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ABSTRACT

Acceleration Noise measures the disutility associated with successive

decelerations and accelerations in a signalized environment. It provides

an indication of the smoothness of traffic flow. As such it constitutes a

generalization of the number-of-stops concept and is suitable to replace

it as an additive measure-of-effectiveness for designing and evaluating

the operation of traffic control systems.

This report develops models for calculating the acceleration noise in-

curred by a platoon of vehicles travelling along a signal-controlled traffic

link. Several flow patterns are analyzed: discrete arrivals, uniform-

continuous arrivals and variable-continuous arrivals. A computer program

and test results are described. The models can be easily extended for use

in signal- controlled networks.
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1. INTRODUCTION AND DEFINITION OF ACCELERATION NOISE (AN)

Motorists on a transportation facility very often evaluate the facility

by the speed at which they can travel and by the uniformity of the speed.

Travelers in a. vehicle will feel most comfortable if the vehicle is driven at

a uniform speed. When the traffic on a highway is very light, a driver

generally attempts, consciously or unconsciously, to maintain a rather

uniform speed, but he never quite succeeds. He has to accelerate and

decelerate occasionally instead. The distribution of his accelerations

(deceleration is minus acceleration) essentially follows a normal distribu-

tion (see, e.g., Ref. 1).

From recent research results (1-5), the acceleration noise (AN) has

proved to be a possible measurement for the smoothness or the quality of

traffic flow. AN is defined as the standard deviation of the accelerations.

It can be considered as the disturbance of the vehicle's speed from a uniform

speed.

Mathematically, the standard deviation of a set of n numbers

X1 X 2 . .. ,X is denoted by S and is defined as:

s' X [n E ( X' n.

where X denotes the mean of the X's.

If a(ti) denotes the acceleration of a vehicle at time t, the number

of t's or the total time period is equal to
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Z t =T
and the average acceleration of the vehicle or a trip-time T is

and the average acceleration of the vehicle for a trip-time T is

a ve.
LI

T
a( t) At

/0

Thus, mathematically, the acceleration noise can be written as:

I a ( t) a veJ 2Cto

_' I

" =T

]
2

J t
It can be proved that

11 a (t)3
0

at - (ave. )

and since a ave. approaches zero for any prolonged journey, the AN is

normally calculated by

CY -- T . [I (t)3 dt

where T is modified to denote the running time only. The reason is that if a

vehicle is stopped for some part of the journey, the AN (a time average) will

and

2 = TT I

______�1�1� I

I a ( f" ) - aV-

I .

TT
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be arbitrarily smaller if T includes the entire period (1, 3, 4).

The accelerations of a vehicle can be measured directly by an

accelerometer or approximated from a speed-time trajectory of the vehicle's

trip (3 - 5).

AN measures the disutility associated with successive decelerations

and accelerations in a signalized environment. As such it constitutes a

generalization of the number-of-stops concept and is intended to replace it

as an additive measure-of-effectiveness for signal-controlled traffic net-

works. It will be used primarily in conjunction with delay times (see

Ref. (6 - 8)). The present report develops models for calculating the AN

incurred by a platoon of vehicles traveling along a signalized traffic link.

Several flow patterns are analyzed: discrete arrivals, uniform--continuous

arrivals and variable--continuous arrivals. The models can be easily

extended for use in networks.

2. ACCELERATION NOISE OF A SINGLE VEHICLE AT A SIGNALIZED
INTERSE CTION

Let us first consider a single vehicle arriving at a signalized inter-

se ction.

Let

c = cycle length (sec.)

g = effective green time (sec.)

r = effective red time (sec.)

c = g+ r

_ - - ~I- -
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If we denote the beginning of a red period by t = -r, the beginning of

the following green period will be t = 0, and the end of this cycle will be

t = +g.

Assuming that:

d = deceleration rate (ft/sec.I

a = acceleration rate (ft/sec.-)

v = normal driving speed (ft/sec.)
a

We assume that the vehicle approaches the intersection at a constant

speed va . If the signal aspect is red the vehicle decelerates at a constant

rate d to a full stop. As the signal turns green, it accelerates to the driving

speed v at a constant rate a.
a

Let

td = deceleration time (sec.)

t = acceleration time (sec.)
a

t = stopped time (sec.)

