only simple and accurate,

but also requires minimum computational storage. The basic idea behind the explicit PIC

algorithm revolves around the use of finite differencing. In other words, approximations to

derivatives of a function, f such as 8f / ax, 82 f/ 8X2 , etc., enable one to solve equations

algebraically. More specifically, finite differencing allows functional derivatives to be

computed at a grid point, i, as

f i + fi-1 + O(A 2 ) (3.2)8x 2Ax

where Ax is the grid spacing. Although this is second order accurate, it has the disadvantage of

being decoupled from adjacent grid points, so a more commonly used technique for PIC defines

gradients at the midpoints of the mesh, i.e.,

fi+1/2 i+1 + O(Ax2) (3.3)
ax Ax

which allows for "centering" about the grid point of interest [8].

With this in mind, one can reconstruct both the Lorentz equation and Maxwell's

equation using finite differencing. As a simple example, one can begin with the 1D-1V

electrostatic configuration [8]

d i q

dt mE (3.4)

d (i

dt = Vi (3.5)



which can be re-expressed using finite differencing as

n+1/2 n-1/2 qi

xn+1 = x + n+1/2 Atx. =x. i v. A (3.7)

En+1 =E n+1 n+

j+1/2 = /j- /2 n+ p , (3.8)

where p 1 is the charge density obtained from the linear area weighting function Wby

p n+ = qiW(i - xj) (3.9)p i (3,9)

W x= -x[
xW = - (3.10)Ax

A schematic of this differencing scheme is shown in Fig.3.2. As one can see, velocity and

position are not known at the same time, which is a result of the centering restriction. One can

extend this to an electromagnetic configuration using a centered explicit difference scheme

known as the Boris pusher, which is the heart of most explicit PIC codes used today. The trick

used by Boris consists of splitting the electromagnetic forces acting on the particle into a linear

acceleration (electric field) and a rotation (magnetic field) component [8]. Although the details

are beyond the scope of this document, an overview of the Boris pusher has been detailed in

Appendix A for interested readers.

Although the explicit algorithm is an attractive scheme due to its simplicity and

accuracy, it does have the disadvantage of requiring high spatial and temporal resolution. More

specifically, explicit algorithms such as the leap-frog scheme are numerically stable only if the
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Fig. 3.2. Schematic of the explicit PIC leap frog algorithm.

fastest physical time scales of waves are resolved, such as coP, and cow, not to mention the

fastest particle motion time scale, which is the transit time for electrons or light to cross a

characteristic distance. In addition, spatial scales are limited to the resolution of the Debye

length to prevent non-physical effects, such as numerically heating, that arise when the cell size

is less than this spatial scale [37]. However, as will be discussed in the section that follows,

alternative schemes have been developed that will allow one to sidestep these limitations.

3.3 Implicit PIC Algorithm

The explicit algorithm outlined in the previous section has and continues to play an

invaluable role in plasma simulation with its ability to simply and accurately model the kinetic

evolution of plasmas on fast time scales. However, it is often the case that one would like to

extract physics that evolve on slower time scales without having to resolve other high frequency

effects that are not of interest. Because of the temporal and spatial constraints of explicit PIC

algorithms, they are not adequate for extracting these types of physics, as they would require

long simulation runs. On the other hand, "implicit" algorithms, as they are often referred, have



been developed such that unwanted high frequency modes are selectively damped and are

numerically stable for large time steps and long simulation times [40].

One of the initial challenges of the implicit algorithm is choosing a set of finite

difference equations for particle advance that can both accurately resolve the physics of interest

at low frequency and are stable for large time steps. One of the more popular schemes in use is

referred to as the D 1 algorithm, which was originally developed by Cohen, Langdon, and

Friedman in 1982 [41]. The finite difference equations are as follows:

Xn+i = X, + At* vn+1/2 (3.11)

At qB
Vn+1/2 Vn2 n-1+ Ata n + - (Vn+ -Vn-/2 (3.12)

2 +mc

where

a, = a,_1  + qE (X,+)1 (3.13)

As one can see in the acceleration term, the future electric field term, En+, depends on the

future particle positions. However, because these positions are currently unknown, a large

system of coupled nonlinear equations must be solved. So unlike the explicit scheme, which

neatly separates the particle push and field calculations, implementation of the implicit scheme

relies on first finding an accurate and efficient way to solve this complex system of equations

[37].

Implicit techniques generally fall into two categories, moment and direct, which are

distinguished by the method used to solve the system of coupled equations. The moment

method, which is the earlier and simpler of the two, relies on the continuity and fluid equations

to obtain an initial approximation of the electromagnetic field. The positions and velocities of

the particles are then advanced by these approximate field quantities, after which the current and

charge density source terms are then recomputed or updated with the new particle data. In

contrast, the direct method, which is an improvement upon the moment method, involves

computing the future electromagnetic fields "directly" with the particle and field equations by



expanding them about an estimate obtained from data at earlier times. A predictor-corrector

scheme then recomputes the field quantities and adjusts the remaining data accordingly [40].

Because the LSP code utilizes the direct implicit scheme, I will provide a detailed

overview of this algorithm only. In general, this scheme is very complex in its fully relativistic

electromagnetic form, so for brevity, the simplest implicit scheme consisting of the 1D

electrostatic limit will be examined, while the interested reader is referred to Appendix B for the

more complicated multi-dimensional electromagnetic case. As mentioned previously, the

particle motion and field equations are linearized about an approximation for data variables at

the new time step, n+1. The corrections or increments of these variables depend on the

unknown quantities at the new time step. So one can begin by expressing the future position of

a particle by

1
xn+ At2 an+1 + Xn+ (3.14)

where Yn+1 is the position of the particle obtained from the finite difference equations by

omitting the acceleration term at the next time step, a,+,. In other words,

1
2xn + vn 2 + n-At (3.15)

which means that, mathematically, the particle positions will be determined by a linearization

about n1,, such that E', = 0 and xo, = ,n+,. So from these equations, the unknown quantity is

the acceleration at the next time step, which can be rewritten from the particle equations of

motion as

miai,n+1 = qiAxC Ej,n+W(X - Xi,n+l), (3.16)

where W is the weighting function described previously, i refers to the individual particle, andj

refers to the grid point located at X, = jAx. As one can see, the only remaining unknown

quantity is E,,n+ which can be related to the charge density, Pn+, through Gauss's Law

V. En+, = POn+ 1 =On+l + 9p (3.17)



Because the extrapolated charge density, On+l, can be expressed as

pjn+l qiW(X - x+), (3.18)
7- (3.18)

W can then be expanded to obtain an expression for the charge density increment, p,+1, as

p,+ 1 = - i, iW ' (Xj - x3 n+ )
(3.19)

By re-expressing equation 3.19 as,

9p = -V • (Ix) (3.20)

and substituting back into Gauss's Law, one can obtain an elliptical partial differential equation

for the extrapolated charge density, i.e.,

- P= V -[1+ (x)]V(p, (3.21)

where X(x) = f(x)(q / 2m)At 2 is defined as the implicit susceptibility. Finally, by rewriting the

equation 5p = -d(XE) / ax as a finite difference equation, the resulting equation is

(1+ %j+1/ 2 )Ej+1/2,n+ -(1 + j-/2)Ej-1/2,n+l

Pj.,+ = Ax (3.22)

As one can see, knowledge of 3 and X results in a system of linear equations that can then be

solved for the electric field. Once this field is known, the particle positions and velocities can

then be advanced. To summarize, the direct implicit method results in pushing the particles

twice, the first time using an approximation for the unknown time advanced field, and the

second time using a corrected field which is computed by evaluating the error in satisfying the

implicit field equations [37]. Needless to say, the direct implicit algorithm is rather

complicated, even for the simplest ID electrostatic scheme. As a result, the more complex 3D

relativistic electromagnetic scheme that is utilized in the LSP code has been outlined in the

Appendix B for interested readers.

In sum, the direct implicit method is more complex to solve than the explicit algorithm.

However, one of the main advantages of the direct implicit algorithm is that it enables larger

time steps than conventional explicit PIC codes, which must resolve the plasma frequency and

Debye length. This allows solid density, colder plasmas to be modeled. Such plasmas are more
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collisional and so LSP incorporates inter- and intra-species collisions, which will be discussed

in a later section [42].

3.4 Hybrid Fluid Kinetic Model

Implicit PIC codes exhibit numerical cooling if large timesteps are used and if particles

cross more than half a cell in a time step. Introducing the fluid equation prevents this from

happening and allows LSP to model dense, cold plasmas with large timesteps. In the hybrid

mode, LSP permits electrons to be represented as either kinetic or fluid particles. In the fluid

description, the electrons are assumed to have an internal Maxwellian distribution that can be

represented by a temperature. This temperature is advanced by a separate energy equation, and a

pressure gradient term is also added to the equation of motion, as shown in the equation that

follows:
dT 2men dE

3 n e - = -neTeV' Ve + e(T -Te)+VkVTe +Q - ne (3.23)
2 e dt , mZije dt (3.23)

At present, the criteria for a fluid electron to become a kinetic one is that the particle's directed

1 3
energy (- me V) be much greater than its internal energy ( kTe ). More specifically, fluids

2 2

transition to kinetic electrons if

1 v 3

2mev >> 2 kTe (3.24)

and kinetic electrons transition to fluid electrons if

1 2 3
SmeV << 3-kTe and copAt > 1. (3.25)
2 ee 2

Given that the fluid model is non-relativistic and breaks down as the fluid electron internal

energy approaches the electron rest mass energy, fluid particles that approach such energies

(generally > 10keV) are forced to transition to kinetic, regardless of energy conservation. This

is for numerical convenience and is not intended to model runaway electrons [42].



3.5 Energy Conservation

Based on the implicit hybrid scheme discussed in the previous sections, LSP will conserve

momentum exactly but not energy. The reason for this is a result of the numerical heating and

cooling that can occur in particle-in-cell codes. More specifically, explicit PIC codes will

numerically heat until the Debye length is roughly the cell size. On the other hand, implicit PIC

codes, such as LSP, that do not require the Debye length to be resolved, can exhibit numerical

cooling due to the large time steps and if particles are to cross more than half a cell in a time

step. LSP uses the hybrid fluid model to overcome this problem. Thus, there is a balancing act

between heating and cooling in LSP's numerical scheme such that there is an optimal time step

for good energy conservation. In addition, we monitor the energy non-conservation as a

function of simulation time to ensure that the results are still meaningful. With careful choice of

spatial resolution and time step size, it is possible to maintain energy conservation to

approximately 10% or less.

3.6 Collision Model

Up to this point, the discussion of PIC algorithms and their various components, both

general and specific to LSP, has made no mention of collisions. However, one of the unique

attributes of the LSP code is that in addition to its many other advanced features, it not only

includes collisions, but also has the user option of turning them on and off. The original version

of LSP contains a grid-based collision model developed by Jones et al. [43] which utilizes the

Langevin formalism

A =/ At + * N[0,1) (3.26)

where N is a randomly chosen number from a uniformly distributed distribution between [0,1).

This model uses velocity independent friction and diffusion coefficients, i.e.,

F = -m v (3.27)



D = 2vT/m (3.28)

and includes inter- and intra-species collisions using Spitzer collision frequencies. According to

Jones et al., this collision model was designed to statistically conserve momentum and energy,

i.e., energy and momentum conservation can be improved by increasing the number of particles

per cell. A more quantitative understanding of this statement was obtained by some simple tests

with the LSP code. As shown in Fig. 3.3, energy conservation for a typical 1D benchmarking

simulation is shown to be optimum in the collisionless limit; however, when collisions are

turned on, it improves with increasing particles-per-cell, though little change is observed above

approximately 500 particles per cell. For larger, multi-dimensional problems, this technique of

boosting the number of particles-per-cell to improve energy conservation can become

computationally expensive.
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Fig. 3.3. Energy conservation for a sample 1D LSP simulation instability benchmarking

case in the linear growth regime for the collisional and collisionless regimes for various

particles-per-cell (ppc).



In addition to energy conservation issues, the Jones et al. collision model possesses a

number of other vices that have been noted in a number of other publications throughout the

literature [44]. For example, the model utilizes Spitzer collision frequencies, which, as one

knows, is based on averages over an assumed Maxwellian velocity distribution for both the test

and field electrons. Although this may be a reasonable approximation for many problems,

Coulomb scattering is realistically a highly anisotropic process, resulting in the parallel

component of the diffusion tensor, D,, being much smaller than the perpendicular component,

D1 . Furthermore, the collision frequency has a velocity dependence that scales as v-3 . As a

result, if one were to compute the friction coefficient, Fd, with this collision frequency and

compare it with the averaged coefficients, the averaged coefficients would be overestimated by

over an order of magnitude for supra-thermal electrons [44].

Because of the many issues that have plagued the Jones collision model, we have found

it to be insufficient for modeling the problems relevant to this thesis [45]. Recently, we chose to

replace this model with an improved Fokker-Planck equivalent Langevin formalism developed

by Manheimer et al. [44]. The primary appeal of this model was that it represents the multiple

small-angle Coulomb collisions with velocity dependent friction and diffusion coefficients

obtained from the actual species' distributions. To begin, it suffices to outline how one goes

from the Fokker-Planck equation to the Langevin formalism. For electron-electron scattering,

the Fokker-Planck equation is expressed as

f 1 2
a = - F- ()f(v)+ 

2  f()f( ) (3.29)

where

4mne 4  8H
Fd ( M) 2 (3.30)

4ume4  c2 G
D(2) = 2 -- (3.31)M2 a-WV



S= In Jsc (3.32)

m = 2 tan , (3.33)

H(V¢) = 2 d V_(3.34)

(3.35)

and where v is the scattering electron, or test particle, V is the scatterer electron, or field

electron, and H and G are Rosenbluth potentials [44]. One key simplification that can be made

with these equations involves use of the assumption that the scatterer electron distribution is

isotropic in its mean frame of reference. This assumption greatly reduces the seemingly

intractable integrals in the computation of the friction and diffusion coefficients, yielding

32;2 4r 2f2

Fd (V) = - 2 2f(V) (3.26)

3212ne 4 1 v - 00+ i. f( (3.37)

D11 (v) = 3m2 AV3 v 4 ) (3.37)0 v
D I(v) 16 2ne4

2  V3 fdv2 (3v2 2)f()+2 dv f(V)  (3.38)
0 V

It should be mentioned that the above assumption remains accurate when the scatterer's

distribution function is single-peaked and isotropic to within a 2:1 temperature ratio. If the

anisotropy is more extreme, a modified formalism can be implemented which involves

representing the scatterer distribution as the superposition of several isotropic distributions

displaced by one another in velocity space [44].



With the Fokker-Planck equation in this simplified form, it can then be used as part of

the Langevin formalism to efficiently implement Coulomb collisions in a PIC code. In its usual

form, the Langevin equation is expressed as

A = FdAt +Q (3.39)

where now Q is a random velocity vector chosen from the distribution

P (2) = t)3 2 DD 1 2 exp IK I
(2 t)3/2 DID1 /2 2D At 2DIAt (3.40)

In addition, because errors of the order of (At) 2 are inherent in the Langevin equation, energy

conservation can be restored by re-expressing the friction coefficient as

Fd =F - FdAt/(2v)] (3.41)

To allow for ease of implementation in the PIC algorithm, simple Pad6 approximations have

been derived for the friction and diffusion coefficients using a fit with a least-squares

determination relative to the error functions [46], i.e.

FDAt / v =-v'At/ + 1.08(V/2th )2.46 (3.42)

D / = -D/ (3.43)

(3.44)

where

2 7 /2 '/2nZ 4e 4 lnA

3m 2 (T/m)3 / 2 (3.45)

A similar formalism can be derived for electron-ion collisions. However, by assuming

the ions are infinitely massive and their velocities are approximately zero, given that they are

small compared to the electron velocities, the Fokker Planck coefficients can be reduced to

z2
H = Z' (3.46)

v

and

Di2 /t = vAt/ +0.186( /-vth)1-85



G = Zv. (3.47)

This then leads to the following friction and diffusion coefficients, respectively:

4;aneZ 2

Fd= m 2v 2 2 (3.48)

D1 (v) =0 (3.49)

4rme4Z2A
D 1 (v) = D1 2 (V) = (3.50)

m2v (3.50)

Theoretically, these coefficients are all that is needed for the Langevin equation to compute the

changes in velocities. However, it is common procedure to force momentum and energy

conservation by neglecting the friction coefficient and instead using the equation

(V + Av )2 +Q21 +Q2 = v 2  (3.51)

to solve for the parallel velocity increment, Av [46].

3.7 Benchmarking

Since a significant fraction of the work contained in this thesis is devoted to instability

growth, it is desirable to compare the simulation results with theory for a range of test cases to

ensure that it can be trusted for the more complex cases that will inevitably follow. These tests

involve the comparison of instability growth rates. As was mentioned in the previous chapter,

the two-stream, Weibel, and filamentary instabilities are all relevant to the hot electron transport

issues for fast ignition. A convenient way to test a PIC code is to benchmark it with analytical

theory. More specifically, one can simulate and extract the linear growth rate of a given

instability and then derive the same growth rate analytically using linear perturbation theory for

comparison.



To begin the growth rate extraction process for a simulation of a given instability, it is

normally convenient to choose a simulation variable that is not only expected to grow, but is

also expected to be relatively smooth, such as a field component. For example, it is

conventional to choose the longitudinal electric field for the two-stream instability and the

transverse magnetic fields for the Weibel and filamentary instabilities. Single normal mode

perturbations in continuous linear plasma theory are generally expressed as

F(x, t) = oFei(kx - cot), (3.52)

where -F is the field perturbation amplitude, kx is the wave number, x is the direction of the

wave vector and variation of the field perturbation, and c is the angular frequency, which is a

function of kx and system parameters. For an instability to be initiated in a simulation, an

unstable normal mode must have some non-zero initial projection. This can arise from noise or

statistical error in the simulation or it can be initiated with mode seeding. Mode seeding is a

process by which a particular mode is chosen and initiated with specified particle velocity and

density perturbations. Although mode seeding is the most reliable way to ensure that you grow

the mode you want in a controlled way, it is usually only adequate for very simple problems that

easily permit one to compute the particle velocity and density perturbations without enormous

numerical difficulty. Because many of the problem scenarios relevant to fast ignition will

involve beam distributions that are relatively complex, growing instabilities from simulation

noise has proven to be more much more practical than mode seeding.

A typical benchmarking simulation is normally set up such that the spatial length

corresponds to one wavelength or a multiple of wavelengths of the mode of interest. This

allows one to then use the partial Fourier-Laplace transform, expressed as

F(kx, t) = -2 dxF(x, t)e-x (3.53)

to extract the growth mode of interest. As time progresses, the seeded or maximum growth

mode will dominate the perturbed field quantity such that we can express this quantity as



F(k,t) Feco'ite-'' (3.54)

where m refers to the maximum growth mode or seeded mode. After squaring, one then has

F2 - 2S2 F e(3.55)

which can be re-expressed as

InF l nFm 2 + 2COit  
(3.56)

As one can see from this equation, by plotting the natural logarithm of the Fourier transform of

the field quantity of interest versus time, the growth rate can then be extracted by taking one

half of the slope of the curve.

