
Generalized Drift-Diffusion for

Microscopic Thermoelectricity

by

Parthiban Santhanam

B.S. Engineering Physics, University of California at Berkeley (2006)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2009

@ Massachusetts Institute of Technology 2009. All rights reserved.

A uthor .... .. ....................
Department of Electrical Engineering and Computer Science

May 22, 2009

Certified by ................... ............. .. ................
Rajeev J. Ram

Professor
Thesis Supervisor

Accepted by... .........
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

ARCHIVES

MASSACHUSETTS INSTfTE
OF TECHNOLOGY

AUG 0 7 2009

LIBRARIES





Generalized Drift-Diffusion for

Microscopic Thermoelectricity

by

Parthiban Santhanam

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2009, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

Although thermoelectric elements increasingly incorporate nano-scale features in sim-
ilar material systems as other micro-electronic devices, the former are described in the
language of irreversible thermodynamics while devices such as heterojunction bipo-
lar transistors and semiconductor lasers are often described with the drift-diffusion
equations. We present a microscopic description of the thermoelectric effects using
a generalization of the common drift-diffusion formulation of semi-classical trans-
port. We then replicate these basic results in a commerical device simulation pack-
age to explore Peltier cooling at a basic p-n junction. This framework should enable
the design of spatially-inhomogenenous thermoelectric elements and internally-cooled
micro-electronic devices.
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Chapter 1

Introduction

Microscopic theories of electrical and thermal conduction in solid-state systems typi-

cally separate the dynamics of the mobile electronic charge carriers from that of the

underlying lattice of ions which produce the potential in which those carriers move.

As we are well aware in the design of electronic devices, while both subsystems con-

tribute to the conduction of heat, only the carriers contribute to the conduction of

charge. That is to say, while the interactions of the two subsystems must be accounted

for (typically through scattering), in an accounting sense the phonon lattice excita-

tions contribute only to the flow of heat but the electronic subsystem contributes to

the flow of both heat and electricity. This latter fact, that the thermal and electrical

responses of any solid-state system are invariably linked as they share a single car-

rier distribution, is the origin of all the thermoelectric effects discussed herein and

therefore underlies all practical devices based on these effects.

The same separation of dynamics is also the starting point for the theoretical de-

scription of all solid-state devices, including the design and simulation of their thermal

operating characteristics. Nevertheless, the formalisms typically employed in the de-

sign of such devices as semiconductor lasers, bipolar-junction transistors (BJTs), and

field-effect transistors (FETs) differ from those typically used to explain thermoelec-

tricity. Since the phenomena involved can be witnessed in the same semiconductor

material systems, it should not be surprising that a unified formalism can be found

which describes both thermoelectrics and other practical solid-state devices.



The most common picture employed to describe thermoelectricity is conceptually

rooted in irreversible thermodynamics, and abstracts away the microscopic dynamics

of semiclassical Boltzmann transport into transport coefficients. Meanwhile, the drift-

diffusion equations remain popular for the description of transistors and lasers, even

in devices whose design merits thermal management.

In this thesis, we describe a generalized drift-diffusion framework which permits a

microscopic description of thermoelectric phenomena and of course retains the abil-

ity to explain other device phenomena. This framework could be used to describe

and design thermoelectric elements, which because of the recent efforts to improve

effective material parameters by introducing nano-scale features [1], increasingly re-

semble micro-electronic devices. Additionally, this framework could be useful in the

design of transistors and lasers for which thermal management is key to improved

performance, but which have required the use of a separate framework to examine

the possible benefit of incorporating thermoelectric effects directly into device design

[2].

We begin by presenting a brief overview of thermoelectric phenomena and the

typical approach to their description, including the typical method of incorporating

microscopic physics. We then outline some of the applications of thermoelectric ma-

terials and briefly mention the importance of thermal management in certain modern

micro-electronic devices.

1.1 Thermoelectric Phenomena

Our first goal is to describe the thermoelectric effects phoneomonlogically in order

to quantify and communicate their practical value, and to generally motivate their

microscopic description.

Applying a small temperature difference across a sample gives rise to a small

longitudinal voltage under electrical open-circuit conditions by what is known as the

Seebeck effect (see Figure 1-1). The ratio of the small resultant voltage to the initial



100
ATIK)

Figure 1-1: Left: Phenomenological depiction of the Seebeck effect. Right: Plot of

open-circuit voltage with temperature difference across a commerical thermoelectric

generator consisting of 142 elements connected electrically in series and thermally in

parallel. This measurement was made in a demonstration power-generator built by

the author. Note that the observed "average Seebeck" above is diminshed from the

material property value because of thermal parasitics.

small temperature difference is known as the Seebeck coefficient:

AVAV (1.1)
AT

The Seebeck coefficient carries units of [Volts/Kelvin]= [(Joules/Kelvin)/Coulomb],

and though justification is left to Section 1.2.2, it may be thought of generally as

the entropy transported per coulomb of charged carriers contributing to conduction.

Note that we have chosen to define a from differential quantities because it is a linear

transport coefficient. The same is true of all transport coefficients referred to in this

chapter, even if the smallness of the quantities whose ratios they reflect is omitted.

Another thermoelectric effect, the Peltier effect, occurs when an electrical current

is passed through an interface between different materials in an isothermal system,

causing the junction to experience cooling or heating depending on the sign of the

current (see Figure 1-2). The ratio of this heat production (taking care to include

only the contribution oc II and to omit the Joule heating from any contact resistance

oc 12) to the current required to produce it defines the Peltier coefficient:

Qgen = 112 - 1 (1.2)
I
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Figure 1-2: Left: Phenomenological depiction of the Peltier effect. Right:
Plot of steady-state AT across a commercial thermoelectric cooler versus cur-
rent I required to maintain it. This Micro-Pelt MPC-D303 has 8 el-
ements electrically in series and thermally in parallel. Plot taken from
(http://www.micropelt.com/products/peltier-cooler.php). Note that while the
Peltier effect is defined under isothermal conditions, driving a current through a
TE material as in the figure at left will result in heat transport from the left contact
to the right contact (for positive II), giving rise to a temperature difference AT. In
steady-state, this rate of heat transport exactly cancels the rate of ordinary heat con-
duction giving rise to a maximum AT as shown in the plot at right and derived in
Section 1.2.1.



The Peltier coefficient carries units of [Watts/Amp]=[Volts]= [Joules/Coulomb], and

may be considered the energy transported per coulomb of contributing carriers.

The Peltier and Seebeck effects were first related by Lord Kelvin in 1858 via argu-

ments of thermodynamic reversibility which he himself noted were flawed and could

be made to generate spurious results [3]. Nevertheless the relationship between the

Seebeck and Peltier coefficients, which held water empirically and were theoretically

justified from time-reversal symmetry nearly a century later by Lars Onsager (see

Section B.2), bears the name of the second Kelvin relation:

II = aT (1.3)

1.2 Thermoelectric Devices

1.2.1 Bulk Material Analysis

For thermoelectric materials, it is possible to define a useful dimensionless figure-of-

merit, ZT:

ZT = T= T (1.4)
K Kph + Ke

where a and K are the total electrical and thermal conductivities respectively and the

subscripts refer to the phonon and electron contributions to the material's thermal

conductivity respectively. For the present bulk material model, we presume the ma-

terial parameters to take on a single value over the extent of the thermo-element, an

assumption which we will break when we introduce the full thermodynamic Onsager

model below (see Section 1.2.2).

The figure-of-merit defined above is chosen so that the primary performance pa-

rameters of practical devices are simple, monatonically increasing functions of ZT,

with all dependences on the Seebeck (a) or conductivities (a, ,) found in the combi-

nation Z. For this reason, increasing the ZT at relevant operating temperatures has

become the central objective of the materials-development segment of the thermo-

electric research community. Our discussion in support of this point follows closely



the text of Nolas, Sharp, and Goldsmid [4].

Thermoelectric Generators

The energy-conversion efficiency of a thermoelectric generator (TEG), as with any

heat engine, is given by the ratio of the rate it performs work at to the thermal input

power required to do so. For a TEG this translates to the ratio of the electrical power

it is able to deposit in a resistive load to the thermal power flowing into the TEG at

the hot reservoir. For concreteness, we may imagine a modified version of the general

setup from Figure 1-1 which replaces the voltmeter with a load resistor Rload equal to

3 times the internal resistance of the thermoelectric element, and specifies L and A

to be the length and cross-sectional area of the device respectively. Noting that the

thermally conducted power can be simply separated into a part determined by the

thermal boundary conditions and another part due to the diffusion of Joule heat in

the element, we have:

Pelectrical,load

Pthermal,hot-side

12 . Rload

KVTA + aTHI
12 - RI (1.5)

a TA - I12RI + aTHI

a2 (T) 2  ( )

R4[--A 2 (1,3)R)I+T ((1+)RIJ]

Now if we choose to operate the generator at the load required for maximum power,

we find that the maximum of (4 gives us --+ 1 or simply Rload --+ RI. In this



case, the efficiency reduces to:

a 2(AT)2  1

, - -( RT)' +R,+TH (a(AT))] 4
L 2 ( 2R 2R

a2 (AT) 2  1

"(AT) - a2(AT)2 + la 2TH(AT) 4 (1.6)

TH - Tc 1
1 - I(AT) + TH 4
Z 8 2

1 1 Uc 1)-1

4 (ZTH 8 2S4

where rc is the Carnot efficiency. Note that in the case where thermal conduction at

the hot side approaches the electrical open-circuit value under the same temperature

boundary conditions, the efficiency at max power is a simple linear function of ZTH:

p - ZTH (1.7)
4

Thermoelectric Coolers

A similar analysis may be performed for refrigerating devices, built on the Peltier

effect instead of the Seebeck effect. For such devices, one may derive expressions for

the coefficient of performance (0) between reservoirs of specified temperature and the

maximum achievable AT.

For a single unicouple, we may express q as the ratio of the heat flowing out of

the cold reservoir through the thermo-element to the electrical power required to do

so. When we describe the device as pumping heat from a cold reservoir at Tc to a

hot reservoir at TH = Tc + AT, the net heat being pumped out is given by the peltier

heat flow out minus the incoming heat from conduction:

AT 1
Qc = (aTc) I- A - -I2R (1.8)

L 2

where A and L are the cross-sectional area and length of the element respectively

and R is the electrical resistance. Note that the conducted heat has nicely separated



into a component independent of current I and half of the total Joule-heating con-

tribution. We can also simply describe the input electrical power as the sum of the

Joule heating and any difference in carrier electrochemical potential that arises from

the Seebeck effect across the reservoirs.

W = I (IR + a(AT)) (1.9)

We pause here to interpret the above equation; we will return shortly to the

question of O(Tc, TH). To run a current in the direction needed to carry heat away

from the cold reservoir, one must perform work to push carriers upstream against a

density gradient, which even for neutral particles would be entropically disfavored,

but moreover is energetically disfavored because of the Coulomb repulsion of more

carriers on the destination end of the thermo-element. This interpretation of the

Seebeck effect will prove useful again in Chapter 3.

The ratio gives us 0:

(aTc)I - K(AT) - 112 (
12R + a(AT)I

where K is the thermal conductance. Note that if we examine the limit of removing

all sources of irreversibility by taking K -- 0, R -+ 0, we arrive at the Carnot

limit 0 -+ Tc/AT [4]. As in the case of the generator, the maximum efficiency

condition corresponds to a different operating point in general than the maximum

power condition. Since the thermal conductance of the sample is taken as constant,

to find the maximum acheivable AT, we need only choose the current to maximize

the Peltier heat-pumping power minus Joule heat diffusion:

aTc
IQ - IIQc=Qc,ma = RT (1.11)

then solve for the AT which permits a maximum of Qc = 0:

I2aR - TcI 1
(AT)ma 2 - - ZT (1.12)

-K 2



1.2.2 Thermodynamic Onsager Analysis

As seen above, for devices of practical interest, the device performance parameters

are monatonically increasing functions of ZT, such that from a materials-development

perspective, it often suffices to follow strategies which pursue a higher figure-of-merit.

Nevertheless, since material parameters (a, a, K) change with temperature, it is often

useful to design a single thermo-element to operate effectively in its particular tem-

perature regime. However, because of the need to match both electrical and thermal

boundary conditions simultaneously [5, 6], since both carrier and energy density are

conserved locally, this task of optimizing such inhomogeneous thermoelectric elements

is not as simple as changing the material to maximize ZT at each location. Whether

the approach taken is to change the dopant concentration or alloy composition contin-

uously over the sample (known as functional grading), or to combine a small number

of homogenous elements in parallel or series as needed (known as segmentation or

cascading), the transport in such devices is poorly described by the simple model

above.

Moreover, while a new generation of nano-structured thin-film thermoelectric ma-

terials has been developed to reach higher room-temperature ZT's, the fabrication

techniques required for these materials often exhibit drift, so that even elements de-

signed to be homogeneous are often poorly described by the model expressed above.

Whether purposeful or accidental, modern thermoelectric elements are rarely well-

described by bulk-element analysis. Instead, a single framework for the flow of charge

and heat in thermoelectrics is needed to appropriately model and design such ther-

moelectrics. The thermoelectric Onsager Relations, an expression of the irreversible

thermodynamics of charge and heat flow, constitute such a model and are derived

here. The discussion presented here follows closely the Callen's text on thermody-

namics [3].

We begin by expressing the rate of local entropy-density generation (not to be

confused with accumulation) in terms of gradients of the temperature T and electro-



chemical potential p and the fluxes of energy Ju and carriers JN:

s = (V J -- JN(- (1.13)

where p is the electro-chemical potential. To motivate this equation, we recall from

the micro-canonical ensemble of equilibrium statistical mechanics that the inverse-

temperature 1/T is defined as the partial derivative of the entropy with respect to

the overall system energy: 1/T = !. Similarly, the electro-chemical potential is

given by pIT = '. If we consider a nonzero flux of energy Ju to be indicative of

bits of energy dU flowing from one small thermodynamic subsystem to an adjacent

small subsystem with greater inverse-temperature, the overall entropy of the two

combined subsystems will be increased by an amount proportional to the amount

of energy transferred (dU) and the inverse-temperature difference (A(1/T)). In this

process, entropy has been generated. Using a similar logic for the flow of particles,

we may see the above equation as intuitively expressing how the rate of local entropy

generation can be expressed in terms of the flow of various extensive quantities. For a

more formal derivation of the above equation and other results related to the Onsager

Relations, see Appendix B.

Returning to (1.13), if instead of the flux of energy, if we choose to consider only

the flux of heat, we have:

JQ = TJs = J - pJN (1.14)

and the expression becomes:

( =VT JQ TV •  J (1.15)
( 1 1

Note that p is the electro-chemical potential, which is the sum of the chemical poten-

tial for the charge carriers (electrons here) and their electrostatic potential energy.

Making use of the Onsager Reciprocity, we may then write the fluxes in terms of



the affinities, assuming a linear, memoryless system:

1 1
-- JN = L11Vp t+L12V-

T T
1 1

J = L21Vp -+ L22
T T

where L 12 = L 21 for B = 0.

From here, one can set up various "experiments" by enforcing boundary conditions

and defining the usual transport coefficients in terms of the L's.

We define the electrical conductivity to be the ratio of the electrical current qJN

to the gradient in the electro-chemical potential per unit charge Vp/q for VT --+ 0,

where q is the charge of an electron. We define the thermal conductivity to be the

ratio of heat flow JQ to the negative temperature gradient -VT under conditions of

no current flow JN --+ 0. Likewise, we may set up the Seebeck and Peltier effects to

find that:

a -T2aca 1
-JN = V +V-

q q T (1.16)

Jo = Vp + (Taa2 +T2 ) V
q T

where the Onsager Reciprocity implies the Second Kelvin Relation:

I = aT (1.17)

1.2.3 Microscopic Derivation of Transport Coefficients

Both of the models above describe thermoelectric devices and their underlying phe-

nomena in terms of macroscopic transport coefficients without reference to their mi-

croscopic origins. Therefore, for these models to explain the performance of practical

devices in terms of microscopic physics, we need only calculate the values of the trans-

port coefficients (at each point in space for the thermodynamic Onsager model, but

only once for the bulk picture) and insert them into the analyses above.

The microscopic calculation of electrical, and in particular, thermal conductivities



in recently developed materials with nanoscale features remains a topic of active

research [7]. Nevertheless, these values in many materials of importance can at least

be approximated with very simple models. To get more accurate predictive estimates

of the conductivities, one may choose to view the simple model as an approximation

of a more complex model, which when examined further results in a more accurate

answer.

For example, the lattice contribution to thermal conductivity can be given by

Kph = I Cv cl (1.18)

where Cv is the heat capacity at constant volume for the lattice (which can be es-

timated in terms of microscopic parameters by the Einstien-Debye model), c is the

sound-speed, and 1 is the average mean-free-path [4]. Instead of assuming that all of

the phonons are well-described by their average mean-free-path, if we consider the

contributions to the heat capacity from phonons of various mean-free-path lengths, we

can achieve a closer approximation. This is particularly useful when examining mate-

rials with defects specifically introduced to reduce the mean-free-path of a particular

group of phonons [7].

Likewise, the electrical conductivity of a semiconductor is easily described in terms

of the Drude model:

a = qnp = qn (1.19)

but can be further examined by considering contributions from various energies (a

procedure undertaken in Section 2.4.1), or even wavevector.

Once the electrical conductivity has been calculated, the Law of Wiedemann-Franz

[8] can be used to estimate the electronic contribution to thermal conductivity as:

e = (k) 2 Tor (1.20)

to complete our microscopic estimation of the conductivities.

On the other hand the third transport coefficient which is present in the bulk and



Onsager models, the Seebeck coefficient, requires a longer calculation. In a sense, one

of the main thrusts of this thesis is to develop a fuller model of this calculation in the

same sense as the fuller models of the conductivity calculations above. The recipe in

this section expresses contributions to the Seebeck coefficient from electronic carriers

of various energies, while the model in Chapter 2 expresses the contributions from

carriers of various wavevectors.

While the derivation presented here has been the basis for numerous theoretical

investigations [9, 10, 11, 12, 2], our treatment here will primarily follow Section 1.3

of Pipe's doctoral thesis and the publications cited therein [2, 13], with the notable

exception that we only consider unipolar semiconductors in this thesis. To solve

for the Seebeck coefficient in terms of microscopic parameters, we begin with the

Boltzmann Transport Equation (BTE) under the Relaxation-Time Approximation

(RTA). In steady-state, taking the phase space density f to be a function of both

space and wavevector, and taking the momentum-relaxation time T to be a function

of wavevector, we have:

hk qE f - fo- .Vf + Vkf = (1.21)
m* h T

If we make the assumption of spherical parabolic bands with dynamical effective mass

m*, we know that in equilibrium the electronic carriers occupy states with density

given by the Fermi-Dirac distribution:

F E+(EC-EF)

fo(E) = [e kr + 1 (1.22)

where
h2 k2

E = -- (1.23)
2m*

Here we take the energy E as zero at the band-edge and explicitly permit gradients in

the band-edge and hence in the vacuum level, thereby circumventing a later inaccurate

assumption of the electro-chemical potential being roughly equal to the chemical

potential that was made in [2].



To first order in the real- and momentum-space gradients, we then have

Vf Vfo =

and

-fo -(E + Ec - EF) VT
aE T

Ofo hk
Vkf Vkf0 = h

dE m*

+ V(Ec- EF))

Substituting these expressions into the BTE and recalling that E = -VEc/q, we

can solve for the deviation of f from equilibrium:

-(E + Ec - EF) VT
T VEF] fo - f

Using this expression for f, we can express the current density in terms of a

contribution proportional to VT and another proportional to VEF, then identify the

coefficients as aa and a respectively.

Sd k hkf( -

J (2 r) 3 m*

d3 k hk
S2q ( f - fo)

fB (27)3 m*

= -2q j

= -2q jB

d3 k hkz
(27") 3 m*

d3k hkz
(27)3 m*

Ofo hk
(k) OE m*

afo hk
dOE m*

-(E + Ec - EF)VT

I T

-(E + Ec - EF) T
T

(1.27)
VEF]

VEF

Let us assume that T(k) = To[E(k)]r and take the gradients to be in the same (2)

direction as we are asking about the current in. Converting this expression into an

integral over E, we can write the result in terms of defined integrals as follows:

-2q2m* To
J '-:= I[T(7-) ((EF - Ec)Ir - r+ + (-VE) + (-VEF) r] (1.28)

where

I [ OE]

(1.24)

(1.25)

Ofo hk
OE m* (1.26)

l, = dE (1.29)



Which leads us to expressions for the conductivity and Seebeck coefficient in terms

of microscopic parameters and an integral over energy.

(J-) )VT-,O

-VEF/q

S(J. )VEF--

-VT -a

and

-2q2 2m;To
37 2 h3  r

-1 ((EF- Ec)r Ir+l)

Tq Er

For the simplified case of the Boltzmann limit, where fo(E) = exp [-(E + Ec - EF)/(kBT)],

we have:

o = exp [-(E + Ec - EF)/(kBT)]
)E

-e-(Ec-EF)/(kBT) E 0 0

IBT =] dE E'+)

(kBT )

exp [-E/(kBT)]

kBT) 2Y

so that using the identity F(n + 1) = nF(n) and substituting in the expression n =

Nc e - (Ec- EF)/(kBT) for the carrier density in the Boltzmann limit, we arrive at:

-1
a =

Tq
(EEc)(kT)5(E, - Ec) - (kBT) -

(2
(1.33)

which is the common expression for the Seebeck coefficient in the Boltzmann limit.

