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ABSTRACT

Acceleration No.ise measures the disutility associated with successive
decelerations and accelerations in a signalized environment. It provides
an indication of the smoothness of traffic flow. As such it constitutes a
generalization of the number-of-stops concept and is suitable to replace
it as an additive measure-of-effectiveness for designing and evaluating

the operation of traffic control systems.

This report develops models for calculating the acceleration noise in-
curred by a platoon of vehicles travelling along a signal-controlled traffic
link. Several flow patterns are analyzed: discrete arrivals, uniform-
continuous arrivals and variable-continuous arrivals. A computer program
and test results are described. The models can be easily extended for use

in signal-controlled networks.



Table of Contents

1. Introduction and Definition of Acceleration Noise

2. Acceleration Noise of a Single Vehicle at a
Signalized Intersection

3. Acceleration Noise with Shock Wave Assumptions

4. AN - Additional Assumptions

5. Computer Model and Program to Calculate
Acceleration Noise for Continuous Flow Patterns

Appendix A: The Computer Program

Appendix B: Sample Results

References

18

26

33

36

37



1. INTRODUCTION AND DEFINITION OF ACCELERATION NOISE (AN)

Motorists on a transportation facility very often evaluate the facility
by the speed at which they can travel and by the uniformity of the speed.
Travelers in a vehicle will feel 'most comfortable if the vehicle is driven at
a uniform speed. When the traffic on a highway is very light, a driver
generally attempts, consciously or unconsciously, to maintain a rather
uniform speéd, but he never quite succeeds. He has to accelerate and
decelerate occasionally instead. The distribution of his accelerations
(deceleration is minus acceleration) essentially follows a normal distribu-
tion (see, e.g., Ref, 1).

From recent research results (1-5), the acceleration noise (AN) has
proved to be a possible measurement for the smoothness or the quality of
traffic flow. AN is defined as the standard deviation of the accelerations.
It can be considered as the disturbance of the vehicle's speed from a uniform
s;eed.

Mathematically, the standard deviation of a set of n numbers

XI’XZ’ .o ,Xn is denoted by S and is defined as:

where X denotes the mean of the X's.
If a(ti) denotes the acceleration of a vehicle at time ti’ the number

of t's or the total time period is equal to



and the average acceleration of the vehicle for a trip-time T is

-
| .
Qave. — —-_r- S At dt

o

Thus, mathematicaliy, the acceleration noise ¢ can be written as:

‘ T 2 %
g = {.—T— 50 (a2t~ a,, ) dt}

2

T
2
and o = —_:Ti [a(f;)“ aave.] at

It can be proved that

2

T 2 2
] .
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and since 3, ve approaches zero for any prolonged journey, the AN is

normally calculated by

* A t ldt
— a(ty)

where T is modified to denote the running time only. The reason is that if a

vehicle is stopped for some part of the journey, the AN (a time average) will




be arbitrarily smaller if T includes the entire period (1, 3, 4).

The accelerations of a vehicle can be measured directly by an
accelerometer or approximated from a speed-time trajectory of the vehicle's
trip (3 - 5).

AN measures the disutility associated with successive decelerations
and accelerations in a signalized environment. As such it constitutes a
generalization of the number-of-stops concept and is intended to replace it
as an additive measure-of-effectiveness for signal-controlled traffic net-
works. It will be used primarily in conjunction with delay times (see
Ref. (6 - 8)). The present report develops models for calculating the AN
incurred by a platoon of vehicles‘traveling along a signalized traffic link.
Several flow patterns are analyzed: discretev arrivals, uniform--continuous
arri;/als and variable--continuous arrivals. The models can be easily
extended for use in networks.,

2. ACCELERATION NOISE OF A SINGLE VEHICLE AT A SIGNALIZED
INTERSE CTION

Let us first consider a single vehicle arriving at a signalized inter-
section.
Let
c = cycle length (sec.)
g = effective green time (sec.)
r = effective red time (sec.)

c = g+r




If we denote the beginning'of a red period by t = -r, the beginning of
the following green period will be t = 0, and the end of this cycle will be
t = +g.

Assuming that:

2
deceleration rate (ft/sec. )

d =
. 2
a = acceleration rate (ft/sec.’)
v, = normal driving speed (ft/sec.)

We assume that the vehicle approaches the intersection at a constant
speed v, If the signal aspect is red the vehicle decelerates at a constant
rate d to a full stop. As the signal turns green, it accelerates to the driving

" speed v, at a constant rate a.