Because the chapters that follow will present growth rates that have been benchmarked

with analytical theory, it suffices to show a few simple examples of how this process works.

The two simplest examples relevant to this thesis are the two-stream and filamentary

instabilities that arise from two cold, relativistic counter-streaming beams. At present, the LSP

code does not have the capabilities for mode seeding because the code neutralizes any charge

perturbation that is imposed when the problem is initialized. Because of this, the two-stream

instability must be grown from simulation noise. However, it is possible to initialize a problem

with an applied magnetic field for the filamentary instability. So although one cannot seed this

instability exactly with velocity and density perturbations, one can still partially seed the

problem with a small applied magnetic field.

The geometry for the cold, relativistic two-stream instability simulation is shown in

Fig.3.4. Velocity and density parameters were chosen that were both relevant to fast ignition

and that would provide a high enough growth rate such that it could be extracted from

simulation noise, i.e., vb = 0.94c and a = n b / n = 0.1. The analytical dispersion curve, which

was derived from the cold fluid equations, is shown in Fig.3.5. The maximum growth mode,

which corresponds to the peak of the dispersion curve, can be extracted from the simulation by

initializing the length in the simulation to be the wavelength that corresponds to the peak value
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Fig.3. 4. Geometry for the cold, relativistic two-stream instability simulation.

of K. For this instability, the longitudinal electric field, Ez, is a convenient parameter choice

for extracting the simulated growth rate. So by plotting the natural logarithm of the Fourier

transform of Ez as a function of time, as shown in Fig.3.6, one will notice from equation (3.56)

that the slope of this curve corresponds to twice the growth rate. As one can see from the

figure, there is an initial period during which other modes are growing, but after a sufficiently

long time (in this case - 200 plasma periods), the maximum growth mode begins to dominate

and overtake the slower modes. The simulation growth rate appears to be in reasonably good

agreement with analytical theory, yielding a percent difference of less than 3%.
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Fig.3. 5. Analytical dispersion relation for the cold, relativistic two-stream instability.
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Fig.3.6. Simulated growth rate of the cold, relativistic two-stream instability.

Similarly, the cold, relativistic filamentary instability can be benchmarked in almost the

same way with a slight change in the simulation's geometric orientation, shown in Fig.3.7. The

analytical dispersion curve, which was also derived from the cold fluid equations, is shown in

Fig.3.8. Because the maximum growth mode for this instability plateaus at K - 1, one can

1 A
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k

X

Fig.3.7. Geometry of the cold, relativistic filamentary instability.
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Fig.3.8. Analytical dispersion relation for the cold, relativistic filamentary instability.

choose roughly any high k mode and its corresponding wavelength to initialize the simulation.

For this instability, the transverse magnetic field, Bx, is the convenient parameter choice for

extracting the simulation growth rate. As previously mentioned, one can partially seed this

mode in the LSP code by initializing the simulation with a small magnetic field perturbation, as

shown in Fig.3.9. Like the two-stream, a similar log plot can be constructed and the growth rate

extracted from the curve's slope, as shown in Fig.3.10(a). An unseeded version (no initial

magnetic field perturbation) of this simulation is also shown in Fig.3.10(b). As one can see,

mode seeding eliminates the initial "noisy" period that precedes the linear growth regime before

it finds the maximum growth mode. In this case, the difference between the seeded and

unseeded growth rates was virtually insignificant, with both in reasonably good agreement with

analytical theory. However, the seeded growth rate will often prove to be in better agreement

with analytic theory when one is interested in extracting modes other than the maximum growth

mode. In these cases, the unseeded growth rate will tend to be higher than what is predicted by

analytical theory since higher order modes tend to grow simultaneously.
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Fig.3.9. Magnetic field seed for the cold, relativistic filamentary instability.
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Chapter 4

Hot Electron Surface Confinement and the
Escaping Electron Phenomenon

4.1 Introduction

The fast ignition concept relies on a relativistic electron beam generated via a short-

pulse, high intensity laser-plasma interaction to ignite a pre-compressed deuterium-tritium

target. More recent schemes have embedded a guiding cone into the initial target to keep a

corridor open that is relatively free of coronal plasma during the fuel implosion and to also

minimize the beam propagation distance to avoid subsequent transport issues. Furthermore, this

embedded cone has also been shown in some cases to aid in the refocusing of the laser light, as

well as confine and guide a beam of electrons along its inner wall. However, the degree of this

electron confinement and guiding has been a subject of debate in recent years as a result of a

number of inconsistencies that have arisen in experimental and analytical results. Namely, early



analytical work suggested that a minimum ("critical") cone angle existed below which nearly all

of the absorbed laser energy would be carried along the surface by hot electrons confined by

self-consistent electromagnetic fields [47]. Later experimental results confirmed the

enhancement of hot electron confinement to the cone surface for smaller cone angles, but failed

to reproduce this so-called critical angle below which complete confinement existed [48].

We have performed both integrated-explicit and hybrid-implicit PIC simulations with

the XX [49] and LSP [36] codes, respectively, of cone and slab geometries with laser

parameters similar to early published results. In addition to finding no evidence of a critical

angle, we have also found that substantially fewer hot electrons (8-12%) are guided along the

target wall than what has been previously reported (50-100%), suggesting that this surface

confinement is only a minor effect. In doing so, we were also able to draw a parallel between

this discrepancy and the idea of "escaping electrons," which refers to significant differences that

arise in the measured (escaping) hot electron spectrum with respect to the original birth

spectrum due to the generation of strong electrostatic self-fields [50]. This work will examine

how the measured electron spectrum relates to the originally hot electron birth spectrum for

variations in target geometry, initial energy, and angular orientation.

4.2 Hot Electron Surface Confinement

The physical mechanism by which hot electrons are confined to the cone target surface

can be explained by the formation of electromagnetic fields during the laser plasma interaction.

Initially, electrons are generated during the laser plasma interaction due to collective absorption

mechanisms such as J x B heating, vacuum heating, etc. As the electrons are accelerated into

the bulk target in the direction of the incident laser, the hot electron jet results in the build-up of

large magnetic fields on the cone surface, acting to reflect the remaining electrons that enter the

target toward the vacuum region. In addition, a quasistatic electric field is also generated near

the surface from the space charge that builds up as a result of electrons being pulled from the

target by the laser electric field, acting to reflect electrons back into the bulk target. So, in sum,

the counteracting nature of both the electric and magnetic fields results in a finite electron

current flow along the cone surface which self-consistently enhances the initial fields.



4.3 Critical Angle Debate

This idea of a surface electron current has been explored in recent years, both

analytically and experimentally, and it suffices to briefly review some relevant published

results. Initial analytical work by Nakamura et al. involving obliquely incident laser pulses

claimed the existence of a minimum cone angle which would allow for maximum energy

transport along the cone surface [47]. Using a simple slab model (shown in Fig. 4.1) of an

obliquely incident, linearly polarized laser pulse, they calculated the current density profile of

relativistic electrons accelerated along the surface that are acted upon by a nonuniform magnetic

field. As shown in Fig. 4.1, the solid density target is defined from z > L, where L is the depth

of the surface current (approximated as L - l~ - electron skin depth), and inside the target,

current neutrality is induced by a return current flowing in the opposite direction of the surface

current. They assumed the electrons are bent by the magnetic field according to conservation of

angular momentum in the x-direction and energy conservation, yielding momentum components

bulk target

J -- y
return -

-- surf L
s.> 1h

Fig. 4.1. Geometry for the Nakamura et al. analytical model of a linearly polarized laser

incident on a solid slab [47].
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p, (z) = pin sin 0 + e[A(z) - A(0)]

Pz (z) =+ pin - {pin sin0 +e[A(z) -A()]} 2 , (4.2)

where B, (z) = 8A(z) / aZ, pin < Pmax, and pmax is the maximum or cutoff value of a waterbag

momentum distribution. Using this distribution model, they computed the surface current

density as

-ensPax Pi sin O + A)p cos dp
m 0 + pi - (pin sin0 +A) 2  (4.3)(4.3)

- en Pmax (z),
myo

where ns is the number density of electrons of the surface current, A = eA/pmax , and pin =

pin/Pmax. By assuming conservation of canonical momentum, they also derived the return current

density as

2

Jret () = n re [Am - A(z) + A], (4.4)m

where nr is the number density of the background plasma and Am is defined as A(z = oo).

Finally, they used the self-consistency between the spatial profile of the surface magnetic field

and the surface and return currents to derive the equation

2A  J. (z) 0 < z < 1
a2 A OSz<1

n (4.5)
az2  Js(z)--(Am - A + A) L < z

where z = z / ls, = c/CO, , and CO 2 = nse 2 / m0 o . They solved this equation with the

boundary conditions A(O) = A'(0) = 0, A(oo) = Am, and A'(oo) = 0 using a shooting method to

obtain the eigenvalue, Am, after which they could obtain the surface and return current densities.

However, the real quantity of interest was the transmittance, which they defined as

Jz (z= L)
z (z =) (4.6)

J5 (z = 0)

(4.1)



By calculating this ratio, they were able to locate a minimum, or "critical," angle at which the

transmittance of electrons into the target drops to zero and all are reflected by the surface

magnetic field. In sum, their self-consistent solution involving the magnetic vector potential and

surface current allowed them to determine a "critical" angle below which no further electrons

would penetrate into the bulk target and all would simply be confined to the target wall by the

buildup of electromagnetic fields along the surface [47].

More recent experimental results by Li et al. involving oblique laser irradiation of planar

foils using the Xtreme Light II laser system suggest that this surface confinement is less extreme

[48]. Using a p-polarized pulse with an energy of up to 0.6 J in 30fs and a focal spot size of

approximately 10ptm, they measured angular distributions of fast electrons for different angles

of laser incidence onto a 30ptm aluminum target. Like Nakamura et al., their results show an

increase in the number of electrons confined to the target surface as the laser incidence angle is

reduced, with a maximum of around 50-65% for a 22.50 angle of incidence, but their results did

not show a "critical" angle below which 100% of the hot electrons were completely confined.

4.4 Simulations of Hot Electron Confinement

In an effort to reproduce the experimental and analytical results of Li et al. and

Nakamura et al., we utilized the hybrid-implicit PIC capabilities of the LSP code [36], as well as

integrated explicit PIC simulations using a code developed by Andreas Kemp at LLNL [49].

By utilizing both codes we were able to take advantage of a number of features unique to each

in order to better understand the hot electron transport and cone-target physics. More

specifically, the fully integrated explicit PIC code developed by A. Kemp allowed for complete

modeling of the laser-plasma interaction followed by subsequent hot electron transport down

the cone. Although this technique is very robust, it is also computationally expensive, given

that explicit schemes must resolve both the plasma frequency and Debye length. However, the

LSP code nicely complements this technique with its direct-implicit particle push and hybrid

fluid-kinetic algorithm that allows for modeling of colder, more dense plasmas for longer

simulation times without having to resolve the plasma frequency and Debye length. Until

recently, LSP did not have the correct boundary conditions to do fully integrated calculations

that model the laser-plasma interaction and electron transport calculation, and as of late, this
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new laser package has not been fully tested. Instead, users must simulate the generation of hot

electrons by promoting from the background plasma with a specified conversion rate. However,

the advantage to doing so is that the user has complete control over the initial hot electron

distribution, which allows him/her to understand basic transport physics using simpler problems

without having to deal with the complications of the laser pulse and laser plasma interaction.

4.4.1 Simulation Geometry

The simulation geometry, which is depicted in Fig. 4.2, was chosen to approximately

mimic the analytical and experimental targets in the relevant publications claiming observance

of surface electron currents mentioned previously. An aluminum slab 100 pm long and 30pgm

thick was modeled in 2D Cartesian geometry to mimic the experimental geometry of Li et al

[48]. Angles of 20 and 70 degrees were chosen to analyze the extent of increase in electron

confinement as one moves to smaller target angles. In addition, the aluminum was initiated as

pre-ionized A13+ with an initial temperature of 5eV. As mentioned previously, LSP simulates

laser conditions by promoting hot electrons from a cold fluid electron background. Electrons

were excited with a Jiittner, or relativistic Maxwellian, momentum distribution, with

temperature and drift parameters of 305 keV and 0.5c, respectively, which are approximately

consistent with

X
Length - 100pm

Laser CrossWidth - 5pm,30pm

Excitation Region -
o10pm x 0.4pm 0 = 20°,7N

Z

Fig. 4.2. LSP simulation geometry for modeling PIC and experimental laser-target

problems of Li et al [48].



parameters fit from data obtained by Li et al [48]. In sum, a total of 0.30 Joules of energy were

injected into the problem over a 30 fs Gaussian pulse in the form of hot electrons by promoting

from a region along the upper cone, which was 10 m long and 0.4pim thick.

4.4.2 Electromagnetic Surface Fields

Before directly comparing confined electron fractions, it sufficed to first compare the

magnitudes of the surface electric and magnetic fields with published PIC results by Li et al.

The PIC code they used was similar in nature to that of A. Kemp's in that it used a fully-

integrated explicit particle-push algorithm that included modeling of the laser-plasma

interaction. From their simulations, they quote a peak surface magnetic field of approximately

2x1 07 Gauss and a peak surface electric field of approximately 6x1 06 kV/cm. Although these

values are in reasonable agreement with A. Kemp's explicit code (Bpeak = 1-2xl07Gauss; Epeak=

3-5x10 6 kV/cm), they differ substantially from those of LSP. As one can see in Fig. 4.3(a), the

surface magnetic and electric fields peak at approximately 1.4x 106 Gauss and 1x106 kV/cm,

respectively, which are 6-15 times lower than the values quoted by Li et al.'s explicit PIC code

[48]. In light of these discrepancies, one can conclude that the fields produced by the laser

pulse make a significant contribution to the surface fields responsible for hot electron

confinement. As
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a result, codes such as LSP that do not contain a laser may be insufficient for accurately

modeling this particular problem in its entirety.

4.4.3 Hot Electron Surface Fractions

Shown in Table 4.1 is a compilation of surface and energy fractions computed for three

different simulations that were run with variations in geometry and with collisions turned

on/off. As one can see from the data, the 8-12% surface confinement for the aluminum slab

case, which models the experimental conditions described by Li et al. [48], is substantially

lower than the 50-65% confinement quoted in their PRL. Although the inclusion of collisions

in the simulation did result in a slight enhancement in both electron confinement and energy

carried along the surface, the increase was not enough to produce agreement with the fractions

of Li et al. The reasoning for this enhancement is discussed in conjunction with the discussion

of trajectories in the section that follows.

A similar simulation was performed by A. Kemp using a fully-integrated explicit PIC

simulation modeling both the laser-plasma interaction and transport. Like the LSP simulation

results, only a few percent of the hot electrons were found to be confined along the surface.

Shown in Fig. 4.4 are phase space plots of the hot electrons at two different times following the

end of the pulse with a red line used to designate the direction along the slab surface. As one

can see in Fig. 4.4(a), there does not appear to be any preferred direction along the surface

initially (t - 144fs). Later in time, the electromagnetic fields build up and act to redirect a

small number

Simulation Fraction of hot Fraction of energy
electrons traveling carried down the
down the surface surface

Al slab (no collisions) 8.2% 5.5%
Al slab (collisions) 12.5% 9.1%

Al cone (no collisions) 6.9% 4.9%

Table 4.1. Fraction of hot electrons traveling along the surface and fraction of energy

carried along the surface for three simulation cases using various geometries and with

collisions turned on/off.
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Fig. 4.4. Phase space plots of the hot electrons at t = 144fs (a) and t = 324fs (b) from a fully

integrated PIC simulation by A. Kemp. Momenta are in units of yp and the red line refers

to the direction of the surface.

along the surface, as shown in Fig. 4.4(b), but the fraction is relatively insignificant, in

agreement with the LSP results.

One final feature that was examined was the effect of geometry on surface confinement.

More specifically, does a cone geometry, which is the target geometry currently being explored

for fast ignition, result in more or less hot electrons being confined to the surface? As one can

see in Table 4.1, both the surface confinement fraction and fraction of energy carried along the

surface for the cone geometry are slightly reduced from that of the slab, but the two can be

considered roughly comparable for the purposes of this study.

4.4.4 Trajectories of Confined Electrons

Although LSP does lack some of the relevant physics necessary for modeling the surface

confinement problem in its entirety, one can still use its capabilities for understanding some of

the basic physics surrounding the surface confinement process. Specifically, LSP allows the

user to inject tracer particles into the simulation at user-specified spatial and temporal locations.

These particles do not affect the simulation fields, but do "feel" the fields themselves. By
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Fig. 4.5. Particle trajectories injected at various angles with a range of energies.

following the trajectories of these particles, one can gain a better understanding of what energy

and angular orientation of the birth distribution will be subject to surface confinement.

Shown in Fig. 4.5 is a series of 6 frames consisting of 7 particle trajectories with various initial

energies that have been injected at a given angular orientation relative to the z-direction.

Highlighted in red is the -20' angle case, which refers to an injection angle directly along the

target surface. The most significant result from these particle trajectory plots is that hot

electrons born with an angular orientation directed down the target tend to stay confined to the

target. Because the Jiittner birth distribution contains electrons emitted over 2a radians, a

significant fraction of the hot electrons deemed "confined" will have originated from this

direction to begin with. However, there does appear to be some electrons with a given range of

energies and angular orientation that are pulled into the surface jet and subsequently confined.

More specifically, there appears to be a "window of confinement" that exists such that hot

electrons born with a moderate range of energies for a given angular orientation directed at or
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below the angle of the cone will be confined by the surface fields. However, for hot electrons

born with angular orientations directed inward towards the bulk plasma, there appears to be

little chance for confinement. This phenomenon is also significant in understanding the

enhancement in confinement that occurs when collisions are included, as mentioned in the

previous section. Because scattering will have minimal effect on the higher energy electrons,

these particles will continue to travel along an approximately linear path determined by the

angle at which they are born. However, moderate to low energy particles that may have not

been born with energies and angular orientations within this confinement window may be

scattered into the window, resulting in an enhancement of confined electrons due to collisions.

4.5 The Escaping Electron Phenomenon

As a result of the discrepancies that arose between the measured hot electron surface

fractions of Li et al. and those obtained by LSP and fully integrated PIC simulations, we were

prompted to explore a recently publicized phenomenon known as "escaping electrons" to

explain the differences in these results. The escaping electron phenomenon refers to analytical

work published in recent years by E. Fill to compute fractions and energy spectra of electrons

that escape into vacuum after being produced by ultra-short pulse laser-target interactions [50].

After the initial electrons from the beginning of the pulse escape into vacuum, the target charges

up, resulting in very large electrostatic fields extending well into the vacuum region around the

target. Consequently, the remaining electrons that are generated later in time either remain in

the target as a result of insufficient energy to overcome these fields or escape from the target

and are then slowed down by these fields. The primary implication of these effects is that the

energy spectrum measured outside of the target after the pulse has ended is significantly altered

from the birth spectrum, raising questions about earlier published results of hot electron

temperatures, spectra, etc.

It should be noted that the results published by E. Fill are analytical and rely on a

number of assumptions. More specifically, Fill assumes that the hot electrons are emitted

instantaneously (i.e, the pulse is very short (of the order of 10fs or less)) and that magnetic

effects can be neglected since electrostatic effects tend to dominate the self-field effects [50].
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For the purposes of the simulations and experimental comparisons relevant to the work that

follows, these are valid assumptions. However, it should be noted that a PIC simulation

provides a more complete numerical analysis of this problem due to its complexity.