Even outside the Boltzmann limit, it is possible to rewrite the expression for the

conductivity from (1.30) in terms of an integral over the Fermi window:

2q2 o2m*T
37r2h3 d

(1.34)

- odE(

where we may regard the preceding expression as the definition of the differential

(1.30)

(1.31)

a
8
0

(1.32)

log ( n ) ]

f

kBq 5
q 12

fo E2+r-aE)E

OE '(E)



conductivity u'(E). We may then also express the Seebeck coefficient in terms of

-1 fo dE (- ) ((EF - Ec) - E) u'(E)

Tq fo dE (- f) o '(E) (1.35)
(E + Ec - EF)cr'(E)

Tq

where (),I'(E) may be regarded as the differential-conductivity weighted average over

the Fermi window. Because the Peltier coefficient is commonly considered to represent

the average transport energy, here (E + Ec - EF), the above expression suggests

that the quantity u'(E) which encodes the relative importance of various energies to

electrical charge conduction, also encodes the relative importance of various energies

to the Peltier and Seebeck coefficients. For this reason, we refer to this derivation of

a as the differential-conductivity method.

This microscopic analysis of the Seebeck effect begins with the BTE and so there-

fore also carries the assumptions of semiclassical transport Appendix A, as do all

other derivations beginning there including that in Chapter 2. However the combina-

tion of the Onsager thermodynamic model and the transport coefficient calculations

we just performed also implicitly make an assumption about the homogeneity of a

thermoelectric element. They essentially divide space into small regions for which the

transport coefficients are calculated and combine them using the Onsager equations.

The size of these regions therefore introduces another length-scale into the problem,

which must be large enough for the divided chunks of space to obey the laws of

thermodynamics and avoid the complications of microscopic defects and impurities

yet small enough to permit the consideration of each region as homogeneous. For

so-called functionally-graded materials, whose material parameters are changed con-

tinuously along the length of a thermoelectric element, or for thin films which operate

under very large temperature gradients where the transport coefficients could change

substantially on short length-scales, this choice must be made carefully.

With the real-space model in Chapter 3, we avoid this difficulty entirely by con-

sidering all quantities related to boundary conditions (T, EF) in the microscopic



analysis and consider quantities like the electrical conductivity and Seebeck coeffi-

cient to be properties of the set of self-consistent solutions of the microscopic physical

laws. Moreover we witness phenomena that does not manifest in the point-wise micro-

scopic model, such as density variations [14] at the ends of even homogeneously-doped

elements and the associated local changes in the band-edge profile.

1.3 Thermoelectric Applications
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Figure 1-3: Room-temperature ZT achievements with time [1]. Text in the figure

should read "Discovery of compounds with ZT > 1."

For decades generators and refrigerators based on thermoelectric effects have been

constrained to highly specialized applications which require the durability and com-

pactness typically offered by these solid-state devices. The primary reason for this

has been that the room-temperature figure-of-merit for available material systems

remained stagnant at around ZT = 1 (see Figure 1-3 [1]). As inhomogeneous and

nano-structured thermoelectric elements are developed with higher room-temperature

ZT's, solid-state thermoelectric energy conversion may become viable options in ap-

plication spaces historically filled by mechanical turbines and compressors [15]. To-

day's push for greater energy efficiency in automobiles may also be served by ther-

moelectric technologies [15]. As new technologies such as micro-scale wireless sensors



become more pervasive, the practical application of TEGs as compact ambient-energy

harvesting elements [16] may also represent a new source of demand.

1.3.1 Direct Power-Generation

The efficiencies available with modern thermoelectric materials are insufficient for

grid-scale power production. However, smaller niche applications have used TEGs

for decades, including several of NASA's space probes [17]. Hundreds of compact,
lightweight, reliable thermoelectric elements were used as part of a radioisotope ther-

mal generator (RTG) system used to power the Voyager, Galileo, and Ulysses space-

craft, as well as the Cassini Orbiter launched in 1997, shown in Figure 1-4.

. . ...

Figure 1-4: One of three RTGs used to power the Cassini Orbiter, launched 1997 [17].

Recent materials advances, both theoretical and experimental, have led to much

optimism about the future use of TEGs in direct power generation. Nevertheless,

thermoelectric technology remains drastically inefficient compared to modern gas-

turbine combined-cyle power generators, which have recently passed the threshhold

of 60% thermal efficiency [18]. Even portable 10-kilowatt gasoline-powered generators

can achieve thermal efficiencies of 25% [19]. With a typical hot-side temperature of

TH = 2000K and a cold-side temperature of Tc = 400K, for a TEG to achieve similar

performance would require ZT e 400 and ZT - 12 respectively [20].

Even if materials with such spectacular ZT's were made, practical power genera-



Figure 1-5: Demonstration thermoelectric generator with large thermal parasitics,

built by the author.

tion still faces numerous challenges. In addition to the problem of ensuring that the

parasitic thermal resistances in series with the generator do not absorb a substantial

fraction of the temperature drop (see Figure 1-5), the issue of thermoelectric compata-

bility, analogous to the compatibility issue with multi-junction photovoltaics, must

be addressed. Essentially, the generated current at the optimal power point must

be matched for all segmented devices in series and the relative thermal impedances

of various segments must permit the optimal temperature profile in order to achieve

ideal segmented performance [5, 6]. For many large-scale applications therefore, not

only must an arsenal of good thermoelectric materials which span the desired tem-

perature regime be developed, but the individual materials must further satisfy the

requirement of so-called thermoelectric compatibility [5, 6]. However if these issues

are addressed and materials satisfying the necessary requirements are developed, an

exceedingly large application space awaits.



1.3.2 Macro-Scale Waste Heat Recovery

The compactness and reliability of thermoelectric generators, along with their ability

to operate across a wide range of heat qualities permits their application in waste-heat

recovery systems. While virtually every modern machine could be thought of as a heat

engine operating below Carnot efficiency, and therefore represents an opportunity to

recover some of the wasted heat to improve overall efficiency, a few opportunities are

sufficiently lucrative to be considered even with current thermoelectric technologies.

A 2004 proposal, funded by the US Department of Energy, was undertaken by

a joint team from BMW, BSST, and Visteon in collaboration with academic and

government laboratories, to attempt to achieve a 10% improvement in the overall

efficiency of a modern passenger vehicle [21]. The strategy is to sap waste heat from

the exhaust system (see Figure 1-6 and Figure 1-7) and have a TEG convert it into

enough electrical power to satisfy the majority of the power load normally placed

on the alternator. The additional thermal impedeance in the exhaust line should

also reduce warm-up time and thereby improve vehicle fuel efficiency further in cold

weather.

Exhaust manifold *xhaust pipe atalyst centor Var

Figure 1-6: Operating temperature profile for exhaust system of a BMW passenger
vehicle [21].
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Figure 1-7: Proposed site for waste-heat recovery in an automotive TEG system.

Image from (http://www.bsst.com/automotive-waste-heat-recovery.php).

1.3.3 Micro-scale Wireless Sensor Power

As numerous applications for small electronic sensors develop, a need for energy

scavenging devices has emerged. Thermoelectric technology is particularly well-suited

to this environment for numerous reasons [16], including the durability and size of

the devices as well as the ubiquity of their power source. Competing technologies

often rely on unreliable features of the ambient environment, such as stray radio-

frequency power from electromagnetic communications or solar power. Background rf

power in urban areas is typically around a few pW/cm3 , below many current sensors'

requirements. Meanwhile mm3-scale sensors could easily find shadows if realeased

outdoors, and would not have sufficient incoming power density if released indoors.

Vibrational-energy scavenging devices are hurt by the rising fundamental frequency of

small volumes, and hence become less effective for small sensors. Thermoelectrics, on

the other hand, scale well with size and could make use of very common temperature

differences between surfaces on which such mm3-scale sensors might land and the

ambient air. While issues with the stepping-up of DC voltages to usable levels for

electronic sensors remain, since there is no fundamental limit to the efficiency of DC-

DC electrical power conversion, thermoelectricity still looks well-poised to compete

in the micro-scale wireless sensor power application space.



1.3.4 Cooling and Temperature-Stabilization

The Peltier effect can be exploited to pump heat against the direction of natural dif-

fusion using electrical power. Since such devices use the dense gas of mobile electrons

in the thermoelectric material as the working fluid, they offer environmental benefits

over traditional compressor-based heat pumps found in commercial and industrial

refrigerators [15]. Also, since such devices can be miniaturized without the need to

design and construct assemblies of miniaturized moving parts, their employment be-

comes more attractive at smaller length-scales. Indeed, there is strong interest [22]

in expanding the use of external thermoelectric devices to stabilize micro-electronic

components [15], which have recently faced an adverse Moore's Law of increasing

power dissipation density due to increased functionality per unit volume.

1.4 Thermal Self-Management Applications

Thermoelectric
cooling from

injection

Ec

n p n
Ev base

emitter

collector

Figure 1-8: Consideration of internal Peltier cooling at the base-emitter junction of

heterojunction bipolar transistors (HBTs) could lead to improved device designs [2].

In numerous applications, the heat produced by active micro-electronic devices

degrades their operation and requires cooling. In some devices, the heating problem

is extremely localized. For example, high temperatures at the base-emitter junction of

BJTs and HBTs leads to noise in amplifiers made from them and high temperatures in



the active region of laser diodes leads to the strengthening of numerous non-radiative

carrier recombination pathways that increase threshold current and reduce efficiency.

While in many such cases it will remain attractive to cool such devices externally,

when the heating problem is localized on the nano-scale, such as in the examples

above, the consideration of thermoelectric effects in the original device design (see

Figure 1-8) could enable the design of self-cooling devices, such as the ICICLE laser

[2] shown in Figure 1-9.

Ileakage linjection leakage

Ec Injection

n E n Ec
EEp  E E c

n n+
lea ( Injection

Iinjection > > Ileakage leakage \ -

E E

Active region heating .

Active region cooling

Figure 1-9: By examining the Peltier heating and cooling present in typical diode
lasers, whose band diagram and Peltier heat generation profile shown left, Pipe pro-
posed a design [2] for the ICICLE (Injection Current Internally Cooled Light Emitter),
depicted at right.

1.5 Thesis Outline

In Chapter 1 we have presented the most common formalism for describing ther-

moelectric effects, and have motivated the development of a unified formalism for

thermoelectric effects and micro-electronic device design. In the subsequent chapters,

we present the generalized drift-diffusion picture which accomplishes this task, and

begin to apply it to some specific examples.

In Chapter 2 we present the picture of semi-classical thermoelectric transport

in reciprocal (or momentum) space. The differential conductivity approach related



in Section 1.2.3 describes thermoelectric transport primarily in energy-space, finally

writing the Seebeck coefficient as a ratio of integrals over E. By examining the distri-

bution function before performing the non-invertible map k -* E(k) on the indepen-

dent variable, we can gain intuition about the microscopic origin of thermoelectric

effects not previously available to us and, as with the conductivity calculations in

Section 1.2.3, extend the model to more accurately describe real materials.

In Chapter 3 we present the full description of the generalized drift-diffusion equa-

tions for thermoelectric transport. We begin with the simplifying assumption of a

single energy-independent momentum-relaxation time, and use the framework to ex-

plain the Seebeck effect for an extrinsic semiconductor with spherical parabolic band-

structure in the Boltzmann limit. Although the quantitative results match that of the

differential-conductivity model, and agreement extends to the case of relaxation time

with power-law dependence on momentum, this real-space model nonetheless offers a

qualitatively new picture with particular implications for metal-semiconductor junc-

tions at the contacts of a TEG as well as the physical interpretation of the analytical

result.

In Chapter 4 we begin to use the framework to simulate Peltier heat exchange in

micro-electronic devices and analyze inhomogeneous thermoelectric elements. As a

first step in this process, we transition from using the relatively simple computational

tools (developed by the author) which we used to describe the physics in preceding

chapters to a commercial device simulator which incorporates a broader set of physical

effects. We validate the new simulator by replicating the Seebeck and Peltier effects

from Section 3.2 and Section 3.6, then move on to examine the p-n junction.

In Chapter 5 we briefly outline the future research directions which the framework

presented in this document suggests. We include the specific experimental prediction

of a new mechanism for directly measuring the scattering exponent in a thermoelectric

material by Atomic Force Microscopy as well as initial attempts to reconcile our

numerical models with an unpublished observation by LiierBen and Ram of internal

Peltier cooling in an Ino.53Ga0.47As tunnel diode by thermo-reflectance microscopy.



Chapter 2

Reciprocal-Space Picture of

Thermoelectric Transport

2.1 Introduction and Overview

In this chapter, we seek a fuller description of the microscopic transport processes

relevant to the thermoelectric effects than the differential-conductivity approach pro-

vided in Section 1.2.3.

In the differential-conductivity calculation of a and a, although our initial expres-

sions were written in terms of integrals over reciprocal-space, we eventually reduced

them each to a single integral over the energy E. Here we seek to examine a closely-

related set of microscopic transport coefficients without performing the simplifying

non-invertible map k -* E(k) on the independent variable space. In doing so, we find

intuitive descriptions of the transport coefficients which will help us reconstruct the

thermoelectric effects microscopically in Chapter 3.

In Section 2.2 we motivate the new choice of variables which distinguish our trans-

port calculations from the differential-conductivity approach. In Section 2.3 we begin

our analytical derivation of transport coefficients by solving the Boltzmann Transport

Equation under the Relaxation Time Approximation and graphically interpreting the

expressions for the distribution function under electric potential, density, and tem-

perature gradients. In section Section 2.4 we then use these results to analytically



express the conductivity, diffusivity, and Soret coefficient for cases of both energy-

independent and energy-dependent relaxation times. In Section 2.5 we extend this

analysis beyond the Boltzmann limit to include doping densities typical of practical

thermoelectric elements.

2.2 The New Choice of Variables

The generalized drift-diffusion model for microscopic thermoelectricity presented in

this thesis differs from the combined differential conductivity and thermodynamic

Onsager model (see Section 1.2.3) in its choice of both independent and dependent

variables.

As we saw with the conductivity calculations in Section 1.2.3, the consideration

of the dynamics of a transport process in a more-complex, higher-dimensional in-

dependent variable space can offer additional intuition for the associated transport

coefficients. In the case of lattice thermal conductivity, we chose to examine the

contributions to the heat capacity from collections of phonon modes with particular

mean-free paths. In the case of electrical conductivity, we chose to examine the con-

tributions to electrical current from various energy levels for a system under bias. In

fact, as we will see in Section 2.4.1, this segregation of contributions to conduction

from various energies can offer us a correction term in the case of the energy-dependent

relaxation time (To --+ T(E)). In the case of thermoelectric transport, we modify the

prevailing [9, 10, 11, 12, 2] model for transport by replacing the contributions from

electronic carriers of various energies E with the more complex consideration of which

wave-vector k gave rise to that value of energy E(k).

While the choice to view transport in reciprocal space over energy space is primar-

ily taken to develop an intuitive picture, we may eventually find this description useful

for several reasons. In the semi-classical transport framework (see Appendix A), the

wave-vector k gives the complete quantum wavefunction of the independent charge-

carrier at a given point in space. Therefore in this description all transition rates can

in principle be calculated, and we need not keep such quantities as T(k) as conceptual



black boxes. Also, for useful devices, we are often interested in thermoelectric effects

in places where the phase-space density of carriers is dramatically out of equilibrium.

While our particular calculations of transport coefficients will not be valid in such a

regime, the integrals we used to solve for them require only the semiclassical approxi-

mations to remain valid, and so we could readily examine such situations numerically

given some approximation of the phase-space density.

We also choose to change the dependent variables which describe the system at

any point in space from the temperature and electro-chemical potential (T, EF) to the

temperature, density, and electric potential (T, n, q) of the electronic carriers. This

choice is made primarily because EF at a given location is itself explicitly dependent

on the local temperature, clouding our ability to describe the transport of carriers in

terms of independent sources that "drive" them. The new choice is useful not only

because it does permit description in terms of such independent sources, but moreover

the new quantities chosen as independent variables are conceptually simple and permit

the joint solution of these equations with other physical formalisms. In particular, the

choice to use the density n and potential 0 instead of the electro-chemical potential

EF permits the system to be solved self-consistently with Maxwell's equations without

regard for the thermodynamic interpretation of these quantities. The true value of

this choice will be revealed in Chapter 3, where we will find that T, n, and 0 emerge

naturally from the Momentum Balance Equation, and the inclusion of Maxwell's

equations offers us an intuitive picture of the Seebeck effect in real-space.

For now, however, it suffices to consider this choice of dependent variables as

convenient and intuitive, particularly for the device physicist familiar with the popular

drift-diffusion transport model.

2.3 The Relaxation-Time Approximation

In the semi-classical picture, the central equation describing the dynamics of a non-

equilibrium system of mobile carriers is the Boltzmann Transport Equation (BTE).

For the steady-state solutions we seek, a greatly-simplifying assumption known as the



Relaxation-Time Approximation (RTA) permits analytical solution. The difficulties

of reconciling reversible underlying mechanical laws with irreversible macroscopic

behavior (briefly mentioned in Appendix A) are conceptually swept under the rug by

the RTA, the use of which constitutes the replacement of a system trajectory given as

an average over motions following reversible mechanical laws by a statistical closure

that gives rise to irreversible dynamics. In systems with large numbers of particles

that are close to equilibrium, however, the approximation is a good one and permits

us to write the steady-state BTE as:

[ V  h V k f = S [f] fo) (2.1)

where fo is the equilibrium phase-space density given by the Fermi-Dirac occupancy

of the electronic states in the material's bandstructure. In the equation above we have

purposefully suppressed the dependences on & and k because the relaxation time T is

at times taken to be a function of various quantities, including E and k. Recall that

the energy is a function of wave-vector, and given the particles real-space location, the

wave-vector completely describes a particle's quantum state, so that matrix elements

for transitions can in principle be calculated and summed to find the characteristic

relaxation time T. For this reason, we take as our general form 7 = r7(). As usual,

in steady-state, the density f = f(Y, k).

Our goal, as mentioned briefly in our case for the use of (T, n, 0) as dependent

variables, is to calculate the deviation of the distribution of carriers from equilibrium

in terms of these three independent driving gradients. Note that this information

in effect includes, but is not limited to, the microscopic description of the transport

coefficients relating particle flux to gradients in the dependent variables: the Soret

coefficient S, the diffusion coefficient D, and the conductivity o/q. These coefficients

ask only for the relationship between the first moment of the distribution f and the

associated source, whereas we seek to describe the deviation in every moment of the

distribution.

It is worth mentioning that care should be taken in applying the results to particu-



lar physical configurations, such as is done in Chapter 3 and Chapter 4. Although we

intend to apply these results to situations where more than one deviation is nonzero

at a time, we will have independently considered the cases of nonzero electric fields

E and nonzero spatial gradients of n and T. Because we take the deviations from

equilibrium to be small and we keep only the first-order contributions, the total de-

viation 6f is simply the sum of the source-specific deviations (6ff, + 6fv, + 6 fvT).

To see why, consider that at each point in phase space, we are computing a Taylor

expansion to first order in multiple orthogonal directions by indpendently summing

their contributions at first order. Note again the value of our choice of (T, n, 0).

We now solve the BTE under RTA, interpret the results graphically, and give

the basic expressions for the deviations due to the gradients in (T, n, 0). We leave

the intuition about specific sources as well as calculations of transport coefficients in

various cases of relevance to modern thermoelectricity to the subsequent sections.

Taking f - fo + Sf, for E # 0 and V f0  0 respectively, unraveling the recursive

definition from (2.1) gives:

-E -Vkf f = fo+ E kfo + fo, A )
h T(k) h

(2.2)

h -sf h (k) hr (k)-
-k Vf f=fo+ k -Vf + -- fo( , (2.3)

m* T(k) m* m*

Now we turn our attention to interpreting these results.

As is commonly noted in texts on transport [23], the equation expressing f =

fo + 6Sf constitutes the shifting of the distribution from mean (k) = 0 to (k) = qE

in the case of 7(k) --+ 70. The interpretation of this picture, closely approximated by

the first order RTA result shown in Figure 2-1, is that the distribution of carriers in

momentum-space looks identical to the case with zero E, except that each particle

has gained an average momentum equal to the amount of velocity change that the

field would have imparted on it in time 7. This is exactly the story described in

the Drude model, so it is not surprising that the expression gives a density f whose



-4 Phase-Space Density Deviation for E # 0 Under RTA

= .UU/i---, / i \- I= tU

k> = -4.56e7 m -

-5 0 5
Crystal Momentum in E-direction (m- 1) x 108

Figure 2-1: Plot of phase-space density as a function of E-directed wave-vector for a
distribution of negatively charged carriers under a positive electric field. The average
wave-vector for the deviated distribution is (k) = -4.56e7, indicating a flux of carriers
to the left. Parameters for plot are as follows: T = ips, m* = 0.063me, T = 300K,
and nD = le16 cm-3. The choice of ionized donor concentration puts the extrinsic
semiconductor in the Boltzmann limit.

mean corresponds exactly to a current density J= u with - = qn (-) recovering

exactly the Drude conductivity. The proper derivation of this result is presented in

Section 2.4.1.

