Acceleration Noise as a Measure of Effectiveness in the Operation of Traffic Control Systems*

by

Cady C. Chung and Nathan Gartner

OR 015-73
March 1973

Operations Research Center
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Research supported by KLD Associates, Inc., in connection with Department of Transportation Contract FH-11-7924.
ABSTRACT

Acceleration Noise measures the disutility associated with successive decelerations and accelerations in a signalized environment. It provides an indication of the smoothness of traffic flow. As such it constitutes a generalization of the number-of-stops concept and is suitable to replace it as an additive measure-of-effectiveness for designing and evaluating the operation of traffic control systems.

This report develops models for calculating the acceleration noise incurred by a platoon of vehicles travelling along a signal-controlled traffic link. Several flow patterns are analyzed: discrete arrivals, uniform-continuous arrivals and variable-continuous arrivals. A computer program and test results are described. The models can be easily extended for use in signal-controlled networks.
Table of Contents

1. Introduction and Definition of Acceleration Noise 1

2. Acceleration Noise of a Single Vehicle at a Signalized Intersection 3

3. Acceleration Noise with Shock Wave Assumptions 6

4. AN - Additional Assumptions .. 18

5. Computer Model and Program to Calculate Acceleration Noise for Continuous Flow Patterns .. 26

Appendix A: The Computer Program .. 33

Appendix B: Sample Results .. 36

References ... 37
1. **INTRODUCTION AND DEFINITION OF ACCELERATION NOISE (AN)**

Motorists on a transportation facility very often evaluate the facility by the speed at which they can travel and by the uniformity of the speed. Travelers in a vehicle will feel most comfortable if the vehicle is driven at a uniform speed. When the traffic on a highway is very light, a driver generally attempts, consciously or unconsciously, to maintain a rather uniform speed, but he never quite succeeds. He has to accelerate and decelerate occasionally instead. The distribution of his accelerations (deceleration is minus acceleration) essentially follows a normal distribution (see, e.g., Ref. 1).

From recent research results (1-5), the acceleration noise (AN) has proved to be a possible measurement for the smoothness or the quality of traffic flow. AN is defined as the standard deviation of the accelerations. It can be considered as the disturbance of the vehicle's speed from a uniform speed.

Mathematically, the standard deviation of a set of \(n \) numbers \(X_1, X_2, \ldots, X_n \) is denoted by \(S \) and is defined as:

\[
S = \left[\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2 \right]^{\frac{1}{2}}
\]

where \(\overline{X} \) denotes the mean of the \(X \)'s.

If \(a(t_i) \) denotes the acceleration of a vehicle at time \(t_i \), the number of \(t \)'s or the total time period is equal to
2.

\[\sum_{i=0}^{T} t_i = T \]

and the average acceleration of the vehicle for a trip-time \(T \) is

\[a_{\text{ave.}} = \frac{1}{T} \int_{0}^{T} a(t_i) \, dt \]

Thus, mathematically, the acceleration noise \(\sigma \) can be written as:

\[\sigma = \left\{ \frac{1}{T} \int_{0}^{T} [a(t_i) - a_{\text{ave.}}]^2 \, dt \right\}^{\frac{1}{2}} \]

and

\[\sigma^2 = \frac{1}{T} \int_{0}^{T} [a(t_i) - a_{\text{ave.}}]^2 \, dt \]

It can be proved that

\[\sigma^2 = \frac{1}{T} \int_{0}^{T} [a(t_i)]^2 \, dt - (a_{\text{ave.}})^2 \]

and since \(a_{\text{ave.}} \) approaches zero for any prolonged journey, the AN is normally calculated by

\[\sigma^2 = \frac{1}{T} \int_{0}^{T} [a(t_i)]^2 \, dt \]

where \(T \) is modified to denote the running time only. The reason is that if a vehicle is stopped for some part of the journey, the AN (a time average) will
be arbitrarily smaller if \(T \) includes the entire period \((1, 3, 4)\).

The accelerations of a vehicle can be measured directly by an accelerometer or approximated from a speed-time trajectory of the vehicle's trip \((3 - 5)\).

AN measures the disutility associated with successive decelerations and accelerations in a signalized environment. As such it constitutes a generalization of the number-of-stops concept and is intended to replace it as an additive measure-of-effectiveness for signal-controlled traffic networks. It will be used primarily in conjunction with delay times (see Ref. \((6 - 8)\)). The present report develops models for calculating the AN incurred by a platoon of vehicles traveling along a signalized traffic link. Several flow patterns are analyzed: discrete arrivals, uniform--continuous arrivals and variable--continuous arrivals. The models can be easily extended for use in networks.