Let
td = cieceleration time (sec.)
ta. = acceleration time (sec.)
ts = stopped time (sec.)
T = t_ .+t

d a
Referring to Fig. 2.1 we have

td = va/d

ta = va/a

and the acceleration noise ¢ is:

& — {;‘__f [zut)Jon—}Jé
={ ¥ (4"t + 21 j}%
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If we have a platoon of cars arriving at the intersection, some cars
have to come to a full stop, others just slow down and speed up again.
Fig. 2.2(a) shows the trajectories of a few cars arriving at an intersection.
As car Y approaches the intersection, the signal is about to turn green,
so Y slows down (assumed that the same deceleration rate d applies) to a
slower speed Vb and accelerates back to its norm;l speed Va (with the same
acceleration rate a as before).

3. ACCELERATION NOISE WITH SHOCK WAVE ASSUMPTIONS

Based on Lighthill and Whitham's theory (9), when a platoon of cars
is stopped at a signalized intersection, a shock wave (deceleration shock
wave) starts traveling backwards (line AB in Fig. 3.1) at a speed Cd (slope
of line AB). When the signal turns green, the vehicles start accelerating,
and acceleration shock waves are formed and travel forward.

Let us assume that all vehicles come to an instantaneous stop as they
enter line AB, and accelerate instantaneously to their normal speed at line
OB. As long as there is a queue they depart at the saturation flow rate.
Vehicles that arrive after time tB pass through without stopping. In this
simplified case the AN is directly proportional to the number of stops,
because we only consider cars that stop at the.int;ersection.

If we have a uniform arrival flow, and let

q arrival flow rate (veh/sec.)

a

P

duration of the arriving platoon (sec.)
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s = saturation flow rate (veh/sec.)
h, = headway at jam (when all cars wait at the

signal) (ft.)

v = normal driving speed of the platoon (ft/sec.)

4_%*.{

b— P —

The slope of line AB (Cd) is equal to -hjqa. The distance from any
point on AB to the stop line is the cumulative queue length at the intersection
at any time t. The slope of line OB (Ca) is equal to -hjs .

Line AB goes through point A (-r,0) and line OB goes through point

0(0,0), so they can be represented as: Line AB . X = »ﬂ)‘—?a (t+r) =Ch(t+r)
¢ Line OB : j(:--’,)- st = C3t
Point B is calculated as (-_i.r, Qld )
G-G Ca-Cy
or B(Clr,CZr), where
G =L ¢+ and
Ca-C4
Ca Cd
C;, = ——— =)
2 Ca-Cd

If the first car of the platoon arrives at the stop line at time T,

where -F < T €0 , then
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Line AB: x=<-h (t-7T>=Q (t-7T)
Line OB: X = ‘R) st = (Gt

int ] __Cd e, G
Point B becomes ( Ca o Ci ’ 2 - Ca ),

or B(-CIT, -C,7T ), where T is a negative value.

2

Casel. If p<g

: 1~ L :
1. Andif Pp< r(C+ =) (See Fig. 3.2(a))

(i.e., last car in the platoon passes through point B, the

c
+1-—2))
v

a

relation between p and r can be shown as p = r(C1

s
(a) then ~F ST S=PA+1- 5 (Fig. 3.2(b) :

P
Number of stops = } Za at = PZa

C
(b) ~p(C+i — T‘:><”t<° (Fig. 3.2(c)) :
~C

T
Number of stops = 5 t,dt = - Za (C +1DOT
(o]

(c) o £ T € (}-P)(Fig. 3.2(d)) :
Number of stops = 0 (because p <g)

(d) T> ($-P> (Fig. 3.2(e)) ¢
Some cars have to stop at the signal and wait until the next
green. If we let p' =T -(g-p) be the portion of the cars

that have to stop at the next red, then p' = 0 through p and

7/
P .
Number of stops = 50 Zad'f = Za' P, wherep' =0~p
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The resulting number of stops for this case are shown in Fig.

3.3(a).
. C-
2. Andif P> r¢( C:+!-—7a)

the calculations are similar and the results are shown in Fig. 3.3(b).

Case II, Whenp=g

Calculations are similar, and the resulting relations are shown
in Fig. 3.4.

Case III. Whenp>g

Results for the two cases (a) P > r(C,+ 1~ —i-?: and
a

b) P<cr(C+l- % ) are shown in Fig. 3.5.

We are interested in developing the relationships between the number
of stops and the offset between the two adjacent signalized intersections. A
relationship between the offset © and the arrival time of the first car in
platoon, T, can be developed as shown in Fig. 3.6.