The interpretation of the expression for f in the presence of gradient quantities

(plotted in Figure 2-2 and Figure 2-3) is complicated by the question of equilibrium.

In a sense we have contradicted ourselves by assuming that fo is the equilibrium

density to which scattering processes eventually return the distribution, and yet per-

mitting fo to have VT # 0 or Vn / 0, which (with no other gradients nonzero) by

definition makes the system out of equilibrium. What we really meant by fo in the

first place though, was the density to which scattering processes would on net return

f in characteristic time 7.

Let's examine more closely the case of the system under temperature gradient.

Without loss of generality, we may take the direction of the gradient to be . For

particles with zero momentum in the direction of the gradient, meaning those in

the kz = 0 plane, the temperature which characterizes the Fermi function according



Density Deviation for Vn 0 Under RTA
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Crystal Momentum in negative Vn-direction (m- 1) x 10

Figure 2-2: Plot of phase-space density as a function of Vn-directed wave-vector. The
average wave-vector for the deviated distribution is (k) = +3.93e7, indicating a flux
of carriers to the right. The situation is identical to that in Figure 2-1 except that
E = 0 and Vn 5 0.

to which their occupancy is given is not ambiguous. Since every particle in such

a mode is always at the same position, the rest of the system (carriers and lattice

here) with which it is interacting through local scattering processes all have the same

temperature, given by the specification of the solution we seek. In a sense, the

distribution function f = fo + 6fVT that we are solving for is the solution to the

BTE under RTA which has the property that these unambiguous kz = 0 carriers are

distributed according to the local temperature at all points in space.

For the case of a density gradient, the same is true. The distribution function

f = fo + 5fvn that we are solving for is the solution to the BTE under RTA which

has the property that the unambiguous kz = 0 carriers are distributed with the proper

electro-chemical potential EF so that with the local bandstructure, the Fermi-Dirac

distribution would give us the carrier occupancy as pre-specified.

Note, however, that this does not imply that we have no current. We just observed

that each slice of our distribution comes from an equilibrium occupancy function,

which if it were to be used to occupy all states at a given position, would yield no net

current at that location. Nevertheless, when we look at a fixed point in space, we find



-4Phase-Space Density Deviation for VT # 0 Under RTA
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Figure 2-3: Plot of phase-space density as a function of VT-directed wave-vector.
Note that although the peak is moved to the left, the average wave-vector for the
deviated distribution is (k) = +1.57e7, indicating a flux of carriers to the right. The
situation is identical to that in Figure 2-1 except that E = 0 and VT - 0.

that having parts of the distribution originate at different locations (see Figure 2-4)

leads to a net current. This is our picture of diffusion.

The complications of the proper definition above, however, can be put aside as

we examine the picture that the RTA expression for f draws for us. In (2.3) we are

being told that the value for the phase space density at some point in space is found

using the ordinary Fermi-Dirac function, but using density and temperature from a

different position than X, while accessing the usual wave-vector c. The position we

are asked to access is to the left of the usual position for right-moving particles and

is to the right of the usual position for left-moving particles. Moreover, the distance

we are asked to shift by is precisely the mean-free-path for particles with momentum

k: 1= v = T (hk/m*)T(k). Essentially, the picture of f((k) which (2.3) is drawing for

us suggests that the states which compose the distribution at rightward momenta,

whether filled with electrons or holes, on average originated one mean-free-path to

the left, and so should be occupied as though part of a distribution with density and

temperature as found at that location.

Recent efforts [24] have been made to engineer the energy-dependence of the re-
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Carrier Origins versus Velocity (tth = Ips)
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Figure 2-5: Plot of fo arguments in (2.3) for T(k) = 7rth ( Vk, ' where p is known

as the scattering parameter. The general description of the p = 0 lines are the same
as in Figure 2-4. For k along the plotted direction 2, we see that the origination
shift follows a simple power-law in Ik l. For the k L 0 case, the behavior at small
kz resembles that of the p = 0 case, while at large kz the origination shift follows the
k± = 0, p $ 0 result.



laxation time T to improve the Seebeck coefficient and thereby the thermoelectric

performance [24, 2]. For this reason we have included the corresponding plot of orig-

ination location with velocity in the case of 7(k) following a power-law with power p

Figure 2-5, a situation for which we present analytical calculations of the transport

coefficients in the subsequent sections. Not only is this case important because it

is analytically tractable, but in principle, these coefficients can be approximated for

arbitrary 7 in materials with spherical bandstructures. To see this, consider a short

power-series expansion of r(lkl) and interpret the calculated coefficients as resulting

from parallel scattering channels.

2.4 Drift and Diffusion in the Boltzmann Limit

2.4.1 Field Driven Transport

Here we seek to calculate the response of the distribution f to a nonzero electric field.

In particular, we wish to calculate the ratio of the particle flow induced to the field

needed to produce it: a/q. We begin with (2.2), assuming the ionized dopant density

is low enough to put the semiconductor in the Boltzmann limit:

no e 12 m*k
fo(, ) = (2 h3/2 exp 2kt2h where kth m* BT

-qT() fo (2.4)

-q_(k) -k= fo +- k t f0

From here, taking E to be in the 2-direction, we calculate the current:

q (25)

SqEz d3k ( , (kz) ( ) (2.5)



so that upon taking 7(Ikl) -+ To,

z = qEz 2 d3k kfo(q- kzm* foq th 1(2.6)

= qEz ( (27rk0) 3/2  d k dkexp 2  ]

A simple integral identity which we will find enormously useful in the case of k-

dependent 7 can be derived by a change of variables y = x2:

I (a) J dxx' exp [-ax 2]
o (2.7)

1 1+1

2a 2 2

Since the Boltzmann limit causes the density of particles to drop exponentially at

large wave-vectors, we may safely change the limits of integration from the zone-edge

to oc and apply the above result:

q = qEzk * (27kh)3/2 27 dO cos2(0)sin(O)) 14 2h

=qEz 7ono 47r 1(2 k2 )5/2 (5)
SqE( 232/27r2 kt m* k3 2 (2.8)

= qE 4 4Tono 3

qz 3v/J m* 4
(Tono a qT70  Drude

=-qEz -- > - no - -
m* q m* q

Now we solve for the case of -(I k) = Tth ( vth . This power-law dependence of

the relaxation time, with p the so-called "scattering parameter," is of great interest

in recent thermoelectric research [24], and as we will see in Chapter 3, finding the

transport coefficients for arbitrary p # 0 will permit us to match the analytical result

for Seebeck coefficient from Section 1.2.3. Note that since both models assume a

parabolic band-edge, we may relate the scattering parameter here to the one from



Section 1.2.3 with p = 2r. The calculation is nearly identical to the one above until:

( q z k (2k)32o 2 7 dO cos (0) in(O) 14+pq AE 2+P m* (2wTk 2 h)3 /2  J2 kh
q 2 ,_ _th_ _)_ _ I

= qEz TthO ) 4 (2 k2 (5+p)/2 5 + p
(2( 3+p)/273/2 k5+p m* 3 2 2 J

4 (Tthno (5 + p 0\ qTth F (5)=qEz v/ . - -== - = no
3 m* q m* r ()

(2.9)

The current driven by a given electric field is amplified by a ratio of gamma functions

which clearly goes to unity as the scattering time becomes independent of wave-vector

(or energy). We note that this result, though found by the author independently, is

also found in Lundstrom's Fundamentals of Carrier Transport [23].

2.4.2 Density Gradient Driven Transport

For Vn $ 0, in the Boltzmann limit, we may calculate the deviation in the phase-

space density f and use it to derive a diffusion coefficient. Beginning with (2.3):

-n() -l12 m*kBTfo(, ) )3/2 exp 2 I where kth E

(2Irkth)3 / 2  kt2h 2

f(Xo, k) fo(xo, ) + hk * v(, )-(Vf

where we have chosen to specify a location Yo at which to evaluate the current simply

to avoid confusion. Since the solution we seek has a constant nonzero value of Vn

across the device, we may choose to define the profile as n(7) = no + (Vn)(£- Io),

so that the local density shares the no convention with the electric field case. As in

the previous section, we again note that only the deviation 6fvn contributes to the

(2.10)
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Again taking T(|k) = To:

S= (-q V)q
(hi/m*)2 To
(2rkh2 )3 /2

"thl

(h/m*))2 T
= (-Vw) (2k2 )3/2

\ thj
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kBTTo kBT qTo kBT

S(-Vn) q D*- Drude
m* q m* q

so our solution satisfies the Einstein relation as expected. Now we turn to case where

T(Ikl) = Tth )P

- (-Vn)
q

(h/m*)2 rth

(2kt )/ 2 (21rk )3/2

(h/m*)2 th
= (-Vn) (//

2(3+p)/2 3+p 73/2
'th
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3 r
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5 +p
2

S(-Vn) hkth 2
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Tth

kBT qTth F (2-)

q m* ()

which again is a simple modification of the diffusion coefficient for p = 0 and Tth = T0 .

2.4.3 Temperature Gradient Driven Transport

We will now do the analogous calculation for the Soret coefficient, defined by

z = S(-VT) where Vn = E = 0 and |VTI = (VT)
q

(2.14)

(2.11)

2 2h
2 k

(2.13)



We note that this definition is totally different from the definition of the Seebeck

coefficient found in many texts [3], which looks identical to this definition, except

that the gradient of the electro-chemical potential satisfy VEF = 0. While in most

semiconductor device problems, we presume that gradients in EF arise from either

density gradients or electric fields, we must remember that EF is directly depen-

dent on T, a point which has recently warrented explicit clarification [14, 25] in the

thermoelectricity literature.

While the changes in the transport coefficients a and D in materials with nonzero

scattering parameter p had identical functional form, we will find that the case for the

Soret coefficient differs slightly. This difference, as we will see in Chapter 3 accounts

for the improved Seebeck with increased p. We will draw a physical picture explaining

the origin of the difference after we have derived it algebraically, which should present

an intuitive picture for why materials with p > 0 may make good thermoelectrics.

The basic Soret coefficient calculation begins as before. We define T(Y) = To +

(VT) (X- fo). Recalling that our definition for the thermal wave-vector included the

temperature:

no -1k 12  no0 
3  -h 2 l1 2

(2k) 3 / 2 exp 2 k2h (27m*kBT(7)) 3/2 exp 2m*kBT(

f(o, i) fo(o, ~c) + ) (vo( )
m* (= k f

__# (- hr (k) - fo

= fo(xo, k) + m* ki (VT)

= fo(7o, c) + m* (VT) + 2 T fo(0o, k)S (T) -3 k )m* 2 2k2tTo

(2.15)

m* kBTo
where kth = V

Moving forward as before, we now calculate the particle flow under temperature

k )

X)
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And for 7(Ik) =
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which differs slightly from the modifications to D and a for cases of nonzero p. In

particular, for larger p, the ratio of the Soret coefficient to the diffusion coefficient

and conductivity increases as (1 + p/2).

To see why, we examine the dependence of the gaussian fo(k) on the temperature

T. The temperature appears twice in the definition, once in the exponent to widen

the gaussian at higher temperatures, but again in the multiplicative factor in front

to retain the normalization of fS d3 fo(k) = no. The result is that at low wave-

vectors, an increased temperature means the occupancy f is reduced, while at high

wave-vectors, an increased temperature means f is increased. This combines with

the wave-vector-based origination intuition from Figure 2-5 to create an unexpected

situation in which low wave-vector carriers diffuse up a temperature gradient while

high wave-vector carriers diffuse down it. This is the reason for the negative sign

on the 3/2 in (2.15). In the end, however, in the Boltzmann regime where we have

done our calculations to this point, this negative flow (oc -3/2) is overcome by the

contribution to the current from large wave-vectors (c< 5/2 in (2.17) and oc (5 + p)/2

in (2.18)).

In fact, if we examine the situation in one dimension analytically, we see:

( no a  [-h2k2  1 k2 1
d not 3 exp + 2) +-1 k fo = 0 = k = kth

OT (27rm*kBT) 1/ 2 exp2m*kBT + k th T
(2.19)

which we can interpret as quantifying the above relative statements about low and

high wave-vectors. Note that while our definition of T(k) above was made to give Tth

dimensions of time, our choice for the scale of the denominator is also convenient in

that (up to a factor of 0(1), as seen in the plot Figure 2-5), for p > 0, T < Tth for

wave-vectors whose carriers contribute negatively to diffusion and 7 > Tth for wave-

vectors whose carriers contribute positively to diffusion. These larger relaxation times

for positively diffusing carriers increase the magnitude of the Soret coefficient, which

in turn raises the Seebeck coefficient as we will see in Chapter 3, and the ultimately

overall figure-of-merit ZT.



2.5 Outside the Boltzmann Limit

While the integrals are simpler to compute analytically in the Boltzmann limit, for

most applications thermoelectric materials are doped so that their equilibrium EF is

near the bandedge where, as we will show in Section 3.5.1, ZT is maximized. In this

case we can still numerically compute the quantities of interest. The validity of their

application in the real-space formalism of Chapter 3 remains intact because heavily-

doped semiconductors can still be described by the BTE and the relaxation-lengths

are still sufficiently short to warrant use of the RTA. While their doping densities do

not permit us to describe their occupancies in terms of simple gaussians as before, as

long as we take care to distinguish between the actual impurity and the more easily

measured ionized impurity concentration (denoted nD for the n-type materials in this

thesis), our method remains valid.

Outside the Boltzmann limit, the equilibrium phase-space density for single-valley

spherical, parabolic bandstructures has the same 5- and k-dependence as the Fermi-

Dirac occupancy because the available states (per unit volume) are evenly-spaced in

k-space with two states per (27r) 3:

2 1
fo(, k) = 2 1 (2.20)

(2") 3 exp + + 1

Since we wish to describe the occupany in terms of (n, T, q) instead of (EF, T), we

can integrate over the bandstructure to find the density n and substitute back using

this relationship. Since parabolic bandstructure makes occupancy at high Ikl unlikely,

we are still free to change our integrals over the Brillouin zone IB into integrals over



all of k-space:

n(S£) = jd3' fo(iY, k)

= 47r k2dk 2
o (27) 3 exp ± 12  EC-EF ]1

[2kth kBT

1 f 1 Ec - EF
S k2dk 1 where A exp E - E (2.21)

72 exp A + I kT

=-= A() = A(n(i), T(Y))

1 1
-- + fo(), 1)14 3 exp [ 2 ] A(n, T) + 1

[ 2kth

Then to find the transport coefficients a/q, D, and S, we simply apply the procedure

as before. We begin with the RTA expression for the leading-order deviation in f,

then find the induced particle flow from the first moment of f, and divide by the

source gradient to find the transport coefficient. For a/q:

-f = E -Vk fo

Jz kz d3( hkz) 6  (2.22)

q m* m*

a -q hkz
- d i 7() foq h m* k

Likewise, for D:

Sfvn =  . (Vn) (-fo
m* \On

Jz Bd3~ 6 fvn (2.23)

== D = m d3() kz fo
m* J m* an



and for S:
-hT(k) (9

6fVT k - (VT) fom* -T

JZ - hkz - d3k hkz 6fV (2.24)
q m* f m*

---- I d3 Mz)() fo)

keeping in mind that A in the expression for fo above is a function of n and T.
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A numerical solution was developed in MATLAB, the source code for which ap-

pears in Section C.1. The primary purpose of this code is to produce transport
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In Figure 2-6 we find that the Boltzmann-limit expression for the conductivity

remains valid as the density increases and the equilibrium Fermi level rises into the

band. Intuitively, we may expect the conductivity expression to remain unchanged
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because each of the carriers still absorbs the same momentum from a given electric

field in a relaxation time 7.

In Figure 2-7 we find that the Boltzmann-limit expression for the diffusivity under-

estimates the diffusivity as the density increases. Though a derivation of the analytical

expression for the diffusivity in the degenerate limit [26] would take us too far afield,

considering this case provides some clarity. In the Boltzmann limit, the diffusivity can

be seen as independent of density by the Einstein relation D = kT. By contrast,

in the degenerate limit for a density gradient Vn cx -2, the +kz part of the Fermi

surface is occupied as though part of a distribution with greater density than the

-kz part. However, the difference in EF that this corresponds to is dependent on the

density of states at the Fermi level D(EF). It should therefore come as no surprise

that in the degenerate limit, the diffusivity and conductivity obey a different Einstein

relation where alD oc D(EF). Since EF oc n2/3 , and D(E) oc vE in the parabolic

band, we expect that D oc nl/n 1/ 3 = n2 /3 , so that the diffusivity should rise with

increasing density, but not as quickly as the conductivity.

In Figure 2-8 we find that the Boltzmann-limit expression for the Soret coefficient

over-estimates the Soret coefficient as the density increases. Using a similar picture

to the diffusivity case, we note that for Vn cx -2, the +kz part of the Fermi surface is

occupied as though part of a distribution with higher temperature than the -kz part.

If the density of states D(E) is an increasing function of E at EF, then the higher-

temperature Fermi-Dirac occupancy from the same EF leads to a greater density.

Thus we expect more carriers near the +kz part of the Fermi surface than the -kz

part, leading to a flow of carriers cK D'(E)IE=EF. For the parabolic bandstructure

assumed, in the degenerate limit D'(E) oc E - 1/2 so that we expect the Soret coefficient

to eventually decrease with density as S oc n - 1/3

If increasing carrier density beyond the Boltzmann-limit increases the conductivity

and diffusivity, but eventually temperature-driven diffusion becomes weak, we may

expect that the that the thermoelectric effects may vanish in the degenerate limit.

However, as we noted in Section 1.2.1, practical devices benefit from high electrical

conductivity. Therefore we may expect that some value for the carrier concentration



may prove optimal for thermoelectric devices. Our intuition will be confirmed in

Chapter 3.

2.6 Summary and Conclusions

In this chapter, we have developed a picture of the microscopic transport processes

relevant to thermoelectricity in reciprocal-space. We began with the BTE under RTA

and derived general expressions for leading-order deviations in the distribution func-

tion in the presence of gradients (V, Vn, and VT). We then used these expressions

to analytically derive their transport coefficients (o, D, and S respectively), for both

energy-independent 7 and 7(E) o< E r . We then concluded by presenting the general

formulation of these transport coefficients valid outside the dilute Boltzmann limit

where practical thermoelectric elements for power-conversion fall.

The purpose of the chapter was two-fold. First, we looked to develop a visual

picture of the distribution function in these transport processes, backed by analytical

rigor. We did so both to provide intuition and to make vivid the fact underlying

all thermoelectric effects, that the thermal and electrical responses are linked by a

common distribution of charge carriers. Secondly, our analytical expressions will

serve to extend the model for the Seebeck effect in Chapter 3 to realistic dopant

densities and to include the energy-dependence of relaxation times, a recent focus of

thermoelectric material design [24].



68



Chapter 3

Real-Space Picture of

Thermoelectric Transport

3.1 Introduction and Overview

The Seebeck coefficient is typically calculated by the method in Section 1.2.3, which

relates an applied temperature difference AT to the resulting difference in electro-

chemical potential AEF. Although the previous calculations made no specific claims

about the origin of AEF, this difference is sometimes intuitively ascribed to an electric

field and sometimes ascribed to a difference in carrier density. Since both interpre-

tations carry the same correct sign, as diffusion and Coulomb repulsion both drive

carriers away from regions of high carrier concentration, it is easy to forget that each

of these pictures (see Figure 3-1) alone are incomplete.

In the first picture, AEF is explained as the consequence of the difference in carrier

density giving rise to a difference in chemical potential across the device. For a gas

of charge-neutral particles this description is valid, but in a thermoelectric element

where the carriers are charged, Poisson's equation requires that the buildup in carrier

density on the cold-side and the depletion of carriers on the hot-side give rise to an

electric field with implications for the flux of charged carriers in the center. This

electric field and it's associated contribution to the particle-flux balance is omitted

from the story. Meanwhile, since the device is net charge neutral, Poisson's equation
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Figure 3-1: Visual depiction of Seebeck effect. Left: density-driven picture. Right:
field-driven picture.

tells us there is negligible electric field flux at the ends. Since the density profile was

chosen to everywhere cancel the temperature-driven diffusion, we have calculated

the net flux to be nonzero in middle of the device yet zero at the ends, which is

inconsistent with the steady-state continuity equation.

In the second picture, AEF is explained as the consequence of an electric field

within the material which drives a current of carriers opposite to the current due

to diffusion from the applied temperature gradient. This description alone offers no

charge source for the electric field, required by Poisson's equation.

In addition to the inconsistencies with Maxwell's Equations and boundary con-

ditions, these pictures also neglect the important direct dependence of the chemical

potential on the temperature [25, 14]. As we will see in Section 3.4, an important part

of why we see a difference in EF across a thermoelement, particularly so for lightly-

doped semiconductors with large o , is that to maintain a constant carrier density in

the presence of a temperature difference, the EF-bandedge separation must change

as well.