2. ACCELERATION NOISE OF A SINGLE VEHICLE AT A SIGNALIZED INTERSECTION

Let us first consider a single vehicle arriving at a signalized intersection.

Let

\[c = \text{cycle length (sec.)} \]
\[g = \text{effective green time (sec.)} \]
\[r = \text{effective red time (sec.)} \]
\[c = g + r \]
If we denote the beginning of a red period by \(t = -r \), the beginning of the following green period will be \(t = 0 \), and the end of this cycle will be \(t = +g \).

Assuming that:

\[
\begin{align*}
 d &= \text{deceleration rate (ft/sec.}^2) \\
 a &= \text{acceleration rate (ft/sec.}^2) \\
 v_a &= \text{normal driving speed (ft/sec.)}
\end{align*}
\]

We assume that the vehicle approaches the intersection at a constant speed \(v_a \). If the signal aspect is red the vehicle decelerates at a constant rate \(d \) to a full stop. As the signal turns green, it accelerates to the driving speed \(v_a \) at a constant rate \(a \).

Let

\[
\begin{align*}
 t_d &= \text{deceleration time (sec.)} \\
 t_a &= \text{acceleration time (sec.)} \\
 t_s &= \text{stopped time (sec.)} \\
 T &= t_d + t_a
\end{align*}
\]

Referring to Fig. 2.1 we have

\[
\begin{align*}
 t_d &= \frac{v_a}{d} \\
 t_a &= \frac{v_a}{a}
\end{align*}
\]

and the acceleration noise \(\sigma \) is:

\[
\begin{align*}
 \sigma &= \left\{ \frac{1}{T} \int_0^T \left[a(t) \right]^2 dt \right\}^{\frac{1}{2}} \\
 &= \left\{ \frac{1}{t_d + t_a} \left[d^2 \cdot t_d + a^2 \cdot t_a \right] \right\}^{\frac{1}{2}}
\end{align*}
\]
Fig. 2.1 - AN of a single vehicle at a signalized intersection; (a) vehicle trajectory; (b) speed variations; i.e., (d) deceleration-acceleration graphs.
If we have a platoon of cars arriving at the intersection, some cars have to come to a full stop, others just slow down and speed up again. Fig. 2.2(a) shows the trajectories of a few cars arriving at an intersection. As car Y approaches the intersection, the signal is about to turn green, so Y slows down (assumed that the same deceleration rate \(d \) applies) to a slower speed \(V_b \) and accelerates back to its normal speed \(V_a \) (with the same acceleration rate \(a \) as before).

3. ACCELERATION NOISE WITH SHOCK WAVE ASSUMPTIONS

Based on Lighthill and Whitham's theory (9), when a platoon of cars is stopped at a signalized intersection, a shock wave (deceleration shock wave) starts traveling backwards (line AB in Fig. 3.1) at a speed \(C_d \) (slope of line AB). When the signal turns green, the vehicles start accelerating, and acceleration shock waves are formed and travel forward.

Let us assume that all vehicles come to an instantaneous stop as they enter line AB, and accelerate instantaneously to their normal speed at line OB. As long as there is a queue they depart at the saturation flow rate. Vehicles that arrive after time \(t_B \) pass through without stopping. In this simplified case the AN is directly proportional to the number of stops, because we only consider cars that stop at the intersection.

If we have a uniform arrival flow, and let

\[
q_a = \text{arrival flow rate (veh/sec.)}
\]

\[
p = \text{duration of the arriving platoon (sec.)}
\]
Fig. 2.2 - AN of a platoon; (a) vehicle trajectories; (b) speed variations; (c) & (d) deceleration-acceleration graphs
Fig. 3.1 - Shock waves at traffic light
9.

\[s = \text{saturation flow rate (veh/sec.)} \]
\[h_j = \text{headway at jam (when all cars wait at the signal) (ft.)} \]
\[v_a = \text{normal driving speed of the platoon (ft/sec.)} \]

The slope of line \(AB \) \((C_d)\) is equal to \(-h_j q_a\). The distance from any point on \(AB \) to the stop line is the cumulative queue length at the intersection at any time \(t \). The slope of line \(OB \) \((C_a)\) is equal to \(-h_j s\).