With these assumptions as a basis, E. Fill developed a simple Lagrangian technique

using both planar and spherical geometry for computing the fraction and energy spectrum of

escaping electrons using various initially assumed hot electron birth distributions [50]. Because

the spherical geometry is more representative of the laser-target experiments that are typically

performed, our comparisons will focus on these results. In sum, Fill concluded that the

escaping spectrum is broader and slightly shifted to lower energies compared to the original

birth spectrum. Furthermore, he found that for measurements taken at large enough distances

from the target, the spectrum approaches an asymptotic form [50].

The results by E. Fill served as a foundation for explaining differences observed in the

hot electron surface fractions quoted in experiments by Li et al. and our PIC simulations.

Namely, the escaping hot electron spectrum measured at some distance from the target has been

substantially altered by electrostatic self-fields emitting from the target and may only partially

reflect the hot electron distribution within the target.

4.6 Hybrid Implicit PIC Simulations of Escaping Electrons

We began the initial investigation of escaping electrons with the LSP code using its

built-in hybrid implicit algorithm mentioned previously. One of the primary issues to be

addressed from these simulations was the effect of the angular orientation of the initial birth

distribution on that of the measured escaping electron spectrum. In other words, does an added

drift to the initial distribution in either direction of the target affect what is measured along the

surface or elsewhere? Because LSP allows the user complete control over the initial birth

distribution and removes the complicated and, for this case, unnecessary physics associated with

the laser, it serves as an ideal numerical tool for investigating this phenomenon. Another

important issue was the effect of target size on the escape spectrum. Because the hybrid

implicit algorithm utilized by LSP does not require the stringent temporal and spatial resolution
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Fig. 4.6. LSP simulation geometry for modeling escaping electrons.

as in conventional explicit PIC codes, this also made the code advantageous for modeling larger

targets.

The targets that were modeled in these simulations were representative of the

experimental targets of Li et al. modeled previously and shown in Fig. 4.2. However, because

the field structure is so critical to the escaping electron phenomenon and given that the

Cartesian geometry used in the previous simulations doesn't quite capture the correct radial fall-

off of the fields, cylindrical R-Z geometry was used instead for these runs. Shown in Fig. 4.6 is

the target geometry consisting of a 100 jm x 30Om pre-ionized aluminum slab bounded by

vacuum in a 500gm x 500gtm volume. Hot electrons were promoted over a Gaussian temporal

pulse of 30fs with a total energy of 0.30 J, which corresponds to approximately 50% of the total

energy of the laser pulse quoted by Li et al [48]. The hot electrons were promoted from the

background with an initial distribution characterized by a Jiittner or relativistic Maxwellian,

which will be discussed in more detail in Chapter 5. Given the importance of the issue of

angular orientation of the birth distribution, three cases were simulated: a distribution with a

temperature of 305 keV and no drift (case A), a distribution with a temperature of 305 keV and

a drift of 0.5c directed in the z-direction (case B), and a distribution with a temperature of 305

keV and a drift of 0.5c directed in the (radial) r-direction (case C).



4.6.1 Evolution of Hot Electrons

Shown in Fig. 4.7 is the time evolution of hot electrons in terms of number density
spanning from the end of the pulse at 30fs to approximately 500fs. As one can see from the
figure, the hot electrons are initially emitted isotropically from the excitation region in a front or
"shell-like" fashion. However, once the first wave of electrons leave the target, the target then
acquires a positive charge, resulting in the buildup of large electrostatic fields and a subsequent
sheath around the target edges. This redistribution of charge over time can be seen in the plots
of electrostatic potential shown in Fig.4.8(a)-(f), revealing an increasingly large potential drop
that develops across the target. The consequences of these electrostatic fields can begin to be
seen in Fig.4.7(c) as electrons from the excitation region reach the back edge of the target. At
this point, the higher energy electrons with sufficient energy to overcome the sheath will escape
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from the target while the lower energy electrons will simply reflux, or bounce, back towards the

front edge with a redirected transverse momentum. This process continues as the electron

bunch(es) within the target bounce back and forth against the sheath along the target edges, with

some fraction of electrons escaping with each bounce. Traces of the escaping electrons after

each reflux event can be seen in Fig.4.7(c)-(f) in the form of "density shells" at the front and the

back of the target that lie within the larger "initial escape" shell. Eventually, those electrons

that continue to reflux within the target reach the top edge, at which point they then have a

higher probability of escaping due to the lower potential drop at the top of the target compared

to the potential drop across the sides, as shown in Fig.4.8. As one can see from the figure, the

potential drop across the target gradually builds up as electrons continue to escape with each
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reflux event. For later times, this potential drop becomes so large that no more electrons within

the target have sufficient energy to escape, at which point there exists two hot electron

populations: a confined population bound within the target by the electrostatic fields and an

escaping population that has left the target but still feels the effect of the surrounding fields.

4.6.2 Characterization of Escaping Electrons

For many experimental measurements, the escaping electrons are those electrons whose

features are quoted to characterize the initial hot electron birth population within the target.

Because the electrostatic fields that develop around the target have such a dramatic effect on the

electrons that escape, the two populations must be considered separate with their own distinct

features. However, the ultimate goal of this work is to understand how the features of the initial

birth population of hot electrons are altered compared to the escaping population. The hope is

that a technique can be developed for experiments to predict initial birth population features by

simply using escape measurements.

In order to begin the analysis of the escaping population features, a reliable method

needed to be developed to distinguish escaping electrons from trapped electrons. The simplest

technique one might consider is use of the directionality of the velocity vector of electrons,

categorizing only those electrons directed away from the target as having escaped. However,

this technique has the disadvantage that it does not account for those electrons who, at that point

in time, are in the process of slowing down and will soon be trapped the next time the diagnostic

is measured. In order to bypass this problem, we have developed a more sophisticated

technique in which we take the dot product of a particle's velocity vector, ,p = (v,r,, V) , with a

unit vector directed radially from the target and intersecting the particle's position, i.e.,

U1= p Zp (4.7)

1r 0)22 
(r- c 

)

where (0, zc) is the target center and (r, zp) is the particle position. This allows us to then

compare the energy in the direction of the unit vector with the local electrostatic potential, after



Time (fs) Escaping Electron
Fraction

30 3.13%
100 2.36%
200 11.1%
300 18.3%
400 13.8%
500 6.63%

Table 4.2. Fractions of escaping electrons computed at various times from the end of the

pulse at 30fs (a) to 500fs (f).

which we are then able to determine if the particle has sufficient energy to escape. Shown in

Table 4.2 is a summary of the fraction of electrons that have escaped at various times

throughout the simulation described previously. As one can see from the table, the escape

fraction initially increases as more and more electrons reach the top edge of the target.

However, once the potential builds up to a relatively high level, no more electrons can escape

from the target. At this point, one might expect the escape fraction to simply level off, but a

new phenomenon arises that causes this fraction to decrease. More specifically, consider two

particles, one fast and one slow, at some time t in which both particles have been deemed

"escaped." Later in time, the fast particle may overtake the slow particle, resulting in an

increase in the potential drop seen by the slow particle. As a result, when the next diagnostic is

taken, the fast particle is still deemed "escaped" but the slow particle has lost sufficient energy

such that it no longer escaping. This effect can actually be rather large, resulting in the sudden

drop in the escape fraction at later times.

The initial motivation for this work arose from discrepancies between experimental

measurements of surface electron fractions and those obtained from PIC simulations. As a

result, a significant feature of interest that may help to link these two sets of results is the

measurement of escaping electron intensity as a function of angle. Shown in Fig. 4.9 is a

schematic of the simulation geometry and an angular coordinate system with the origin defined

at the bottom center of the target and an angular spread ranging from 0o-180o. An angular

sector, ,,,rf , ranging from 81.5o-98.5o corresponds to the spread in angle at which those

electrons
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Fig. 4.9. Schematic of an angular coordinate system with the origin defined at the bottom

center of the target ranging from 0-1800 and a surface escape angle, tsurf .

escaping at the top of the target will exit through. By computing the fraction of electrons that

escape through this angle, one can obtain a comparison with surface fractions quoted by Li et al

[48].

Shown in Fig.4.10 is a series of frames displaying histograms of the number of PIC

particles that have been deemed "escaping" as a function of the angle of emission from the

target. As one can see from the figure, there is a consistently dominant peak around 0 = 900,

which corresponds to the top edge of the target. This is consistent with the previous plots of hot

electron density and potential which revealed that the top edge possessed a lower potential drop

relative to the other edges, creating a preferred direction of escape for electrons refluxing within

the target. One can also see the development of two smaller, but still relatively large,

surrounding peaks at t = 200-300 fs in Fig.4.10(c,d) at 0 - 700,1450. These two peaks

correspond to the escape events described previously that take place as the electron bunches

reflux within the target, resulting in the emission of electrons in shell-like structures. This

subsequently creates an enhancement in escaping electron intensity around the angle at which a

flux of electrons escape the target. Eventually these peaks diminish as the potential drop across

the target increases and fewer electrons can escape. At this point, you start to see a clearly

dominant peak near the edge of the target near 0 = 90' where electrons have a higher probability
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a function of angle from the

of escaping. After integrating between 81.50< 0 ,urf < 98.50, a maximum of approximately 31%

of the electrons were observed to escape through the top edge of the target. This quantity can be

used as useful comparison to the surface fractions quoted by Li et al [48]. At first glance, it is

still rather low compared to the 50-65% fractions they quote. However, it should be noted that

the birth distribution that was initiated in LSP was isotropic with no preferred direction, unlike

what a laser would produce. In light of this, the low percentage is understandable. Li et al.

quote surface fractions for a range of angles ranging from near glancing to near normal with

surface. If one were to compare the 28% surface fraction from our isotropic simulation case

with the 45o-near normal case measured by Li et al., which ranges from 6-28%, our results are

in good agreement.

From the time history of the hot electron density and electrostatic potential shown in

Figs. 4.7-4.8, it is evident that the escaping spectrum depends strongly on the shape of the target

and the structure of the fields it produces, which will be discussed in more detail in a later
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section. However, some similarities can still be found with the analytical work of E. Fill by
comparing the energy spectrum of the initial birth population with that of the escaping
population. Shown in Fig. 4.11 are histograms of the energy spectrums of the initial birth
population, shown in red, and the escaping population, shown in black. Over time, one can see
that the escaping spectrum broadens and becomes down-shifted in energy, which is consistent
with the analytical results of E. Fill [50]. Although it is difficult to see in this figure, the
distribution also becomes harder with time. Furthermore, it is evident from Figs.4.11(e)-(f) that
the escaping spectrum reaches an approximately asymptotic shape late in time, confirmed by the
similarities in shape of the two escaping distributions at 500fs and 625fs.
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4.6.3 Effects of Angular Orientation of Initial Birth Distribution

Up to this point, the analysis has focused entirely on simulation case A, the isotropic hot

electron birth distribution. However, in reality, the laser will be incident at some angle, which

may influence the fraction of electrons leaving along the target surface, as quoted by Li et al.

and other published works [47,48]. Because this laser angle of incidence naturally translates

into a preferred drift direction of the hot electron birth distribution, we can implement this effect

in LSP by simply adding a drift to the initially isotropic Juttner distribution.

As mentioned previously, LSP simulation cases B and C consisted of a Jiittner

distribution with a 305keV temperature, but unlike case A, they have an added drift in the Z-

and R-directions, respectively. More specifically, the distribution associated with case B is

initiated with a drift of 0.5c directed normal to the target to approximate normal laser incidence

and the distribution associated with case C is initiated with a drift of 0.5c directed parallel to the

target to approximate glancing laser incidence. Shown in Fig.4.12 are scatter phase space plots

of the distributions for comparison of all three cases.

Case B:
Case A: ot = 305 keV; drift 0.5c in

Thot = 305 keV; no drift z-direction

(a) 10 (b)

i O-Z

.-

10 5 0 5 10 -10 -5 0 5 10

Fig. 4.12.Phase space scatter plots of the initial hot electron distri

Case C:
Thot = 305 keV; drift = 0.5c in

r-direction
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The feature of greatest interest for comparison of the three cases is the escaping electron

intensity as a function of angle with respect to the target center. Shown in Figs. 4.13 and 4.14

are an equivalent series of histograms of the angular distribution of the escaping electron

intensity, as was done for the isotropic distribution, case A, in Fig.4.9. As one can see from

these figures, the structure is similar to that of the isotropic case, with a maximum of 3 and a
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Fig. 4.13. Histograms of the escaping electron population as a function of angle for case B

(Vdrift = 0.5c in Z-direction; T = 305keV) from the end of the pulse at 30fs (a) to 500fs (f).

minimum of 1 peak at roughly the same angles of 0 = 750, 900, 1450. For the normally incident

drift case, B, the structure is a little more broad and full compared to the isotropic case, as one

would expect, while the parallel drift case C, has a structure which is slightly sharper, especially

around the peak at 0 = 900. Overall, though, the significant feature of interest is the clearly

dominant peak at 0 = 900 that exists for all three cases at later times. A more quantitative

analysis of this feature can be gained from Table 4.3 showing a comparison of the fraction of

escape electrons being emitted within the surface escape angle, 90,,, defined previously. The

fraction has been computed at a later time of t = 625fs to more closely correspond to times when

experimental measurements take place. As one can see from the table the fractions of electrons

escaping through this angle are comparable (-25-30%), with differences being relatively

minimal. What this suggests is that regardless of the initial angular orientation of the birth

distribution, approximately the same fraction of electrons tend to escape along the top surface

due to the lower potential drop.
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Fig. 4.14. Histograms of the escaping electron population as a function of angle for case C

(Vdrift = 0.5c in R-direction; T = 305keV) from the end of the pulse at 30fs (a) to 500fs (f).

Time (fs) Escaping Electron Escaping Electron Escaping Electron
Fraction within ,rf Fraction within 0 , Fraction within 0suf

Case A Case B Case C
625 31.0% 24.8% 29.3%

Table 4.3. Fractions of escaping electrons computed at 625fs for simulation cases A, B,

and C.
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4.6.4 Effects of Target Size on the Escaping Electron Population

Because the electrostatic fields surrounding the target have been shown to significantly

alter the original electron birth distribution, one might expect that the target shape may also

affect the distribution that experimentalists measure. A larger target will presumably result in a

modified field structure as well as a different potential drop across the target, which will

inevitably modify the ability of electrons to escape from the target. Because this effect will be

significant to experimentalists due to the variety of target sizes they use for laser-target

experiments that are conducted, we have investigated this issue by simulating several different

targets of varying length.

Shown in Fig. 4.15 is the original 30gm x 100pm pre-ionized aluminum target

simulation geometry bounded by vacuum in a 500gm x 500pm volume, along with two

additional longer targets of 200gm and 500gm, the latter being used to approximate an infinite

conductor with a short at the boundary. An isotropic hot electron distribution was used for all

three cases as discussed previously, consisting of hot electrons being promoted from the

background over a 30fs Gaussian pulse with a total energy of 0.3J. The structure of the hot

electron distribution involved use of an isotropic Jiittner with a 305 keV temperature.

R R R 30p.

Excitation Region
(10OJm x 1.0pm) Target 5

500pm Excitation Region 500pm 3 500pm xcitation Re Ion

(10pm x 1.Om) Target (10pm x I.0p ) 50pm
Target

30pm

100pm 200pm

500pm 500pm 500pm

(a) (b) (c)

Fig. 4.15. Simulation geometry for 3 different target sizes consisting of 30ptm X 100upm (a),

30pm x 200pm (b), and 30pm x 500pm.



Shown in Fig. 4.16 is the hot electron density and electrostatic potential for each of the

three target sizes at t = 800fs. What is immediately obvious from these plots is the increase in

"escape shells" for larger and larger target sizes and the corresponding drop in potential.

Basically, what happens is that for smaller target sizes, the hot electrons within the target reach

the top edge and escape more quickly where the potential drop in this direction is lowest and

creates a preferred path of least resistance. As a result, the target charges up and the potential

plateaus not only more quickly but at a higher level to reach a quasi-static equilibrium in which

no remaining electrons within the target have sufficient energy to escape. On the other hand,

larger targets require more time for the hot electrons within the target to escape from the top

edge, which allows for a lower potential drop that enables more electrons to escape from the

target before the potential plateaus and prevents further escape.
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Fig. 4.16. Hot electron density for three different target sizes (a-c) and the corresponding

electrostatic potential (d-f) at 800fs.
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Table 4.4. Escape fractions for the three target sizes computed at the approximate time at

which the electrostatic potential plateaus.

One can gain a little more insight into the effects of target size by computing the escape

fraction and the energy spectrum of the escaping particles for the three target sizes. Shown in

Table 4.4 are the escape fractions for the three target sizes at 700fs for the 30jtm x 100 tm

target, 900fs for the 30gm x 200 gtm target, and 1 ps for the target approximating an infinite

conductor (30gm x 500 gm). At these times, the potential is approximately constant and the

escape fraction has leveled off. As one can see, the escape fraction increases with target size,

reaching a limiting value of approximately 43% for the infinite conductor case. This is in

agreement with the observations discussed previously since smaller targets allow electrons to

escape from the top edge more quickly, resulting in a larger potential drop across the target and

preventing further electron escape early on. The energy spectrums of the hot electrons also

reveal significant target size effects. Shown in Fig. 4.17(a-c) are the energy spectrums of the

initial birth distribution in red with the escape distribution overlaid in black for each of the three

target sizes. A log plot of these distributions has been included in Fig. 4.17(d-e) for easier

interpretation of these results. As one can see from the figure, the structures of the escape

spectrums for the 30gm x 100 gm and 30gm x 200 gm targets are very similar, consisting of

much broader and higher temperature escape distributions compared to the initial birth

distribution around the peak. Furthermore, the escape distribution structure appears to be very

similar to the initial birth distribution around the tail for both target sizes, suggesting that high

energy particles escaping the target are not significantly altered by the fields surrounding the

target. However, the energy spectrum of the escape distribution for the largest target (30gm x

500gm) appears to be relatively similar to the initial birth distribution. Based on the results in

Target Size Escape Fraction

30[m x 100[m 4.5%

30gm x 200gm 12.0%

30gm x 500gm 42.5%
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Fig.4.17. Energy spectrum of the initial birth distribution (red) and the escape distribution

(black) for each of the three target sizes (a-c) and the corresponding log plot of each (d-f).

Fig. 4.16, one would expect this due the path of least resistance created by the short at the

boundary and the absence of electron bursts escaping from the top edge in the previous cases.

As a result, there are smaller fields and a lower potential drop across the larger target, resulting

in less significant modifications of the initial birth distribution.