Let i, j be the two adjacent intersections. QU is the offset from
itoj, 9)'; is the offset in the other direction. Let TTIME be the travel
time between i and j for a vehicle traveling at a constant speed L If a
car leaves intersection i at the beginning of green, it arrives at the down-

stream intersection stop line at time T. (Tis a time relative to the down-

stream zero time point at the beginning of its green). So we have

G; j + T TTIME

and e

"

i = TTIME - T
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Graphically, the horizontal axes of the figures in the previous

sections can be transformed to represent offsets:

- 0 +3
— t { T
I ! |
( |
| | |
f | I
‘rrnmerrr TTIME ThME-¢
|
i
_l
l,:.g ¢ (cycle) ;!

All the relations between the number of stops and T can be changed
to relationships between number of stops and the offset 9,')' . As an example,
Fig. 3.3a is changed to a relation shown in Fig. 3.7.

4. AN - Additional Assumptions

In order to take a more realistic account of the AN of a platoon of
vehicles, we developed a refined model based on additional assumptions.
We assume that only cars that joiﬁ the queue at the stop line while the signal
is red come to a full stop and incur a maximum amount of AN. Cars that

approach the traffic signal after the light turns green will not join the
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standing queue. Instead, they will slow down for a while and accelerate
back to their normal speed when they have an unimpeded right-of-way for
passing through the intersection. In this manner, these cars will incur
only a fraction of the maximum AN that a car that is stopped incurs. Some
of the cars arriving later during the green phase may pass without having
to change their speed.

Graphically, referring to Fig. 4.1(a), we draw a vertical line OO’
from the stop line at time t = 0. We assume that thevca.rs that are supposed
to arrive at the deceleration-wave line AB at time t > 0 do not stop, but

instead, they slow down to another constant speed v, , and start accelerating

b

back to their normal speed v at the acceleration wave line OB. So in

Fig. 4.1(a), all cars X_  through Xn have to stop, while car Yl’ (with

1

tc' >0, does not. Y1 changes to the lower speed v. att = 0 (point E) and

b

travels at that speed v, until it joins the acceleration line OB at point F,

b
then it starts accelerating back to its normal speed v, The slope of EF

represents the speed v Cars sach as Z, and Z_ can pass through without

b’ 1 2
any change in speed.

We assume that the speéd of the cars that do stop, becomes zero at
the deceleration line AB, and they remain in this state until the accelera-
tion line OB, when they start accelerating. For the cars that only slow
down for a while and speed up again, the speed changes occur at line t = 0
and OB (see Fig. 4.1(b)). The time-distance diagrams in this chapter show

only the simplified trajectories of the car movements. The acceleration

and deceleration processes are not shown.
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The AN of a discrete arrival flow and a uniform arrival flow are
considered in this chapter. A model to calculate the AN for a random
arrival flow is developed in the next chapter.

4,1, Discrete Arrivals

As in Fig. 4.1, for cars that stop (i.e., cars X1 through Xn) the
deceleration time is td = Va/d and the acceleration time is ta = va/a. dis
a constant deceleration rate and a is a constant acceleration rate. For

each one of these cars we have the following AN relation:

2 (T z ) 2 x
= — (t 4t —m —— d + At
O = 5 JO [a )] t ":Aﬂ"ta [ ‘EJ a]

For the cars that only slow down and accelerate back to their normal

speed, (such as cars YI’YZ’ and Y3), the AN is calculated as follows:
Line AB: X = Ca (t-T)
Line OO': t =0

Solving lines AB and OO!' for point C', we get Xc' = -Cd’t and

tc' = 0. Line C' M goes through point C' and has a slope v, Line E N

goes through point (tct-i- h, xc,),i.e. , point (h, -Cd’t' ), where h is the

arrival headway (sec.) and has slope v so that.

x+ CaT

Line EN: + — }

::\/a
ie., X=yt-VWh- QT

Solving lines OO' and EN for point E, we get x_ = v, h -C.Tand

E d
= . . : t - Va ’\
tE 0. Solving lines AB and EN for point C', we get tc, = —-———Va — G and



Wb o

Line C'F: X:—Xc/: Ca ( Vs - Ca
G/ Vah
Solving lines C'F and OB for point F, we get t_. = — ( Mah o x )
F G Va- Gy
- Vafn - T
and Xep = Ca ( Va-Ca )
Line EF X - Xg X - X
t - tg te - 1
and the slope of line EF, which is vb for car Yl, is
b_ tE'"tF - Cd(‘/a%-'/a,t"'v,,{’r)
If we let (#d)Yl denote the deceleration time of car Y1 and (l:a)Yl
denote its acceleration time, then from the relationship VpE VY, - d (td)Y
1
and Va = vb + a (ta)Yl we obtain
Va — V,
|
— Va - Vi
('ta )Y| - p=.