Line \(AB \) goes through point \(A \) \((-r,0)\) and line \(OB \) goes through point \(0(0,0)\), so they can be represented as:

- **Line \(AB \)**: \(x = -h_j q_a (t + r) = C_d (t + r) \)
- **Line \(OB \)**: \(x = -h_j s t = C_a t \)

Point \(B \) is calculated as \((\frac{C_d}{C_a - C_d} \cdot r, \frac{C_a C_d}{C_a - C_d} \cdot r) \) or \(B(C_1 r, C_2 r) \), where

\[C_1 = \frac{C_d}{C_a - C_d} \quad (+) \quad \text{and} \quad C_2 = \frac{C_a C_d}{C_a - C_d} \quad (-) \]

If the first car of the platoon arrives at the stop line at time \(\tau \), where \(-r \leq \tau \leq 0\), then
10.

Line AB: \(x = -\frac{a}{b} \cdot \frac{q}{a} (t - \tau) = C_d (t - \tau) \)

Line OB: \(x = -\frac{a}{b} \cdot \tau = C_a \tau \)

Point B becomes \((\frac{-C_d}{C_a - C_d} \cdot \tau, \frac{-C_a C_d}{C_a - C_d} \cdot \tau) \)
or \(B(-C_1 \tau, -C_2 \tau) \), where \(\tau \) is a negative value.

Case I. If \(p < g \)

1. And if \(p < r(C_1 + 1 - \frac{C_2}{V_a}) \) (See Fig. 3.2(a))

 (i.e., last car in the platoon passes through point B, the relation between \(p \) and \(r \) can be shown as \(p = r(C_1 + 1 - \frac{C_2}{V_a}) \))

 (a) then \(-r < \tau < -p(C_1 + 1 - \frac{C_2}{V_a}) \) (Fig. 3.2(b)) :

 Number of stops = \(\int_{-p}^{0} \frac{q}{a} dt = \frac{q}{a} \)

 (b) \(-p(C_1 + 1 - \frac{C_2}{V_a}) < \tau < 0 \) (Fig. 3.2(c)) :

 Number of stops = \(\int_{-p}^{0} \frac{q}{a} dt = -\frac{q}{a} (C_1 + 1) \tau \)

 (c) \(0 < \tau < (q - p) \) (Fig. 3.2(d)) :

 Number of stops = 0 (because \(p < g \))

 (d) \(\tau > (q - p) \) (Fig. 3.2(e)) :

 Some cars have to stop at the signal and wait until the next green. If we let \(p' = \tau - (q - p) \) be the portion of the cars that have to stop at the next red, then \(p' = 0 \) through \(p \) and

 Number of stops = \(\int_{0}^{p'} \frac{q}{a} dt = \frac{q}{a} \cdot p' \), where \(p' = 0 \sim p \)
Fig. 3.2 - Platoon Trajectories
Fig. 3.2 - Platoon Trajectories (cont'd)
The resulting number of stops for this case are shown in Fig. 3.3(a).

2. And if \(p > r (C_i + l - \frac{C^2}{v_a}) \)

the calculations are similar and the results are shown in Fig. 3.3(b).

Case II. When \(p = g \)

Calculations are similar, and the resulting relations are shown in Fig. 3.4.

Case III. When \(p > g \)

Results for the two cases (a) \(p > r (C_i + l - \frac{C^2}{v_a}) \) and

(b) \(p < r (C_i + l - \frac{C^2}{v_a}) \) are shown in Fig. 3.5.

We are interested in developing the relationships between the number of stops and the offset between the two adjacent signalized intersections. A relationship between the offset \(\Theta \) and the arrival time of the first car in platoon, \(\tau \), can be developed as shown in Fig. 3.6.

Let \(i, j \) be the two adjacent intersections. \(\Theta_{ij} \) is the offset from \(i \) to \(j \), \(\Theta_{ji} \) is the offset in the other direction. Let \(TTIME \) be the travel time between \(i \) and \(j \) for a vehicle traveling at a constant speed \(v_a \). If a car leaves intersection \(i \) at the beginning of green, it arrives at the downstream intersection stop line at time \(\tau \). (\(\tau \) is a time relative to the downstream zero time point at the beginning of its green). So we have

\[\Theta_{ij} + \tau = TTIME \]

and \(\Theta_{ji} = TTIME - \tau \)
Fig. 3.3 - Number of stops for $p < g$

(a) $p < r \left(C_1 + 1 - \frac{C_2}{v_a} \right)$

(b) $p > r \left(C_1 + 1 - \frac{C_2}{v_a} \right)$
15.