4.7 Conclusions

Our fully-integrated explicit and hybrid implicit PIC simulations have shown that hot

electron surface confinement is only a minor effect. In addition to finding no critical angle, we

have also found that even for small angles of incidence, the fraction of electrons confined to the

surface is quite small (-8-12%), suggesting that the cone target angle can be considered a
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minimal concern for design considerations. The discrepancy between these PIC results and the

large surface fractions quoted from experimental measurements were clearly linked to the

escaping electron phenomenon, which refers to significant differences in the measured

(escaping) hot electron spectrum with respect to the original birth spectrum due to the

generation of strong electrostatic self-fields. After re-computing the escape spectrum and the

corresponding fraction that escaped from the target edge, our PIC results were found to be in

approximate agreement with those quoted from experiment (30% vs. 28-50%). Furthermore,

this fraction was found to be relatively independent of the angular orientation of the initial birth

spectrum and subsequent angle of laser incidence. In sum, our results have shown that the

electrostatic field structure produced by the target is strongly dependent on target geometry. As

a result, the escaping distribution that is measured by experimentalists will be significantly

altered from the initial birth distribution and will largely depend on the shape of the targets

being used.
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Chapter 5

Kinetic and Collisional Effects on the Linear
Evolution of Fast Ignition Relevant Beam
Instabilities

5.1 Overview of the Beam Instability Problem

The subject of beam-plasma instabilities has spanned many decades of research and has

spawned a vast volume of literature due to its relevance to a wide range of fields of physics

[51-57]. With the emergence of the fast ignition concept over a decade ago, this area of

research has gained an increasing level of attention due to the relativistic electron beam

associated with this scheme and the complex nature of the transport it must undergo [7]. More

specifically, the fast ignition concept, an alternative to the conventional method of inertial

confinement fusion, relies on a relativistic electron beam generated via a short-pulse, high

intensity laser-plasma interaction to ignite a pre-compressed deuterium-tritium target. To
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minimize the beam propagation distance and subsequent transport issues, more recent schemes

have embedded a guiding cone into the initial target to keep a corridor open before the beam

must traverse a density gradient of compressed plasma spanning several orders of magnitude

[58,59]. Because this relativistic beam-plasma system is subject to a number of micro-

instabilities that act to inhibit efficient energy transport and prevent the critical conditions for

ignition to be met, an understanding of this transport system is crucial for evaluating the

viability of the fast ignition scheme.

The relativistic beam-plasma system for fast ignition is a highly complex, transient,
nonlinear problem with rapidly varying fields and currents that has proven difficult to model

analytically in its entirety. Following the initial laser-plasma interaction and generation of

relativistic electrons, a return current is drawn that establishes an approximately charge and

current neutral equilibrium. During this equilibrium phase, the counter-streaming nature of this

beam-plasma system makes it vulnerable to a number of micro-instabilities, namely, the two-

stream[60], Weibel[51 ], and filamentary instabilities[56]. These instabilities will evolve

through a linear growth phase, followed by a nonlinear saturated state. In sum, the combined

effects of the shape of the initial equilibrium distribution, as well as collisions, on these phases

has yet to be examined in great detail.

Knowledge of the detailed form of the initial relativistic electron beam distribution

formed during the laser-plasma interaction is currently limited experimentally. Various

experiments have characterized the beam distribution with temperature-like parameters which

have been made use of by theorists and modelers by assuming a "Gaussian-like" shape [61];

however, as will be shown, the actual structure of the distribution can affect the instability

growth rate. We will examine how the instability growth rates depend on various assumed

initial equilibrium distributions, each with varying degrees of analytical difficulty: relativistic

waterbag, the relativistic Maxwellian (Jittner), and the low-temperature approximation to the

relativistic Maxwellian (saddle-point approx.). However, a more physical depiction of the

equilibrium beam distribution for analytical and computational models can be extracted from

large-scale explicit particle-in-cell (PIC) simulations of the laser plasma interaction, as will also

be presented in this paper.

The primary objective of this study will be to illustrate the effects of the initial beam

distribution as well as collisions on the growth rate of critical beam instabilities relevant for fast
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ignition using an analytical model supported by PIC simulations. Sec. 5.2 will outline the

equilibrium formulation, collision model, and derivation of the dielectric tensor used to compute

the various branches of instabilities of interest. Sec. 5.3 will follow with a brief overview of the

theoretical distributions of interest and their respective features. For clarity, Sec. 5.4 will

provide an overview of the LSP (Large-Scale-Plasma) code as well as simulation parameters

used for comparison with analytical results. Sec. 5.5 will present numerical results of growth

rates of the two-stream and filamentary instabilities for each of the theoretical distributions over

a wide range of collision frequencies, which will be followed by similar calculations for a

distribution extracted from a large scale explicit PIC simulation of the laser-plasma interaction

in Sec. 5.6. Finally, a concluding discussion of the implications of these results will be

presented in Sec. 5.7.

5.2 Equilibrium Formulation

5.2.1 Dielectric Tensor

The theoretical framework used to derive the dispersion equations consists of the

familiar relativistic Vlasov-Maxwell formulation:

+ fs +tq E+-x =0, (5.1)at aF c t3

Vx B =- + -- (5.2)c c dt

VxE= f t' (5.3)
C at

where s refers to the particle species. The equilibrium model assumes a spatially infinite and

uniform beam-plasma system, no externally applied fields, immobile ions, and charge and

current neutrality, i.e.,

nb +p = i, (5.4)
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nbvb +np V = 0, (5.5)

where b refers to the beam electrons and p refers to the background plasma electrons. For the

purposes of linearization, scalar and vector quantities have been assumed to take the form

0f, (,t) = fo ()+ f, (p t)  (5.6)

S(Y,t)= sS(F, t) (5.7)

= F, t) (5.8)

where f, S, and V refer to species' distributions, scalar quantities, and vector quantities,

respectively, f 0O is the equilibrium distribution, and the quantities preceded by 6's are the small

amplitude perturbations and are assumed to have the form ei(k "
t
).After combining Maxwell's

equations and applying a Fourier-Laplace transform, one obtains the following dispersion

equation in terms of the electric field

kk -k 2 0 (5.9)

where 6jk refers to the Kronecker Delta, E refers to the Fourier-Laplace transform of the

electric field, and (co, k) is the dielectric tensor

.cF,

jk jk ~ 
-sId 3 PPJPk P (5.10)

jk ]ktZ2 Od p2' +Md
s co 7 9,P ~ k 7, ms y -cok

In this expression, F, is defined as the normalized momentum distribution, fo / n, and 7, and

/p take the usual relativistic forms 7 = 1 / 1-/ 2, / = V / c, and 3 = 7ymc. Finally, with

the exclusion of all trivial solutions, one can obtain the following general expression for the

dispersion relation
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det ek +kikk -k 2djk =0. (5.11)

5.2.2 Collision Operator

Although a sophisticated collisional study using a Boltzmann or Fokker-Planck operator

is generally better, a much simpler model known as the BGK or Krook [62] operator can be

used instead that will minimize algebraic complications. The Vlasov-Krook equation in its full

form is then

af, +q E +-x = -V(f-fmax) (5.12)
dt d c (5.12)

where v refers to the collision frequency which acts to drive f, toward a Maxwellian, fs,max

Although this operator is more tractable for mathematical analysis, it should be noted that it

does not properly take into account the details of the collisions, nor does it retain the correlation

of velocities before and after scatter [63].

Of the various types of collisions that may occur, background electron-ion collisions will

be of greatest importance. The effect of these collisions will be to isotropize the motion of the

electrons about the ions; therefore, for the Krook operator to produce physical results, the

equilibrium electron distribution should be Maxwellian. We also expect the Maxwellian to

have a finite drift. This drift arises as a result of the non-neutrality that exists where the hot

electrons are produced, subsequently producing an electrostatic field that acts to restore charge

and current neutrality by giving the background electrons a constant drift opposite that of the

hot electrons. After these simplifications, the collision operator can be modified to

- vp (f, - fp,, ), where f, is conventionally taken to be f0 + ifp, the sum of the equilibrium

and perturbed background electron distributions, respectively. This operator is also commonly

expressed as - vpi ( - 5npfo / n'), where np is defined as np + inp, the sum of the

equilibrium and perturbed background electron densities, respectively. Although it is common

practice for some authors to neglect the second term involving n, of this expression, allowing

for only minimal corrections to the Vlasov-Maxwell formulation (i.e., co can be replaced by
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co + iv,i), this approximation does not result in local particle conservation [63]. In fact,

applying this technique to longitudinal plasma waves, such as in the two-stream instability, can

result in spurious mode growth in the short wavelength limit.

The final collisional form of the dielectric tensor becomes

2 2O2 p (me o-k ) 8F 2
6 + (dm - imV ) p

o (mw-k-fp+imvj) aPk O2

- aF
PjPkk

d 3p -
meo - . + im V pi

- 8Fp
f 89k ±d

Id 3 pa + d3'p
mcO-k -) + im vPi mco-k + im vpi

fd 3  
mpFp 1

mco -k -p + im V pi

F
1-imv d 3 P P

mo - k -p + imvi

OFb

cb Id Pjb + d 3 p
CO Yb 8Pk Yb meb )-kp

(5.13)

It should be noted that this is not a completely general form of the collisional dielectric tensor,

i.e., the background plasma electron distribution has been predetermined to be non-relativistic

and collisions have been excluded from the beam terms.

5.2.3 Normalized Variable Convention

We define the following normalized variables

that follow:

a = n
nP

b,p V
b p

Tbp
b,p 2mc

K kVb
CO p

that will be referred to in the calculations

(5.14)i =
mc

V* Vpi

1
7b,p =
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The variables fib and Tb refer to the relativistic drift and temperature of the beam species, which

will be later defined in the numerical calculations as ib = 0.94 (1MeV) and

Tb = 0.01 -- 0.49 (5-- 250 keV).

5.3 Theoretical Distributions

Although the specific form of the hot electron beam distribution is not well-known,

various theoretical relativistic distributions are typically used with temperature parameters

obtained from experimental scaling laws [61].

5.3.1 Jiittner Distribution

The fully covariant form of the relativistic Maxwellian distribution, also known as the

Jittner distribution, has the mathematical form

f= nb 12

f 4=,2,2T* 3 3K2- b ej; "  (5.15)

where K 2 refers to the modified Bessel function of the second kind [64]. As one can see from

the three-dimensional density contours plotted in Fig. 5.1(c), this distribution is characterized by

an ellipsoid with an asymmetric density localized at one end of its principal axis and

exponentially decaying surface boundaries. In 1D, the reduced distribution obtained by

integrating over the perpendicular and angular directions (uL, p), similarly reveals the

asymmetric, non-"Gaussian-like" peak and long tail, as shown in Fig. 5.1(d).
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Fig. 5.1. Density contours ,F* (uz, u), and the reduced distribution, Fz (uz ), integrated

over (u , q) for the relativistic waterbag (a,b), the Ji5ttner (c,d), and the saddle point (low

temperature) approximation to the Jittner (e,f) for 18b = 0.94 and Tb = 250keV.

5.3.2 Saddle Point Approximation

Because the Jiittner tends to be rather complicated for computing the integrals involved

in the dielectric tensor elements, a slightly simplified distribution can be obtained by doing a

low temperature "saddle point" expansion of Eq.(5.15) assuming T << mc 2, or T* << 1, which

yields the mathematical form

Sb (2 b 3/2
33 2 7bTb )

-1r e u (.u-7,pb )2
Tb L2b 27 , (5.16)
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This expansion is valid for all physical values of fib so long as the temperature is sufficiently

small. In contrast to the Jiittner distribution, the three-dimensional density contours, shown in

Fig. 5.1(e), reveal an ellipsoidal structure with symmetrically centered density and

exponentially decaying surface boundaries. In lD, the reduced distribution, shown in Fig.

5.1(f), appears as a shifted Gaussian symmetric about its drift (with small leading order gamma

corrections). Unlike the Jiittner distribution, Gaussian-like integrals are well-documented in the

literature and prove to be significantly more tractable for computing dielectric tensor elements.

5.3.3 Relativistic WaterBag Distribution

An even simpler distribution than the saddle point approximation commonly used

throughout the literature with variations in form is the relativistic waterbag, whose mathematical

form has been defined as

f= nb 3/2o[ - 1 ++I buz]- (5.17)
(4/3)ybm3 c3 (y 2

In this expression, j is a "temperature-like" parameter that was derived by equating the second

moment (temperature) of this distribution with the equivalent moment for the Jittner, from

which one can then solve for in terms of the beam temperature, yielding

1 K 3 l/y7bTb
7= 57 bTb +1, (5.18)

Yb K 2 l/ybTb

where K2 and K3 are second order modified Bessel functions. In 3D, the density contours for

the relativistic waterbag reveal a uniform density ellipsoid with well-defined surface

boundaries, as shown in Fig. 5.1(a). In lD, the reduced distribution is characterized by an

inverted parabola, as shown in Fig. 5.1(b). One should note that the waterbag distribution is

often more familiarly known as a square or "top-hat" distribution. However, the fully covariant

form with the proper inclusion of relativistic effects gives it its ellipsoidal/parabolic structure.

The "top-hat" features still do exist if one were to take a one-dimensional line-out of the 3D

distribution, i.e., fo(u1 = 0,u z ).
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5.4 Comparison with PIC Simulations

In order to validate the analytical dispersion relations that will be presented in the

sections that follow, simulations were performed with the LSP code to extract linear growth

rates for comparison with results. As explained in Chapter 3, LSP is a fully three-dimensional

electromagnetic hybrid PIC code that was originally developed by Mission Research

Corporation and in the last decade has been used extensively for modeling a wide range of

relativistic electron transport problems relevant to fast ignition [36]. LSP contains many

hybrid-implicit features that allow one to model larger, more dense plasmas for longer

simulation times than conventional PIC codes. For the purposes of the beam-plasma problem in

this study, we did not utilize many of the advanced features available, but instead ran the code

as a conventional explicit PIC code. We did, however, make use of the code's ability to "turn

on" and "turn off' its collision model.

For growth rate comparisons, LSP simulations were run in both 1D and 2D, depending

on the instability of interest. Each simulation was set up to be one wavelength in the direction

of the wave-vector and used simulation parameters of 100 particles per cell, 31 cells per

wavelength, and 50 time-steps per plasma period. For the simulations in the collisional regime,
500 particles per cell were used for optimum energy conservation. In addition, each of the

analytical distributions was loaded into the code using the method of univariate inversion,
which has been outlined in detail in Appendix C. Although the original code does utilize

Spitzer collision frequencies, constant frequencies were used for the purposes of exact

comparison with analytical results. For simplicity, all instabilities were grown from noise (no

initial velocity or density perturbations were applied). Growth rates were extracted from field

quantities (i.e., the longitudinal electric field for the two-stream instability and the transverse

magnetic fields for the Weibel and filamentary instabilities) by plotting In F 2 vs. apt and

computing the slope, where F is the Fourier transform of the field quantity of interest (see

Chapter 3 for details). Because these curves can sometimes be rather noisy, especially for 2D

simulations, we extracted a maximum and minimum slope and used their average for simulation

growth rate calculations. These maximum and minimum values are shown as error bar limits in

the results that will follow.
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5.5 Analytical Results

Because of the algebraic complexity of the theoretical distributions of interest, the

analytical results that follow were computed numerically for a range of parameters. Parameters

were chosen such that the effects of the initial beam distribution, collisionality, and beam

temperature were clearly portrayed in regimes relevant to fast ignition. More specifically,

dispersion curves of the maximum growth mode for each instability were computed for a low

beam temperature (Tb- 5 keV) where the saddle-point approximation and Jiittner distributions

are in agreement, and also for a relatively higher beam temperature (Tb - 250 keV) where the

low temperature expansion for the saddle point approximation is no longer valid. Both

temperature regimes also assume a relativistic drift of fib = 0.941 (- 1MeV) and a ratio of beam

to plasma density, a = nbnp = 0.1.

Recent work by Bret et al. showed that the maximum growing mode is actually a

coupled two-stream-filamentary mode that occurs for oblique orientations of the wave vector k,

suggesting that a 2D instability calculation is necessary [56]. However, this work also

concluded that as the beam reaches relativistic drifts, the filamentary mode begins to dominate

the instability. Because the distribution of electrons for fast ignition relevant scenarios is

expected to be largely relativistic in nature, the filamentary instability remains to be the primary

concern. As a result, this study will focus independently on these instabilities using 1D

calculations, the concentration being on the filamentary instability for fast ignition and the two-

stream instability for academic purposes.

Although, in theory, one should be concerned with unstable modes from all three

instabilities, the choice of parameters are not favorable for growth of the Weibel instability.

Specifically, for all distributions, a single temperature is defined, Tb , that has not been

decoupled into a perpendicular and parallel temperature. Because each of these distributions

have moments such that T / T1 < 1 for the parameter regime of interest (for example, the saddle

point approximation yields T, / = 1 / b ), the Weibel instability growth rate is insignificant

and will be omitted in the following sections. Finally, collision frequencies of

Vpi = Vpi / cop 0.01,0.1 were chosen to demonstrate the effect of collisions over a range that

would be relevant to fast ignition.
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5.5.1 Two-Stream Instability

Numerical calculations of the two-stream instability in the collisional and collisionless

limits for the distributions of interest portray similar features. Mathematically, this branch of

the dispersion equation for which k = (0,0, kz) is

C2 zz = 0 (5.21)

As one can see in Fig. 5.2, numerical solutions of the dispersion relation for the low

temperature regime (5 keV) reveal the classic "two-stream peak" around K-l. Scattering

appears to have the usual damping effect in this long wavelength limit, with damping becoming

more prominent with increasing collision frequency. In Fig. 5.2(a), the saddle point result has

been plotted simultaneously with the Jittner result, while in Fig. 5.2(b) it has been plotted

versus the relativistic waterbag result. As one can see, there is little difference in the dispersion

curves of the three distributions in this low temperature regime. LSP simulations are also in

reasonable agreement with analytical theory, yielding less than 25% error for each distribution,

with larger errors attributed to the collisional cases where the code appears to generate growth

slightly higher than the analytical results. As one would expect, an increase in beam

temperature (250
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Fig. 5.2. Two-stream instability growth rate for the saddle point (solid), waterbag

(dashed), and Jittner (dot-dashed) for a range of collision frequencies in the low

temperature regime (5keV).
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Fig. 5.3. Two-stream instability growth rate for the saddle point (solid), waterbag

(dashed), and Jittner (dot-dashed) for a range of collision frequencies in the high

temperature regime (250keV).

keV) acts to suppress the instability for both distributions, as well. However, as shown in

Fig.5.3, one begins to see the development of differences in the dispersion curves at higher

temperatures. More specifically, in this regime, the saddle point expansion is no longer a valid

approximation to the Jittner distribution and underestimates the peak growth by approximately

a factor of 4, as shown in Fig. 5.3(a). Though the analytical form of the relativistic waterbag

distribution that has been chosen does not rely on any low temperature approximations, it

appears to show better agreement with the Jiittner distribution at high temperatures. LSP

simulations in this high temperature regime show poorer agreement with the analytical results,

though this is likely attributed to the low growth rates in this limit, which are difficult to extract

from the high noise level in the simulation.