In Section 3.2 we address the aforementioned concerns and develop a viable and

quantitative picture of the Seebeck effect, consistent with both the laws governing

carrier transport in semiconductors and Maxwell's Equations. In Section 3.3 we

make use of the results from Chapter 2 to extend this analysis to include energy-

)
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dependent scattering times. In Section 3.4 we examine the results of the preceding

sections to decompose the Seebeck coefficient into three distinct components. In

Section 3.5 we again make use of the results from Chapter 2 to further extend this

analysis to include relevant doping densities and briefly address the issue of the more

complex bandstructure found in real thermoelectric materials. Finally, in Section 3.6

we demonstrate that the closely-related Peltier effect can similarly be described in a

microscopic real-space picture, identifying J. E as not just Joule heating alone but

the sum of Joule and Peltier heating.

3.2 The Microscopic Seebeck Effect

We simulate the Seebeck effect within a drift-diffusion framework for an extrinsic

semiconductor doped in the Boltzmann limit, in a system presumed to have an energy-

independent momentum relaxation-time To and a fixed thermal conductivity r. The

fixed-K assumption may be thought of as an assumption that rph >> ,Ke, or alter-

natively that the deviations in the distribution of carriers are fractionally small so

that their thermal conductivity Ke is everywhere roughly equal, a fact which will be

confirmed by our solution.

Although in Chapter 2 we derived expressions for the microscopic transport co-

efficients a, D, and S which were valid in systems with energy-dependent relaxation

times T7(lkl) and outside the Boltzmann limit, for simplicity we will not make use of

those general expressions until Section 3.3 and Section 3.5.1 respectively.

We begin by taking the first moment of the BTE to generate the Momentum

Balance Equation (MBE), writing all quantities in terms of the density n, temperature

T, and electric potential 0, and solving it self-consistently with Poisson's equation

under the boundary conditions appropriate for the Seebeck effect. We thereby not

only calculate the Seebeck coefficient a, but also generate a real-space picture of all

quantities of interest. They form an intuitive picture which resolves the fundamental

issues raised in Figure 3-1.



3.2.1 The Balance Equations

The BTE, which describes the evolution of the entire distribution function, can be

used to generate a series of equations describing the evolution of particular moments of

the distribution function without approximation. The resulting equations are known

as the balance equations. The first of these equations is the intuitive continuity

equation which expresses charge conservation. The second of these equations, the

momentum balance equation, can be approximated to recover the well-known drift

and diffusion equations familiar to device engineers.

The procedure for generating a balance equation is to take a moment of the

entire BTE. Conceptually the BTE, which constrains the time-evolution of f based

on the laws of classical mechanics, expresses what must happen to this probability

density at each point (5, k, t). Since the BTE must hold at each point in phase space,

the weighted sum of such points represented by a particular moment of the BTE's

left-hand side must still be equal to the identically-weighted sum of the equation's

right-hand side. Thus, the balance equations we are about to derive may be regarded

as conditions on any distribution function required by the BTE.

The Continuity Balance Equation

For the continuity equation, we take the k0 moment of the full BTE:

j 3 _ O [ &t m* h Vk) f( -j.5 _ - -k 7 -E x k tt)]
k [ t j 

(3.1)

0 1
an(, t) - -V J(5, t) = G(5, t) - R(5, t)

t q

Where we have defined the generation rate G and recombination rate R in terms of

the point-to-point scattering rates S (which are in principle calculable from Fermi's

Golden Rule) as:

G(5, t) J d3k J d3  f(, ', t) S(K, k) (1 - f( (, , t))
S d (3.2)



The resulting equation is known as the continuity equation and expresses the conser-

vation law for density, the ko moment of the distribution. Note that we performed

integration by parts above and set the surface term to zero on the assumption that

our bandstructure and carrier concentration do not permit population of levels near

the zone-edge.

The Momentum Balance Equation

To explain the Seebeck coefficient, we must examine

found by taking the k' moment of the BTE:

the second balance equation,

dk - --+ - 7 V + E V k f(Y, k, t) = dk - f (x, k, t) (3.3)
3 m* Ot m* h I f m*

Examining each term independently and using summation notation where not ex-

plicit:
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=- j d3k j d3k' (kj [f(k')S(k', k)(1 - f(k)) - f(k)S(k, k')(1 - f(k'))])

- * j dk jd3k' (kj - kj) [f (k)S(k, k')(1 - f (k'))]

* d d3  (k) f (k)(k k')(1 f(k')) J

- "jd3k [f(k)kj 1
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(3.7)

where we have made the following definitions:

S d 3  ' S(k, k')(1 - f(k'))1 k - '- (k) . kj)(

S -f (k)m* -m(k)

While these definitions may seem merely convenient, they occlude the important

distinction between the various relaxation times in the system, a point which will

be directly addressed in Section 3.2.3. Combining these results, we arrive at the

Momentum Balance Equation:

- 2 qE J
J + - VW _ ,n = (3.9)

t m* m* q\ Tm k

which in steady-state simplifies to:

VW - nPE + - = 0 (3.10)
q q

where the mobility is defined as:

q * k-- (3.11)



We pause here to take note of what the balance equations are capable of telling us.

The first balance equation, the particle continuity equation, describes the evolution of

the carrier density n in terms of a current J. The second balance equation, the MBE,

describes for us the evolution of the current density J in terms of the energy density

W. We note that at each stage, the object whose conservation law is described

by any particular balance equation is dependent on the next higher object in the

distribution moment heirarchy. In this way, any finite number of balance equations is

unresolved and cannot be completely solved by itself. In order to perform an actual

calculation we must at some point close the heirarchy by stopping at one equation

and approximating the next moment.

In the case of deriving the Seebeck coefficient, we choose to solve only the continu-

ity equation and MBE and to approximate the energy density W. This approximation

is justified by equations (2.4), (2.10), and (2.15), which tell us that the deviations

(6 ff, 5fv,, and 6fVT) due to the gradients in (q, n, and T) are odd in the wave-

vector component parallel to each gradient, so do not contribute to a change in the

even moment W oc (lk 12). Note that this argument applies to all elements of the

energy-density tensor, not just the diagonal ones, and likewise informs us that only

the diagonal elements of W will survive. The approximate calculation of W gives:

ii = (kik)f 0 f
2m*

= 2m* (kik)o+
2m*

=2m*2 d k (k )2 3 /2 exp [ 12

2m* (2k (2)3/2 2ka . 1T2
Sh 2 d (cos2 O sin 0) dk k4exp Jk (3.12)

-h2  n 47r 1 2 5/2 ( ) ]
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again making use of our previous identity (2.7). By symmetry, we have recovered the

solution for any dilute gas in equibrium:

nkBT 0 0

= 0 0nkBT 0 (3.13)

0 0 !nkBT

The boundary conditions applicable to the Seebeck effect dictate the direction of the

temperature gradient, which in turn dictates the direction of the density and electric

potential gradients, thereby permitting the relevant form of the MBE to be reduced

to a single dimension. Moreover, the effect calls for electrical open-circuit boundary

conditions, which make f/q --+ 0. Substituting our above expression for W from

(3.13) into (3.10) and applying these observations about the boundary conditions

leads us to a simple version of the steady-state Momentum Balance Equation:

2p 1 On 2p 1 aT
2p-q kBT) (_a + (nk) ( + npEz = 0 (3.14)

or

( n) + S ( ) + Ez = 0 (3.15)
Oz az q

where D is the diffusivity, S is the Soret coefficient, and ac is the electrical conductivity.

Note that we have just re-calculated D and S, and found that they do indeed reconcile

with the results from Chapter 2. Later, in Section 3.3 and Section 3.5.1, we will regard

this part of the derivation as approximating the more careful results from Chapter 2.

The equation for carrier transport found in (3.14) is essentially the one-dimensional,

steady-state, electrical open-circuit drift-diffusion equation, generalized to include dif-

fusion due to temperature gradients at constant n and 0. Note that the Einstein

relation can be simply read off when VT -- 0.

Before we move on to the proper self-consistent solution, we pause to note that

(3.14) on its own reveals the relationship between the two distinct pictures in Figure 3-1.

The two types of flux, traditional field-driven current and density-driven diffusion,

must together combine to offset any flux driven by an applied temperature gradient



at every point in space. How they cooperate to share those duties while satisfying

Maxwell's Equations is the focus of the next section.

3.2.2 Self-Consistent Solution

The generalized drift-diffusion equation (3.14) must be solved self-consistently with

Maxwell's Equations. For the Seebeck effect, a steady-state solution of a system

with electrical open-circuit boundary conditions, the relevant equation is Poisson's

equation:

S(z) - dz' (3.16)
Er Er - eo

where Er is the DC relative permittivity of the intrinsic semiconductor. By identifying

the free charge density with the excess density of mobile carriers (with charge q)

over the density of ionized dopant atoms, and using the net charge neutrality of the

extrinsic semiconductor to justify the standard boundary condition of E -- 0 for

z --+ foo, we arrive at:

= dz' q (n(z') - nD (Z))(3.17)

(z) = dz(317)

where we take the length of semiconductor to run from 0 to L.

Note that both (3.14) and (3.17) will clearly permit the self-consistent solution of

inhomogeneously-doped elements, where nD = D(Z).

Now that we have expressed all of the equations which describe the relevant physics

in terms of a common set of quantities, we want to ensure that the equations and

unknown quantities represent a uniquely-solvable system. The drift-diffusion equa-

tion looks to describe the system in terms of the density n, temperature T, and

electric field E. Note that the transport coefficients D, S, and a/q are completely

determined by the aforementioned quantities, even without the simplifying assump-

tions used to arrive at (3.14). If we choose to discretize space into N points, then,

we begin with 3N unknown quantities. In the Seebeck effect, our semiconductor is

placed in isothermal contact with a pair of reservoirs, one hot at z = 0 and one



cold at z = L, which combines with our fixed thermal conductivity assumption to

provide a complete temperature profile T(z). Removing these N quantities from our

list, we are left to solve for the density and field at each of the N points in space.

Since Poisson's equation and the relevant electrical boundary conditions, succinctly

expressed in (3.17), uniquely determine the electric field for any given distribution

of free carriers n(z), its inclusion reduces the problem to solving for the N values of

the density n at each point in space in a way that satisfies (3.14) at each point in

space. Since (3.14) is essentially asking us to balance the flux due to gradients in

the three sources dissected in Chapter 2, we must have well-defined gradients at the

points where we ask the flux to be balanced. If we choose the fluxes to balance at the

positions halfway between each of the N discrete points where n is defined, we have

(N - 1) flux-balance equations and N unknown densities. We need only include the

overall charge neutrality of the element, which is not yet expressed in (3.17), to find

that we have N independent equations and N unknowns.
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Figure 3-2: The carrier density profile for Seebeck effect at Tavg = 300K, shown with

AT = 1K. There is a buildup of free charge carriers on the cold-side (right) and a

depletion on the hot-side (left). Parameters for the simulation taken from n-GaAs

doped nD = 1e16 cm-3: m* = 0.0 6 3 me, er = 10.6. For reasons explained in the text,
we assume a fixed value for thermal conductivity , and take energy-independent
momentum-relaxation time Tm, = 0.3ps.



E 0.05

-0.1 $ VT

0 200 400 600 800 100
Position (nm)

Figure 3-3: The source-specified currents sum to satisfy net flux balance at each point
in space, as required by the steady-state electrical open-circuit boundary conditions
in the Seebeck effect. All parameters for this simulation are identical to that from
Figure 3-2.

To numerically compute the self-consistent solution of the generalized drift-diffusion

equation (3.14) and Poisson's equation (3.17), we developed a MATLAB code (see

Section C.2). The result is an intuitive real-space picture of the Seebeck effect, com-

municated in Figure 3-2, Figure 3-3, and Figure 3-4.

Upon examining the point-wise particle flux balance conveyed in Figure 3-3, we

immediately see the proper interpretation of the relationship between the two intuitive

pictures of the Seebeck effect from Figure 3-1. As seen in Figure 3-3, at each point in

the device, the VT-driven diffusion current must be counteracted by the combination

of Vn-driven diffusion current and E-driven drift current. At the edges of the device,

where the overall charge neutrality of the device requires that E -- 0, this duty is

taken up by the density gradient. In addition to providing the current to oppose the

applied VT, this density gradient also serves as a layer (see Figure 3-5) of depleted

carriers on the hot side and a layer of built-up excess carriers on the cold side. This

charge configuration creates an electrostatic field which drives a drift current which

takes over the duties of the density gradient for the interior of the device. Together,

this picture provides a full semi-classical picture of the steady-state Seebeck effect in
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Figure 3-4: The band diagram for the Seebeck effect demonstrates that in the Boltz-

mann limit, only a fraction of the thermoelectric voltage can be ascribed to a gradient

in the band-edge, and therefore gradient in the vacuum electric potential, through

the bulk of the device. The 86 pV/K limit explained in Section 3.4 can be seen, as

AT = 1K and AEc 86 V. All parameters for this simulation are identical to that

from Figure 3-2.
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Figure 3-5: Carrier density profiles for Seebeck effect at 300K with AT = 1K. As the

ionized dopant concentration is increased, the greater density of free carriers serves

to screen the edge effects on shorter length-scales. Just as in the determination of

the Debye length, this screening length is the result of competition between drift and

diffusion. It is therefore intuitive that the characteristic screening length depends on

carrier density in the same way as does the Debye length (oc 1/ 1nD).
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Figure 3-6: The numerical calculations for the Seebeck coefficient done via the gen-
eralized drift-diffusion framework explained in this chapter agree with the analytical

results from the differential-conductivity method of Section 1.2.3 across a wide range

of doping concentrations and temperatures. The calculations in the above figure are

for n-GaAs, and express agreement in the Boltzmann limit. We will discuss higher

ionized dopant concentrations in Section 3.5.1.



a semiconductor. All of the physical laws of electrostatics and classical transport are

satisfied.

The results of these self-consistent calculations agree with the analytical results

of the differential-conductivity calculation from Section 1.2.3, as shown in Figure 3-6.

Recall that there was nothing incorrect in the old model, but since it gave us only the

ratio between the applied VT and the resulting VEF without regard to the location of

the band-edge, we could not have an intuitive picture of the density profile. With the

generalized drift-diffusion solution, we may readily examine the entire carrier density

profile, as in Figure 3-2, and band diagram, as in Figure 3-4.

This generalized drift-diffusion framework can be readily expanded to the prob-

lem of simulating inhomogeneous thermoelectric elements, including devices with

smoothly graded electronic properties as well as abrupt junctions. For example, a

thermoelectric element with a graded donor concentration would be solved by the

same numerical procedure, but with a different fixed-charge density entering into

Poisson's equation and an average carrier density appropriately adjusted to maintain

overall charge neutrality.

The additional detail provided by this model over the differential-conductivity

model also yields at least one experimentally-verifiable prediction. For example,

since the model gives us the profile of the conduction band-edge and the band-

structure of materials shouldn't change appreciably across a semiconductor under

a small temperature difference, the model also tells us the profile of the vacuum level.

The model predicts that for a lightly-doped semiconductor with large al , the ma-

jority of the difference in EF induced by an applied temperature difference should

come from the chemical potential gradient. If metal contacts are attached to ends of

an appropriately-doped sample and a temperature difference AT is applied between

them, then a electric-potential probe sufficiently close to the surface (a distance d

much less than the sample length L to avoid the fringe E-field) should measure sharp

jumps within a few Debye-lengths of the contacts, comprising all but 86 PV/K of

the total Seebeck voltage AV = aAT. A qualitative diagram of this experimental

prediction is shown in Figure 3-7.
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Figure 3-7: Qualitative diagram of electric potential as a function of space near the

surface of a thermoelectric element under a small applied temperature gradient. All

but 86 pV/K of the potential drop should be found within a few Debye lengths of

the contacts.

Finally, one additional detail may be relevant for design, though this question has

not been fully explored. The deviations from quasi-neutral density at the edges of

the device change the energy difference Ec - EF at the edges of a thermoelectric

element under AT from the gap that would be predicted assuming a uniform density

profile. Attempts to model the ends of each element to predict electrically parasitic

contact resistances may need to take this non-uniformity of carriers into account.

When a large number of such elements are placed electrically in series and thermally

in parallel, as is done commonly in power-generating applications, the importance of

contact resistance to overall system efficiency could make the details in this model

relevant to design.

3.2.3 The Various Relaxation Times

Before extending the Seebeck solution to conditions of practical interest to the thermo-

electric community (i.e. inclusion of scattering exponents, consideration of materials



doped outside the Boltzmann limit and materials with more complex bandstructures),

we pause to clarify the origins of the various relaxation times 7 we have used to this

point. In Chapter 2 we began by making the RTA in (2.1) with a relaxation time

T, which at times was a constant timescale To0 and at other times was taken to be

dependent generally on the momentum-state under consideration 7(r). On the other

hand, in our derivation of the Momentum Balance Equation (3.9) from Section 3.2.1,

a combination of somewhat opaque algebraic manipulations permitted us to define a

momentum-relaxation time Tm, which we have thus far considered to be a constant

timescale for the entire system and independent of any momentum-dependence.

While these two quantities, 7 and Tm, both describe the timescale for relaxing

deviations of the distribution f(Y, k) to a state with no current flowing, they are in

fact conceptually distinct.

To see the difference, we return to the original Boltzmann Transport Equation as

expressed in Section A.1, where the right-hand side is taken to be an approximate

statistical closure to an infinite heirarchy of equations which describe the classical

interaction of successively larger numbers of particles simultaneously. When pertur-

bations due to impurities or phonons dominate these interactions, the right-hand side

of the BTE is well-described by scattering rates:

S[f(x, k, t)] = - E f(x, k, t)S(k, k')(1-f(x, k', t))+ f (x, k', t)S(k', k)(1-f(x, k, t))
k' k'

(3.18)

Here, S(k, k') is the probabilistic rate for a given carrier at k to be scattered to k',

assuming the state k contains a carrier and k' does not. The f and 1 - f terms are

present to complete the above expression for the observed rate of net in-scattering to

a state (x, k) at time t. Since f describes only the distribution of carriers in phase-

space, S contains all of the remaining information about the scatterers present in

the system. If the distribution of carriers is dilute, the Pauli-blocking terms can be

omitted, leaving:

S[f (x, k, t)] = - > f (x, k, t)S(k, k') + E f (x, k', t)S(k', k) (3.19)
k' k'



Since by definition, the equilibrium occupancy function is stationary under scattering

processes [23], by writing f = fo + 6f, we may write simply:

S[f(k)] = - 3 f(k) S(k, k') + E 5f(k') S(k', k) (3.20)
kI' k/

The RTA, as we expressed it before, suggests that the value of the occupancy function

f at any point in k-space relaxes back to its equilibrium value with some particular

timescale T, which may (T -- 7(k)) or may not (T - 70o) depend explicitly on the

particular location in k-space. To justify this, we need to assume something more

about the detailed scattering rate S(., -), which amounts to an assumption about the

interaction of the carriers with the scatterers.

The exact condition for the validity of the RTA then is simply that S(., -) permits

the net result of scattering to be analytically described by a relaxation time 7(k)

which, while possibly dependent on the location in k-space under consideration, must

not be dependent on the occupancy of that state f(k) or any other state f(k'). That

is, the occupancy f can be pulled out of the Zk, above:

S[f(k)] = _ [6f(k')S(',k) - f S( S(k, k')] - -(k)] (k) (3.21)

Examples of such conditions under which the RTA as expressed are valid include when

the dominant scattering process is isotropic or elastic [23]. For isotropic scattering,

in which we require that the scattering rate S(k, P) to any state P is independent

of the direction of k', so in particular S(k, k') = S(k, -k'). We notice first that by

definition the equilibrium occupancy must satisfy a detailed balance of scattering

rates, so that fo(k)S(k, k') = fo(k')S(k', k). Then, since all of the deviations from

equilibrim f (k) which we've considered in Chapter 2 or Chapter 3 are odd in the



direction of deviation, we have

S[f(k)] = [6f (k') S(k', k) - 6f (k) S(k, k')]

-6f(k) S(k-4() -6f (k') fo(k)

= (k, k') -f(k) fo(k') (3.22)

= -6f (k) 3 S(k, k')

= -6f(k) - 1 (k)

where the last line can be interpreted as indicating that the relaxation time T is just

the inter-scattering time [23], which explains the recovery of the Drude values for the

transport coefficients in Chapter 2 for the case of T -4 To.

The proof that the elastic scattering condition (S(k, k') -- 0 unless k2 = k'2 ) is

sufficient to justify the RTA can be found in texts on carrier transport in semicon-

ductors [23]. The main point is that the validity of the RTA rests on the microscopic

details of the dominating scattering process(es) and that the timescale for relaxation

of the occupancy function toward fo is set by the scattering rates to the other avialable

states in k-space.