(a) \(p < r \left(C_1 + 1 - \frac{C_2}{v_a} \right) \)

(b) \(p > r \left(C_1 + 1 - \frac{C_2}{v_a} \right) \)

Fig. 3.4 - Number of stops for \(p = g \)
Fig. 3.5 - Number of stops for $p > g$

(a) $p < r \left(C_1 + 1 - \frac{C_2}{v_a} \right)$

(b) $p > r \left(C_1 + 1 - \frac{C_2}{v_a} \right)$
Fig. 3.4 - Links intersections

Fig. 3.7 - Relationship between number of stops and offset Q_{ij} for $p < g$ and $p < r (C_1 + 1 - \frac{L_a}{v_a})$
Graphically, the horizontal axes of the figures in the previous sections can be transformed to represent offsets:

![Diagram showing offset representation]

All the relations between the number of stops and τ can be changed to relationships between number of stops and the offset Θ_{ij}. As an example, Fig. 3.3a is changed to a relation shown in Fig. 3.7.

4. AN - Additional Assumptions

In order to take a more realistic account of the AN of a platoon of vehicles, we developed a refined model based on additional assumptions. We assume that only cars that join the queue at the stop line while the signal is red come to a full stop and incur a maximum amount of AN. Cars that approach the traffic signal after the light turns green will not join the
standing queue. Instead, they will slow down for a while and accelerate back to their normal speed when they have an unimpeded right-of-way for passing through the intersection. In this manner, these cars will incur only a fraction of the maximum AN that a car that is stopped incurs. Some of the cars arriving later during the green phase may pass without having to change their speed.

Graphically, referring to Fig. 4.1(a), we draw a vertical line OO' from the stop line at time $t = 0$. We assume that the cars that are supposed to arrive at the deceleration-wave line AB at time $t > 0$ do not stop, but instead, they slow down to another constant speed v_b, and start accelerating back to their normal speed v_a at the acceleration wave line OB. So in Fig. 4.1(a), all cars X_1 through X_n have to stop, while car Y_1, (with $t_c > 0$, does not. Y_1 changes to the lower speed v_b at $t = 0$ (point E) and travels at that speed v_b until it joins the acceleration line OB at point F, then it starts accelerating back to its normal speed v_a. The slope of EF represents the speed v_b. Cars such as Z_1 and Z_2 can pass through without any change in speed.

We assume that the speed of the cars that do stop, becomes zero at the deceleration line AB, and they remain in this state until the acceleration line OB, when they start accelerating. For the cars that only slow down for a while and speed up again, the speed changes occur at line $t = 0$ and OB (see Fig. 4.1(b)). The time-distance diagrams in this chapter show only the simplified trajectories of the car movements. The acceleration and deceleration processes are not shown.
Fig. 4.1(a) Time-Distance Diagram
(b) Time-Speed Diagram
21.

The AN of a discrete arrival flow and a uniform arrival flow are considered in this chapter. A model to calculate the AN for a random arrival flow is developed in the next chapter.

4.1. Discrete Arrivals

As in Fig. 4.1, for cars that stop (i.e., cars X_1 through X_n) the deceleration time is $t_d = \frac{v_a}{d}$ and the acceleration time is $t_a = \frac{v_a}{a}$. d is a constant deceleration rate and a is a constant acceleration rate. For each one of these cars we have the following AN relation:

$$\sigma^2 = \frac{1}{T} \int_0^T \left[\alpha(t) \right]^2 dt = \frac{1}{t_d + t_a} \left[d^2 t_d + a^2 t_a \right]$$

For the cars that only slow down and accelerate back to their normal speed, (such as cars $Y_1, Y_2,$ and Y_3), the AN is calculated as follows:

Line AB: $x = C_d (t - \tau)$

Line OO': $t = 0$

Solving lines AB and OO' for point C', we get $X_{c'} = -C_d \tau$ and $t_{c'} = 0$. Line C' M goes through point C' and has a slope v_a. Line EN goes through point $(t_{c'} + h, x_{c'})$, i.e., point $(h, -C_d \tau)$, where h is the arrival headway (sec.) and has slope v_a, so that.