5.5.2 Filamentary Instability

Unlike the two-stream instability, the filamentary instability is dominant for more

relativistic beams and so is more of a concern for fast ignition scenarios. Mathematically, this

branch of the dispersion equation for which k = (kx,0,0) is
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Numerical calculations of the filamentary instability in the collisional and collisionless limits
for the distributions of interest are shown in Fig. 5.4 for the low temperature (5 keV) regime,
where the imaginary part of the maximum growth mode is plotted in Fig. 5.4(a) and the
corresponding real part is plotted in Fig. 5.4(b). As one can see in Fig. 5.4(a), collisions have
little overall effect on the maximum growth rate for all K with the dispersion curves for each of
the saddle point/Jijttner and the relativistic waterbag distributions being comparable in this
regime. At lower K, there is a slight increase in growth due to collisions, followed by a point of
overlap. However, after this point, the curves with finite collision frequency develop a clearly
observable "kink." At this transitional point, the filamentary branch, which is characteristically

a purely growing instability, develops a finite real frequency, which appears to grow with K, as
shown in Fig. 5.4(b) where the transition to nonzero real frequency can be matched with the
location of the "kink" in Fig. 5.4(a). One can understand this kink more quantitatively by

plotting the zero contours of the dispersion relation in ci - Wr space where the roots are found

by locating the intersection point of the real and imaginary zero contour curves, shown in Fig.
5.5. As one can see in this figure, there are initially two purely growing roots before the kink
and as K increases,

Co i / op 0,i / cop
0.16 0.16
0.14 (a) 0.14 (b)
0.12 0.12
0.1 0.1

0.08 V = V~ /cop, 0.08
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0,04 - v, = 0.01 0.04 /
0.02 - v; = 0.1 0.02 ,'
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0.5 1 1.5 2 25 3 ......... WaterBag O.5 1 1.5 2 25 3-. - Juttner
K = kVb / c K = k Vb co

Fig. 5.4. Filamentary instability growth rate (a) and corresponding real frequency (b) for
the saddle point (solid) and the waterbag (dashed), and for a range of collision frequencies

in the low temperature (5keV) regime.
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Fig. 5.5. Zero contours of the filamentary instability in oi - cor for the relativistic waterbag

distribution before the kink (a), at the kink (b), and after the "kink" (c). Red corresponds

dispersion relation's imaginary part and green corresponds to the real part.

the two roots intersect precisely where the kink appears in Fig. 5.5. Beyond the kink at higher

K, the two roots split horizontally along the cor axis where each root now obtains a finite real

frequency. This effect in which collisions enhance growth at "low K" and suppress growth at

"high K" was also noted by Deutsch et al. [65]. LSP simulations are similarly in reasonable

agreement with analytical theory, yielding growth rate results within approximately 15-25% of

those predicted by theory, and like the two-stream results, most of the difference lies with the

collisional runs. However, given that growth rate extraction for this instability is from 2D

simulations and is being grown from noise, the difference is expected. Like the two-stream

instability, the filamentary instability can be reduced with beam temperature in both the

collisional and collisionless limits, as can be seen by comparing Figs. 5.6(a) and 5.6(b).

It should be noted that recent work by Gremillet et al.[53] using a collisionless variation

of the waterbag distribution claimed the existence of a threshold temperature above which the

dominant oblique wave becomes purely longitudinal and all filamentary modes are completely

suppressed. Although an exhaustive 2D calculation of this phenomenon is beyond the scope of

this paper, we performed a temperature study with our fully covariant relativistic waterbag

distribution within and much higher than the published temperature range. No threshold
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Fig. 5.6. Filamentary instability growth rate for the saddle point (solid), waterbag
(dashed), and the Jittner (dot-dashed) for a range of collision frequencies in the low
temperature (5keV)regime (a) and high temperature (250 keV) regime(b).

temperature was found in the collisionless limit that was capable of completely suppressing
filamentary modes (i.e., a finite, but very small growth rate could always be found for a wide
range of temperatures). These conflicting results could be attributed to differences in the initial
distribution structure but should be duly noted. Furthermore, earlier work by Molvig showed
that when a finite collision frequency does exist, the filamentary instability cannot be stabilized
with temperature, requiring an applied magnetic field to completely suppress these modes [49].
Our results also confirm this inability to suppress the filamentary instability with temperature

for finite collision frequencies within the wide temperature range mentioned above.

5.5.3 Plasma Density Effects

For the previous analytical calculations, a beam-to-plasma density ratio of a = nn,=
0.1 was conveniently chosen due to the higher growth rates that are expected, which make them
more easily extractable from simulations. However, because the guiding cone that is to be
inserted into fast ignition targets will allow the beam electrons to begin transport closer to the
core and at higher densities along the plasma corona, it is necessary to examine instability
growth rates with smaller beam-to-plasma density ratios (a << 0.1 ). The previous instability
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calculations showed that the relativistic waterbag can produce instability growth curves similar

to more complex distributions. Therefore, due to its simplicity, it will be used for the analysis

that follows.

In Fig. 5.7, filamentary instability growth curves are shown for both the high and low

temperature regimes for beam-to-plasma densities of a = 0.1, 0.01, 0.001. As one can see, the

instability growth decreases with decreasing values of a in both the high and low temperature

regimes. Physically, this means that the closer the beam is generated to the compressed fuel

core (for a fixed beam density), the lower the growth rate will be. In the collisionless limit, the

peak growth rate has an approximately linear dependence on a However, as Fig. 5.7 shows,
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Fig. 5.7. Filamentary instability growth rate for the relativistic waterbag distribution for

various values of the beam-to-plasma density ratio, a, in the low temperature regime

(a,b(zoomed)) and the high temperature regime (c,d(zoomed)).
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this dependence becomes more complicated in the collisional regime, as the instability growth

rate appears to be dominated by the dispersion relations with finite collision frequency over a

significant range ofK . In fact, in the high temperature regime, collisional growth rates can be

up to several orders of magnitude larger than those without collisions.

5.6 Beam Distribution from an Explicit PIC Simulation

Up to this point, dispersion curves have been generated for theoretical distributions

whose temperature and drift parameters were loosely tied to those measured from experiments.

However, a more physically based model for the distribution can be obtained from explicit PIC

simulations of the laser plasma interaction. Z3, a fully relativistic, 3D collisionless PIC code,

has been used to model a range of short-pulse, high intensity laser-plasma interactions [66].

60L
Laser with

I = 1020 N/cm2

incident at 200
55110

x(pum)

50-

45-

40-

35-

30-

15 20 25 30 35

z(um)

-2628.44

-1851,86

-1075.27

-298,687

Fig. 5.8. 2D explicit simulation of a laser plasma interaction at 0.51 picoseconds showing

the density of all particles with y > 2. The filament used for extraction of the momentum

distribution is outlined with white dashes.
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The 2D simulation that will be analyzed in the paragraphs that follow consisted of modeling a
laser with an intensity of lx 1020 W/cm 2 incident at a glancing angle of 20 degrees onto a plasma
slab. As shown in Fig. 5.8, density contours of the individual particles portray the familiar
current filaments that fan outward from the point of interaction. It should be noted that in order
to distinguish between the background and beam electron species, only electrons with y > 2
were selected from the simulation.

The momentum distribution of a single filament in the direction of the laser was used for
analysis, rather than that of the entire simulation space. In Fig. 5.8, the chosen filament has
been outlined in white. Histograms of the longitudinal (Fz) and transverse (Fx) momentum
distributions within the filament have been plotted in Fig. 5.9. Of the three theoretical
distributions of interest, only the Jiittner was able to capture both the asymmetric peak and long
tail portrayed by the particle data in the longitudinal direction with fit parameters of fib = 0. 76
and Tb = 531 keV It should be noted that these fit parameters were evaluated with the chi-

squared test as a "goodness-of-fit" assessment and yielded a Z2 value of 104 for 78 degrees of

freedom, which is approximately within the desired 95% confidence interval. Also shown in

F F
0.08 (a) (b)

0.15
- Juttner
- WaterBag

0.06 - Saddle Pt. Approx

0.10

0.04

0.05
0.02

0.00
-20 0 20 40 60 80 0.030 -20 -10 0 10 20 30

S= (Y ) Ux =

Fig. 5.9. Histograms of the longitudinal (a) and transverse (b) momentum distributions
extracted from a 2D explicit PIC simulation, along with best fits to the Ji5ttner, waterbag,
and saddle point approximation.
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Fig. 5.9 are overlays of fits for the relativistic waterbag and saddle point distributions, showing

poor agreement with the data due to their symmetric nature. Ultimately, the instability growth

rate of this particle distribution is of primary concern so numerical calculations of both the

filamentary and two-stream instability were computed with the fit parameters mentioned

previously. As one can see in Fig. 5.10, the two-stream instability appears to be the clearly

dominant instability in the collisionless limit, with the peak occurring at high K (K > 1) with a

growth rate over two orders of magnitude greater than the filamentary at low K (K < 1).

However, in the collisional regime, the two-stream instability appears to be almost completely

suppressed, while the filamentary instability growth actually increases with collisions at low K.
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Fig. 5.10. Growth rates of the filamentary (a) and two-stream instabilities (b) for the best

fit Jittner parameters (fib = 0.76 and Tb = 531 keV) to the 2D Z3 explicit PIC simulation

data.

5.7 Conclusions

Relativistic beam transport is a critical element of the electron-driven fast ignition

scenario and so it is important to understand how the various micro-instabilities to which it is

vulnerable may inhibit transport. Because the specific form of the beam distribution has, for the
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most part, eluded researchers up to this time, theoretical distributions whose temperature and

drift parameters were loosely tied to those measured from experiments have been used for

instability growth calculations, as well as computational modeling. However, this study has

demonstrated that the structure of the distribution, as well as collisions, can strongly affect

instability growth.

In general, kinetic and collisional effects have been shown to have disparate effects on

each of the instabilities of interest. Specifically, at relatively low temperature, the saddle point,

Jijttner, and the relativistic waterbag distributions appear to have comparable maximum linear

mode growth rates for the two-stream instability in both the collisionless and collisional limits,

with collisions acting to damp growth. At higher temperatures, the two-stream can be

suppressed; however, in this regime, where the saddle point approximation to the Jittner

distribution is no longer valid, the saddle point approximation greatly underestimates the growth

rate. Unlike the two-stream instability, collisions have only a minimal effect on the growth rate

of the filamentary instability in the low temperature regime, yielding comparable maximum

linear mode growth rates for each of the theoretical distributions. However, collisions do create

an unusual "kink" in the growth rate that forces the normally purely growing filamentary

instability to transition to a growing/oscillating state, with the oscillation frequency increasing

with K. For wave numbers less than the location of the kink, collisions appear to enhance

growth, while for wave numbers greater than the location of the kink, collisions damp growth.

Although collisions alone do not appear to be capable of damping the filamentary instability, an

increase in beam temperature can achieve damping. In sum, these results suggest that one could

use the relativistic waterbag distribution to model the relativistic beam in both the high and low

temperature limits with minimal error since it is the mathematically simplest distribution of the

three and retains the essential instability features. That being said, the relativistic waterbag was

used to show that filamentary instability growth decreases with decreasing values of a, the

beam-to-plasma density ratio, in both the high and low temperature regimes, suggesting that

instability growth becomes less significant the closer the beam begins transport (at higher

densities) to the compressed fuel core.

A more physically-based distribution was also obtained from 2D explicit PIC

simulations whose results have shown that the relativistic electron beam filament can be best

modeled with a Jiittner distribution. In this parameter regime, the maximum growth appears to
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be dominated by the filamentary instability with finite collision frequency at low K (K < 1) and

by the two-stream instability in the collisionless limit at high K (K > 1). Although the exact

Jijttner distribution was used to compute these dispersion curves, future calculations could use

the mathematically simpler relativistic waterbag distribution for reasonable approximations to

instability growth.
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Chapter 6

Nonlinear Evolution of Fast Ignition Relevant
Beam Instabilities and Electron Transport
Implications

6.1 Introduction

Thus far, this work has focused primarily on the linear growth regime of fast ignition

relevant beam instabilities with little mention of the effects these instabilities will have on hot

electron transport once this regime ends and saturation ensues. However, it is the nonlinear

saturated state of these instabilities that will dictate how efficiently the hot electrons will

transport the laser energy to the dense fuel core for ignition. An initial study of the linear

growth regime has proven to be essential for understanding the nonlinear saturated regime due

to the intimate coupling of the two stages. When the hot electrons are produced during the laser

plasma interaction and a return current develops, the electromagnetic fields are relatively weak

and have minimal effect on the overall electron transport during this period. However, because

these fields are growing at a rate of the order of the plasma frequency, they eventually saturate
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at a significantly higher level, enabling them to strongly influence the remaining beam transport.

In principle, both the two-stream and filamentary instability modes will be growing

simultaneously for the counter-streaming beam-plasma problem of interest. However, as was

shown in Chapter 5, the filamentary instability will be of greater concern for the parameters of

interest.

Given the importance of the saturated magnetic field level, it suffices to acquire an

understanding of the mechanism which saturates the instability. Early work by Manheimer and

Davidson on the nonlinear development of electromagnetic beam instabilities attributed

saturation to the process of "magnetic trapping" [67,68]. According to their results, the initial

instability grows as the beam particles continue to feed energy into the magnetic field

perturbation. However, as the field perturbation reaches a sufficient level, the gyro-radius of the

particles within the wave becomes sufficiently small such that they become trapped in the

wave's magnetic potential well. With time, more and more particles become trapped by the

increasingly large magnetic field such that less and less energy gets fed into the wave and

growth ceases. Manheimer identified this point of stabilization as the time at which the

magnetic bounce frequency of the particles,

ek VB
)B = mc i (6.1)

is of approximately the same order as the growth rate of the most unstable mode, i.e.,

WB ~ Y7 (6.2)

At this point, a saturated state of the instability has been reached which can be characterized by

the saturated magnetic field amplitude, Bs,at [67].

With this in mind, the goal of this work is to understand the effects of the parameters of

the initial beam-plasma state (i.e., temperature, drift, background density) and collisions on

magnetic trapping and the ensuing saturated magnetic field amplitude. In Section 6.2, I will

review a subset of published results on the nonlinear evolution of fast ignition relevant beam

instabilities and significant features of interest. In Section 6.3, it will be demonstrated that the
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LSP code has been used to successfully reproduce these features in both ID and 2D, providing

confidence for extrapolation into the collisional regime. Section 6.4 will follow with a series of

simulations highlighting the effects of the initial beam parameters, background density, and

collisions on filamentary features in the nonlinear regime. This work will be complemented in

Section 6.5 with an analysis of how the instability generated magnetic field affects particle

orbits for a range of parameters and conditions and the effect on apparent stopping power and

range. Finally, in the concluding discussion of Section 6.6, we will be able to address the

ultimate question as to what conditions we should care about instabilities at all.

6.2 Overview of Nonlinear Beam Saturation Literature to Date

The most extensive published work on the saturation of beam-plasma instabilities and

most relevant to the fast ignition scheme consists of a series of six papers published by F.

Califano et al. He began his analysis in the first paper with a simple collisionless fluid

formulation for the beam and plasma electron species in which he showed the development of a

spatial "resonant"-type singularity in the electron beam densities and magnetic field as the

instability transitioned to smaller and smaller spatial scales [55]. This small scale generation

was shown to continue indefinitely to the order of characteristic kinetic scales (such as the

electron gyro-radius) and lower, at which point the fluid model was deemed insufficient at this

point [55].

To improve upon the fluid analysis, Califano extended his results in a later paper with

the inclusion of kinetic effects by integrating numerically the Vlasov equation coupled to

Maxwell equations [69]. Like the fluid formulation results, he saw the generation of larger and

larger wave numbers (smaller and smaller spatial scales); however, the inclusion of kinetic

effects showed no sign of divergence or singularities since the cascade to small spatial scales

was interrupted at the collisionless skin depth. From phase space plots of the electron beams,
Califano also saw the rotation of the electron velocities around the peaks of the magnetic field.

This effect can be attributed to the mechanism of magnetic trapping which was identified in

earlier publications by W. Manheimer, R. Davidson, etc. as a source of mode stabilization

[67,68]. During the transition from the linear to nonlinear regime, the electron gyro-radius
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decreases until it and the spatial scale of the perturbation, k = 27n/k, become of the same order as

the electron skin depth, at which point the small scale generation process stops and the

instability saturates [69]. An equivalent saturation condition is also found in the literature that

requires that the magnetic bounce frequency, (Ob, be comparable to the growth rate, y [67].

Califano continued his kinetic analysis of the spatial structures of the current and

magnetic fields generated by the filamentary instability in the third paper of the series with the

goal of identifying features that can be used as signatures in experimental results [70]. In his

analysis of the nonlinear evolution of this instability in 1D, he found that for relativistic beams,

the resulting structure of the current and magnetic fields in the nonlinear phase are independent

of the initial conditions, i.e., the phase and wave number of the initial perturbation. In addition,

he found a similar result in 2D, but the main effect observed in these simulations was the

pinching of several physical quantities (i.e., magnetic field, density, transverse electric field) in

the transverse direction. In the non-relativistic regime, he observed a somewhat modulated,

arrow-like structure along the direction of the beam; however, as the beam became more

relativistic, the beam/filaments became more homogeneous along the longitudinal direction.

One final effect he observed was the generation of a relatively large electrostatic field transverse

to the beam direction. In the linear regime, this electrostatic field was negligible, but as the

instability transitioned into the nonlinear phase, it actually dominated the magnetic term in the

Lorentz force [70].

In a pair of PRLs that followed, Califano used his analysis of the nonlinear evolution of

the electromagnetic beam-plasma instability to explain the formation of magnetic vortices

observed in 2D PIC simulations in the wake of an ultra-intense laser pulse [71,72]. Califano

showed that a fast kinetic mechanism, based on the resonant wave-particle-interaction, is

capable of generating magnetic vortices on the electron time scale. Using a 2D-2V Vlasov-

Maxwell code, he was able to reproduce a series of magnetic vortex pairs with typical

dimensions of the electron skin depth along the beam direction, consistent with the global

structure seen in the magnetic wake of 2D PIC simulations of the laser pulse interaction with

under-dense plasma. In these Vlasov simulations, the vortices are stable for a finite time and

appear to propagate in the beam direction at a phase velocity comparable with the velocity of

the beam. According to Califano, the generation of vortices can be attributed to the resonant

interaction between the 2D electromagnetic beam-plasma instability mode and the particles in
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the fast beam. This is verified by the classic signature of the resonant wave-particle interaction

seen in phase space plots of the longitudinal beam velocity showing electron trapping along the

beam direction, which accounts for the bunching of density parallel to the beam [72].

The final paper published by Califano in 2002 explored the fully nonlinear kinetic

regime of the beam plasma instability with the inclusion of ion dynamics [73]. In his previous

formulations, Califano limited his analysis to electron dynamics, considering the ions as a fixed

neutralizing background. Although this approximation is valid in the linear regime, Califano

showed that during the very early nonlinear phase of the instability and for longer times, ion

dynamics cannot be neglected. More specifically, ponderomotive effects in the nonlinear

regime create electron cavities and because of the electrostatic field resulting from the charge

separation, ion cavities are then formed. From Vlasov simulations, Califano showed that in the

long-time nonlinear regime, the system eventually manages to impose quasineutrality on the

initial inhomogeneous configuration [73].