T = td+t a

Referring to Fig. 2.1 we have

t v /d
d a

t = Va/a
a a

and the acceleration noise Tr is:

I = | f t f, dt 3
d2t t ta Y

--J ta

z)
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If we have a platoon of cars arriving at the intersection, some cars

have to come to a full stop, others just slow down and speed up again.

Fig. 2.2(a) shows the trajectories of a few cars arriving at an intersection.

As car Y approaches the intersection, the signal is about to turn green,

so Y slows down (assumed that the same deceleration rate d applies) to a

slower speed V b and accelerates back to its normal speed V (with the sameb a

acceleration rate a as before).

3. ACCELERATION NOISE WITH SHOCK WAVE ASSUMPTIONS

Based on Lighthill and Whitham's theory (9), when a platoon of cars

is stopped at a signalized intersection, a shock wave (deceleration shock

wave) starts traveling backwards (line AB in Fig. 3.1) at a speed C d (slope

of line AB). When the signal turns green, the vehicles start accelerating,

and acceleration shock waves are formed and travel forward.

Let us assume that all vehicles come to an instantaneous stop as they

enter line AB, and accelerate instantaneously to their normal speed at line

OB. As long as there is a queue they depart at the saturation flow rate.

Vehicles that arrive after time t B pass through without stopping. In this

simplified case the AN is directly proportional to the number of stops,

because we only consider cars that stop at the intersection.

If we have a uniform arrival flow, and let

= arrival flow rate (veh/sec.)

p = duration of the arriving platoon (sec.)

___1____ 1_11 _1 ^I-- 
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T/ne

Fig. 3.1 - Shock waves at traffic light
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s = saturation flow rate (veh/sec.)

h. = headway at jam (when all cars wait at the

signal) (ft.)

v = normal driving speed of the platoon (ft/sec.)
a

tH- P-

The slope of line AB (Cd) is equal to -hjq . The distance from any

point on AB to the stop line is the cumulative queue length at the intersection

at any time t. The slope of line OB (C ) is equal to -hjs.

Line AB goes through point A (-r,0) and line OB goes through point

0(0,0), so they can be represented as: Lzne AB : X=j - a (tr)C--C(t*)

L:nt 06: x =-t st' - Ca t
Point B is calculated as (c. ¢ r 4 Cd .)

or B(Clr,C r), where

Cd C and
Ca - Cd

Ca Cd
Ca - Cd

If the first car of the platoon arrives at the stop line at time 2 ,

where -- 'It- O , then
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Line AB: -j )a (t- ' ) = Cd ( t-t)

Line OB: X = -j -t Ca t

Point 3 becomes ( Cd - v CaCd )C - CdCa - Ca

or B(-C 1 T, -C21 )T where T is a negative value.

Case I. If p g

(2
1. And if p x t(C,+I- -- ) (See Fig. 3.2(a))

(i.e., last car in the platoon passes through point B, the
C

relation between p and r can be shown as p = r(C 1 + 1 -- ) )
a

(a) then -r <'U . PQat* ~ a -a ) (Fig. 3.2(b))

Number of stops = dt = PHa

C2
(b) -p(C, 4 V- ) <Jt ( (Fig. 3.2(c)) :

Number of stops dt= -a a ( Cl '*)t

(c) o ' < ( -) (Fig. 3.2(d))

Number of stops = 0 (because p < g)

(d) 'r (19-t) (Fig. 3.2(e)) :

Some cars have to stop at the signal and wait until the next

green. If we let p' = t -(g-p) be the portion of the cars

that have to stop at the next red, then p' = 0 through p and

Number of stops = , ta = 'P where p' = 0 p
0
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i(c)

(c)

u to

(d)
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(e)

Fig. 3.2 - Platoon Trajectories (cont'd)
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The resulting number of stops for this case are shown in Fig.

3.3(a).

C2
2. Andif p > - I( C, +1- )

the calculations are similar and the results are shown in Fig. 3.3(b).

Case II. Whenp= g

Calculations are similar, and the resulting relations are shown

in Fig. 3.4.