Line EN: $\frac{x + C_d \tau}{t - h} = v_a$

i.e., $x = v_a t - v_a h - C_d \tau$

Solving lines OO' and EN for point E, we get $x_E = -v_a h - C_d \tau$ and $t_E = 0$. Solving lines AB and EN for point C', we get $t_{c'} = \frac{v_a h}{v_a - C_d}$ and

$$x_{c'} = C_d \left(\frac{v_a h}{v_a - C_d} - \tau \right).$$
22.

Line C'F: \[\chi = \chi_{C'} = C_d \left(\frac{\frac{V_a}{r}}{V_a - C_d} - \tau \right) \]

Solving lines C'F and OB for point F, we get \[t_F = C_d \left(\frac{\frac{V_a}{r}}{V_a - C_d} - \tau \right) \]

and \[\chi_F = C_d \left(\frac{\frac{V_a}{r}}{V_a - C_d} - \tau \right) . \]

Line EF: \[\frac{\chi - \chi_F}{t - t_F} = \frac{\chi_E - \chi_F}{t_E - t_F} \]

and the slope of line EF, which is \(v_b \) for car Y₁, is

\[V_b = \frac{\chi_E - \chi_F}{t_E - t_F} = \frac{C_a \frac{V_a^2}{r}}{C_d \left(\frac{\frac{V_a}{r}}{V_a - C_d} - \tau + C_d \tau \right)} \]

If we let \((t_d)_Y\) denote the deceleration time of car Y₁ and \((t_a)_Y\) denote its acceleration time, then from the relationship \(v_b = v_a - d \left((t_d)_Y \right) \)
and \(v_a = v_b + a \left((t_a)_Y \right) \) we obtain

\[
\begin{align*}
(t_d)_Y &= \frac{V_a - V_b}{d} \\
(t_a)_Y &= \frac{V_a - V_b}{a}
\end{align*}
\]

respectively, and the AN of Y₁ can be represented by:

\[
\sigma^2_{Y_1} = \frac{1}{(t_d)_Y + (t_a)_Y} \left[d^2 (t_d)_Y + a^2 (t_a)_Y \right]
\]

For car Y₂, the calculations are similar to that for Y₁. Since Y₂ comes h seconds later than Y₁, we simply replace h by 2h in the above derivations and obtain \(v_b \) for Y₂, \((t_d)_Y\), \((t_a)_Y\) and finally \(\sigma^2_{Y_2} \).

We do the same calculations for the cars that follow until the time \(t_c > t_B \) when all cars can pass through without changing their speed, and therefore, do not incur any AN.
4.2 Uniform Arrivals

We assume a uniform arrival flow pattern with magnitude \(q_a \) and duration \(p \). We divide the platoon length into \(N \) intervals \(\Delta t \).

Assuming the arrival time of the first group of vehicles \((q_a \text{ in } \Delta t) \) at the stop line is \(T \) (Fig. 4.2), then the arrival time of any \(n \)th group at the deceleration wave line \(A'B' \) is \(t_{c''} \).

Line \(A'B' \):
\[
X = C_d \left(t - T \right)
\]
Line \(KK' \):
\[
\frac{X - \tau}{t - \tau - (n-1)\Delta t} = V_a
\]
i.e.,
\[
X = V_a \left[t - \tau - (n-1)\Delta t \right]
\]
Solving line \(A'B' \) and \(KK' \) for point \(C'' \), we have
\[
t_{c''} = \frac{V_a (n-1) \Delta t}{V_a - C_d} + \tau
\]
\[
X_{c''} = \frac{C_d \cdot V_a (n-1) \Delta t}{V_a - C_d}
\]

(I) For \(t_{c''} = t_A \), through \(t_{c'}, \) i.e., \(\tau \leq t_{c''} \leq 0 \): All arriving cars have to stop, and the AN of any group of \(q_a \cdot \Delta t \) cars can be calculated as follows:
Fig. 4.2 - Uniform Arrivals
deceleration time \(t_d = \frac{v_a}{d_a} \)

acceleration time \(t_a = \frac{v_a}{a} \)

and \(\sigma^2 = \frac{1}{t_d + t_a} \left[\frac{a^2}{t_d} + \frac{d^2}{t_a} \right] (\frac{\partial^2}{\partial t} \cdot \Delta t) \)

(II) For \(t_{c''} > t_{c'} = 0 \) through \(t_{b'} = -C_{\tau} \), \(\tau = \frac{-Cd_{\tau}}{Ca - Cd} \)

these cars do not come to a full stop, but only slow down to a lower speed \(v_b \).