A recent paper by Gremillet also explored the linear and nonlinear features of the

electromagnetic beam-plasma instability in a fully relativistic framework, but unlike Califano,

he focused more on the oblique nature of the modes [57]. Using the model developed by Bret et

al., he successfully benchmarked the oblique mode theory with PIC simulation. Gremillet then

extended his simulations into the nonlinear regime where he showed that beam trapping is

clearly visible [56]. In phase space plots of the particles from 2D PIC simulations, he observed

the familiar vortex structures which suggest complete trapping in the potential troughs of the

dominant wave. However, a less obvious result from this work was the partial trapping of

plasma electrons, which he attributed to the strong wave-particle interaction between the

relatively slower oblique waves and the bulk plasma electrons [57].

One final publication worth mentioning is work done by Okada et al. in the last year in

which in which he compares theoretical results involving linear growth rates and the amplitude

of the saturated magnetic field with that of 3D PIC simulations of ultra-intense laser plasma

interactions [74]. According to the literature, the purely transverse filamentary instability

growth rate for a relativistic bi-Maxwellian takes on a maximum value of

FT = 8 T1 A(6.3)
27 ;m A+l Wh (6.3)
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where the transverse wave number, kz is defined as

kz = ph  (6.4)
3 c

(oph is the beam frequency, A = Ti / T - 1, and T1 and TI are the temperatures parallel and

perpendicular to the beam direction, respectively. According to Okada, the high energy

electron trapping that causes instability saturation happens due to both magnetic and

electrostatic fields, but magnetic trapping is the dominant mechanism. Since the literature has

found that this occurs when the magnetic bounce frequency, cOb, increases to a value comparable

to the linear growth rate, FT [67,68], one can derive an analytical expression for the saturated

magnetic field,

eklu BT
Scb - c (6.5)

7 mc

SBT 8 [ T A5/2 y2mOphC

27c Imc 2 (A +1)' e

where BT is the saturated magnetic field amplitude and u = J,/ m. By relating the

temperature to the ponderomotive potential and taking the maximum value of the expression

involving A, the saturated magnetic field can be simplified as

B T  3.48x 10-2 18 I Bo  (6.7)
V n,

where ne is the hot electron density, Bo is the laser magnetic field, and I18 is the peak laser

intensity in units of 1018 W/cm 2. From this expression, Okada concluded that the saturated

magnetic fields are determined by the laser intensity and plasma density. Furthermore, 3D PIC

simulations of a laser plasma interaction were shown to be in good agreement with both the

maximum growth rate and the saturated magnetic field [74].
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6.3 Magnetic Trapping and Saturation Effects

The previous section highlighted a number of significant features associated with

magnetic trapping and the saturated regime such as magnetic vortex formation, intertwined

filament production, ion cavitation, etc. from earlier published results [67-74]. Because the

ultimate goal is to extend this work into regimes that include collisions and a range of initial

parameters using the LSP code, it suffices to first verify that LSP reproduces these features

correctly.

6.3.1 1D Saturation Effects

As was noted by Califano, a significant understanding of magnetic trapping can be

gained from a simple lD simulation of the filamentary instability. Shown in Fig. 6.1 is a

schematic of the simulation geometry used in LSP to model the filamentary instability for the

counter-streaming beam-plasma problem. The simulation box was chosen to be one wavelength
of the maximum growing mode in the transverse z-direction with periodic boundary conditions
on each edge. The usual resolution parameters were chosen as 31 cells per wavelength, 20
time-steps per plasma period, and 100 particles-per-cell. The hot electron and return current
distributions were defined as cold beam distributions (Tb = Tp = 0) with drift velocities initiated
in the x-direction of Pb = 0.94 and 3p = -0.094, respectively, and the beam-to-plasma density

ratio was chosen as a = nb/np = 0.1. Ions were included and were assumed cold and motionless.

Although these parameters are not representative of the fast ignition relevant beam and plasma
conditions that

Vx,b Vx IVp

12 L z

Fig.6.1. Schematic of the 1D simulation geometry used to model filamentary instability
growth in LSP.
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are to be expected, they allow for a number of advantages such as easier instability growth

analyses due to higher growth rates, ideal conditions for collisional analyses due to higher

collision rates, and significantly less noise for observing saturation features.

For the filamentary instability in this particular geometry, the parameter of interest is By.

Shown in Fig. 6.2(a) is the profile of By(z) during the linear regime until saturation, as well as

the Fourier analysis of the maximum growth mode used for growth rate extraction in Fig. 6.2(b)

(see Chapter 3 for additional details on growth rate extraction). As one can see, the magnetic

field profile maintains an approximately sinusoidal form until saturation occurs at

approximately (pt = 47. At this point, if one computes the bounce frequency, OB, using

equation 6.1 discussed previously, it is approximately 0.17Cp, which is of the order of the

growth rate, y - 0. 18op. This confirms the magnetic trapping criteria quoted by Manheimer and

Davidson [67,68]. Furthermore, the dipolar magnetic field profile develops a very sharp, near-

singular structure around the symmetry axis. These results are in agreement with Califano et

al., which demonstrates the transition to smaller and smaller spatial scales as a significant

number of particles begin to be trapped [69]. The mechanism of magnetic trapping can be seen

more clearly from the evolution of the density profiles of the two electron species shown in Fig.
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Fig.6.2. Evolution of the magnetic field profile during the linear growth regime and initial

transition to the nonlinear saturated state (a) and the Fourier growth analysis of the

maximum growth mode (b).
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Fig.6.3. Evolution of the beam (a) and background plasma (b) density during the linear

growth regime and into the initial nonlinear saturated regime.

6.3. From the figure, one can see that as time progresses, the initially sinusoidal perturbation

develops into peaks and cavities concentrated around the magnetic field "singularity." At this

point, the two electron populations become trapped in a structure that resembles a central fast

current surrounded by two external return currents carried by the slower species. Additionally,

the transverse phase space plots for each species reveal the gradual transition of the sinusoidal

perturbation to vortices, as shown in Fig. 6.4, which is the classic signature of particle trapping.
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Fig.6.4. Transverse phase space plots of the evolution of the beam (a) and background

plasma (b) from the linear to initial nonlinear regimes.
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One final feature worth mentioning is the importance of ion dynamics for times longer
than the extent of the linear regime. Shown in Fig. 6.5 is the profile of the ion density at the end
of the linear regime through the transition to the nonlinear regime. As one can see, density
cavities begin to develop due to the electrostatic field resulting from the charge separation

created by the electron peaks/cavities. As time progresses, the ions align themselves with
electron peaks/cavities to try to restore quasi-neutrality, in agreement with the results of
Califano et al [73].
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Fig.6.5. Development of ion cavitation for late times in the nonlinear regime.

6.3.2 2D Saturation Effects

A number of other significant saturation features arise in 2D that have been noted in
earlier work and are deserving of attention. In order to reproduce these features in LSP, we
devised a simulation in 2D Cartesian geometry shown in Fig. 6.6. This problem models the
longitudinal (x-direction) and one dimension of the tranverse direction (z-direction). The
transverse direction was chosen to be two wavelengths of the maximum growing mode and 1.0
micron in length along the beam direction with periodic boundary conditions on the top edges
and symmetry (reflecting) boundary conditions on the left-right edges. Parameters identical to
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Fig.6.6. Schematic of the 2D simulation geometry used to model filamentary instability

growth in LSP.

that of the 1D case were chosen, which consisted of cold beam and background plasma

distributions (Tb = Tp = 0) with drift velocities initiated in the x-direction of Pb = 0.94 and Op = -
0.094, respectively, and the beam-to-plasma density ratio of a = nb/np = 0.1. The usual

resolution parameters were chosen as 31 cells per wavelength, 20 time-steps per plasma period,
and 100 particles-per-cell, as well.

One of the more interesting features that arises in 2D is the formation of magnetic

vortices along the direction of the beam. Shown in Fig.6.7(a) is a plot of the magnetic field

well into the nonlinear regime around opt = 75. As one can see, the usual dipolar magnetic field

structure exists, as in the lD case, but you also see a series of magnetic vortex pairs that develop

along the direction of the beam that propagate in time. Shown in Fig.6.7(b) is a line-out of the
magnetic field contour at z = 0.075 microns for opt = 150, 160, and 170. The profile appears to
propagate at a velocity of approximately v = 0.82c, which is close to that of the beam drift

velocity. As Califano et al. pointed out, these magnetic vortices are well correlated with the
electron beam flow, shown in Fig.6.8 [72]. As one can see from the phase space plot of the fast
beam species in Fig.6.8(a), vortices also develop along the direction of the beam, which is a

clear signature of trapping due to wave-particle interactions. As a result of this trapping, one
also sees density bunches along the beam direction, shown in Fig. 6.8(b), which also propagate
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in time at a velocity approximately equivalent to that of the beam velocity. In sum, these results

confirm agreement between the LSP code and published results.

6.3.3 Effects of Collisions on Magnetic Trapping and Saturation

Before addressing the issue of collisions, it suffices to briefly discuss the saturation

mechanism of non-symmetric (nb np; Vb # Vp) beams. As noted by Manheimer and Davidson,

the point of saturation can be defined as the time at which the bounce frequency of particles

within the beam becomes approximately equal to the growth rate of the instability [67,68]. An

equivalent criteria was also derived by Califano et al. in which he identified the saturation point

as the time at which the gyro-radius of particles within the beam becomes of the order of the

electron skin depth. In the context of saturated magnetic field levels, this second criteria

becomes significant when one tries to understand the saturation mechanism of non-symmetric

beams. In this case, the point of saturation is determined by the slower, more dense return

current because it is this species that becomes trapped first as a result of its slower drift velocity.

When this happens, the gyro-radii of the fast beam particles are still quite a bit larger than the

electron skin depth and still possess kinetic energy that has not had a chance to be converted to

magnetic field energy [55]. This issue is significant in the context of collisions for relativistic

beams because it is the slower background electron-ion collisions that are of greatest

importance. Because the slower return current will be most affected, this will also impact the

saturated magnetic field level, as will be shown.

To gain an initial understanding of collisional effects on magnetic trapping and

saturation, we started with a simple 1D analysis in LSP identical to the collisionless 1D case

discussed in section 6.3.1 consisting of cold counter-streaming beams with drifts of Pb = 0.94

and pp = -0.094, respectively, and a beam-to-plasma density ratio of a = nb/np = 0.1. For the

collisional case, we simply turned on the newly integrated relativistic Manheimer collision

model described in Chapter 3. Shown in Fig.6.9 is a Fourier analysis of the maximum growth

mode. As one can see, the saturation level of the collisional case is slightly higher than the case

with no collisions. This effect can be attributed to the impact of collisions between the slower,

more dense return current and the ions. As mentioned previously, the trapping of particles

within the slow return current determine the saturation level. When collisions are present, the

slower particles that would have otherwise been trapped have the ability to scatter out of the
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Fig.6.9. Fourier growth analysis of the maximum growth mode of the cold relativistic

filamentary instability for the collisional (red) and collisionless (black) cases.

magnetic potential well. As a result, the perturbation velocities are able to reach places where

they would otherwise be prohibited by the magnetic trapping. One can see this effect more

clearly in phase space plots shown in Fig. 6.10 of the slower background electron species over

the course of the linear growth regime. Because these particles can reach higher velocities, this

then leads to larger currents and subsequently larger magnetic fields. Also shown in Fig. 6.11

are the current and magnetic field profiles for the collisionless and collisional runs which clearly

reach larger amplitudes in the collisional runs, as predicted.
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One additional source of magnetic field growth also comes from the production of
electric fields by collisions that act to drag the return current. Because these fields are growing
in time, their curl makes a contribution to the magnetic field. In order to see this effect, we
simulated the same instability in 2D with parameters identical to those described previously.
Shown in Fig. 6.12 are contours of the transverse electric field for both the collisional and
collisionless cases. As one can see, there is clearly a gradient along the direction of the beam
(x-direction) for the collisional case, while there is no gradient in this direction for the

collisionless case. This subsequently creates a magnetic field contribution in the y-direction.

It should be noted that the enhancement of the saturated magnetic field levels is only
slight and is observed only under optimum conditions (cold beams) where the collision

frequency is high. When we re-ran these cases with more realistic beam/background density
parameters, virtually no difference was seen in the saturation levels.
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Fig.6.12. 2D contours of the transverse electric field for the collisionless (a) and collisional

(b) runs during the linear regime at oipt = 50.
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6.4 Effects of Initial Conditions on the Nonlinear Saturated
Regime for Extended Times

Thus far, the discussion of saturation has, for the most part, been purely academic,

focusing on the effects of various initial conditions and collisions for only extreme cases.

Parameters were chosen such that the growth and saturation features could be easily observed

and extracted from numerical PIC simulations, which tend to be quite noisy, and collisional

effects could be easily seen in regimes where the collision rate was rather high. In reality,

though, fast ignition will involve larger beam temperatures and much smaller beam-to-

background plasma density ratios, unlike those parameters used in the simulations discussed

previously. Ultimately, we would like to be able to characterize saturation features in this

regime, such as filamentation, saturated magnetic field levels, net current, etc., for fast ignition

relevant parameters. This will enable us to determine under what conditions we should care

about instabilities at all.

Shown in Fig. 6.13 is the 2D geometry used to model the first of a series of four cases in

LSP. The geometry consisted of a 40x40 c/o, grid, which is relatively larger than the simple

cases modeled previously, and the usual resolution parameters of 31 cells per wavelength, 20

X
Periodic bc

L = 40c / c "

Periodic bc
4 Z

L = 40c/ w

Fig.6.13. Schematic of the 2D simulation geometry used to model instability growth in LSP

for fast ignition relevant parameters.
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Case Series 1 Series 2

c = nb/np = 0.1 c = nb/np = 0.01

A Tb = 5keV; Ob = 0.94 Tb = 5keV; Pb =0.94

(no collisions) (no collisions)

B Tb = 5keV; Pb = 0.94 Tb = 5keV; Pb = 0.94

(collisions) (collisions)

C Tb = 531keV; Pb =0.76 Tb = 531keV; Pb =0.76

(no collisions) (no collisions)

D Tb = 531keV; Pb = 0. 7 6  Tb = 531keV; Pb = 0. 7 6

(collisions) (collisions)

Table 6.1. Overview of two series of four simulation cases to explore various saturation

effects.

time-steps per plasma period, and 100 particles-per-cell were utilized. Because we are

interested in a number of effects such as beam-to-plasma density ratio, beam temperature and

drift, and collisions, we chose two series of simulation cases outlined in Table 6.1. The

relatively cold, highly relativistic parameters of Tb = 5keV and Pb = 0.94 were chosen to be

consistent with the equilibrium case studied in Chapter 5, while the Jiittner distribution with Tb

= 53 lkeV and Pb = 0.76 was chosen to be consistent with the parameters taken from the fit to

the hot electron distribution in an explicit simulation of a laser-plasma interaction using the

code Z3, which was discussed in detail in Chapter 5.

Shown in Fig. 6.14 is a summary of the simulation results for each of the 4 cases of the

first series (a = nb/np = 0.1) for comparison. On the left, the beam density has been plotted near

the end of the linear growth regime at opt = 50 on a log scale for each of the 4 cases, while on

the right, the same density has been plotted at various times of opt = 200, 500, and 1025

throughout the nonlinear saturated state on a linear scale. During the the linear regime, one can

see the development of interwoven filaments in the colder cases A and B which are very similar

in size and density with and without the inclusion of collisions. The slanted, woven nature of

the filaments is characteristic of the 2D filamentary-two-stream mode; however, the filamentary

instability can be seen to dominate simply from observing that the filaments are still mostly
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Fig.6.14. Summary of simulation results in the form of beam density during the linear (log

scale) and nonlinear (linear scale) growth regimes for the first series of cases with a = 0.1.

Table 6.2. Summary of saturated magnetic field and levels and filamentary growth rates

for the first series of cases with a = 0.1.
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directed in the beam direction. In cases C and D, which consisted of much hotter beam

parameters from the fit discussed in Chapter 5, this interwoven filamentary structure has

virtually disappeared, with filamentation being only slightly observable. This is consistent with

the relatively lower growth rates calculated in Chapter 5, as well as the saturated magnetic field

amplitudes listed in Table 6.2. As one can see from the table, there is minimal difference

between the saturated magnetic field amplitudes in the collisional and the collisionless cases,

which was predicted in the previous section. The higher temperature cases C and D also have a

reduced saturation level as a result of their lower growth rates.

As one looks later in time to the nonlinear saturated regime, one can see how the

individual filaments eventually merge into larger filaments in case A and B. Early in time, the

background plasma return current acts to surround each of the filaments in an effort to screen

the local magnetic field. However, because this screening is not perfect, as time progresses, the

attraction between the filaments becomes strong enough such that the filaments coalesce. This

effect is obviously not as visible in cases C and D because the initial conditions were not

sufficient to induce instability growth to any significant degree in the linear growth regime.

Thus far, we have examined simulations with an initial beam-to-plasma density ratio of

a = nb/np = 0.1 due to higher expected growth rates well above the noise level in simulations

that make growth rate extraction easier and instability features more easily observable.

However, because the guiding cone that is to be inserted into fast ignition targets will allow the

beam electrons to begin transport closer to the core at higher densities along the plasma corona,

it is necessary to examine these same cases with smaller beam-to-plasma density ratios of a <<

0.1. A beam-to-plasma density ratio of a = 0.01 was used for the second series of cases by

simply increasing the background plasma density by an order of magnitude. Because explicit

PIC algorithms require the plasma frequency and Debye length to be resolved and this

restriction becomes expensive at high densities, the problem size was simply reduced such that

the resolution was the same, but the grid dimensions of 40x40 c/cop were retained. Shown in

Fig. 6.15 is a summary of the results for the a = 0.01 series similar to that of the a = 0.1 series

shown in Fig. 6.14. From a comparison of the two figures, one can see that the filamentation

features are dramatically reduced in the a = 0.01 series. One can still see the onset of growth of

the 2D coupled filamentary-two-stream mode in the linear growth regime in the cold
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Fig.6.15. Summary of simulation results in the form of beam density during the linear (log

scale) and nonlinear (linear scale) growth regimes for the series of cases with a = 0.01.

Table 6.3. Summary of saturated magnetic field levels for the series of cases with a = 0.01.
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A 1.02x10 7  0.0024

B 9.92x10 6  0.0051

C 3.30x10 6  0.00000064

D 3.13x10 6 0.000024



temperature cases, A and B, though the filaments are noticeably less dense. This is to be

expected due to the much lower growth rates for these parameters. In addition, the saturated

magnetic field levels are approximately a factor of 3 lower than the a = 0.1 case. As a result,

filament features such as residual attraction and coalescence in the nonlinear regime are much

less observable. The warmer cases, C and D, using the fit parameters reveal virtually no

filamentation at all in the linear growth regime and subsequent nonlinear regime. This is also to

be expected, as the growth rate is dramatically reduced for high temperatures and for a << 0.1,

as was confirmed by results in Chapter 5. Finally, it is worth mentioning that collisions appear

to make little difference in either the filamentation or saturated magnetic field levels for either

set of cases, which is in agreement with previous predictions.

6.5 Effects of Saturated Fields on Particle Orbits

One of the more obvious, yet uninvestigated features of interest for fast ignition is the

orbits of hot electrons within the beam as instabilities evolve through the linear and well into the

nonlinear regime. Although there have been many decades of research devoted to the

investigation of beam instabilities, the effects on individual particle orbits has been more or less

neglected. However, by examining the individual particle orbits, one can determine how the

orbits are modified due to instability generated magnetic fields and how this will subsequently

affect the particle stopping power. Ultimately, the question we would like to answer is how the

effective particle range of the hot electrons changes due to instabilities.