respectively, and the AN of Y1 can be represented by:

2 { 2 P13
o, = dr(ty) + 2> (g0, ]
Y' (.L_A )\r' + (-ta )‘n E A Y' a Yl

For car YZ’ the calculations are similar to that for Yl. Since Y2 comes h

seconds later than Yl’ we simply replace h by 2h in the above derivations

and obtain vy for Y and finally G

2
2 by o &)y v -

We do the same calculations for the cars that follow until the time t , >tB
c

when all cars can pass through without changing their speed, and therefore,

do not incur any AN.
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4,2 Uniform Arrivals

- We assume a uniform arrival flow pattern with magnitude 9, and

duration p. We divide the platoon length into N intervals 4 t,

At‘dtvdt‘

Pa N-ot

Assuming the arrival time of the first group of vehicles (qa in at)

at the stop line is T (Fig. 4.2), then the arrival time of any nth group at

the deceleration wave line A'B' is tc,,.

Line A'B': x=Ca (t-7)
. X — 0 _
Line KK!': {TT-omet Vi
i.e., x = va[ts’t~hn~l)atj

Solving line A'B' and KK' for point C'', we have

Va (n"‘) at »
tC// - —va — Cd T T
X 4 = CA : Va (V\")A't
< Va -_— Cd

(I) For tc,,z tA,through tc, si.e,, TS tc’/ €0: All arriving cars

have to stop, and the AN of any group of q, - 4 t cars can be

calculated as follows:
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deceleration time td = va/d

acceleration timet =v /a
a a

it = L Ca (e ) g0

. - —c . = C4 T

these cars do not come to a full stop, but only slow

down to a lower speed Ve

Calculations for Vb and o’b are similar to those in
the discrete arrival case.

The total AN is then the summation of the AN's of the individual

groups of cars in (I) and (II).
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Computer Model and Program to Calculate Acceleration

Noise for Continuous Flow Patterns

Assuming that:

1.

2.

The arrival flow is given throughout a whole cycle length.

We are given a dispersed input flow, which is the
flow pattern discharged from the upstream inter-
section, at a distance:

DIST = HDWYJ x SUMO1
from the stop line, where

HDWYJ = headway at jam = hj (ft/veh.)

SUMOI1 = total number of cars in the arrival

platoon (veh.)

This flow can be either a result of field measure-
ments or an output from another computer program.

The assumptions of Chapter 4 hold.

divide the cycle length into many small increments.

CYCLE = cycle length (sec.)

RED = effective red time (sec.)

GREEN = effective green time (sec.)

ITIME = length of each time increment (sec.),
we can use, say, 2 sec.

NINC = total number of increments in the cycle

= CYCLE/ITIME

We can
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P2(n) = number of cars in thelnth increments
SPEED = normal, constant speed = v, (ft/sec.)

SF = saturation flow = discharging rate aftgr
siénal turns green and before queue
disappears (veh/sec.)
Referring to Fig. 5.1, P2(1) is the first group of cars. P2(l) arrives |

at the stop line at time T, = -RED (the beginning of green is zero time).

1

P2(2) is the second group of cars, they arrive and join the queue (queue length

= hj x P2(1) at time TZ' And so on. P2(n) is the nth group of cars, and its

arrival time at the queue is Tn > 0. As soon as the signal turns green at
time t = o, cars start leaving the intersection at the saturation flow rate SF.
We assume that P2(n) with Tn > 0 do not come to a complete stop, they change

to the lower speed vy at tD = 0, and start accelerating at point E.

To calculate the arrival time of each group of cars at the queue, we

let the arrival times be Tl’TZ’ .o

of cars arrive at time T1 = -RED (see Fig. 5.2). Let SPEED denote the

normal driving speed, then TIME = DIST/SPEED is the travel time to go

., and further assume that the first group

through the distance DIST. Then,

DIST - th P2(1)
= -y TIME - :
AZTZ ITIME SPEED

DIST - h. x IPZ('I) + PZ(Z)I
3°3 SPEED
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So the arrival time of the nth group of cars at the queue is

DIST - hj x [Q(n-1)]
SPEED

Tn = -RED + (n-1) ITIME - { TIME -

Where Q (n-1) is the cumulative number of cars in the queue for
groups 1 through (n-1), i.e.,

Q(n-1) = P2(1) + p2(2) + ... + P2(n-1)

At time t = o0, i.e., as the signal turns green, the vehicles start
leaving at saturation flow rate SF. The queue keeps increasing from
time = -RED to time = 0, After time t = 0, the queue keeps decreasing at
the rate SF - Input Flow, until the queue disappears or t = GREEN; then

we start the next cycle. So after time t = o, queue = Q(n) - SF and queue

To calculate vy, we refer to Figs. 5.1 and 5.3. Suppose Tn > 0.