Calculations for \(v_b \) and \(\sigma_b \) are similar to those in the discrete arrival case.

The total AN is then the summation of the AN's of the individual groups of cars in (I) and (II).
5. Computer Model and Program to Calculate Acceleration Noise for Continuous Flow Patterns

Assuming that:

1. We are given a dispersed input flow, which is the flow pattern discharged from the upstream intersection, at a distance:

$$\text{DIST} = \text{HDWYJ} \times \text{SUMO1}$$

from the stop line, where

$$\text{HDWYJ} = \text{headway at jam} = h_j \text{ (ft/veh.)}$$

$$\text{SUMO1} = \text{total number of cars in the arrival platoon (veh.)}$$

This flow can be either a result of field measurements or an output from another computer program.

2. The assumptions of Chapter 4 hold.

The arrival flow is given throughout a whole cycle length. We can divide the cycle length into many small increments.

$$\text{CYCLE} = \text{cycle length (sec.)}$$

$$\text{RED} = \text{effective red time (sec.)}$$

$$\text{GREEN} = \text{effective green time (sec.)}$$

$$\text{ITIME} = \text{length of each time increment (sec.), we can use, say, 2 sec.}$$

$$\text{NINC} = \text{total number of increments in the cycle} = \frac{\text{CYCLE}}{\text{ITIME}}$$
P2(n) = number of cars in the nth increments

SPEED = normal, constant speed = v_a (ft/sec.)

SF = saturation flow = discharging rate after

signal turns green and before queue disappears (veh/sec.)

Referring to Fig. 5.1, P2(1) is the first group of cars. P2(1) arrives at the stop line at time \(T_1 = -\text{RED} \) (the beginning of green is zero time).

P2(2) is the second group of cars, they arrive and join the queue (queue length = \(h \times P2(1) \) at time \(T_2 \)). And so on. P2(n) is the nth group of cars, and its arrival time at the queue is \(T_n > 0 \). As soon as the signal turns green at time \(t = 0 \), cars start leaving the intersection at the saturation flow rate SF.

We assume that P2(n) with \(T_n > 0 \) do not come to a complete stop, they change to the lower speed \(v_b \) at \(t = 0 \), and start accelerating at point E.

To calculate the arrival time of each group of cars at the queue, we let the arrival times be \(T_1, T_2, \ldots \), and further assume that the first group of cars arrive at time \(T_1 = -\text{RED} \) (see Fig. 5.2). Let SPEED denote the normal driving speed, then \(\text{TIME} = \text{DIST}/\text{SPEED} \) is the travel time to go through the distance DIST. Then,

\[
A_2 T_2 = \text{ITIME} - \left\{ \text{TIME} - \frac{\text{DIST} - h \times P2(1)}{\text{SPEED}} \right\}
\]

\[
A_3 T_3 = 2 \text{ITIME} - \left\{ \text{TIME} - \frac{\text{DIST} - h \times [P2(1) + P2(2)]}{\text{SPEED}} \right\}
\]

\[\vdots\]

\[\vdots\]
Fig. 5.1 - Continuous arrival flow

Fig. 5.2 - Arrival times at the queue
So the arrival time of the nth group of cars at the queue is

\[T_n = -\text{RED} + (n-1) \frac{\text{ITIME}}{1} - \left\{ \frac{\text{DIST} - h \times [Q(n-1)]}{\text{SPEED}} \right\} \]

Where \(Q(n-1) \) is the cumulative number of cars in the queue for groups 1 through (n-1), i.e.,

\[Q(n-1) = P2(1) + P2(2) + \ldots + P2(n-1) \]

At time \(t = 0 \), i.e., as the signal turns green, the vehicles start leaving at saturation flow rate SF. The queue keeps increasing from time = -RED to time = 0. After time \(t = 0 \), the queue keeps decreasing at the rate SF - Input Flow, until the queue disappears or \(t = \text{GREEN} \); then we start the next cycle. So after time \(t = 0 \), queue = \(Q(n) - SF \) and queue