The availability of large PIC codes capable of running on multiple processors has greatly

facilitated the investigation of individual particle orbits. For the work relevant to this thesis, we

made use of a convenient user option in the LSP code mentioned briefly in Chapter 4 that

allows one to inject "tracer particles" within a given simulation at a specified momentum,

position, and time. These tracer particles do not contribute or affect the electromagnetic fields

in the simulation itself, but behave like test particles in that they only "feel" the effects of the

fields. The tracer particles were injected into the simulation cases discussed in the previous

section at the midpoint of the lower edge of the simulation box (z = 1.105jtm, x = 0) and were

tracked throughout the entire simulation. Because the hot electrons will be generated in a

distribution containing a wide range of energies, we chose to inject particles at a relatively high
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energy of Ek = 1 MeV and relatively low energy of Ek = 1 keV. I will only discuss results for

the a = 0.1 series, as these are sufficient for drawing the necessary conclusions of interest for

this investigation.

It should be noted that the boundary conditions that have been specified will induce

some bias into the particle orbits. As was mentioned previously, reflecting boundary conditions

have been used longitudinally due to current problems within the parallel version of the code

that prevent the use of periodic boundary conditions on both edges in parallel. Because these

boundary conditions result in reflections along the longitudinal edges, the bias will be evident

from some of the trajectories that follow. However, we can, in some ways, justify these

boundaries and also learn a great deal from these results even though the conditions are not

ideal. As will be shown, the magnetic fields reach such large values within and around the

filaments that one can assume the particles will eventually get reflected at some point, even

without the imposed reflection conditions at the boundary.

Shown in Fig. 6.16 are the particle orbits for case A, the relatively cold (Tb = 5keV)

collisionless case for the two energies mentioned above and have been plotted using two

different aspect ratios in Fig 6.16(a) and (b). While the large aspect ratio case (1:26) may be

deceiving, it allows one to better observe the modification of the particle orbits by the instability

generated magnetic fields. The second aspect ratio case (1:1) has been added for a better view

of the actual particle range. The beam density and magnetic field have also been included in

Fig 6.16 (c) and (d), respectively, for reference. Because the linear growth regime is rather

short, the magnetic field grows relatively fast and the combination of the saturated field and

subsequent filament coalescence into larger filaments that produce larger magnetic fields has an

almost immediate effect on the particle trajectories. As one can see from Fig.6.16, the tracer

particles are initially dragged into the larger filaments formed in the nonlinear regime from

filament coalescence. The higher energy particles (Ek = 1 MeV) do what one might refer to as

"filament hopping." In other words, while they propagate in the beam direction, they also

become temporarily trapped within the filaments by their magnetic field and rattle around inside

the potential well with a clearly observable transverse motion. Eventually, the particles reach

an opening (absence of a magnetic vortex) where the magnetic field is lower and they can

escape the filament. However, they then become vulnerable to the magnetic field produced by a
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Fig.6.16. Particle orbits of tracer particles injected with energies of Ek = 1 MeV and 1keV

for the collisionless case A (Pb = 0.94; Tb 5keV) plotted with an aspect ratio of 1:26 (a) and

1:1 (b) and the beam density (c) and magnetic field (d) at copt = 500.

nearby filament and are then subsequently dragged into its potential well (hence, the description

"filament hopping"). Unlike the higher energy electrons, the lower energy electrons (Ek =

lkeV) appear to spend more time rattling around within the filaments due to insufficient energy

to escape the magnetic field that confines them. In other words, lower energy particles tend to

do less "filament hopping" than the higher energy particles based on this particular set of

trajectories.

For the purposes of comparison, we also injected identical tracer particles into the same

simulation which included collisions. Shown in Fig. 6.17 is an equivalent plot of the orbits of

the collisional case plotted with different aspect ratios. As one can see from the figure, the
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Fig.6.17. Particle orbits of tracer particles injected with energies of Ek = 1

for the collisional case B (Pb = 0.94; Tb 5keV) plotted with an aspect ratio

1:1 (b) and the beam density (c) and magnetic field (d) at opt = 500.
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of 1:26 (a) and

orbits for the high energy particles (Ek = 1 MeV) are very similar to the high energy particles in

the collisionless case, showing evidence of the same "filament hopping" phenomenon. This is

to be expected, as collisions have little, if any, effect on electrons at this high of an energy.

However, one does see differences in the low energy particle orbits for the collisional case. As

one can see from Fig. 6.17, collisions create more transverse motion for particles of this energy,

enabling them to scatter in and out of the potential well. For cases of quite low energy, such as

Ek = lkeV, this actually appears to enhance filament hopping since particles of this energy are

more likely to be effected by collisions and can scatter in and out of the filament, as opposed to

simply being trapped inside it.
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Fig.6.18. Path-length of particles for a range of energy injected into the collisionless case
(solid line) and the collisional case (dotted line) plotted versus the vertical distance x (a)
and versus time for cases A and B.

One can gain a little more perspective on these trajectories by computing the path-length
as a function of both the vertical distance (x) and time. Shown in Fig. 6.18 are plots of the path-
lengths, X, for both the collisional and collisionless simulations, cases A and B, for the same
relatively cold cases discussed in the previous paragraphs. In Fig. 6.18(a), the plot has been put
on a scale such that the aspect ratio is 1:1 and a slope of 1.0 can be used as a reference. As one
can see from the plot, high energy particles, both in the collisional and collisionless cases, have
a slope that is very near 1.0, which is in agreement with the trajectory plots shown previously
with a 1:1 aspect ratio that suggest that the particles have a relatively straight path. In other
words, what we can deduce from this plot is that the instability generated magnetic fields have
minimal effect on the overall range of high energy particles. On the other hand, as one starts to
look at the lower energy particles, one begins to see a reduction in range. For the 1 keV cases,
you see a factor of 2-3 reduction in range as particles are even seen to go in the reverse direction
of the beam. The collisional enhancement of filament hopping discussed previously can even
be seen from this plot by observing the relatively longer range and path-length of the 1 keV
particle in the collisional simulation compared to the same case in the collisionless simulation.
Also shown in Fig. 6.18(b) is the path-length as a function of time from which one can see more
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Fig.6.19. Particle orbits of tracer particles injected with energies of Ek = 1 MeV and 1keV

for the collisionless case C (Pb = 0.76; Tb = 531keV) plotted with an aspect ratio of 1:26(a)

and 1:1(b) and the beam density(c) and magnetic field(d) at opt = 500.

clearly the overall effect of collisions. For high energy electrons, collisions have virtually no

effect, but for low energy particles, the path-length becomes enhanced, as one would expect. A

similar set of trajectories were also injected into simulation cases C and D using the relatively

hotter fit parameters of (1b = 0.76; Tb = 531 keV). Shown in Fig. 6.19 are similar plots of the

particle trajectories for the collisionless case C for aspect ratios of 1:26 and 1:1. Overall, one

can see from these two plots similar features that were identified in the relatively colder cases,

A and B, the only difference being that they have been reduced to some degree. For example,

one can see in Fig.6.19(a) that the tracer particles are not immediately dragged into the

filaments that coalesce due to the reduced saturated magnetic field level of the instability.

Instead, they travel for a brief time in the initial direction of the beam before any substantial

magnetic field effects occur that can alter their path. In addition, Fig. 6.20(b) indicates that the
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orbits of higher energy particles are clearly straighter than in the cold case due to the reduced

level of the instability generated magnetic field and filamentation. Although there is still some

evidence of particle trapping and transverse motion within the minimal amount of filamentation

that does exist, it is significantly reduced from that of the cold case, which can be seen most

clearly by comparing Figs. 6.16(b) and 6.19(b). Furthermore, the transverse motion that does
occur is on a larger scale due to the increased wavelength of the maximum growing mode at

high temperature.

Like the previous set of cases, we injected a similar set of tracer particles into the
collisional case D for the purposes of comparison. As one can see from Fig.6.20, the features
are similar to the collisionless case C with relatively straighter paths due to reduced

filamentation. Similar information can be gained from the path-length plots of the hot beam

shown in Fig.6.21, as was done for the cold cases, for both the collisional and collisionless
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Fig.6.20. Particle orbits of tracer particles injected with energies of Ek = 3MeV, 1MeV, 100
keV, and 1keV for the collisional case D (Pb = 0.76; Tb 531keV) plotted with an aspect
ratio of 1:27 (a) and 1:1 (b) and the beam density(c) and magnetic field(d) at copt = 500.
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simulations. What is immediately apparent from these plots is the increase in path-length

compared to the cold case. In addition, the high energy particles have slopes very near 1.0,

suggesting that the instability- generated magnetic fields have an insignificant effect on the

particle range, even more so than the cold case discussed previously. However, what is

interesting is the comparison of the lkeV cold cases with the lkeV hot cases with and without

collisions. In the cold cases, the collisional range is greater than the collisionless range due to

the ability of collisions to enhance "filament hopping" by scattering particles out of the potential

well that would have otherwise been confined within the filaments, limiting their overall range.

However, in the hot cases, the collisional range is actually less than the collisionless range. In

these cases, there is less filamentation and lower magnetic fields, which result in less trapping,

so collisions simply result in the usual meandering path for low energy electrons, while the

collisionless trajectories are relatively straight.
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Fig.6.21. Path-length of particles for a range of energy injected into the collisionless case

(solid line) and the collisional case (dotted line) plotted versus the vertical distance x (a)

and versus time for cases C and D.
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6.6 The Filament Hopping Phenomenon

In the previous section, it was shown that the hot electron trajectories for the chosen

equilibrium models are, for the most part, relatively straight and electrons are guided along by

the filaments that are produced. Furthermore, an interesting phenomenon was also observed in

which electrons occasionally hopped between nearby filaments. For those particular

simulations which modeled the longitudinal dimension of the beam and one of its transverse

dimensions, we attributed this filament hopping phenomenon to a random process in which

particles would escape the filament when they happened to reach an opening (absence of a

magnetic vortex) where the magnetic field was lower and then became vulnerable to the

magnetic field produced by a nearby filament. At that point, they are then subsequently dragged

into its potential well. Although this is an accurate explanation for some hopping events, recent

simulations of this beam-plasma equilibrium in the purely transverse direction also revealed

filament hopping. This suggested that it is not a purely longitudinal effect associated with the

wave-particle resonance

X
Periodic bc

V

L = 40c / co

L = 40c / co z

Fig. 6.22. Geometry of a transverse beam-plasma equilibrium simulation in LSP to

illustrate filament hopping.
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along the beam. As a result, we chose to investigate this phenomenon in more detail with

purely transverse simulations.

Shown in Fig. 6.22 is a schematic of the transverse simulation geometry used to model

the same equilibrium beam-plasma problem discussed previously using LSP's explicit PIC

scheme. The primary difference between this simulation and those discussed previously is that

the beam drift is in the y-direction, as opposed to the x-direction. The same 40c/p x 40c/ op
simulation grid has been used in x and z directions with periodic boundary conditions on each

edge. The relatively colder collisionless equilibrium case ofTb = 5keV, 13b = 0.94, and a = nb/np
= 0.1 has been used due to the increased filamentation and more clearly observable filament

hopping events. The usual resolution parameters of 100 particles-per-cell, 20 time-steps per

plasma period, and 31 cells per wavelength were used.

To better understand the mechanism behind the filament hopping phenomenon, we

injected tracer particles with a directed energy of 1 MeV in the beam (y) direction in the center

of the grid at (z = 1.06 pm, x = 1.06 gm). As was mentioned previously, tracer particles do not

contribute or affect the electromagnetic fields in the simulation itself, but behave like test

particles in that they only "feel" the effects of the fields. Shown in Fig. 6.23 are the results for

this particular simulation. In Fig. 6.23(a), the trajectory of a randomly chosen tracer particle

has been plotted in black on the simulation grid with the initialization point highlighted by the

red dot and two filament hops (A and B) highlighted with blue dots. The corresponding beam

density has been plotted in Fig. 6.23(b). As one can see from these two plots, the confined,

overlapping circular lines of the trajectory will overlay exactly onto the filaments plotted in

Fig.6.23(b), which illustrates how the magnetic fields produced by the filaments (shown in

Figs. 6.23(c,d)) act to confine the hot electrons. However, occasionally the particles do exit the

filament, as shown in Fig. 6.23(a) by the hop from the filament at the far right to the one in the

center (labeled as hop A) and then the hop from the filament at the center to the one at the

bottom edge (labeled as hop B).
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Fig.6.23. Trajectory of a 1 MeV tracer particle (a) and the beam density (b) and transverse

magnetic fields (c,d) midway through the simulation at 750 o~pt.

To investigate more precisely what is causing these filament hopping events, it suffices

to compute the electric and magnetic forces acting on this particular tracer particle in the

transverse plane. Shown in Fig. 6.24 are the x and z-direction electric and magnetic forces for

each hopping event around the time that the particle relocates to a different filament. The

electric forces, FEx and FEz, have been computed as -qEx and -qEz, respectively, and the

magnetic forces, FBx and FBz, have been computed as -qvy x Bz and -qvy x Bx, respectively.

For ease of viewing, forces in the x-direction have been plotted as solid lines and those in the z-

direction have been plotted as dashed lines. It was determined from position data that hop A

occurred between 712-714 copt and hop B occurred between 773-775 Cpt. These time frames
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Fig.6.24. Summary of transverse electromagnetic forces acting on a 1 MeV tracer particle

for filament hop A (a) and filament hop B (b) with the time frame of the hop shown in

grey.

have been overlaid in grey in the figure. In general, the magnetic forces acting on the particle

appear to be substantially larger than the electric forces. However, what is immediately obvious

from this figure is that the hopping events occur at points of minimum force. More specifically,

in Fig. 6.24(a), the hop occurs in the z-direction so the forces of interest would be those plotted

as dashed lines. Within the time frame of the grey region, these forces are at a minimum (near

zero). A similar situation exists for hop B in Fig. 6.24(b). This hop occurs in the x-direction so

the forces of interest would be those plotted as solid lines, which are also at a minimum during

the time frame of that the hop occurs.

In sum, we can conclude from these results that the filament hopping phenomenon is a

random effect that can occur while a particle is guided along or confined by filaments. As it

rattles around within the filament, it may find a point in space where the electromagnetic forces

are relatively weak and allow it to escape the filament. However, because the magnetic forces

of surrounding filaments are relatively strong, it becomes vulnerable to these forces and is

quickly pulled into the potential well of a filament nearby where the process continues.
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6.7 Conclusions

In sum, these results allow us to answer the ultimate question as to whether instabilities

are of any concern for fast ignition. The simulations outlined in this section indicate that only

relativistic beams that are born with a relatively low temperature will result in filamentation that

will be of any concern. However, because the fit discussed in Chapter 5 contains a temperature

much higher than this (Tb - 531 keV), filamentation will be virtually insignificant, even when

the hot electrons are born in a region where the beam-to-plasma density ratio may be relatively

large, i.e., a - 0.1. Because this value of a is expected to be dramatically reduced due to the

reduced transport distance created by the cone target, filamentation will be even less of a

concern. Furthermore, the analysis of particle orbits suggests that even for the a = 0.1 case,

instability generated magnetic fields have minimal effect on particle orbits, suggesting that their

path is relatively straight and their range is, for the most part, unaffected by instabilities. So one

can assume from these results that instabilities can be safely neglected for most fast ignition

conditions, especially in the high density region of the plasma corona. This is good news not

only for fast ignition, but also for PIC modelers who would otherwise need to resolve these

instabilities at great computational expense.
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Chapter 7

Summary of Results and Concluding Remarks

Given the importance of relativistic electron transport for the fast ignition scenario, a

complete understanding of the transport issues and possible hindrances is essential for

evaluating the viability of this inertial confinement scheme. The goal of this thesis was to

address these issues by investigating the three main phases of the electron transport process: hot

electron generation in the cone and the extent of confinement along the cone surface, linear

instability growth of the counter-streaming beam and plasma return current in the outer plasma

corona, and the nonlinear saturated state of the counter-streaming beam and plasma return

current in the inner plasma corona. Ultimately, the question we are interested in answering is

how transport issues such as surface confinement and beam instabilities affect the efficiency of

hot electron transport to the compressed fuel core.

Central to recent fast ignition target designs has been an embedded guiding cone into the

usual spherical target, which has been included with the hope that it will keep a corridor open

that is relatively free of coronal plasma during the fuel implosion and to also minimize the beam
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propagation distance to avoid subsequent transport issues. Early work showed that this

embedded cone also had the advantage that it could help to confine and guide electrons along its

inner wall. However, the degree of this confinement and guiding has been a subject of debate in

recent years as a result of a number of inconsistencies that have arisen in experimental and

analytical results. Given the importance of this issue for target design purposes, we performed

both integrated-explicit and hybrid-implicit PIC simulations of cone and slab geometries with

laser parameters similar to early published results to investigate these inconsistencies. In sum,

we have found that substantially fewer hot electrons (8-12%) are guided along the cone wall

than what has been previously reported (50-100%), suggesting that surface confinement is only

a minor effect. In doing so, we were able to link this discrepancy to the idea of "escaping

electrons," which refers to significant differences in the measured (escaping) hot electron

spectrum with respect to the original birth spectrum due to the generation of strong electrostatic

self-fields. By characterizing the escaping distribution, rather than the distribution along the

actual surface, we were able to achieve better agreement (-35%) with the experimental

measurements of surface escape electrons. However, we did discover from simulations of

different target geometries that the measured escape distribution outside of the target depends

on the target shape, rather than the initial birth distribution. In fact, we found the surface

fraction of escape electrons to be independent of the angular orientation of the initial birth

distribution from injecting electrons isotropically within the target, along the target surface, and

normal to the target surface. In sum, what these results suggest is that hot electron transport

along the cone surface is only a minor effect and that the laser incidence angle is a minimal

concern for design considerations. Furthermore, this result is significant for the characterization

of experimental measurements in that the distribution that is measured is down-shifted in energy

and significantly harder than the initial birth distribution.