On the other hand, in each Balance Equation we considered the relaxation of a

single quantity defined by a weighted average of the occupancy function. In the MBE,

the weighting hk/m* was chosen to make the quantity under consideration the rate

of flux of carriers J/q. The right-hand side of the MBE:

= dk d3  ' [f(k')S(k', k) - f(k)S(k, k1)

= j dk d' (k -kj ) [f(k)(kk, k')

t= di k(-k ) f (k) dk' S(k, k')i k

was used to define a quantity Tm as follows (taking the additional assumption of dilute



occupancy for simplicity):

Sd3  S(k, k') k (3.24)
Tm(k)- , J dB /  ( kj I

Here, we have taken advantage of the fact that we do not need to describe relaxation

for each k-state individually, but only for some weighted aggregate sum over all k-

states, to interchange the variable names and their order of summation. In essence,

instead of asking about each state independently, which requires knowledge of both

in-scattering and out-scattering types of events, we simply note that each scattering

event has an origin and a destination and do our accounting by summing all out-

scattering events over the set of possible originating k's. This trick, which we have

no hope of playing when we want the point-wise detail of the RTA, permits us to

describe momentum relaxation by the quantity Tm(k) independent of the distribution

f. We recognize Tm(k) as simply the total scattering rate for a carrier at k weighted

by the importance of such scattering events to relaxation of momentum.

The final form of 7 we encountered in the MBE was defined as:

1 _ f* 7((k) (3.25)

m )k 38 f (k) hkiM*

This quantity, which we refer to as the momentum-relaxation time, is simply inter-

preted as the timescale over which local deviations from zero current are relaxed by

scattering.

The particular forms of the deviations in the distribution function given by the

RTA with T = To were found in Section 2.4.1, Section 2.4.2, and Section 2.4.3. For

drift and Vn-driven diffusion currents (taken without loss of generality to be in the

k direction), we find that:

f d3 k fo(k) (1+ c kj)+k j 1

((1 = d3 m(k) (3.26)
h er d3 k fo(k) (1 + kj)

where E is a small constant independent of k. We see that when Tm(k) is a function



only of the magnitude Ikl, the expression can be further simplified:

(( k f d3 k f '(k) ( )(Tm( ) (3.27)
k kfo (k) (6 kj)

which is independent of the magnitude of the deviation E. We conclude that the value

of ((7~,)), whatever it may be, indicates that currents arising from these two types

of sources, electric fields and density gradients, are relaxed at the same rate. In fact,

even if we permit T = T(| k), we find that these two timescales remain identical.

Note that this last assumption reflects the independence of the scattering rates

determined by non-carrier parts of the system, such as impurities and phonons, from

the direction of distortions to the carrier distribution. A particularly relevant counter-

example is the phenomenon of phonon drag, in which the anisotropic distribution of

phonons on net impart momentum to the carriers, thereby enhancing the Seebeck

coefficient. Nevertheless, we proceeded with the approximation for the sake of sim-

plicity.

As we found in Section 2.4.3, the deviation of the distribution function under

VT =f 0 takes on a slightly different form: f --+ (fo)(1 + clkj +E 2 k2 kj), where E1 and

E2 are again small constants independent of k. Therefore the momentum-relaxation

rate relevant to the MBE would, for currents driven by nonzero VT, be:

d2#(3.28)
(( X1 - d fo(k) (Ek1 + E2 k2 k)(Tm(ik ))- (3.28)7Tm k f d3k fo(k) (Ek. + E2k2kj2)

which is in general not the same as the timescale for current decay from the other

sources. In the case with no scattering exponent (Tm(Ikl) = Tm), however, we conclude

that the timescale for current decay from all three sources is equivalent. This is the

detailed justification for the analysis presented in Section 3.2. In the next section,

Section 3.3, we consider systems with nonzero scattering exponents; the simplest

solution calls for a mixture of the MBE and RTA results, and our work in both

Chapter 2 Chapter 3 will be rewarded.

In summary, several distinct relaxation timescales exist in the Relaxation-Time



Approximation and Momentum Balance Equation approaches to solving the BTE.

By returning to the basic expression describing relaxation in terms of the point-to-

point scattering rate S(k, k'), we see that not only do 7 and Tm represent distinct

physical quantities, their usage alone is justified by two different sets of assumptions

about the relevant underlying scattering processes. Since we can solve for the Seebeck

coefficient by the MBE approach, as we have in Section 3.2, we are not forced into

making the RTA to calculate the Seebeck coefficient microscopically, regardless of its

validity for a particular system.

3.3 Seebeck with Energy-Dependent Relaxation Time
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Figure 3-8: Plot showing agreement across a range of doping densities between gener-
alized drift-diffusion model and differential conductivity model for Seebeck coefficient
as a function of scattering paramter r. The scattering parameter is defined as the ex-
ponent of energy-dependence in mean-free-path: A(E) = Ath ( T)r. All calculations
are for n-GaAs at 300K.
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To see why, let us re-examine Figure 2-3. As we saw in (2.15), the diffusion current

driven by temperature gradients takes place on average at larger Ikl than currents

driven by electric fields or density gradients. In fact, for small wave-vectors, the

contribution to diffusion current points toward higher temperatures. Simply put, if we

permit slower relaxation of higher-energy carriers, they will become more important

for the net transport of charge, so that the Soret coefficient will become relatively

larger than the Diffusion coefficient or conductivity. Then, as we saw in Section 3.2,

the amount of current that will need to be offset by the combination of Vn-driven

diffusion current and drift current will be larger, causing more carriers to pile up on

the cold side and more depletion to take place on the hot-side. The net result is a

larger Seebeck coefficient.

With this intuitive explanation in mind, let us quantify this improvement. Our

strategy is straightforward, and since we make use of results from Chapter 2, its

validity rests on assumptions underlying the RTA. We begin with the steady-state

Momentum Balance Equation, keeping the scattering terms in their general form:

nkB kBT qn 1
(-VT) + (- Vn) + Ez =

m* m* m* q kMmm q\\Tm// (3.29)
nks kBT qn = hf- 1

S(-VT) + (-Vn) + qEz -= dk Lkzmm( f (k)m* m* m* m* r (k)

where we have taken all gradients to be in the i direction and f here refers to the

phase-space density.

Since we used the RTA in Chapter 2 to estimate the deviations in the distribution

function 6f due to each of the three sources present, we can write f = fo + 6ff +

5fVn + 6fVT and substitute this expression into the integral for ((1/Tm)):

nkB kBT qn h 3 1
m (-VT()+ (-Vn)+ E =m* dk kz(k) (fo(k) + 6ff + 6fwV + 6 fVT)

(3.30)

Note that for isotropic momentum-relaxation time Tm( kl), which we showed in Sec-

tion 3.2.3 is much less stringent than requiring isotropic point-to-point scattering

rates S(k, k'), the contribution of fo is zero because the integrand is odd in kz. Now



we observe that each of these deviation terms is linear in exactly one of the driving

gradient quantities. Grouping terms according to sources:

[k (-VT) + d3f kz, 65fv
Lm* m* (k)
ks T - h d3  1  ]

+ (-Vn ) +f d3 kzk) fVn (3.31)
m* m* , m(k)

+[ q* +-h 3 ' 1=+ Ez + d3ikZ 6f] = 0

We are left with an equation that strongly resembles the Momentum Balance Equa-

tion, but with transport coefficients which depend on Tm(Ik). Since each of the terms

in brackets has units of current density, we may regard this equation as balancing three

distinct currents, each proportional to an independent source gradient. Recalling that

in Chapter 2 we calculated the current in the presence of power-law relaxation times

(7 oc Ikjl) and used them to calculate new transport coefficients (a(p), D(p), S(p)).

Applying these results and cancelling the ratio of Gamma functions that is common

to all three, we have:

r (5+p p  nkq knTS( 2 '1+ n+ (-'VT) + (-Vn) + Ez =0 (3.32)
F ( 2 m* m* m*

The net result, we see, is that the Soret coefficient is multiplied by (1 + 2), which

in the Seebeck effect requires that the electric field and density gradient combine to

produce (1 + p) times as much opposing current density at each point. The resulting

source-specified current-density profile is shown for p = 5 (impurity scattering [24])

in Figure 3-9 and for p = -1 (acoustic phonon scattering [24]) in Figure 3-10. The

situation qualitatively resembles that from Figure 3-3 and so the intuitive picture of

how the drift and Vn-diffusion currents combine self-consistently related in Section 3.2

need not be repeated.



417
0

tot

VT

0 200 400 600 800 1000
Position (nm)

Figure 3-9: The source-specified current density profile for the Seebeck effect in a
material with scattering time - Oc I 5, indicative of ionized-impurity scattering [24].
All other parameters are identical to Figure 3-3, including Tth = T(IkI = vm*kBT/h).
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Figure 3-10: The source-specified current density profile for the Seebeck effect in a
material with scattering time T7 o IkI -1, indicative of ionized-impurity scattering [24].
All other parameters are identical to Figure 3-3, including -th = r(IkI = fm*kBT/h).



3.4 Decomposing the Seebeck Effect

Another benefit of the model is that we can separate the contributions to the Seebeck

coefficient. In the Seebeck effect, an applied temperature difference AT gives rise to

a difference in the electro-chemical potential AEF = Ap + qA across the device,

which can be decomposed into the following three contributions:

* The difference in the chemical potential due to the difference in density across

the device: (AEF)n = (a)T An

* The difference in the chemical potential due to the difference in temperature

across the device: (AEF)T = ( ) AT

* The difference in the electric potential energy, given in terms of the line-integral

of the electric field across the device: (AEF)4 = dx qE(x')

Note that the first two contributions sum to give the entire change in the chemical

potential because the Seebeck effect is defined in the limit of infinitesmial differences

in all quantities across a given device, including Ap.

While this conceptual decomposition does not require a microscopic derivation

of the sort found in Section 3.2, in order to quantify the contributions, we must

have explicit knowledge of the electric field profile not provided by the derivation in

Section 1.2.3.

The results from Section 3.2 permit us to apply this decomposition to the analyti-

cal expression for the Seebeck coefficient in semiconductors with carrier concentrations

in the Boltzmann limit. Taking p to be the power-law dependence of the relaxation

time on momentum, we may translate (1.33) as follows, using r = p/2 for parabolic

bandstructures:

a=-- 5 + P +log (3.33)
q 2 2 n

Since the electric potential can be defined up to an additive constant as qO = Ec, and

our interest is only in differences in qO and p anyway, we may identify the chemical

potential as p = EF - qO = EF - Ec. In the dilute limit of an n-type semiconductor,



a simple expression for it can be derived from the common expression for the density:

n = Ncexp -(Ec - EF) where m*kBT 3 /2

kBT 2h 2  (3.34)

- p(x) = kBT(x) log (n(x)/Nc(x))

From here, we can calculate the two contributions to the difference in chemical po-

tential:

(p kBT

a T 
n

- (AEF)n = kBT An--
n

( = kB log(n/Nc) - kBT log(Nc/n)

kBT Nc (35)
= kB log(n/Nc) Nc T(3.35)

ksT Nc 3
= kB log(n/Nc)- Nc T 2

= kB (log(n/Nc) - )

== (AEF)T = kB log(n/Nc) - ) (AT)

We pause to note that ignoring the dependence of Nc on T, or equivalently the explicit

dependence of p on T has been a source of sufficient confusion to the community

to warrant literature dedicated to its resolution [25, 14]. Moving along, since a =

AEF/IqI we know that the first contribution aT is (for the electrons in an n-type
AT I

semiconductor):

aT = k 3 + log(Ncn) (3.36)
q 2

leaving

an + a =B [ + (3.37)
q

To further decompose the share of Seebeck into the n and q contributions, we must

examine the real-space solution from Section 3.2. Since almost all of the density

difference between the two ends of the device can be attributed to the regions within

a Debye length (AD) of the edges, as seen in Figure 3-2. Meanwhile, in the center



of a device with length L >> AD, to a close approximation Vn -- 0. There, the

Momentum Balance Equation reads:

r (+p) p  nkB (5+)F ( p) n , (-VT) + () 2U E = 0 (3.38)
r(0) 2/ q 2 ( )

and the electric field can be directly solved for, giving us ao:

Is1 _ p k+ p
= 1= + 2 q 2 -x 86[tV/K

== qA = dx' -qE(x')]Sxxhot (3.39)

= (+ ) (-k)(AT)

q 2

which accounts for the entire remainder of the expression an + ao. Note that our

common observation of n-type semiconductors with a > O(86pV/K) implies that

this contribution alone cannot account for the entire Seebeck effect, as the field-

only picture in Figure 3-1 may initially suggest. The origin of the p-dependence in

Figure 3-7 should also now be clear.

From here we can see the full decomposition of the Seebeck effect in an n-type

semiconductor in the Boltzmann limit. The first contribution, CT, is large and is

the part which becomes larger as the carrier concentration is reduced. The other

two contributions make up the remainder, including the impact of the scattering

parameter, but trade off their relative importance in various parts of the device. Since

the contribution of a, is only significant within AD of the end of the device, the exact

decomposition of the Seebeck coefficient in any particular sample is dependent on

the size of the sample. When L >> AD, a4 is the dominant remaining contribution,

but when L << AD in open-circuit, a, dominates. Still, for sufficiently low doping

concentrations, aT is much more important overall.



3.5 More Realistic Material Systems

To this point, we have made a number of simplifications to permit analytical and

computational solutions. Some of these simplifications are inconsistent with common

material systems found in viable thermoelectric generators and coolers.

3.5.1 Optimal Doping for Power-Generation

While most of the simple results from Chapter 2 and Section 3.2 were calculated in

the Boltzmann limit, where the carriers form a dilute gas and the quantum statistics

of the carriers are irrelevant, the figure-of-merit ZT is typically optimized at doping

concentrations which result in an equilibrium Fermi level within a few kBT of the

band-edge.
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Figure 3-11: The so-called thermoelectric power factor (a 2u) which enters directly
into ZT as seen in (1.4), experiences a maximum as a function of doping near the
concentration required for the equilibrium Fermi level to fall near the band-edge.
These plots express the results of the computational generalized drift-diffusion solver,
using results for the transport coefficients from Section 2.5. Left: Power factor versus
ionized dopant density. Right: Power factor versus equilibrium EF(nD) measured
relative to Ec.

Although this situation is obviously incommensurate with the Boltzmann approxi-

mation, our general strategy remains valid, since the validity of the Boltzmann Trans-

port Equation and Poisson's equation remain intact. For the same reason that we saw

when examining k-dependent relaxation times in Section 3.3, we may use the same



framework but substituting the proper values of D, S, and a/q from Section 2.5 into

the generalized drift-diffusion equation (3.14). As before, we are justified in doing so

because with or without the Boltzmann limit, when Tm(k) = Tmr( l), the scattering

term in the MBE can be broken apart into currents dependent on the deviations and

rearranged to give an equation expressing a balance of fluxes based on the present

gradients (Vn, VT, and ~).

In the Boltzmann limit, there are relatively few carriers present for conduction.

The power factor a 2c increases with carrier concentration because a only depends on

the log of the carrier density while the a depends on n linearly.

The transport coefficients deviate from their asymptotic dilute values as shown in

Section 2.5. Since the ratio of the Soret coefficient to the diffusivity and conductivity

decays to zero as doping is increased and the equilibrium EF is pushed into the band,

the strength of the gradients Vn and E required to drive Vn-diffusion and drift

respectively decay to zero as well. In the language of Section 3.4, this means that

an and ao decay as doping becomes more degenerate. Meanwhile, as the density-of-

states (D(E) oc E 1/2) near EF becomes flatter, the change in the chemical potential

EF - Ec required to maintain a fixed carrier concentration in the presence of a

temperature difference across the sample also disappears, and aT with it. Hence, we

expect to find a doping concentration between the Boltzmann and degenerate limits

which maximizes the power factor a 2u, as shown in Figure 3-11.

3.5.2 A Note on Complex Bandstructures

The high-ZT materials most commonly found in thermoelectric generators and coolers

(see Figure 3-12) typically do not have the simple spherical, parabolic bandstructures

we have assumed until now. In fact, their band-edges are typically composed of

numerous nearly-degenerate valleys. For example, the commercially-popular material

Bi 2Te3 has a 6-fold valley-degeneracy in both the conduction and valence band-edges

[4]. To see why, consider that in the Boltzmann limit, a larger band-edge density-of-

states implies that when a temperature difference is applied, the chemical potential

must change by a larger amount to maintain a fixed density, so aT is larger. This
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materials, we must incorporate an additional timescale into the problem, determined
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-r where C is the location of the band minimum. The blind application of
Figure 3-12: Material ZTs with temperature for various technologically-relevant ma-

terials. Left: n-type. Right: p-type. Image taken from [20].

intuition is consistent with the recent theoretical result from Humphrey and Linke

[9] that the density-of-states which optimizes a 2cr would be a delta-function at the

band-edge: D(E) = 6(E - Ec).

In spite of the technological relevance, we have not yet implemented a model for

materials whose band-edges consist of multiple valleys. To properly simulate such

materials, we must incorporate an additional timescale into the problem, determined

by the inter-valley scattering rate. Returning to (2.3), we see that the initial result

from the Relaxation Time Approximation suggets that the solution to the BTE under

density gradient, for example, for carriers in valleys located far from the zone-center ans-

will have their occupancy determined by the equilibrium occupancy from a distance

hT kc-r where C is the location of the band minimum. The blind application of

this result would suggest that band minima far from r would have huge diffusion

coefficients in the direction of kc.r which were determined primarily by Ikc-rl and

not the relevant dynamical effective mass.

Alternatively, we could take each valley to be centered at F for the purposes of

calculating a transport coefficient (S, D, or a), then try to combine these results.

Consider Si, in which the six equivalent valleys have the same longitudinal and trans-

verse effective masses, but for any given direction have distinct dynamical effective

masses. The Boltzmann-limit calculations performed assuming C - F would yield

the same results as before (S = flkBJ, D = k , and o = n - with m* referring
q m* q m* m*)wt *rfri



to the dynamical effective mass. If we proceed with calculating a Seebeck coefficient

for each valley, when we looked to combine these results we would find that they

suggest occupancies in distinct valleys at the same location in real-space reflective of

different values of the local EF. These differences in EF between valleys would have

been permitted to persist only because we did not consider inter-valley scattering.

Resolving these issues to create an acceptable model of thermoelectric transport

in multi-valley semiconductors is clearly an important priority going forward in the

development and application of the generalized drift-diffusion technique.

3.6 The Microscopic Peltier Effect

Until now, we have developed tools to describe semiconductors in the presence of

thermal gradients under electrical open-circuit boundary conditions because this par-

ticular situation defines the Seebeck effect and may be of value in the design of

thermo-electric generators. Nevertheless, thermoelectric phenomena often find appli-

cation in situations more closely-resembling the setup of the Peltier effect), such as

in thermoelectric coolers internally-cooled micro-electronic devices.

Recall from Figure 1-2 that the difference in Peltier coefficient across an isothermal

interface is defined as the ratio of the reversible heat produced at the interface to the

current flowing across the junction.

In this section, we use the balance equations to present a microscopic picture

of the Peltier effect. We first derive the Energy Balance Equation and identify the

Peltier heat term, noting its consistency with the notion of the difference in average

transport energy. We then proceed to simulate the Peltier effect at a semiconduc-

tor homojunction using the Momentum Balance Equation. We leave discussion of

heterojunctions to future work (see Section 5.3).



3.6.1 The Energy Balance Equation and Peltier Heat

The Energy Balance Equation follows the MBE in the balance equation heirarchy,

and expresses the equality of the k2-moment of each term in the BTE:

f h 21 2 E( a h V+ hq
d k
S 2m* at m* h 2m*

(3.40)

Examining each term independently:
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where we have defined:

-() L dk' [S(k, k') (1 - f (k')) I _

and (3.45)

_ 3Ekf(k) (k)

K E k2  d34f(k l

See Section 3.2.3 for further clarification on ((rE))k2. The simplification of the

scattering term found above was taken from [23].

Combining these results, we arrive at the Energy Balance Equation:

W -(W - Wo)
+ V - Fw - E J = (3.46)

W1(((K))k 2)

Since the Peltier effect is defined under isothermal conditions, the energy density

everywhere can be set to the equilibrium value Wo to which scattering drives W, and

--+ 0 as well. We are left with simply:

V -Fw = E . J (3.47)

which states that the net outflow of energy density at any point is equal to E - J. As

with any local quantity, continuity of energy density requires that accumulation plus

net outflow equal generation:

+ Vt Fw = W (3.48)at

so we may identify E - J with the local generation of energy density. Of course this

statement is not in violation of the isothermal condition- it only requires that the

locally-generated energy density go someplace outside the described system imme-

diately to maintain the boundary condition. For the system of electronic carriers

described here, the destination of this energy density is some other subsystem of the
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sample, typically the phonons in the lattice though other species of excitations are

possible as well.

We note that in a semiconducting resistor, where E-J is homogeneous and positive

throughout the sample, the heat which is generated is not reversible Peltier heat,

but irreversible Joule heat. To separate the Peltier heat from the Joule heat, we

simply subtract the contribution from the flow of electrons down an electro-chemical

potential gradient ((J/q) - -VEF), since this represents the power deposited in a

resistive voltage drop.

A second way to see the need to remove this term is to recall that, as we found

in (B.1), the rate of entropy generation (as opposed to entropy accumulation) is

proportional to J. (-VEF/q) as well. Entropy production is irreversible, so we

need to remove this component. The Peltier effect describes the reversible process of

transporting of entropically-bound energy (also known as heat) from one location to

another, not the conversion of free energy into heat.