CaseIII. Whenp>g

Results for the two cases (a) P > r( C+- I and

(b) e< r(C,- al ) are shown in Fig. 3.5.

We are interested in developing the relationships between the number

of stops and the offset between the two adjacent signalized intersections. A

relationship between the offset e and the arrival time of the first car in

platoon, T, can be developed as shown in Fig. 3.6.

Let i, j be the two adjacent intersections. 0;j is the offset from

i to j, 9i; is the offset in the other direction. Let TTIME be the travel

time between i and j for a vehicle traveling at a constant speed va. If a

car leaves intersection i at the beginning of green, it arrives at the down-

stream intersection stop line at time T. (is a time relative to the down-

stream zero time point at the beginning of its green). So we have

;ij + T = TTIME

and E;j = TTIME- -

-- 11111- _ 
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(a) p<r (C 1 + 1 -
C 2
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0
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Graphically, the horizontal axes of the figures in the previous

sections can be transformed to represent offsets:

-r

I

IrrIM 1 ±r

0

I

I

i
TTIME

I

I

I

IriM-4
T i M }

o9j

C (cycle)

All the relations between the number of stops and r can be changed

to relationships between number of stops and the offset 9 . As an example,

Fig. 3.3a is changed to a relation shown in Fig. 3.7.

4. AN - Additional Assumptions

In order to take a more realistic account of the AN of a platoon of

vehicles, we developed a refined model based on additional assumptions.

We assume that only cars that join the queue at the stop line while the signal

is red come to a full stop and incur a maximum amount of AN. Cars that

approach the traffic signal after the light turns green will not join the

I
f 
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standing queue. Instead, they will slow down for a while and accelerate

back to their normal speed when they have an unimpeded right-of-way for

passing through the intersection. In this rrmanner, these cars will incur

only a fraction of the maximum AN that a car that is stopped incurs. Some

of the cars arriving later during the green phase may pass without having

to change their speed.

Graphically, referring to Fig. 4. l(a), we draw a vertical line 00'

from the stop line at time t = 0. We assume that the cars that are supposed

to arrive at the deceleration-wave line AB at time t > 0 do not stop, but

instead, they slow down to another constant speed vb, and start accelerating

back to their normal speed v at the acceleration wave line OB. So in

Fig. 4. l(a), all cars X 1 through X have to stop, while car Y1, (with

tc > 0, does not. Y 1 changes to the lower speed vb at t = 0 (point E) and

travels at that speed vb until it joins the acceleration line OB at point F,

then it starts accelerating back to its normal speed v . The slope of EF

represents the speed vb. Cars sach as Z 1 and Z can pass through without

any change in speed.

We assume that the speed of the cars that do stop, becomes zero at

the deceleration line AB, and they remain in this state until the accelera-

tion line OB, when they start accelerating. For the cars that only slow

down for a while and speed up again, the speed changes occur at line t = 0

and OB (see Fig. 4.1(b)). The time-distance diagrams in this chapter show

only the simplified trajectories of the car movements. The acceleration

and deceleration processes are not shown.
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Fig. 4.1(a) Time-Distance Diagram
(b) Time-Speed Diagram

(a)

(b)

,,~~~~~~~~~~~ 
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The AN of a discrete arrival flow and a uniform arrival flow are

considered in this chapter. A model to calculate the AN for a random

arrival flow is developed in the next chapter.

4.1. Discrete Arrivals

As in Fig. 4.1, for cars that stop (i.e., cars X 1 through X ) the

deceleration time is t = v /d and the acceleration time is t = v /a. d is
d a a a

a constant deceleration rate and a is a constant acceleration rate. For

each one of these cars we have the following AN relation:

I = 2 t 

For the cars that only slow down and accelerate back to their normal

speed, (such as cars Y1,Y2, and Y3), the AN is calculated as follows:

Line AB: X = Cd ( t- )

Line 00': t = 

Solving lines AB and 00' for point C', we get Xc, = -C d and

tc = 0. Line C' M goes through point C' and has a slope v . Line E N

goes through point (t c,+ h, Xc), i.e., point (h, -Cd ), where h is the

arrival headway (sec.) and has slope v , so that
a

X+ Cd V
Line EN: ,Va

tE = 0.