To calculate \(v_b \), we refer to Figs. 5.1 and 5.3. Suppose \(T_n > 0 \). According to our assumptions, \(P2(n) \) does not stop, this group of cars slows down to a lower speed \(v_b \) at time \(t = 0 \) (i.e., at point D) and accelerates back to normal speed \(v_a \) at point E. The slope of line DE represents this lower speed \(v_b \). Fig. 5.3 shows this part in more detail. OP represents the time \(t = (n-1)\text{ITIME} - \text{RED} \), and OD represents the distance = \(v_a \) \[(n-1)\text{ITIME} - \text{RED} \]. The distance of point E from the stop line is:

\[\text{EDIST} = h \times Q(n-1) \]

At point E:

\[\text{EDIST} = h \times SF \times \text{ETIME} \]
Fig. 5.3 - Trajectories near time $t = 0$
so,

\[\text{ETIME} = \frac{\text{EDIST}}{(h_1 \times SF)} \]

Therefore, in time ETIME, this nth group of cars P2(n) travels the distance (OD - EDIST), and we obtain

\[v_b = \text{slope of DE} = \frac{\text{OD} - \text{EDIST}}{\text{ETIME}} \]

The calculation of the AN can be summarized as follows:

1. For groups of cars that join the queue at time \(T_n \leq 0 \):

\[
\text{AN} = \left\{ \frac{1}{t_d + t_a} \left[d^2 t_d + a^2 t_a \right] \right\}^{1/2} \quad P2(n)
\]

where \(t_d = \frac{v_d}{a} \) and \(t_a = \frac{v_a}{a} \).

2. For groups of cars that are supposed to join the queue at time \(T_n > 0 \), before the queue disappears:

they change to lower speed \(v_b \) at time \(t = 0 \) and each group has the AN:

\[
\text{AN} = \left\{ \frac{1}{t_d + t_a} \left[d^2 t_d + a^2 t_a \right] \right\}^{1/2} \quad P2(n)
\]

where

\[
t_d = \frac{v_a - v_b}{d} \quad t_a = \frac{v_a - v_b}{a}
\]

and \(v_b \) is calculated by equation as above.

3. For groups of cars that arrive after the queue disappears:

they pass through the intersection without any change in speed and hence \(\text{AN} = 0 \) for these cars.
Based on the model developed above, a computer program was written to calculate the AN for any arrival flow pattern. The program is a FORTRAN subroutine. It can be easily called from a main FORTRAN program which has the distribution of the arrival flow and other basic data such as cycle time, red time, green time, speed, etc. One example of such a main program is the program in Ref. (6), that calculates the delay at the intersection.

A flowchart showing the logic of how the AN is calculated in the program, together with the definition of variables and a complete listing are shown in Appendix A. A subroutine that shifts the arrival platoon takes care of the effects of changing the offset.

The results of an actual computer run are shown in Appendix B. Part (a) shows the arrival flow pattern P_2, in which the total number of cars is 14.56/cycle. Part (b) shows the calculated acceleration noise for different offsets.
Appendix A
The Computer Program
(a) Flow Chart

Read in data = d, a, h, v, P2, QZERO
 ITIME, NINC, RED, J, a, IRED, SF

Calculate total flow SUM 01
Calculate DIST = h/a * SUM 01

Obtain the dispersed arrival flow P2
at distance DIST from the intersection

TD = v/a ; TA = v/a

Total acceleration noise AN(J) = 0.0

Q(1) = P2(1) + QZERO
Q(N) = Q(N-1) + P2(N)

Arrival time of the Nth group cars
TARR(N) = TIME - TIME - [DIST - h/a * Q(N-1)] / v

TARR(N) ≤ 0?

Yes

Acceleration noise of Nth group cars 1/2 ANN(N) = P2(N)*

1

[TD + TA + TD + TA]

P(N-1) = Q(N-1)
Queue P(N-1) = P(N-1) - SF * TARR(N)
P(N-1) = AMAX1 (0.0, P(N-1))

Check if queue disappears P(N-1) ≤ 0?

Yes

ANN(N) = 0

No

Calculate XD, XE, TE and
VB = (XD - XE) / TE

TD1 = (v_a - v_b) / d ; TA1 = (v_a - v_b) / a

ANN(N) = P2(N)* [TD + TA1 + TD1 + TA1] 1/2

AN(J) = AN(J) + ANN(N)

N > NINC?

Yes

Call sub-program RVSHFT to shift
the flow pattern and get the effect of
changing the offset

No

J > NINC?