One nice way to interpret these terms comes from thermodynamics, where any

change in energy dU of a gas of particles can be ascribed to either heat TdS or

Helmholtz free energy dF = dU - TdS. Since dU = TdS + PdV + EFdN, EF =

(F/&N)v, and we can identify the electro-chemical potential EF at any point with

the quantity of free-energy that would be added to the system by the addition of one

charge carrier at that location. We recall that when a group of electrons flow down

a part of the device where the band-edge is flat and J E is zero, the energy asso-

ciated with that group is unchanged by (3.46). However, the quantity of free-energy

associated with that group is reduced, indicating that some of the free energy has

been entropically bound into heat, meaning entropy has been produced. On the other

hand, if the group of electrons travel across a region with flat EF but sloped band-edge

(E f 0), then we have an increase in energy associated with those particles from the

energy balance equation, but the free-energy associated with them stays the same.

Therefore the additional energy that has entered the system must've been accompa-

nied by sufficient entropy to call all of it heat. This heat, did not involve converting

free-energy into entropically-heat and therefore irreversibly generating entropy, is the
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reversible Peltier heat.

Writing the electric field as E = -V = -VEc/q, we may identify the rate at

which Peltier heat density enters the electronic system as:

QPeltier -J ( -VEc -VEF

or (3.49)

QPeltier = J

As a final check on this expression for the Peltier heat density, we note that if

we integrate the Peltier heat density over the space around the junction, since the

sample has constant current flowing, we find:

Sdx'QPetier(X')= d'i(x') (V )= J (-A(Ec - EF)/q) (3.50)

exactly recovering our intuition from Section 1.1 that the absolute Peltier coefficient

of a material reflects the energy transported per unit charge.

It is also interesting to note that the same equations which describe the Peltier

effect, when applied to a material with continuously-varying zero-current chemical po-

tential due to a constant temperature gradient, are readily interpreted as the Thomson

effect. Since in semiconductor homojunctions, all of our differences in equilibrium

chemical potential are spread out by distances O(AD), we may simply incorporate

both the Peltier and Thomson effects together by considering only gradients in the

chemical potential at zero current, without regard to whether its origin is a doping

concentration or other local electric potential perturbation (Peltier effect) or temper-

ature gradient (Thomson effect).

3.6.2 Homojunctions

Implementing the strategy for simulating the Peltier effect in n+ - n homojunctions

proceeds as outlined in Section 3.6.1. We simply solve the Momentum Balance Equa-

tion and Poisson's equation self-consistently in the presence of drift and Vn-diffusion
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Figure 3-13: Band-edge profiles for n - n+ - n structure at 300K with currents of

+1 kA/cm 2 (left) and -1 kA/cm2 (right) flowing. The doping concentrations of both

the n (nD = le15 cm - 3) and n+ (nD = 4e15 cm- 3 ) remain in the Boltzmann limit.

Other material parameters are taken from GaAs: m* = 0.0 6 3 me, e, = 10.6, Tm =

0.3ps. The isothermal boundary condition of the Peltier effect is enforced, which is

equivalent to K -+ co.

Figure 3-14: Rate of total heat density production, including both Peltier and Joule

contributions, in the structure shown in Figure 3-13. Note that as the positive current

(left) is reversed (right), some of the heat density production flips sign but some does

not.
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Figure 3-15: Rate of Peltier-only heat density production in the structure shown in
Figure 3-13. Note that as the positive current (left) is reversed (right), all of the
Peltier heat density production flips sign.
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Figure 3-16: Rate of Joule-only heat density production in the structure shown in
Figure 3-13. Note that as the positive current (left) is reversed (right), none of the
Joule heat density production flips sign.
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currents, omitting VT-diffusion because of the definitional isothermal boundary con-

dition.

We present the results of passing a current through an n - n+ - n structure with

two complementary homojunctions. The self-consistent solution that results includes

the local electric field profile, which can be multiplied by the constant current being

driven to find the heat production J.- , shown in Figure 3-14. The density profile

can also be used to find the chemical potential p = -(Ec - EF), whose gradient

multiplies the current to give the Peltier heating shown in Figure 3-15. The chemical

potential profile can then be combined with the electric field profile to calculate the

electro-chemical potential EF, whose gradient multiplies the current to give the Joule

heating shown in Figure 3-16.

The MATLAB code for this simulation is included in Section C.3.

We now double-check that the Peltier heat density generation rate shown in

Figure 3-15 matches our expectations. The numerical integration of the Peltier heat

density generation rate profile around one of the junctions reveals that QPeltier =

35.81W. Meanwhile, the difference in conduction band energy from the n+ to n re-

gion is 35.82 meV. Since the simulation was performed with a current of 1 kA, we

would expect a heat generation rate of (1e3) x (0.03582) = 35.82W. This result

is in strong agreement with the numerically-integrated value, and the discrepancy

can be explained by the distinction between the difference in transport energies and

the difference in conduction band-edge energies across the junction as the density

approaches the edge of the Boltzmann limit.

3.7 Summary and Conclusions

In this chapter we have developed a generalized drift-diffusion approach to micro-

scopic thermoelectric transport and used it to describe both the Seebeck and Peltier

effects. Using the momentum balance equation and Poisson's equation, we were able

to simulate the Seebeck effect and achieve quantitative agreement while incorporating

important aspects of modern thermoelectric materials, like doping beyond the Boltz-
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mann limit, as well as details of current interest to the research community, namely

inclusion of energy-dependent scattering times. Using the energy balance equation,

we were able to express Peltier heating (QPeltier = J- E - J- (-VEF)) in terms of

quantities available in any drift-diffusion simulation result.
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Chapter 4

Applying the Framework

4.1 Chapter Overview

In Chapter 4 we seek to begin applying the theoretical framework derived from

the reciprocal-space and real-space pictures of thermoelectric transport described in

Chapter 2 and Chapter 3 respectively.

In Section 4.2 we expand on the discussion of the application space from Sec-

tion 1.3, focusing in particular on the demands that the design processes for ther-

moelectric and micro-electronic devices would place on a simulation tool used in this

capacity. We conclude that existing commercial software suits these needs, so in Sec-

tion 4.3 we take up the task of replicating the Seebeck and Peltier effects as seen

in Chapter 3. Next, in Section 4.4 we use the newly-validated software to examine

the Peltier effect at a p-n junction, and in Section 4.5 we briefly explore the limit of

cooling based on the effect in the presence of Joule heating.

4.2 Application Space for the Theory

As we mentioned in Section 1.3, the purpose of developing microscopic models of ther-

moelectric phenomena is ultimately to generate improved designs for thermoelectric

and micro-electronic devices.

For thermoelectric generators and coolers, recent research directions in the de-
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velopment of more efficient modules warrant the use of computational models based

on microscopic theory. Much of the recent progress made in improving ZT is owed

to the introduction of nanoscale features which suppress thermal conductivity. Im-

provements in thermal conductivity have been shown based on nano-dot islands in a

semiconductor matrix [7], meshes of rough silicon nanowires [27], and superlattices in

the group V-IV alloys [28, 29]. While these nanoscale features benefit ZT by reducing

Kph, they also introduce new boundaries which scatter charge carriers. As we saw in

Section 3.2.3, whether the scattering dynamics of the carriers are dominated by these

boundaries, isolated impurity atoms, or phonons may strongly affect the validity of

the Relaxation Time Approximation and therefore all macroscopic calculations of

thermoelectric efficiency that rely on it to accurately predict the Seebeck coefficient

as well. In fact, looking directly to changing the dominating scattering process as a

means of improving power factor has been recently proposed [24]. Clearly a need ex-

ists for a microscopic model like that derived from the Momentum Balance Equation

in Chapter 3, which can both recover the results of the RTA and accurately describe

the BTE in cases where it is not valid without resorting to computationally intensive

methods like Monte Carlo.

Moreover, prospects of applying thermoelectric power generation to waste-heat

recovery, including in automotive [21, 15] and industrial settings [15], have led to

development of thin-film thermoelectric generators with low thermal resistance per

unit area because the primary goal becomes fluxing a large amount of heat to maxi-

mize electrical power output rather than efficiency. These thin-film generators require

the combination of various materials into a single leg because the range of operat-

ing temperatures is larger than the useful range of any individual TE material and

avoiding thermal parasitics is key. Such devices are typically made by placing ma-

terials thermally and electrically in series (segmented) or in a combined series and

parallel configuration (cascaded), and must be carefully designed to ensure thermo-

electric compatibility [5, 6]. As we described in Section 1.2.2, the modeling for this

design process is typically performed using the thermodynamic Onsager relations.

However, because these thin-film generators have thicknesses on the order of microns,
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it is computationally accessible to use a single microscopic model like the one pre-

sented in Chapter 3 to address the design of an entire leg. The present alternative is

to embed the appropriate microscopic differential conductivity calculation, for which

the relevant physics may change not only with material but temperature along the

length of the leg, at each point in the macroscopic thermodynamic model and revisit

the microscopic calculation iteratively.

Meanwhile, as described in Section 1.3, the operating characteristics of numerous

micro-electronic devices depend strongly on the temperature at a particular point

in the device. Instead of attempting to improve the larger systems they inhabit by

cooling the entire system, it would be logical to consider Peltier cooling internal to a

device in the design process. As we will see, the framework we presented in Chapter 3

is closely related to the models incorporated in commerical software packages for

device simulation and design, making the inclusion of internally cooling in device

design accessible.

By using such commercial software, we reap the benefits not only of using the

highly-optimized numerical methods and huge databases of experimentally-verified

material properties critical to the electronic device-design industry, but we also inherit

a platform for compatibility. Moreover, many commercial device simulators also

includes other relevant physics, including the joint solution of the full 3-dimensional

heat transfer problem for the device. With this in mind, we seek to bridge the

gap between the relatively simple computational models presented in Chapter 3 and

commercial device simulators.

4.3 Transition to Commercial Device Simulators

One popular commercial device simulation suite is Sentaurus Device, a Synopsys

product. Sentaurus Device is used to perform 3-dimensional simulations for a range

of micro-electronic [30] and opto-electronic [31, 32] device design applications, but

it is capable of 1- and 2-dimensional simulations as well. While these options may

become quite useful in the future, for example in accounting for thermal spreading
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resistance as a thermal parasitic in a thermoelectric generator, for the problems that

we will address in this chapter, simple 1-dimensional simulations will suffice.

Before we can make use of even a commercially-proven product to simulate ther-

moelectrics or micro-electronic devices that exploit thermoelectric effects, we must

verify that we can replicate the results achieved in Chapter 3.

4.3.1 Replicating the Seebeck Effect

The Sentaurus Device package contains four distinct transport models, which in order

of increasing computational burden and physical accuracy are: the drift-diffusion

model, the thermodynamic model, the hydrodynamic model, and Monte Carlo. Our

hope is to replicate our physical model of the Seebeck effect with the simplest possible

Sentaurus transport model, so that when we turn to the problem of designing an

inhomogeneous element for a thermoelectric generator, our simulations can converge

on an optimized design on a reasonable timescale. The drift-diffusion model assumes

the entire system to be at a fixed temperature, which is inconsistent with the boundary

conditions of our Seebeck effect simulation, so the simplest available model is the

thermodynamic model.

The thermodynamic model describes electronic transport with a handful of partial

differential equations that are solved numerically. The PDEs are the Poisson equation,

the continuity equations for electrons and holes, the heat equation for the lattice, and

the following generalization of the drift-diffusion equation for each charge species:

J = -nqup(VEF + aVT) (4.1)

where a! is the Seebeck coefficient we hoped to calculate, as in Section 3.2. Sentaurus

offers an option to use the analytical expression for the Seebeck coefficient in the

Boltzmann limit (1.33), letting the user adjust the scattering parameter, or amplify

the entire coefficient by a multiplicative factor (a' = ma).

There are a few reasons why this implementation may not be ideal for the devices

we seek to simulate. First, having the user be given the option of amplifying the effect
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offers an opportunity for the user to set a non-physical value of m - 1. Secondly, while

(1.33) is only valid in the Boltzmann limit, as we saw in Section 1.2.3, the differential

conductivity integral represents an inexpensive computational alternative to extend

the result outside of the Boltzmann limit. As an alternative, the software could

have chosen to calculate the Soret coefficient as we did in Chapter 2 and calculate

currents in terms of gradients of electric potential, density, and temperature (as in the

Momentum Balance Equation) instead of gradients in the electro-chemical potential

and temperature (as in the differential-conductivity calculation). Incidentally, this is

the approach taken in the more complex hydrodynamic model, which we will discuss

shortly.
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Figure 4-1: Left: carrier density profile for the Seebeck effect simulation in Sentaurus.
Right: carrier density profile for the Seebeck effect simulation in generalized drift-
diffusion code in Section C.2. Just as in the simulation from Section 3.2, the left
boundary is fixed at 300.5 K and the right boundary is fixed at 299.5 K, leading to a
temperature gradient of 1 K/pm. The remaining parameters used in both simulations
were also identical, and can be found in the caption of Figure 3-2.

Nevertheless, we can use the thermodynamic model to validate our basic physi-

cal model for the Seebeck effect by performing a calculation at a doping concentra-

tion where the analytical solution remains valid. This is done for n-type GaAs with

nD =1e16 cm - 3 at 300K, with the results as found in Figure 4-1 and Figure 4-2. To

set up the temperature difference required in the Seebeck effect, we define so-called

"thermodes" in Sentaurus to fix the edges of a semiconducting region to different

temperatures. Sentaurus's heat equation solver takes care of the rest, creating a
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Figure 4-2: Electric field profile for the same Sentaurus Seebeck effect simulation as

presented in Figure 4-1. We find that for energy-independent scattering times, the

magnitude of the field away from the boundaries asymptotically reaches 86 pV/K
x 1 K/[m = 0.86 V/cm.

roughly-linear temperature profile. The resulting density profile matches with that

found in Section 3.2 and the electric field profile matches with that predicted by the

Seebeck decomposition in Section 3.4.
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Figure 4-3: Carrier density profile resulting from invalid Sentaurus simulation of the

Seebeck effect using the thermodynamic model. The ionized dopant concentration

nD = 1.5e18 cm -3 corresponds to the doping level for peak power-factor, which

is outside the Boltzmann limit. The software converges to a non-physical solution

with free carriers piled up on the hot-side instead of the cold-side. All simulation

parameters other than nD are identical to those found in Figure 4-1.

Sentaurus Device does include a package to use Fermi-Dirac statistics when carrier

densities are above the Boltzmann limit, where the thermoelectric power factor 2 is

maximized. However, in the thermodynamic model, this package serves only to permit

carrier density calculations when the quasi-Fermi level is not well inside the bandgap.
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It does not include a correction for the Seebeck coefficient, which in principle could

be numerically approximated in a similar manner as the relationship between density

and Ec - EF.

If we ignore this issue and attempt to simulate the Seebeck effect for a doping

concentration near the power-factor maximum as shown in Figure 3-11, which for

GaAs was approximately n D =1.5e18 cm - 3 , the thermodynamic model will use the

analytical solution outside its domain of validity to find an inappropriately-small

IVEF . Then, because the magnitude of the EF-bandedge gap is set by material

parameters and the temperature profile in the bulk region where the carrier density is

approximately equal to the ionized dopant density, the results of the invalid Sentaurus

simulation require VEc opposing VEF. Since the Poisson equation is also satisfied,

the resulting non-physical density profile suggests that free carriers pile up on the

hot-side of the device instead of the cold side, as shown in Figure 4-3.

To make use of Sentaurus to design thermoelectric elements, it appears we must

use the hydrodynamic model, because it remains valid outside the Boltzmann limit,

where as we saw in Section 3.5.1 the optimal-ZT carrier concentration is found. In

Sentaurus, the full hydrodynamic model seeks to numerically solve 8 coupled PDEs:

the Poisson equation, the first three balance equations (the continuity equation, the

momentum-balance equation, and the energy-balance equation closed by Fourier heat

diffusion) for each carrier type and the heat equation for the lattice. The Fermi statis-

tics package for the hydrodynamic model also modifies all of the transport coefficients,

including the Soret coefficient in each momentum-balance equation, in principle per-

mitting simulation of the useful TE generators. However, while the hydrodynamic

model does work outside the Boltzmann limit, this improvement is accompanied by a

host of more computationally-intensive features including gradients in the material's

effective mass and distinction between the carrier and lattice temperatures. As a re-

sult, the complexity of setting up hydrodynamic simulations have impeded simulation

of the Seebeck effect for power-factor optimizing dopant densities, leaving this task

and the subsequent simulation of useful thermoelectric elements as future work (see

Section 5.3).
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4.3.2 Replicating the Peltier Effect

Since the Peltier effect is defined with an isothermal condition, it is accessible through

the drift-diffusion model, the simplest transport model offered in Sentaurus Device. If

we wish to accurately simulate a steady-state device with Peltier heating and cooling,

we must use the more complex thermodynamic model which incorporates lattice and

carrier heat transport, but for now the goal is to simulate the Peltier effect in an

n-n+-n homojunction device as we did in Section 3.6.

Figure 44: Results of driving a current of 1 kA/cm
2 

through an n-ni-n GaAs
where the lightly-doped outer regions are given D = 5 cm and the 3e heavily

doped inner region is given D = 415 cm. We then define two electrodes in

Sentaurus and specify one to be a source terminal running a specific current, hereFigure 4-4: Resulthis driving a current-bias othe n kA/c2 through anction n-n-ndevice with GaA 1

kA/cm2 .the onduction band-edge profile is plotted with units shown ones the results from Figure 3-13.withThe onor-atized dopm an t and carrier density profiles also plotted in Figure 4-4 also matchright.the results from the simulating an identical n-n+-n homojunction structure to before,362
doped inner region is given nD - 4e15 cm-o. We then define two electrodes in

FI kA/cm . This serves to current-bias the n-n+--n homojunction device with ±I

Sentaurus Device calculates various heat generation rates, which are consistent

with the definitions presented in Section 3.6. The Joule heat generation rate for each
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Figure 4-5: Total heat density generation rate (J- E) profile, where cooling appears
as negative. Plot is for the same simulation as Figure 4-4, which uses Sentaurus to
model the ±1 kA/cm 2 current-bias of an n-n+-n homojunction.
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Figure 4-6: Plot showing decomposition of total heat density generation rate into
Peltier and Joule terms. Again, cooling appears as negative heat generation. The
thick solid line indicates Peltier heat; the thin solid line indicates Joule heat; the
dashed line represents total heat, equal to the sum of the two. Plot is for the same
simulation as Figure 4-4, which uses Sentaurus to model the +1 kA/cm2 current-bias
of an n-n+-n homojunction.
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species is defined at each location by J2 /(qnlp). Since J/(ql u) has units of electric

field, but net currents are only driven by gradients in EF, we conclude that the Joule

heat generation rate recovers our definition of J. (-VEF/q). In Sentaurus, the Peltier

heat generation rate for each species is defined at each location by (J. Vn)2(-T),

which for an isothermal situation is equivalent to J- (-VII). Interpreting the Peltier

coefficient as the transport energy, and making use of the fact that the Seebeck

coefficient was only properly defined in the Boltzmann limit where the transport

energy and band-edge maintain a fixed separation, we can rewrite the Sentaurus

definition of Peltier heat as J. V(EF - Ec)/q, which reconciles with the definition

from Section 3.6. For the isothermal case here, where the Thomson effect can be

neglected, the total heat generation rate is defined by Sentaurus to be the sum of the

two, or J. (-VEc/q) = J - , also in agreement with Section 3.6.

The total heat generation profile is plotted in Figure 4-5 and is decomposed into

its Peltier and Joule components in Figure 4-6. In Figure 4-5 as in Figure 3-14,

the features of the heat generation near the junctions appear to reverse sign under

current-reversal. Looking to Figure 4-6, we see that these features are in fact the

reversible Peltier heat contributions. Note also that the Joule heating is greater in

the regions with lower free carrier densities, as we would expect.

4.3.3 Translation of Sentaurus Variables

For the reader seeking to replicate the results presented here or otherwise use Sen-

taurus to model thermoelectric phenomena, a few details regarding the translation

of quantities in Sentaurus into the language in this document may prove useful. Ad-

ditionally, this process also provides some clarification of the results presented in

Chapter 3, as it connects quantities like J - to more common terminology.

In all of our Sentaurus simulations we include dopants to create extrinsic semi-

conducting regions. However, presumably because the primary market for the Sen-

taurus Device simulation suite is the silicon device-design community, the software's

experiment-fitting database only includes silicon dopants. That is, while the dopant

atoms themselves may be those we wish to implant in our GaAs substrate, the dopants
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Sentaurus Variable Interpretation ("BL" = Boltzmann Limit)

Joule Heat

Peltier Heat

Thomson plus
Peltier Heat

SJ - (-VEF Jn - (-VEF,n) + ,. - (-VEF,)

ZE(iV -Vni) (-T) where ai is a function of (ni, T).
In BL (isothermal case), this is: -i Ji" (-Vpi).
In BL (general case), this is: Eji i - (-Vni IT).
Outside BL, this is non-physical

as AnalyticTEP underestimates ai(ni) .