Xc =

i.e., X = Vat - Va - Ca

Solving lines 00' and EN for point E, we get x E = -v h - Cd and

Solving lines AB and EN for point C', we get Va A
Va - Ca

Ca va-C4 ( - j

and
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Line C'F: = x, = C ( a- C

Solving lines C'F and OB for point F, we get

and XF Ca ( Va - ) 

Line EF: X - XF - X - X1

- tF t - ItF

-r)

t = Cd (a ' _ r )
F Ca V - C,

and the slope of line EF, which is vb for car Y 1 , is

XE - Ca v' A
Vb - F V

b tE--F - Cd (V a A -a+ Ct) 

If we let (td)Y denote the deceleration time of car Y1 and (t )
1 1 aYI

denote its acceleration time, then from the relationship v b = v - d (t d )

1~~~~~~~~~1a = b + a (ta)y we obtain

(to) _ a -Vb

(t )Y,
l/a - Vb

A

respectively, and the AN of Y1 can be represented by:

O = (TV>y, t (, + ta), 

For car Y2, the calculations are similar to that for Y 1 . Since Y 2 comes h

seconds later than Y 1, we simply replace h by 2h in the above derivations

z
and obtain vb for Y, (td)y , (ta)Y and finally aZ-

2 1 1Y

We do the same calculations for the cars that follow until the time t > t B

when all cars can pass through without changing their speed, and therefore,

do not incur any AN.
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4.2 Uniform Arrivals

We assume a uniform arrival flow pattern with magnitude q and

duration p. We divide the platoon length into N intervals t.

P= A 't +-

Assuming the arrival time of the first group of vehicles (qa in at)

at the stop line is (Fig. 4.2), then the arrival time of any nth group at

the deceleration wave line A'B' is t,.

Line A ' B': X = Cd ( -)

Line KK': Va

i.e., X = Va [ t- - v-) at 3

Solving line A'B' and KK' for point C", we have

tV Cn-l) t

Va -Cd
X /t = Cd Va (VA- ) -t

c v - Cd

(I) For tc,,= tA,through t ,,i.e. , t. 0: All arriving cars

have to stop, and the AN of any group of q. t cars can be

calculated as follows:
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deceleration time t = v /d
d a

acceleration time t = v /a
a a

a2n ( t )t a (t )1' ( a t )

and 0 = ----': + ta

- Cd t
(II) For tc,, > t,=Othrough t - C, C= - C

these cars do not come to a full stop, but only slow

down to a lower speed Vb:

Calculations for vb and T b are similar to those in

the discrete arrival case.

The total AN is then the summation of the AN' s of the individual

groups of cars in (I) and (II).
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5. Computer Model and Program to Calculate Acceleration
Noise for Continuous Flow Patterns

Assuming that:

1. We are given a dispersed input flow, which is the

flow pattern discharged from the upstream inter-

section, at a distance:

DIST = HDWYJ x SUMO1

from the stop line, where

HDWYJ = headway at jam = h. (ft/veh.)

SUMO1 = total number of cars in the arrival

platoon (veh.)

This flow can be either a result of field measure-

ments or an output from another computer program.

2. The assumptions of Chapter 4 hold.

The arrival flow is given throughout a whole cycle length. We can

divide the cycle length into many small increments.

CYCLE = cycle length (sec.)

RED = effective red time (sec.)

GREEN = effective green time (sec.-)

ITIME = length of each time increment (sec.),

we can use, say, 2 sec.

NINC = total number of increments in the cycle

= CYCLE/ITIME
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P 2 (n) = number of cars in the nth increments

SPEED = normal, constant speed = v (ft/sec.)
a

SF = saturation flow = discharging rate after

signal turns green and before queue

disappears (veh/sec.)

Referring to Fig. 5.1, P2(1) is the first group of cars. P2(1) arrives

at the stop line at time T 1 = -RED (the beginning of green is zero time).

PZ(2) is the second group of cars, they arrive and join the queue (queue length

= h. xP2(1) at time T 2 . And so on. P2(n) is the nth group of cars, and its
J

arrival time at the queue is T > 0. As soon as the signal turns green at

time t = o, cars start leaving the intersection at the saturation flow rate SF.