According to our assumptions, P2(n) does not stop, this group of cars slows

down to a lower speed v. at time t = o {(i.e., at point D) and accelerates

b
back to normal speed A at point E. The slope of line DE represents this

lower speed v Fig. 5.3 shows this part in more detail. OP represents

b

the time t = (n-1)ITIME - RED, and OD represents the distance = va .

[ (n-1)ITIME - RED]. The distance of point E from the stop line is:
EDIST = hj x Q(n-1) |

At point E:

EDIST = hj x SF x ETIME
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so,
ETIME = EDIST/(hj x SF).

Therefore, in time ETIME, this nth group of cars P2(n) travels the
distance (OD - EDIST), and we obtain

OD - EDIST

v, = slope of DE = ETIME

b
The calculation of the AN can be summarized as follows:

(1) For groups of cars that join the queue at time Tn = 0:

1 2 2. 141/2
AN-{t T ldt ta ta]} P2(n)
d a
wheret . =v /d and t =v /a.
d a a a

(2) For groups of cars that are supposed to join the queue at time
Tn > 0, before the queue disappears:
they change to lower speed v, at time t = 0 and each

b
group has the AN:

_ 1 2 2, 14172
AN = {—t o [dtd-l-ata]} P2(n)
d a
where
v -V
- a_b
ta T T4
v -V
¢ = 2 b
a a
and vy is calculated by equation as above.

(3) For groups of cars that arrive after the queue disappears:
they pass through the intersection without any change in

speed and hence AN = 0 for these cars.
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Based on the model developed above, a computer program was written
to calculate the AN for any arrival flow pattern. The program is a FORTRAN
subroutine. It can be easily called from a main FORTRAN program which
has the distribution of the arrival flow and other basic data such as cycle
time, red time, green time, speed, etc. One example of such a main
program is the program in Ref. (6), that calculates the delay at the inter-
section,

A flowchart showing the logic of how the AN is calculated in the
program, together with the definition of variables and a complete listing
are shown in Appendix A. A subroutine that shifts the arrival platoon takes
care of the effects of changing the offset.

The results of an actual computer run are shown in Appendix B.

Part (a) shows the arrival flow pattern P2, in which the total number of cars
is 14.56/cycle. Part (b) shows the calculated acceleration noise for

different offsets.
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Appendix A
The Computer Program
(a) Flow Chart

Read in data = d,a,h,,v ,P2,QZERO
ITIME,NINC, RED,’ 2?IRED,SF

Calculate total flow SUM 01

Calculate DIST = h; * SUM 61

at distance DIST from the intersectio

Obtain the dispersed arrival flow Pi‘J

lTD:va/d;TA=va/a -l

!

o] Total acceleration noise AN(J) = 0.0

i

Q(1) = P2(1) + QZERO
Q(N) = Q(N-1) + P2(N)

l

Arrival time of the Nth group cars

RN D=I§TR-E1'1]-I)#:PQ((1§I.-11)) E&i’t?’

RR(N) =02

cceleration noise of Nth group
Yes |cars 1/2 ANN(N)=P2(N)*

N-TT=Q(N-1)
Queue P(N-1)= P(N-1) - SF #* TARR(N)
P(N-1)= AMAX]1 (0.0, P(N-1))

Check if

12 2 T
No TorrAld* TD+a®TA]}
Yes
ANN(N) = 0 J._.___..

ueue disappears
S T R T

| No

Calculate XD,XE,TE and
VB = (XD-XE)/TE

TDI = ™, vp) /& TAL = (v_-v,)/a

NN(N) = P2(N)* T TA d4TD1+a4TA1]}1/2

¥

{AN(J) = AN(J) + ANN(N) 11_:
No . ‘
S S l Yeu : - -

all sub-program RVSHFT to shift
the flow pattern and get the effect of
changing the offset

No
J >NINC?