Ei(Ji -Va) (-T).
In BL (isothermal case), this is: E J" (-Vpi).
In BL (general case), this is: Ei Ji" ((-V/p) + aEiVT)

which is distinct from Ei j ((-VAi) + In VT).
Outside BL, this is non-physical

as AnalyticTEP underestimates ai (ni) .

Recombination Heat Rnet ( (EF,p + Tap) - (EF,n + Tan))
where Rnet is the net recombination rate.

* In BL, this is: Rnet( (EF,p + 1lp) - (EF,n + Pn)).

* Outside BL, this is non-physical
as AnalyticTEP underestimates jai(ni) .

Table 4.1: Translation of various heat-density generation rates calculated internally
in the Sentarus Device thermodynamic model into the notation of this document.
Note that the electron chemical potential Pn is equivalent to EF - Ec.

are defined by their properties in silicon (i.e. ionization energy, critical dopant-atom

density above which complete ionization is assumed, etc.). While it is possible to im-

plement user-defined species of dopants (this is in fact the procedure recommended

by the Sentaurus manual for III-IV materials), a simpler solution is to simply use a

common silicon donor (Phosphorous) and a common silicon acceptor (Boron). We

have opted for this path in all III-IV simulations to present.

In the Seebeck effect thermodynamic-model simulation from Section 4.3.1, the

thermo-electric power (another term for the Seebeck coefficient) is a quantity which

119

Sentaurus Variable Interpretation ("BL" = Boltzmann Limit)



can be meaningfully defined for all semiconductors, but as we mentioned before the

expression Sentaurus provides through its "AnalyticTEP" package is only valid in the

Boltzmann limit. The overall scaling factor the package provides seems to the author

to have no physical basis.

In the Peltier effect simulation from Section 4.3.2, where we used the simpler

drift-diffusion model, Sentaurus calculates various heat density generation rates which

correspond to the quantities in Table 4.1. We have attempted to express each heat-

density generation rate in terms of a current density and a potential energy gradient.

Although we avoid the issue in the simulations performed in this chapter, an intuitive

interpretation of the "Recombination Heat" should be important when we consider

long p-n diodes (see Section 5.3) or attempt to reconcile our models with experimental

data (see Section 5.2).

4.4 Internal Cooling at a p-n Junction

When a sample of semiconductor is p-doped in one region and n-doped in an adjacent

region with a sharp junction between the two, the resulting structure is known as a p-

n junction and is a basic construct of micro-electronic devices. Because this junction

rectifies currents flowing across the junction plane, when metal leads are attached to

the ends of the p- and n-doped regions, the resulting device is referred to as a p-n

diode.

When a p-n diode is at zero bias, no current flows because for both the electrons

and holes individually, the drift and diffusion currents cancel exactly at every point

in space. As the diode is put into forward bias, a net current flows as the diffusion

current for each species overwhelms its diminished drift current. This net current

is composed of a net flux of electrons moving to a region of lower electric potential

(J- < 0) and a net flux of holes moving to a region of higher electric potential (also

f-. < 0). The quasi-Fermi levels of both the valence-band and conduction-band

electrons are approximately flat through the depletion region over which the electric

field is substantial, so in this region the contribution of Joule heating (J- (-VEF/q))
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heat
cool

cool heat

Figure 4-7: Depiction of Peltier heat exchange contributed by electrons and holes as
a function of space. Since EF for the two bands only re-equilibrate near the contacts,
the picture takes the short-length approximation. Image from [2].

is negligible. As we derived in Section 3.6.1, we then expect that both species will

reversibly draw heat out of the lattice and transport it through their minority carrier

currents away from the junction to the edges of the device [2]. Depending on the

equilibrium EF-bandedge separation near the contacts there may also be Peltier heat

exchange at the source contacts for each species. The locations at which the carriers

in each band contribute to Peltier heating and cooling is shown in Figure 4-7.

Note that there is also Joule heating in the device, since the applied bias by defini-

tion requires the electro-chemical potentials within the contacts to differ by qVappied.

In the short-length approximation, where it is assumed that the only interaction be-

tween the electrons and holes besides Poisson's equation is recombination near the

contacts, this Joule heating takes place in the contacts where the Peltier heat is also

deposited by the minority carriers. In the long-length approximation, the p- and

n-doped regions are much longer than the diffusion lengths so that recombination

within the device re-equilibrates the quasi-Fermi levels for the two species in the bulk

of the semiconductor, well before the contacts. On each side of the junction, the

gradient of the minority-carrier EF constitutes Joule heating, but since the bands

remain approximately flat through this region, it would seem that our result from

Section 3.6.1 implies that an identical amount of Peltier cooling takes place simul-
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taneously. It seems that regardless of the nature of the irreversible recombination

process, entropy is generated which binds some of the minority carriers' free energy

into heat, which will be transported to the contacts where it will all be released as

Peltier heat.

It is curious to note that the accounting of Peltier and Joule heat appears to be

independent of the type of recombination process at play. For a direct-gap semicon-

ductor the recombination could take place through emission of photons which leave

the device, while in another material the emission of phonons that heat the lattice

could be responsible.

What seems clear is that since the current carried by the minority carriers between

the junction and the region of recombination is carried instead by the majority carriers

between the region of recombination and the contact, we may ascribe this free-energy

reduction to the flow of energy in the minority carriers, whose large chemical potential

J1 indicates a large per-particle free energy, into the majority carriers whose small

chemical potential indicates a small per-particle free energy.

A forward-biased p-n diode was simulated in Sentaurus Device and the total heat

density generation rate near the junction plotted in Figure 4-8. Since QPeltier J E

near the junction where VEF,n and VEF,p are negligible, we expect that the cooling

should take place over the extent of the depletion region where the band-edges are

not flat. The nearly-triangular shape of the cooling region shown in Figure 4-8 is

indicative of the electric field profile from a nearly step-function charge density profile

expected in the full-depletion approximation.

In the forward-biased diode simulation whose results are plotted in Figure 4-8, we

note that the integral of the heat density generation rate over the 1 Am device was

-2.384 mW/cm2 while the applied bias resulted in a total current density of - 4.888

mA/cm2 . The ratio of these quantities give us the Peltier coefficient difference across

the junction:
Q -0.002384

lI - II - -0.4877V (4.2)
J 0.004888

This corresponds exactly with the observed AEc across the depletion region while
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axis. The dashed lines indicate the profile of the conduction and valence band-edges
measured relative to the equilibrium Fermi level at zero bias. The junction between

p-doped region (hA =le18) and n-doped region (nD =le18) is modeled as abrupt,
resulting in Vbuilt-in X 1.49V. Diode as shown is forward biased at 1V, resulting in a
total current density of 4.888 mA/cm 2. Simulation taken with the length of the

p- and n-doped regions as 500nm each, though the region plotted above extends only
100nm on each side of the junction. All material parameters for GaAs same as those
taken in Figure 3-2.

taken in Figure 3-2.
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under 1V bias, also found to be -0.4877V in the simulation. This confirms our intuition

that the difference in Peltier coefficient corresponds to the difference in transport

energy across the interface.

4.5 Maximal Internal Cooling in a Short p-n Diode

While the description of an operating p-n diode from Section 4.4 indicates that Peltier

cooling should be expected at the junction, we have thus far mostly neglected a

thorough accounting of Joule heating. In diodes where the short-length approximation

is valid, we might expect to see Joule heating near the contacts where equilibration

between EF,n and EF,p takes place. In diodes where the long-length approximation is

valid, the specific recombination process that dominates should influence the rate of

heat-deposition into the lattice. For radiative recombination, the bulk of the power

IVapplied could be absorbed by the contacts or leave the system entirely as light. For

phonon emission pathways, this power should be absorbed by the lattice near the

location of re-equilibration. Either way, the total Joule heating present throughout

the device should be upper-bounded by energy conservation to be less than IVapplied.

This quantity is represented visually alongside the rate of Peltier heat removal from

the junction region in Figure 4-9.

However, regardless of the final destination of the energy from recombination,

driving a sufficiently-large current should lead to Joule heating due to gradients in

the majority-carrier EF which are accompanied by gradients in the band-edges. This

Joule heat should be expected intuitively, since the series resistance of a diode with

sufficiently long p and n regions should result in sufficient Joule heating to match

or exceed the Peltier cooling at the junction at high current, even in a short diode

where all other heating takes place at the contacts. This Joule heating is proportional

to the square of the current (QJo,,1 e c J 2 p) while the Peltier cooling at the junction

is to leading order linear in the current for small biases (QPeltier Oc J ' Ebuilt-in

J. Ebuilt-in J=0) and thereafter sub-linear. Thus, even neglecting any Peltier and

Joule heating in the contacts on the grounds that it could be efficiently extracted to
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Figure 4-9: Diagrammatic description of heat generation rates in a forward-biased
short-length p-n diode. The area corresponding to IV (left block) represents the
total Joule heat thoughout the device and the area corresponding to I(V - Vbuilt-in)
(right block) represents the Peltier heat which is transported from the junction to the
contacts.

the environment, over the extent of the semiconducting region of the device, applying

a small bias to drive a small current will result in net cooling but applying enough

bias to drive a sufficiently large current will result in net heating.

For the diode examined in Section 4.4, applying a forward bias of 1.5V results in

substantial heating throughout the bulk of the device, as seen in Figure 4-10. Above

a bias of roughly 1.488V, the net heating in the device is positive as the Joule heating

contribution throughout the 1 pm body overcomes the cooling at the junction, as seen

in Figure 4-11. Although the extremely large current densities required (hundreds of

kA/cm 2 ) indicate that the assumption of infinte heat sinking at the contacts is invalid,

the analysis nonetheless demonstrates the existence of a bias-point for maximum net

cooling in even a short p-n diode.

Although the long-length case was not explored computationally, Sentaurus does
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Figure 4-10: Heat density generation rate profile for the same device as in Figure 4-8,

but with a 1.5V bias applied instead of 1V, resulting in a current density of 444.0

kA/cm 2 instead of 4.888 mA/cm 2 .. This plot is for the entire device, not just a small

region surrounding the junction as in Figure 4-8. The solid line indicates magnitude

of heat density generation rate, plotted on a log scale (right y-axis) so that cooling and
heating both appear positively. The region near the junction experiences net cooling,
but beyond the minima of heat generation rate magnitude the device experiences net

heating. The dashed lines again indicate the band-edge profiles (left y-axis).

model the necessary physical processes to permit the re-equilibration of EF,n and EF,p

away from the device's contacts. Interestingly, while the long diode may experience

more Joule heating, we may see a lower minimum temperature at the junction than in

a short diode. To see why, consider that at sufficiently small bias, the ratio of Peltier

to Joule heat is large, but if the small current is extracting Peltier heat from the

junction and depositing it at the contacts at a given rate, these source terms in the

heat equation will lead to a specific temperature gradient between each contact and

the junction. Although this gradient will need to be smaller at the AT-optimizing

current than in the short-length case to suppress Joule heating, if the device is longer

the temperature difference may be larger. We hope to explore this problem further

computationally.
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Figure 4-11: Plot of total heat generation rate, given by integrating the total heat
density generation rate over the 1 pm length of the p-n diode simulated in Figure 4-8,
versus bias voltage. For sufficiently large bias, there is net heating. Note that this
calculation omits heating at the contacts, permitting net cooling for Vapplied below a
1.488V or Jdriven below f 342 kA/cm2

4.6 Summary and Conclusions

The modeling of thermoelectric effects based on the microscopic semi-classical trans-

port theory presented in Chapter 2 and Chapter 3 has been replicated in the com-

mercial device physics simulator Sentaurus Device. The use of such simulators makes

accessible more realistic simulations, both by inclusion of a wider array of physical

effects and by implementation of superior numerical algorithms, and offers a platform

for the development of improved designs for thermoelectric generators and coolers

as well as the exploration of thermoelectric cooling in micro-electronic devices with

the goal of designing internally-cooled devices. The origin of Peltier cooling at a p-n

junction has been explained, and the limitation of Joule heating has been explored

in a simple p-n diode, though quantitative reconciliation of these theoretical results

with initial experiments remains future work (see Section 5.2). Since p-n junctions

represent basic constructs from which many micro-electronic devices are built, these

results may directly aid in the development of internally-cooled devices, including

HBTs, BJTs, and diode lasers.
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Chapter 5

Summary and Future Work

5.1 Summary and Chapter Overview

In Chapter 1 we explained that the ultimate goal of this research was to develop

improved designs for inhomogeneous thermoelectric elements and micro-electronic

devices.

In Chapter 2 we developed a reciprocal-space picture of the fundamental trans-

port processes responsible for the thermoelectric effects, and in Chapter 3 we used

these results to explain the Seebeck and Peltier effects in a generalized drift-diffusion

framework. These results constitute the conceptual basis for the simulations done

with Sentaurus in Chapter 4, including those demonstrating the limits to Sentaurus's

models and those showing internal cooling in a basic p-n diode.

Although the framework has been built, much work remains before novel designs of

inhomogeneous thermoelectric elements and internally cooled micro-electronic devices

can be realized. To that end, in Section 5.2 we outline the path to experimental ver-

ification of our microscopic model of thermoelectricity and propose two experiments.

In Section 5.3, we discuss the physical effects which must be incorporated into simu-

lations to enable realistic design and mention some generally promising directions on

the theoretical front.
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5.2 Future Experimental Work

5.2.1 Experimental Verification of Internal Cooling Model

Though the author has not contributed to the ongoing experimental work described in

this section, initial comparisons with the preliminary (unpublished) results represent

a unique opportunity to verify the theoretical results presented in this work. We

briefly describe the experimental results achieved by the author's collaborators before

presenting the results of a Sentaurus simulation of this experiment and speculating

on the discrepancies.

Sample #1 Sample #2

NA=1x1020 NA=lxlO'  pcap 0.11im Ino 3Ga. 47As

NA=lx10'9  NA=2x101 s  P 1.01m Ino3sGao47As

N,=1lx10te ND= 2 xO18 1.Opgm InossGao.4As

ND=3x10' 8  ND=3x10' Substrate InP

Figure 5-1: Layer structure of InGaAs diode on which initial junction cooling exper-

iments were done. Doping concentrations in cm- . Image from [2].

A short Ino~53Ga 0.4 7As p-n diode, depicted in Figure 5-1, was grown on an InP

wafer by Shaomin Wu and Prof. John Bowers at UC-Santa Barbara. Next, a small-

area top contact and a large-are contact beneath the substrate were deposited by

Kevin Pipe. The sample was then current-biased between these contacts, and its tem-

perature profile was imaged using stochastic resonance-enhanced thermoreflectance

by Dietrich Liierfien. The temperature profiling results are conveyed in Figure 5-2.

The temperature of the p-n junction is lower than that of the substrate in forward

bias and the magnitude of the temperature difference increases with current. The

data set does not extend to larger current densities because such conditions resulted

in destruction of the device.

We simulated this structure in Sentaurus using a 1-dimensional thermodynamic

model with full Fermi-Dirac statistics. Because the doping levels in the p and n
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Figure 5-2: Dependence of temperature on input power density (Idriven X Vapplied) at
junction (squares) and 2 pm into the substrate (circles). Image courtesy of Dietrich
Liierfen and Rajeev Ram.

regions make both degenerate, we also enabled local band-to-band tunneling, though

the operating bias of 0.6V suppressed all tunneling current flow for the situations

described here. We found that the 0.6V forward bias, which produced a current

density of a 1.055 kA/cm 2 (see Figure 5-4), corresponded to an input power density

of . 630 W/cm 2 . According to the experimental data in Figure 5-2, we would expect

to see cooling at the junction in the range of 3K compared with the substrate region.

Instead, we see cooling of just 0.2K. There are many possible explanations for this

discrepancy.

First, looking at the temperature profile in Figure 5-4, we see that the thermal

boundary conditions employed are problematic. The temperature is fixed to be 300K

at a point just 2 pm below the InGaAs n-region where we would expect the tempera-

ture to be above ambient because of Joule heating, as seen in Figure 5-2. In an initial

exploration of this possibility, it was found that extending the 2 pm substrate region

to - 300tpm resulted in the minimum temperature at the junction being reduced to

299.75K from 299.80K, but was accompanied by a decrease in the temperature 2 pm
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Figure 5-3: Band-edge profile for simulated structure under 0.6V, 1.055 kA/cm2 bias.

The left edge corresponds to the top contact and the right edge corresponds to a

point 2 pm into the substrate
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Figure 5-4: Left: Sentaurus simulation results for temperature profile of InGaAs

diode structure under 0.6V bias. Right: current density profile. This current density

corresponds to _ 630 W/cm 2 .

into the substrate to 299.80K from 300K. That is, the longer substrate simulation

further reduced the AT due to cooling from 0.2K to 0.05K. Modifying the thermal

boundary condition to have a fixed heat-transfer coefficient instead of a fixed temper-

ature would be more physical, and may prove a more effective approach as it should

permit temperatures well above ambient to persist in the device.

Next, the simulation conducted is a 1-dimensional simulation, but the small

top contact and large substrate area suggest that substantial thermal and electri-

cal spreading should be present during device operation. Sentaurus is capable of

higher-dimensional simulations, even though they were not initially selected.
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Both the thermal boundary-condition problem and the multi-dimensional trans-

port problem can in principle be addressed with Sentaurus, and their exploration as

possible sources of discrepancy with the experimental data are left as future work.

Though the counter-intuitive simulation results suggest greater problems with the

numerical model, in order to achieve agreement we must also re-examine our physi-

cal model of the experiment and the experimental results themselves. We therefore

note that since thermoreflectance imaging requires a cleaved boundary for light to

reflect off or be absorbed by, the experimental procedure is not really measuring the

temperature profile within the bulk of the device but rather near the surface. As a

result, boundary scattering of phonons near this surface may be lowering the effec-

tive thermal conductivity near the surface, which could lead to a larger steady-state

temperature gradient for the same cooling power, resulting in a larger temperature

difference between the junction and the nearby substrate. Finally, errors in experi-

mental interpretation must also be considered.

5.2.2 Experimental Proposals

The theoretical description of the thermoelectric effects expressed in this document

have given rise to two new experimental proposals.

The setup of the first experimental proposal is depicted in Figure 5-5 and the

expected measurement is depicted in Figure 5-6. Our microscopic real-space picture

of the Seebeck effect suggests that the gradient in the vacuum level, reflected in the

local electric potential gradient near the surface of a thermoelectric element in a

Seebeck effect setup, should not correspond to the full thermoelectric voltage divided

by the sample length. Instead, as we saw in Section 3.4, we expect the longitudinal

electric field to be proportional to the temperature gradient present with a constant

of proportionality equal to (kB/q) x (I +p/ 2 ) where as usual p indicates the power-law

dependence of the carrier relaxation time on wave-vector (-(k) oc IkIP).

This may be of some use as this experiment could provide an independent mea-

surement of the scattering parameter governing the dynamics of the carriers in the

Boltzmann limit. If the responsible scattering processes continue to dominate at
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Figure 5-5: Proposed setup for an experiment to measure the scattering parame-

ter governing electron dynamics in an n-type thermoelectric material. The material

would need to be doped weakly to remain in the Boltzmann regime, but the results

may remain valid at the higher doping levels where ZT is maximized.
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Figure 5-6: Depiction of the expected measurement from the scattering-parameter

experiment depicted in Figure 5-5.

higher doping concentrations, this may be useful [24] for the development of ther-

moelectric materials with higher power factors and improved ZTs. However, the

experiment should serve mostly as a validation of the Seebeck effect model presented

in Chapter 3.

A second experimental proposal that has grown out of the theory presented in this

document is for the construction of a 3-terminal thermoelectric device, in which two

of the terminals serve as a source and drain to drive current through a thin slab of

semiconductor (or perhaps even a low-dimensional electron gas). The carriers should

be confined to a thickness shorter than the Debye screening length in the material.
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We then attach an electrode (the gate) above the surface of the semiconductor in such

a configuration as to have the current path lead from the source, through a region

not near the gate, then through the region under the gate, then out to a region not

near the gate before reaching the drain. Since the tight capacitive coupling between

the part of the current path under the gate and the gate electrode would permit the

gate electrode to deplete or exceed the quasi-neutral carrier concentration and locally

modifying the profile of the band-edge. As a result, the gate would control the Peltier

heating and cooling which would take place at the intersection of the current path

and the edge of the semiconducting region in close proximity to the gate. Positive

gate voltages would cause heating at one end and cooling at the other, while negative

gate voltages would cause the reverse.

5.3 Future Theoretical Work

In spite of the basic framework put in place in this document, several theoretical

challenges remain.

First, although we have simulated the Seebeck and Peltier effects and explained

that Sentaurus in principle contains the physics required to accurately simulate and

design complete TE coolers and generators, the task of doing so has yet to be done.

In order to conduct simulations useful for the design of thermoelectric elements, we

must be able to simulate the materials of interest. As mentioned in Section 3.5.2, the

bandstructures of most useful materials to date have included numerous degenerate

ellipsoidal valleys away from the zone-center F. Resolving the correct way to use

the results of Section 2.3 to calculate transport coefficients and then use the tools

from Chapter 3 to simulate inhomogeneous thermoelectric elements currently under

research remains a high priority going forward. Such investigations are likely to

involve the simulation and design of elements incorporating functional grading and

segmentation; the design of cascaded thermoelectric elements may also be enabled by

the 2- and 3-dimensional heat-transfer solvers built into Sentaurus.