During the second phase of hot electron transport in the outer plasma corona, the hot

electron beam draws a return plasma current that establishes an approximately charge and

current neutral equilibrium. During this equilibrium phase, the counter-streaming nature of this

beam-plasma system makes it vulnerable to a number of micro-instabilities, namely, the two-

stream, Weibel, and filamentary instabilities that inhibit transport. These instabilities will evolve

through a linear growth phase, followed by a nonlinear saturated state. Because these states are

intimately coupled, a thorough understanding of the linear growth regime was needed to
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investigate the nonlinear regime. The goal of this thesis was to investigate the combined effects

of the shape of the initial equilibrium distribution, as well as collisions, on these phases, neither

of which have been examined in great detail. The specific form of the beam distribution has, for

the most part, eluded researchers up to this time. Theoretical distributions whose temperature

and drift parameters were loosely tied to those measured from experiments have been used for

instability growth calculations, as well as computational modeling. However, this study has

demonstrated that the structure of the distribution, as well as collisions, can strongly affect

instability growth. We chose to examine how the instability growth rates depend on various

assumed initial equilibrium distributions, each with varying degrees of analytical difficulty: the

relativistic waterbag, the relativistic Maxwellian (Jittner), and the low-temperature

approximation to the relativistic Maxwellian (saddle-point approx.). We compared our results

with a more physically based distribution obtained by fitting data from a 2D explicit PIC

simulation which appeared to be best modeled with a Jittner distribution. For all distributions

of interest, collisions were found to have the ability to both suppress and enhance growth for the

filamentary instability, while they only suppress growth for the two-stream instability. For the

filamentary instability, collisions were found to create an unusual "kink" in the growth rate that

forces the normally purely growing filamentary instability to transition to a growing/oscillating

state, with the oscillation frequency increasing with K. For wave numbers less than the location

of the kink, collisions appear to enhance growth, while for wave numbers greater than the

location of the kink, collisions damp growth. Although collisions alone do not appear to be

capable of damping the filamentary instability, an increase in beam temperature can achieve

damping. Ultimately, what we wished to acquire from these calculations was the instability

growth rates of the Jiittner distribution fit from the 2D explicit PIC simulation. Overall, we

found that maximum growth appears to be dominated by the filamentary instability with finite

collision frequency at low K (K < 1) and by the two-stream instability in the collisionless limit

at high K (K > 1). However, the growth rates of both were, in general, very low due to the high

temperature of the fit and were found to be dramatically reduced as the beam-to-plasma density

ratio, at = nb/np, is reduced. The implications of this result are that the micro-scale instabilities

in this regime do not need to be resolved for fast ignition considerations, which is very

appealing for modelers utilizing the popular hybrid implicit schemes that are becoming more

widely available. Finally, it should be noted that the LSP code demonstrated good agreement
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with the growth rates calculated from analytical theory, giving an important vote of confidence

for the code's extrapolation into the nonlinear regime.

The final phase of electron transport is, in many ways, the most important for fast

ignition because it is this phase that will dictate how efficiently the hot electrons will transport

the laser energy to the dense fuel core for ignition. Because the instability generated magnetic

fields grow at a relatively rapid rate of the order of the plasma frequency before they finally

saturate, they will have a significant influence on beam transport. It was determined from

previous work that the process of magnetic trapping is responsible for saturating the magnetic

fields following the linear growth stage. With this in mind, the goal of this work was to

understand the effects of the parameters of the initial beam-plasma state (i.e., temperature, drift,

background density) and collisions on magnetic trapping and the ensuing saturated magnetic

field amplitude. In sum, our results allowed us to answer the ultimate question as to whether

instabilities are of any concern for fast ignition. The simulations indicated that only relativistic

beams that are born with a relatively low temperature will result in filamentation and magnetic

field amplitudes that will be of any concern. Because the fit parameters taken from an explicit

PIC simulation of the laser plasma interaction predict a temperature much higher than this (Tb -

531 keV), filamentation will be virtually insignificant, even when the hot electrons are born in a

region where the beam-to-plasma density ratio may be relatively large, i.e., a - 0.1. Because

this value of ca is expected to be dramatically reduced due to the reduced transport distance

created by the cone target, filamentation will be even less of a concern. Furthermore, the

analysis of particle orbits suggested that even for the a - 0.1 case, instability generated

magnetic fields have minimal effect on particle orbits, suggesting that their path is relatively

straight and their range is, for the most part, unaffected by instabilities. So we can assume from

our results that instabilities can be safely neglected for fast ignition conditions, especially in the

high density region of the plasma corona. This is good news not only for fast ignition, but also

for PIC modelers who would otherwise need to resolve these instabilities at great computational

expense.

Based on these results, PIC modelers have essentially been given the vote of confidence

to continue using the popular hybrid-implicit PIC scheme, such as that utilized by LSP and is

becoming more widely available, to model the fast ignition electron transport problem. Because

this scheme utilizes larger temporal and spatial resolution, colder, more dense plasmas can be
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modeled without great computational expense. In addition, the LSP code is continually being

upgraded, the most recent improvements being the new collision model and a laser package that

is still in the testing stages. With these capabilities, future work could include using LSP to

perform fully-integrated modeling work of the laser-plasma interaction and hot electron

transport to the high-density compressed fuel core.
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Appendix A

Multi-dimensional Electromagnetic Explicit Particle-In-Cell
Algorithm

The explicit algorithm utilized by LSP, also known as the leap-frog algorithm, consists

of a 3D-3V electromagnetic scheme developed by Langdon and Lasinski for use in a code

known as Zohar [75]. For simplicity, the 2 1/2-D scheme will be outlined in the paragraphs that

follow. To begin, the electromagnetic fields are advanced using two of the standard Maxwell's

equations

aB
= -cV x E (A.1)at

ct = cV x B- 4J (A.2)

The final two equations are not directly used in the advance but are satisfied through initial

condition, i.e.,

V * E = 4rp (A.3)

V B=O. (A.4)

It is conventional for this scheme to separate the field components into independent modes

consisting of the transverse electric mode, with components Ez, Bx, and By, and whose equations

are expressed as

aBx  aEZ
at ay (A.5)

aB aE 
(A.6)at ax (A.6)
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-_at a y
at ax ay

(A.7)

and the transverse magnetic mode, with components Bz, Ex, and Ey, whose equations are

expressed as

at ax y

aEx  aBz
Jxat ay

_Ey_ _ a a Bx
at ax ay

(A.8)

(A.9)

(A.10)

Finally, these transverse mode equations can be finite-differenced to form centered difference

equations in both the time and space domain; namely,

TM mode:

B
n +1/ 2 _B

n-1 / 2

Zi,j i,j
E" -E" E" -E"

Yi+1/2,j i-/2,j ij+ 1/2 i,j-1 / /2-~+

E"n+ - E" B n+1/2 _ Bn+/2
x j+ / 2 j+ 1/2  

i,j+l zi,

At A x, j+l/2

E n+  E" B n +
1/

2  B n + 1
/ 2

Yi+l/ 2,j Xi+/2,j Zi+1,j Zi,j J
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TE mode:

Bn+1/2  -Bn -1/2  E" -E n

Xi+1/ 2,j+1 / 2 Xi+ / 2,j+l / 2 Zi+l / 2,j i-1 / 2,i

At Ay (A.14)

Bn+l/2 -Bn-1/2 E "  -E
n

Si,j yi,j Zi+l/2,j Zi-1/2,j
(A.15)At Ax

E"n+ -E Bn+l2 - Bn+112  Bn+l/2 - Bn+1/2 _ Bn+/2
i+ 1/ 2,j i+/ 2,j i,j+ i,j Y i i+/ 2,j+1/ 2  i+1/ 2,j+/ 2 i- 1/2,j+1/ 2

At Ax Ay- Jzi,,l2, (A.16)

The charge and current density are interpolated from the grid using particle positions and

velocities with the common linear area weighting function described in Chapter 3, i.e.,

Pn+l = 1 qs S( - Xn+l) (A.17)
s p

jn+l/2 =/"2s-' I n+l /2(s( j-n)+S2 SGj -  n))  (A.18)2

wherej refers to the grid location, S refers to the shape factor or weighting function that relates

the particle location to the spatial grid at X, and these quantities are summed over each of the

particles, p, for a given species, s.

The final step consists of pushing the particles with fields interpolated from the grid.

The scheme commonly used for advancing particles is referred to as the Boris Pusher [76]. The

basic idea consists of first finite-differencing the relativistic equation of motion, i.e.,
n+1/2 n-1/2 q nE" + pn+1/2 n-1/2 n= E n x B (A.19)

At m c 2here

where
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B Bn+1/ 2 _Bn-1/2
B"

The novelty of this scheme relies on splitting the momentum update into two electrostatic

accelerations and an intermediate magnetic rotation. The electrostatic accelerations are defined

by

n-2 At q E
S= pn-1/2 + E"

2m (A.21)

n+112 + +At q E
2m

())2 +(p-) 2 = 0,

(A.22)

(A.23)

and after substitution, the full finite difference equation becomes

p -P q P -P- q- xB.
At mc 2y"

+

(A.24)

p'xs

p'xt

Fig. A.1. Vector diagram of variables used for the Boris pusher magnetic rotation [77].
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The basic idea behind this method consists of first computing p- from the old momentum and

half the electric impulse. Then equation A.24 can be used to perform the rotation necessary for

computing p'. A common procedure for performing this rotation consists of using the vector

diagram outlined above in Fig.A.1. As one can see from the diagram, an intermediate variable

defined as p' is first computed, i.e.,

p' = p + p xt (A.25)

where t is the angle of rotation defined as

qBAt 0
t = - tan-. (A.26)

2nc 2

With p , one can then compute p + from

p+ = - +p' x s, (A.27)

where s is defined as

2t 0 0s - t2 -= 2sin- cos -. (A.28)
1+t 2  2 2

Like all simulation algorithms, the explicit scheme is subject to nonphysical numerical

instabilities that can are attributed to the use of finite differenced equations, rather than the full

continuous partial differential equations. One can determine the numerical stability of the

scheme by examining simple electromagnetic plane waves in vacuum [37]. For simplicity, the

details of this calculation will be omitted, but the dispersion relation for the finite difference

scheme in 2D leads to a well-known criteria known as the Courant condition[78] that is required

for numerical stability, i.e.,
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1 1 1
At2 A 2 > (A.29)

In essence, the Courant condition states that explicit schemes are limited to small time steps in

order to ensure numerical stability [78].
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Appendix B

Multi-dimensional Electromagnetic Implicit Particle-In-Cell

Algorithm

LSP utilizes a 3D-3V direct implicit algorithm originally developed by Hewett and

Langdon [79]. This scheme comprises the following finite-differenced field equations:

E+,, - E, = cAtV x Bn+1/2 - 4n+ 1/12 (A.30)

Bn+1/ 2 - Bn- 1/2
= -c tV X E (A.31)

Bn+, - Bn+1 /2 -- cAtV x +1 (A.32)

where

(A.33)

Like the explicit scheme, the charge and current density source terms can be expressed in terms

of the particle weighting functions on the grid as

,+1 = , S(I, - , (A.34)s D

(A.35)
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En= E,+ n

jn+1/2 Y I q n+1 2 (S(Xj - 'n,) + S(G, - n) )
s 2 p



wherej refers to the grid location, S refers to the shape factor or weighting function that relates

the particle location to the spatial grid at X, and these quantities are summed over each of the

particles, p, for a given species, s.

The particles are advanced by finite-differencing the equation of motion as

,n+ = Xn, + At, (A.36)

Vn+1/ 2  n-1/2 n +- n
-

1  2 + n- 1 2 )x n (A.37)
2 mc

where

a 2 = n- m + n+I (,) (A.38)

and n refers to a specified time step.

The essence of the direct implicit method, as explained in Chapter 3, is to first push the

particles assuming that the advanced electric field is zero, i.e., E,+I (,,,+) = 0. The advanced

particle positions and velocities derived from this initial assumption are denoted with a tilde ()

and are given as

Fx q -

V= Vn-1i 2 + At[n +1  (+ Vn-1/2 M n n) (A.39)

= 3x +A -. (A.40)

The source terms, ,3 and J, as well as the implicit susceptibility and magnetization tensors, are

then recomputed at this new tilde level using the corresponding particle positions and velocities

at this level, Y and V . The new electric field term, Ei,, remains to be determined and must be

done iteratively using the ADI (alternating direct implicit) method that involves a large matrix
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inversion. With the new electric field, the source terms can be recomputed at the advanced time

step, leading to

Pn+1 =P - V- En+l (A.41)

1
in+1/2 = J +- En+1 - cVX n+l, (A.42)At

where the implicit susceptibility tensor, ,, and the magnetization tensor, f, are derived

respectively as

Z(X,) = 4m p, (j)[[ + ,S (j)] (A.43)

q 2 At 2

S 8m~ cJ+ (X ) x [I + Rs (k) (A.44)

In these expressions, I refers to the identity matrix and R is a rotation created by the magnetic

field. The details for these derivations have been omitted for brevity but can be found in

reference [79]. Finally, the particles are then advanced a second time with correction terms,
represented by

tm n+ (X') + x Imc (n (A.45)2 Im mc

in+l =Y + At& (A.46)

Vn+1/2 = (A.47)

It should be noted that the original developers of LSP chose to neglect the final magnetization

term in the advanced current density, i.e.,
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- cV x " E,+n, (A.48)

with the justification that it becomes small in high density regimes. However, in common

simulations where this claim is not valid, whether it be in simple simulations or at plasma-

vacuum boundaries, this can lead to appreciable error with spuriously large magnetic fields. A

fix for this problem has yet to be implemented, but it is currently under investigation [80].
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Appendix C

Loading of Particle Momentum Distributions

Theoretical distributions were loaded into the LSP code using a technique commonly

referred to as the method of univariate inversion [81 ]. In order to apply this technique, the three

dimensional distribution must either possess some type of symmetry and/or must be separable

such that it can be reduced to a function of a single variable. Because of this restriction, it is

convenient to first load distributions into the drifting frame of the relativistic beam, where the

distributions are predominantly symmetric in one or more dimensions. The normalized

momentum in the beam frame will be defined as U-' and the normalized momentum distribution

function in this frame as F('). The basic idea behind this loading technique involves sampling

from a given distribution by using its cumulative distribution function. By definition, the

cumulative distribution function can be expressed as

P(u') = fdf'F('), (A.49)
0

where P(u') is the probability that a particle has a momentum between 0 and u'. Because this

probability ranges between [0,1), one can first sample from a uniformly distributed distribution

between [0,1) to randomly select a u'. This u' can then be reinserted into equation A.49 as

ur = d'F( '). (A.50)
0

This equation can then be solved for u' analytically or via interpolation on a grid ranging from 0

to some maximum value set for U' [82].

A.C.1 Saddle Point Approximation

The normalized distribution of the saddle point approximation in the drift frame of the

beam takes the rather simple form
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1 r,2 ,,2 ,

Fb(u) =1 Tb
2 2y

Fb = 3/ 2 e (A.51)
7b 3 C3 '(27/ b Tb*Y

Not only is this form separable, but it also takes a form similar to the non-relativistic

Maxwellian, which has a cumulative distribution function that is easily computable analytically.

The Cartesian components in the beam frame are then expressed as

u = 2 b InvErf[2u, x -1] (A.52)

u = 2ybT*InvErf[u', -1] (A.53)

u = 2yTbInvErf 2u,.z -1 (A.54)

where ur x u ,y and u' are random numbers between [0,1) sampled from a uniform

distribution and InvErf[] is the standard inverse error function. Finally, transforming to the

laboratory frame, these components become

u = 2bTInvErf2u x -1] (A.55)

S= 2ybT InvErf u, -1] (A.56)

UZ = bb + 2yT InvErf +2uz -1]. (A.57)

A.C.2 Ji5ttner Distribution

The normalized distribution of the Jiittner distribution in the drift frame of the beam

takes the form

1 -1+,,

Fb (u') 4= 4 c 2 YbTbK 2 (1 bT (A.5 8)
4nr4 2TbK2 blyT)
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where u' = , + U 2 is the radial momentum. Because of the spherical symmetry in this

frame, one can write the cumulative distribution function equivalent to equation A.50 as

, K d i 'i ' z e rbr
b (A.59)=7bTb K 2 (1 / bT or

An analytical solution to this integral is rather difficult so it suffices to compute it numerically

on a grid for interpolation. Ideally, the integral would extend from [0,oo); however, to provide

for better efficiency, given the large number of particles to be loaded, one can choose a

maximum cutoff value for the grid. There are a number of ways this cutoff can be chosen, but

one simple way consists of first locating the peak value of the radial distribution, which occurs

at

Up = V27 Tb + 27b Tb* T+y b (A.60)

Using the value of the radial distribution at the peak, F(u'), one can then define the cutoff by

the criteria

F(u' a) = 10 -P F(u'), (A.61)

where p is a specified tolerance, such as 3. So in sum, the distribution can be sampled by

choosing a random number between [0,1), interpolating on the grid of the integral of the radial

distribution between [0,Umax), and finally using the trapezoidal rule to get a refined value for the

radial momentum in the beam frame, u'. The orthogonal and azimuthal angles are sampled

similarly by first sampling from a uniform distribution from [0,1) to get u , and u'

However, a scaling must then be applied to ensure that there is uniform distribution over a three

dimensional sphere, i.e.,

u o = Cos (2ur, -1) (A.62)

u', = 2nu~ (A.63)

Finally, the beam frame momentum components can be re-expressed in Cartesian coordinates as

u? = UP sin u cos u, (A.64)
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u = u sin u' sin uy r 0 (0 (A.65)

Uz = Ur COS U , (A.66)

and using the Lorentz transformation, the laboratory frame components are expressed as

Ux = Ux (A.6

Uy = Uy (A.6

Uz = Yb(U +b I+U x +Uy ±U z ). (A.6

7)

8)

9)

A.C.3 Relativistic WaterBag Distribution

The normalized distribution of the relativistic waterbag distribution in the drift frame of

the beam takes the form

Fb b 2 3/2 3 [y ]
4;27/b(' 2 -W1)3 /2 m 3c' (A.70)

where U'2 + U,2  P2  3 =(1 /7Tb)where y'= 1+u 2 ± 2 U2 and '=5bTb K3 (1b * + 1 . One can greatly simplify the

loading for this distribution function by recognizing that the in three dimensions, the

distribution represents an ellipsoid with transverse symmetry in the x and z directions.

Furthermore, the reduced 1D distribution function in the z-direction can be re-expressed as

second degree polynomial, i.e.,

F(uz) = const * , Uz < z Uzr (A.71)
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where uim is defined as the parabolic boundary of the distribution defined as

2

Ul = 2 + 2pb z 2- (A.72)
Yb

which extends from the left edge at

z = 7bfb- Yb (A.73)

and to the right edge at

Uzr = YbtbV' b 2 - (A.74)

So given these simplifications, one can first load the momentum in the z-direction and then load

the transverse momenta in the x- and y-directions within a transverse disk.

To formulate the cumulative distribution function in the z-direction, a function must be

derived that can be mapped to a uniformly distributed random number between [0,1). Because

of the parabolic fall off in the z-direction, one can derive the function

3 -2F( = 4 u (A.75)

where U- is the scaled momentum

Uz -(Uzr -uzI)/2
Uiz (Uzr -u)/2 (A.76)

and

1digzF) = 1. (A.77)
-1

Finally, the cumulative distribution function can be expressed as

Urz if F(iz ), (A.78)
-1

where ur z is a random number between [0,1). This expression results in the 3 rd degree

polynomial

u - 3uz + 2(2ui, -1) = 0, (A.79)
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which has only one physical root for u,. This root can be expressed in terms of an angular

variables, i.e.,

uz = - cos(( / 3) + 3 sin( / 3),

S- ArcTan - p, C 1j

(A.80)

(A.81)

S- 22z -1. (A.82)

With the z-direction momentum loaded, one can then load the x- and y-direction

momenta uniformly into a disk with

U +U < U n1 (A.83)

After choosing random numbers ur,r and ir,o from uniformly distributed distributions between

[0,1), the x- and y-direction momenta can then be expressed as

ux = um rr cos(2zar,O) (A.84)

uy = ulm ir,r sin(27a2r,) (A.85)

2

ULm = j2 + 2flbz -U -1.
Yb

(A.86)
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