We assume that P2(n) with T > 0 do not come to a complete stop, they change
n

to the lower speed vb at t D = 0, and start accelerating at point E.

To calculate the arrival time of each group of cars at the queue, we

let the arrival times be T1,T2, .., and further assume that the first group

of cars arrive at time T = -RED (see Fig. 5.2). Let SPEED denote the

normal driving speed, then TIME = DIST/SPEED is the travel time to go

through the distance DIST. Then,

DIST - h. x P2(1)

A2zT = ITIME TIME SPEED

DIST - h. x [P2(1) + P(2)]
A 3 T =2 ITIME - TIME - ED
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So the arrival time of the nth group of cars at the queue is

DIST - h. x [Q(n-1)]

T = -RED + (n-l) ITIME - (TIME - S
n SPEED

Where Q (n-l) is the cumulative number of cars in the queue for

groups 1 through (n-l), i.e.,

Q(n- 1) = P2(1) + P2(2 ) + ... + P2(n-1)

At time t = o, i.e., as the signal turns green, the vehicles start

leaving at saturation flow rate SF. The queue keeps increasing from

time = -RED to time = 0. After time t = o, the queue keeps decreasing at

the rate SF - Input Flow, until the queue disappears or t = GREEN; then

we start the next cycle. So after time t = o, queue = Q(n) - SF and queue

To calculate v b, we refer to Figs. 5.1 and 5.3. Suppose T > 0.

According to our assumptions, P2(n) does not stop, this group of cars slows

down to a lower speed vb at time t = o (i.e., at point D) and accelerates

back to normal speed v at point E. The slope of line DE represents this

lower speed vb. Fig. 5.3 shows this part in more detail. OP represents

the time t = (n-1)ITIME - RED, and OD represents the distance = v a

[ (n-l)ITIME - RED]. The distance of point E from the stop line is:

EDIST = h. x Q(n-1)

At point E:

EDIST = h. x SF x ETIME
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Fig. 5.3 - Trajectories near time t = 0
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so,

ETIME = EDIST/(h. x SF).

Therefore, in time ETIME, this nth group of cars P2(n) travels the

distance (OD - EDIST), and we obtain

OD - EDIST
Vb = slope of DE ETIME

The calculation of the AN can be summarized as follows:

(1) For groups of cars that join the queue at time T 0:
n

1 2 1/2
AN={t t [d t +a t ] }/ P2(n)td+ +t d a

d a

where t = v /d and t = v /a.
d a a a

(2) For groups of cars that are supposed to join the queue at time

T > 0, before the queue disappears:
n

they change to lower speed vb at time t = 0 and each

group has the AN:

AN= { 1t d2t + at }
td +t d a

P2(n)

where

v -v
t - -d d

v -v
a b

a a

and vb is calculated by equation as above.

(3) For groups of cars that arrive after the queue disappears:

they pass through the intersection without any change in

speed and hence AN = 0 for these cars.



32.

Based on the model developed above, a computer program was written

to calculate the AN for any arrival flow pattern. The program is a FORTRAN

subroutine. It can be easily called from a main FORTRAN program which

has the distribution of the arrival flow and other basic data such as cycle

time, red time, green time, speed, etc. One example of such a main

program is the program in Ref. (6), that calculates the delay at the inter-

se ction.

A flowchart showing the logic of how the AN is calculated in the

program, together with the definition of variables and a complete listing

are shown in Appendix A. A subroutine that shifts the arrival platoon takes

care of the effects of changing the offset.

The results of an actual computer run are shown in Appendix B.

Part (a) shows the arrival flow pattern P2, in which the total number of cars

is 14.56/cycle. Part (b) shows the calculated acceleration noise for

different offsets.
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Appendix A

The Computer Program
(a) Flow Chart

-
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APPENDIX A

The Computer Program

(b) Definition of Variables

DRATE = d = deceleration rate (ft/sec 2 )

ARATE = a = acceleration rate (ft/sec)

HDWYJ h. = headway at jam (ft/veh.)

SPEED v = the constant arrival speed (ft/sec)
a

P2(I) = total number of cars in the Ith group (veh.)