Print results
(b) Definition of Variables

DRATE = \(d \) = deceleration rate (ft/sec\(^2\))

ARATE = \(a \) = acceleration rate (ft/sec\(^2\))

HDWYJ \(h_j \) = headway at jam (ft/veh.)

SPEED \(v_a \) = the constant arrival speed (ft/sec)

P2(I) = total number of cars in the Ith group (veh.)

Q(I) = cumulative number of cars from 1st to Ith group (veh.)

QZERO = secondary flow (veh.)

TARR(I) = the arrival time at the queue of the Ith group (sec)

P(I) = number of cars left in the queue after signal turns green (veh.)

SF = saturation flow (veh/sec)

ITIME = the length of each time increment (sec)

NINC = total number of increments (the cycle time is divided into NINC increments of ITIME seconds each)

RED = length of the red period (sec)

IRED = number of increments in RED

ANN(N) = the individual acceleration noise of the Nth group

AN = total acceleration noise (ft/sec\(^2\))
Appendix A

(c) Listing of Program

145 SUBROUTINE ANDISE (P2,Q,SPEED,NINC,ITIME,RED,OZERO),TRED,HODYJ,SP
146 *,IWORK,X,SF,DIST)
147 ! DIMENSION AN(120),AN1(120),P2(120),Q(120),IWORK(120),X(120),
148 TARR1(120),P(120)
149 DATA CRATE/8.0/,ARATE/5.0/
150 TD=SPEED/DRATE
151 TA=SPEED/ARATE
152 TIME=DIST/SPEED
153 TEMP=(1.0/(TD+TA))*(DRATE**2*TD+ARATE**2*TA)**0.5
154 DO 700 J=1,NINC
155 AN(J)=0.0
156 AN1(J)=P2(1)*TEMP
157 LIM=NINC
158 DO 600 IT=2,NINC
159 Q(IT)=Q(IT-1)+P2(IT)

CCC NOTE: BECAUSE THE ARRIVAL FLOW IS FOR 2 LANES, WE USE HODYJ/2 IN
CCC THE CALCULATIONS.

160 TEMP2=TIME-(DIST-HODYJ/2*Q(IT-1))/SPEED
161 TAPR(IT)=(-1.0*RED)+(IT-1)*ITIME-TEMP2
162 IF (TARR(IT)-0.0) 77,77,78
163 77 P2(IT)=P2(IT)*TEMP
164 GO TO 600
165 78 P(IT-1)=P(IT-1)-SF*TAPR(IT)
166 P(IT-1)=AMAX1(0.0,P(IT-1))
167 TMP(IT-1)=0.0 70,70,71
168 X0=SPEED*(IT-1)*TIMF-RED
169 XF=HODYJ/2*Q(IT-1)
170 TF=XF/(HODYJ/2*SF)
171 VB=(X0-XF)/TF
172 TD=(SPEED-VF)/DRATE
173 TA=(SPEED-VF)/ARATE
174 PRINT727,TD1,TA1,VB,SPEED,XD,XE,TF,IT
175 PRINT727,TD1,TA1,VB,SPEED,XD,XE,TF,IT
176 727 FORMAT('0','TD1='11,F7.2,' TA1='11,F7.2,' VB='11,F7.2,' SPEED='11,F7.2,
177 ** XD='11,F10.2,' XF='11,F10.2,' TF='11,F7.2,10X,' IT='11,I5)
178 TEMP1=((1.0/(TD1+TA1))*(DRATE**2*TD1+ARATE**2*TA1)**0.5
179 GO TO 600
180 70 AN(IT)=0.0
181 LIM=IT
182 GO TO 747
183 600 AN(J)=AN(J)+AN(IT)
184 747 PRINT737
185 737 FORMAT('0','TARR(Arrival Time)= ')
186 PRINT737(TARR(IT),IT=2,LIM)

CCC CHANGE OFFSET
187 CALL RVSHFT (P2,NINC)
188 700 CONTINUE
189 PRINT710
190 710 FORMAT ('0',A, 'ACCELERATION NOISE FOR OFFSETS IS : ')
191 PRINT, (AN(J), J=1,NINC)
192 CALL OKRPLT (X,AN,NINC,0,0,IWORK)
193 RETURN
194 END
Total No. of cars in platoon = 14.56

(a) Arrival Flow P2

(b) Acceleration Noise vs. Offset

Appendix B - Sample Results
References