Print results 1
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APPENDIX A
The Computer Program
(b) Definition of Variables

DRATE = d deceleration rate (ft/secz)

n

2
ARATE = 3 acceleration rate (ft/sec )

1

HDWYJ h

1

headway at jam (ft/veh.)

j
SPEED v, = the constant arrival speed (ft/sec)
P2(1) = total number of cars in the Ith group (veh.) -
Q(I) = cumulative number of cars from 1st to Ith group (veh.)
QZERO = secondary flow (veh.)
TARR(I) = the arrival time at the queue of the Ith group (sec)
P(I) = number of cars left in the queue after signal turns green (veh.)
SF = saturation flow (veh/sec)
ITIME = the length of each time increment (sec)
NINC = total number of increments (the cycle time is divided into
NINC increments of ITIME seconds each)
RED = length of the red period (sec)
IRED = number of increments in RED
ANN(N) = the individual acceleration noise of the Nth group

AN = total acceleration noise (ft/secz)



145
146

1647
14R
149
150
151
152
153
154
155
156
157
158
159

169
161
162
163
164
1568
166
167
168
169
170
171
172
173
174
175
176

177
178
179
180
181
182
183
184
185
186

187
188
189
190
19
192
193
194

cce
cce

77

78

71

127

70

600
747
737
ccc
700

710
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Appendix A

(c) Listing of Program

SURRDUTINE ANDISE (P2,Q,SPEED, NINC,ITIME,RED,NZER], TREN, HDUYJ, SF1

*, TWORK 4 X4 SF, DI ST)

NIMENS INN ANM{120),ANE120),P2( 120)40(120), TWNRK(120),X(120),

*TARR(120),P(129)

DATA CRATE/8.0/,ARATE/S.0/
TDN=SPFFN/NRATF
TA=SPFEN/ARATF
TIME=DIST/SPEED

TEMP=((1.0/(TD+TA) )% ( DRATE**2KTD+ARATEXK2XTA) ) #%9,5

DO 700 J=1,NINC

011)=P2(1)+QZERD

AN[J)=C.D

ANN{L)I=P2(1)*TEMP

ANCJ) =ANTJI)+ANN{T)

LTM=NTNC

D0 620 1T=2,NINC

Q{IT)=0(IT=-1)+P2(1IT)

NOTE: BECAUSE THE ARRTVAL FLOW IS FDR 2 LANFS,
IN THE CALCULATIONS.

TEMP2=TIME-{DT ST-HDWYJI/2*Q(1T-1))/SPEED

TARPRLTITI=(-1.0*RFD)+{IT-1) *[TIME-TEMP2

IF (TARR(ITI-0.0)77,77,78

ANNIT T)=P2{1T) *xTFEMp

50 TO 600

PLIT-1)=0(T1T-1)

PEIT-1)=PLIT-1)-SFXTAPR(IT)})

P{IT=-1)1=AMAX1(0.0,P{IT-11)})

[F{P(IT-1)-0.0) 70,70,71L

XD=SPFED* ({IT~-1)*IT[MF=-RED)

XE=HDWYJ /2% (1 T-1})

TE=XF/(HPWYJ/2 *SF)

VB=(XD-XF)/TE

TN1=(SPFFD-VR) /DRATF

TAI=(SPFED-VR) /ARPATF

PRINT727,TD1,TAL,VB,SPEENXN,XE,TF,IT

FORMAT('0Q*,'TD1= ',FT7.2," TAl= *,F7.2,' VB= ',F7.2,' SPFED=
*' XD= Yy F10429°" XE=',F10e24* TF= ',F7.2,10X,'17=

WE USE HNDUWYJ/2

', 15)

TEMPL=({1.0/(TD1+TAL) }*(DRATEX#2*TDL+ARATE*%2%TAL) )} *%0 ,5

ANN{TT )=P2 (IT)XTEMP]

5070 610

AMN(TIT)=0.0

LIM=IT

GD T 747

ANTIY=AN(JI+ANN(IT)

PRINTT37

FORMAT ("Nt ,"TARR{ARRIVAL TIME)= )
PPINT, (TAPR{TT),IT=2,LIM)

CHANGF NFFSFT

CALL RVSHFT (P2,NTNC)

CTONTINUE

PRINTT10

FORMAT ('O, YACCELFRATINN NOISF FOR OFFSETS IS
PRINT, (ANC(J) yJ=1,NINC)

CALL OKRPLT (X,ANyNINC,yD,0,IW0ORK)
RETURN

FND

-

-
.

")

'FT.2,
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