Q(I) = cumulative number of cars from 1st to Ith group (veh.)

QZERO = secondary flow (veh.)

TARR(I) = the arrival time at the queue of the Ith group (sec)

P(I) = number of cars left in the queue after signal turns green (veh.)

SF = saturation flow (veh/sec)

ITIME = the length of each time increment (sec)

NINC = total number of increments (the cycle time is divided into
NINC increments of ITIME seconds each)

RED = length of the red period (sec)

IRED = number of increments in RED

ANN(N) = the individual acceleration noise of the Nth group

AN = total acceleration noise (ft/sec )
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Appendix A

(c) Listing of Program

145 S!IRROIUTINE AISE (P2,Q,SPEED,NINC,ITTIME,RED,QZER3, IREn,HDWYJ, SF
*, IWPK,X,SF, DI ST)

146 nTIMCNS TnN ANIl12?),AN t 12n),P2( 1?0) ,0( 120), TWnlK( 120) ,X(1201 ,
*TAPR ( 120) ,P( 12')

147 DATA fCRATE/8.0/,ARATE/5.0/
148 TD=SPFFD/nPATF
149 TA=SP FF /FAR TF
150 T ItE=ITST/SPEFD
151 TEmP=( I. O /( TD+TA ) ) * ( DRATE**2*TD+ARAT E*2TA ) ) :**').5
152 DO 700 J=1,NIC
153 0( 1) =P2( 1 ) +ZFRO
154 AN(J) =0.0
155 AN(1 )=P2(1)*TTEMP
156 ANI(J)=AN(JI)+ANN( )
157 L I M=NII1NC
158 0r 600 TT=2,NTNC
159 0(IT)=0(IT-I)+P2( T)

CCC NOTF: BECAUSE THE ARPIVAL FLOW IS FOR 2 .ANFS, WE USF HnWYJ/2
CCC IN THE CALCULATIONS.

160 TE"MP2p=TIME-( DI ST-HDWYJ/2*0(I T-l) ) / SPEE
161 TAP( IT)=(-I .O.*RFD)+(IT-I)*ITIME-TFMP2
162 IF (TARR ( T)-0.O)77,77,78
163 77 ANN(I T)=P?(IT)*TFMP
164 30 TO 600
165 78 P(IT-I)=0(IT-1)
166 r (IT-l)=P( Ir-1)-SF*TAPR(IT)
167 P(IT- )=AMAXl(O.O,P( IT-1 ))
168 IF(P( IT-1)-O.) 70,70,71
169 71 XD=SPFED*((IT-1 )*ITIMF-RED )
170 XF=H' WYJ /2*' ( I T-1 )
171 TF=XF/(HWYJ/2* SF )
172 VB=(XO-XF)/TE
173 T I=(SPFFD-VR) /R ATF
174 TAl=(SPFO--VP ) /APATF
175 PPTNT727,TD1 ,TA, VB,SPEED, X,XE,TF, IT
176 727 FORMAT'O' ,' TO= ',F7.2,' TA1= ',F7.2,' VB= ',F7.2,' SPFED= 'F7.2,

*' XO= ',F10.2,' XF=',F10.2,' TF= ',F7.?,lOX,'TT= ',15)
177 TFPl=(( 1./(TDl+TAI) )*(DRATE**2*TD1+ARATE**2*TA11 **0.5
178 ANN IT )=P2 (IT) *TE MP1
179 3 T 600
180 70 AN([IT)=0.0
181 LTM=TT
182 GO T 747
183 600 AN(J)=AN(J)+-ANN(IT)
184 747 PRINT737
185 737 FFnR AT('0','TARR ARRIVAL TIME)= ')
186 PPTIT, (TAPR(TT),IT=2,LIM)

CCC CHAN, F rlFFSFT
187 CALL RVSHFT (P?,NINC)
188 700 '(NTINUE
189 PPINT710
190 710 FnRMAT ('O','ACCELFRATION NOISF FR OFFSETS IS: t)
191 PRINT, (ANJ) ,J=l,NINC)
192 CAlL OKRPLT (X,ANNINC,9,0,IWORK)
193 RF TURN
194 FNr)

�_��____�I ___^_ L__
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