On a more theoretical level, the results explaining the Peltier effect in a drift-
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diffusion framework and their application to even simple micro-electronic devices

retain a bit of mystery. The complete accounting of the entropy and energy flows

among the various subsystems (electronic carriers, the lattice, and the free-space

electromagnetic modes) in any real-life example of the Peltier effect is rather com-

plicated and somewhat counter-intuitive. As an example, consider an LED forward

biased below turn-on. At such small biases, the current which flows is nonzero and

the electrical power input to the device is IVapplied. Nevertheless, each electron which

contributes to current must undergo a local radiative recombination event and emit

a photon of energy Egap. If such photons are efficiently coupled out of the device,

the energy emitted in photons is greater than the electrical energy input by the ratio

(Egap/q)/Vapplied. The perspective of the picture of the p-n diode from Chapter 4

suggests that the cooling at the junction should exactly make up the difference, as

the ratio of the Peltier power to input power is as indicated by Figure 4-9.

The picture we are left with is that of an extremely efficient heat pump, operating

between a cold-side given by the lattice temperature and a hot-side determined by the

emitted photons. Here we see a common trade-off in non-ideal heat engines between

power and efficiency. If we wish to pump energy from the lattice to the free-space

electromagnetic modes efficiently, we must do so at low bias where current is low.

If we wish to pump energy at high power, a dominant fraction of the energy must

eventually come from the electrical power source and not the lattice.

Although the author has not carefully performed the calculation, it is interesting

to note that the entropy per unit energy in a light source is dependent on the spectrum

alone. On this basis, we may expect that the sub-turn-on forward-biased LED may

act as a heat engine operating between one reservoir at the temperature of the sample

and another at a temperature determined by the output spectrum.

In addition to the purely theoretical curiosities suggested here, some more practi-

cal questions remain unanswered. For example, most applications of the Peltier effect

make use of junctions between different material systems, including those between

metal and semiconductor in thermoelectric power conversion applications or at a semi-

conductor hetero-junction in an internal cooling device application [2]. Nevertheless,
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we have not yet extended our microscopic description from Section 3.6 to include

such junctions. We note that while the general approach outlined in Section 3.6.1 is

applicable to the case of heterojunctions, a range of material properties change across

this interface and not just the conduction-band ionization energy Evac - Ec. For pri-

marily this reason, we have left the simulation of the Peltier effect at heterojunctions

as future work.

In order to match experimental data and to understand short devices, we must

also more effectively include the effects of the contacts. These should include the Joule

heating due to contact resistances and the Peltier heat exchange we have discussed

at length, as well as the effects of finite heat-transfer rates to the environment. We

note that Sentaurus does include the physics necessary to model these effects.

Finally, this perspective on device physics offers possibilities for the improved

design of a wide range of micro-electronic devices whose operation is degraded by

heating. The understanding taken from the connection between microscopic transport

and Peltier cooling established in Section 3.6 and its specific application to a basic

building block of micro-electronic devices in Chapter 4 may lead to the development

of improved designs for devices, including HBTs and diode lasers.
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Appendix A

The Semi-Classical Picture

A.1 The Boltzmann-Transport Equation

The Boltzmann Transport Equation (BTE) is the fundamental equation of non-

equilibrium statistical mechanics and semi-classical electron dynamics. It can be

used to describe the dynamics of a population of weakly-interacting particles in free

space, and with the benefit of Bloch's theorem and bandstructure, weakly-interacting

electrons in a periodic lattice such as a solid.

The BTE is unique in that depending on how scattering is included, it can be used

to describe purely reversible or irreversible dynamics. The BTE may be derived and

a rigorous meaning may be given to the scattering term responsible for irreversibility

through the BBGKY Heirarchy (see Section A.2). For simplicity we begin by taking

as Boltzmann did [?] the Stosszahlansatz, which states that the distribution functions

for each particle are uncorrelated so that we may introduce the effects of scattering

based on statistical rather than purely mechanical observations. Upon doing so, we

arrive at the BTE as it is typically presented:

dtf (Xkt) = [ + -Vx + k-Vk f (x, k, t) = S[f(x,k, t)]

Let us begin by describing the central object in the semi-classical BTE transport

formalism, f(x, k, t). This object is often referred to as the one-particle phase-space
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density or simply the distribution function. It is possible (because we assume ergod-

icity) to interpret it either as the probability density for any one of the N particles

to be found at a given point in phase-space or alternatively as the fraction of the N

particles which are found there at time t. Let us imagine it to represent the density

of actual particles for the time being, as it makes the picture behind the BTE more

physical.

k,

f(k0+dk) %(kodk) 0

ko + dk.-- ---

f(x 0) r __(x+d x

I Iko-

x0  x0 + dx x

Figure A-1: Graphical representation of the phase-space density flow described by

the Boltzmann Transport Equation (BTE).

Let us imagine looking closely at the distribution function f in a small region

of the phase-space of independent variables x (position) and k (crystal momentum).

The quantity f(xo, ko, t) -dxdk describes the number of particles which can be found

within a region of width dx around xo and within a region of width dk around ko0.

For a finite concentration of particles in both configuration and momentum-space to

be consistent with the Heisenberg uncertainty principle, we must consider them to

inhabit wavepacket states with position and momentum centered around the point

under consideration. For our purposes, it will suffice to keep this fact out of mind,

and to proceed as though both quantities could be simultaneously well-defined for
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each particle. This assumption constitutes the essence of the semi-classical picture.

Derivations of bandstructure and semi-classical equations of motion for electrons

are presented in many introductory solid-state textbooks [?] and we will not repeat

them here. Instead, we simply recall that the semi-classical equations of motion tell

us that the rate of change in position of a particle is proportional to the crystal mo-

mentum (. = .k) and t hat the rate of change of crystal momentum is proportional

to the external force applied to it (k = Fext). Given these equations, and supposing

the existence of a scattering function S(k, k') describing the average rate for electrons

with crystal momentum k to make a transition to k' according to a Poisson process,

we account for all of the arrows in the figure above and relate them to terms in the

BTE.

A.2 The BBGKY Heirarchy

This framework permits one to describe the dynamics of a one-particle distribution

function (i.e., the object f which we will soon describe) in terms of a two-particle

distribution function, and the dynamics of a two-particle distribution function in

terms of a three-particle, and so on. Ultimately the dynamics of the one-particle

distribution function depend on the individual reversible dynamics of the particles

expressed through the N-particle distribution function, where N is the total number

of particles in the system.

D[f(x, k,t) = I[f 2(xi,ki,x 2, k2,t)]

D[f 2(xl, k, 2 , k 2 t)] = I[f 3 (x 1 , ... , k3 , t)]

D[fN-l(xl, ,kN-l,t)] = I[fN(Xl,' ,kN, t)]

However, working analytically or computationally with a function whose indepen-
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dent variables number at the Avagadro-scale is intractable, so we typically choose

to cut off this Heirarchy at the one-particle distribution function and replace its de-

pendence on the two-particle distribution function with a statistical (but heuristic

from the point of view of reversible dynamics) functional to describe the influence of

scattering.

D[f (x, k, t)] = S[f (x, k, t)]

It is this functional S[f] which is responsible for the resulting irreversible dynam-

ics. While the BBGKY may begin to clarify the question of how irreversible dynamics

result from a statistical composition of the reversible microscopic laws which govern

the individual particles, it does not offer a particularly intuitive or applicable picture,

and hence we have chosen to motivate the equation more heuristically in Section A.1.
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Appendix B

Non-Equilibrium Thermodynamics

of Thermoelectricity

In this section we intend to construct an explicit thermodynamic framework which

appropriately describes transport in systems near equilibrium. Much of this discussion

follows Chapter 14 of the text by Callen [3].

Systems out of thermodynamic equilibrium (whether in steady-state or not) do

not fall within the domain of validity for results from equilibrium thermodynamics.

Nevertheless, much can be learned about systems near equilibrium from the approach

to equilibrium as presented in traditional thermodynamics.

Consider, for example, a pair of identical physical systems, but with one at tem-

perature TA and the other at TB < TA. When the systems are brought into thermal

contact with one another but are kept adiabatically insulated from the rest of the

universe, energy will flow from A to B to increase entropy (or decrease free energy)

of the composite system until:

as a(SA + SB) a sA SB 0

aUA aUA OUA auB

since the total energy U = UA + UB is fixed. Since temperature is defined as

T ()-1, we see this as the thermal equilibrium condition as expected: TA = TB.

We may interpet this process as the system traversing a path in thermodynamic
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state-function space which represents the steepest ascent of entropy. The "flux" of

energy flows from system A to system B until the "force" of the temperature difference

disappears, rendering a combined system in which there is no entropy-increase to be

gained by the transfer of energy.

Similarly, we may define other "forces" and "fluxes" which bear the relationship to

one another, just as the inverse temperature difference and energy did in the example

above, that the flux is zero when the force vanishes, and for small values of the force

(corresponding to states of the system close to thermodynamic equilibrium) the value

of the flux is linear in its driving force. Hence, as we see in the example above, the

key to connecting forces with their corresponding fluxes is the potential to generate

entropy. In fact, for systems where the exchange of multiple extensive quantities is

permitted, we can assign an origin to each component of the entropy generation:

OS OXk
=Z Xk at

The entropy generation rate is the product of each extenstive quantity flow rate

(flux) with its associated means of generating entropy (force).

B.1 Continuous Systems

An analogous relationship can be defined for continuous systems, where entropy den-

sity replaces entropy and the fluxes become three-dimensional flow densities (exten-

sive quantity per unit cross-sectional area per unit time). In this picture instead of

the differences in intensive quantities that we called "forces," we refer to gradients

of intensive quantities called "affinities," which indicate the direction of flux which

corresponds to the maximal rate of local entropy density generation. We define for

each flux a corresponding affinity whose contours define surfaces along which fluxes

do not change the local entropy density.

This point can be somewhat confusing because the overlapping language with

the discrete case above belies an additional complexity. The definition above neither
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precludes nor enforces the flux in the directions along the surface to be zero; it merely

states that any such flux will not contribute to the local entropy density generation

via the affinity in question. In the discrete case above, our "flux" referred to a

rate of extensive quantity flowing from one specified subsystem to another. For the

continuous 3-dimensional case, for the sake of interepreting the definition above, the

analogous quantity is not the typical flux vector (vector quantity per unit time per

unit cross-sectional area) but the component of the flux vector in the direction of

the affinity gradient. For the case of energy flow and temperature, the component

of energy flux pointing up the inverse temperature gradient must be zero when and

only when that inverse temperature gradient disappears. The flow of energy along

surfaces of constant inverse temperature is not necessarily zero, nor does its value tell

us anything about the inverse temperature gradient present in the system. Keeping

this fact in mind, we will still express our results alegbraically in terms of the familiar

flux vectors to keep the notation compact.

Since in the continuous case, such as the flow of heat down a bar with a tempera-

ture gradient across it, no finite volume is truly in equilibrium, we choose to examine

the system in terms of differential volume elements. Each volume element is presumed

to be in equilibrium itself, but at a different point in state-function space than its

neighbors. Nevertheless, we assume that all of these infinitesimal subsystems have

the same relationships between their extensive quantities as the macroscopic system

would if it were in equilibrium. That is, the fundamental equation (working in the

entropy representation):

dS = FdXk
k

tells us that the entropy per unit volume (s) obeys:

ds = Fkdxk
k

Now that we have an expression for an ifinitesimal unit of entropy density, we may

express the flow of entropy in terms of the flow of other extensive quantities simply
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Js = Fk k
k

In the case of thermoelectricity, the only fluxes of interest are the flux of energy Ju

and of particles JN:
1 IPecJs =- JU - -JN

T T

where ,,ec is the electro-chemical potential, referred to elsewhere as EF. Now, the

continuity of entropy flow tells us that the rate of entropy density generation is equal

to the sum of its accumulation and outflow:

Os
s= + V Js

Meanwhile, since there is no way for a subsystem to generate energy or particles (we

only consider a single species of charge carrier here), the continuity of energy density

and particle density respectively are:

au
0 = +V Jat

On --
0= at+ V JN

Ot

Now, since the accumulation of entropy density can be expressed as the accumulation

of energy and number density times inverse temperature and chemical potential over

temperature respectively, we have:

(1 u -Pecan) + 7 . 1 -+ ec
= + +V. Ju+ -T at T at T T

ec) JJ + [u + V. + /ec) [On +vrj

= V - J + (V ( JT

(B.1)

The rearrangement of energy density and particle density within regions of con-

stant temperature and chemical potential do not constitute entropy generation, only
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entropy accumulation, which is not entropically preferred for the system as a whole.

Rather, the flow of a Joule of energy from a region of high temperature where it con-

tributes a small amount to the overall system entropy, to a region of low temperature

where it contributes a large amount to the overall system entropy, is entropically pre-

ferred. Likewise, the flow of a particle from high chemical potential to low generates

entropy for an isothermal system.

B.2 The Onsager Reciprocity

For a particular class of systems, known as purely resistive or memoryless, it is possible

to express the fluxes at any time solely in terms of the affinities at that time. If we

further limit ourselves to small deviations from equilibrium, we can assume that this

relationship is linear - that each of the fluxes may be expressed as a sum of the various

affinities, each with some constant linear coefficient. If we enumerate the fluxes by

subscript p and the affinities by subscript q, we may express the assumption of a

linear, purely resistive system as follows:

JP= S LqpYq
q

where F is an affinity.

An exceedingly important result from the study of thermodynamic fluctuations is

the Onsager Reciprocity. Onsager assumed that the evolution of a thermodynamic

system in the presence of a random thermodynamic fluctuation followed the same

laws as the system in the presence of an externally-imposed macroscopic deviation.

That is, a single Green function describes both processes. To the system, there is no

difference between a random fluctuation and a human-induced fluctuation.

After making this key assumption, we then consider the reaction of a system to a

fluctuation in a particular extrinsic quantity, such as the energy density. We note that

such a fluctuation could induce a change in another extrinsic quantity, such as the

particle number density, after a time 7. Assuming the microscopic laws that govern
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the Green function for the original fluctuation obey time-reversal symmetry, setting

up the system to begin with the observed devation in particle number density would

cause the system to exhibit the initial fluctuation again a time 7 later. Since this is

true for all values of 7, it must also be true for the derivatives with respect to this delay,

fluxes, which we assumed previously were easily written in terms of affinities. Keeping

in mind that we have assumed deviations and fluctuations are conceptually identical,

we arrive at the conclusion that time-reversal symmetry requires that the relationship

between one flux's affinities and a second flux are identical to the relationship between

the second flux's affinities and the first flux.

This result is known as the Onsager Reciprocity:

Lqp(B) = Lpq(-B)

where the dependence on magnetic field expresses the need to reverse magnetic field

to retain time-reversal symmetry.

B.3 The Onsager Relations

We will now seek to derive the fundamental

In this section, we present the Onsager relations which form the basis for the

self-consistent Onsager-solver, and which permit us to apply the Onsager reciprocity

to thermoelectricity in Section B.4. We begin with:

1 Iiec
ds = -1du - nec

T T

and

JQ = J - PecJN

then apply the results of previous sections to arrive at [3]:
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T2 21 Taa I
JN = - - 1V + V-

q 2 ) T 
qJ

JQ = qec + (T 3 2 +T 2 ) V

or

J = E-uaVT

Q = aTJ- VT

B.4 The Kelvin Relations

Set up the boundary conditions on the above equations to solve for the heat flow

discontinuity under isothermal conditions- the phenomenology of the Peltier effect.

We find that the Peltier coefficient, as defined in Figure 1-2 obeys

II = a T

Recalling what the Onsager reciprocity tells us, namely that Lij is symmetric

under zero magnetic field and obeys Lij(B) = Lji(-B) under non-zero magnetic

field, for the case of the continuous system above with fluxes of particles and energy,

this amounts to a slight modification of the equation above. The correct statement

is known as the second Kelvin relation:

II(B) = a(-B) -T

We may use this result to explain why a B-field in one direction may be good for

a refrigerator while the opposite direction may be good for a generator [?], assuming

materials with a big linear field dependence of the Seebeck can be found [?].

We should also setup the boundary conditions to identify the Thomson coefficient

149



and thereby achieve the First Kelvin Relation.
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Appendix C

Simulation Source Code

C.1 Numerical Solver for Microscopic Transport

Coefficients Outside the Boltzmann Limit (MAT-

LAB)

function [Sigma Sigma_Drude D D_Drude S S_Drude] = Sigma_D_and_S(mratio, tau, n, T,

hbar = (6.626e-34)/(2*pi);

kB = 1.3806503e-23;

mass = mratio*9.11e-31;

q = -1.602e-19;

% Planck's constant

% Boltzmann's constant

% carrier mass

% carrier charge

delta_n = n*0.001;

n_table = [n-delta_n n n+delta_n];

delta_T = T*0.001;

T_table = [T-delta_T T T+delta_T];

A = zeros(length(ntable), length(T_table));

for i=1:length(ntable)

for j=1: length(T_table)
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A(i,j) = calculate_A(mratio, n_table(i), T_table(j));

end

end

%A

if ( abs( (A(2,2)-A(1,2)) - (A(3,2)-A(2,2)) ) > (A(2,2)*le-3) )

delta_n_too_big = 1

end

dAdn = (A(3,2) - A(1,2))/(2*delta_n);

if ( abs( (A(2,2)-A(2,1)) - (A(2,3)-A(2,2)) ) > (A(2,2)*le-3) )

delta_T_too_big = 1

end

dAdT = (A(2,3) - A(2,1))/(2*delta_T);

%Integral for Conductivity

if (verbose == 1)

Sigma = calculate_conductivity(mratio, tau, A(2,2), T)

Sigma_Drude = q*n*(q*tau/mass)

else

Sigma = calculate_conductivity(mratio, tau, A(2,2), T);

Sigma_Drude = q*n*(q*tau/mass);

end

%Integral for Diffusivity

if (verbose == 1)

D = calculate_diffusivity(mratio, tau, A(2,2), T, dAdn)

D_Drude = (kB*T/q)*(q*tau/mass)

else

D = calculate_diffusivity(mratio, tau, A(2,2), T, dAdn);

D_Drude = (kB*T/q)*(q*tau/mass);
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end

%Integral for Soret

if (verbose == 1)

S = calculate_soret(mratio, tau, A(2,2), T, dAdT)

S_Drude = n*(kB/q)*(q*tau/mass)

else

S = calculate_soret(mratio, tau, A(2,2), T, dAdT);

S_Drude = n*(kB/q)*(q*tau/mass);

end

extra_plot = false;

if (extra_plot)

plot_num = 30;

density = zeros(plot_num);

A_of_density = zeros(plot_num);

for b=l:plot_num

density(b) = n*(le-2)*(10)^((b-1)/10);

A_of_density(b) = calculate_A(mratio, density(b), T);

end

figure;

semilogx(density, (-kB*T*log(Aofdensity))/abs(q), 'b+', 'MarkerSize', 5);

title('Inverse Fermi Integral');

xlabel('Density');

ylabel('(EF - EC) in eV');

set(gca,'FontSize', 20);

set(gca,'LineWidth', 3);

end

end
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% A is defined as exp( (E_C-E_F)/(kB*T) )

function [A] = calculate_A(mratio, n, T)

% CONSTANTS

hbar = (6.626e-34)/(2*pi);

kB = 1.3806503e-23;

mass = mratio*9.lle-31;

q = -1.602e-19;

% Planck's constant

% Boltzmann's constant

% carrier mass

% carrier charge

% INITIAL CONDITION

N_C = 2 * (mass*kB*T/(2*pi*hbar^2))^(3/2); % effective DOS at the band-edge

A_guess = N_C/n; % starting guess for A

A = -1e6; % impossible value for A to be

% ITERATIVE CALCULATION PARAMETERS

k_thermal = (mass*kB*T / (hbar^2))^(1/2);

iter_limit = 2000;

% thermal wavevector

% max # of iterations

for i=1:iter_limit

k = linspace(0,(k_thermal*10),(k_thermal/le3));

integrand = (1/(pi^2)) * (k.^2) .* ( A_guess*exp((k.^2)/(2*k_thermal^2)) + 1 ).

n_of_A_guess = trapz(k, integrand);

if (abs(n_ofAguess - n) < n*le-5)

A = A_guess;

break;

else if (nof_A_guess < n)

A_guess = A_guess*(1 - (abs(n-n_of_A_guess)/n));
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end

end

end

if (A == -1e6)

calculate_Afailed = 1

A = Aguess

proper n_of_A = n_of _Aguess

ndesired = n

end

end

function [Sigma] = calculate conductivity(mratio, tau, A, T)

% CONSTANTS

hbar = (6.626e-34)/(2*pi);

kB = 1.3806503e-23;

mass = mratio*9.11e-31;

q = -1.602e-19;

% Planck's constant

% Boltzmann's constant

% carrier mass

% carrier charge

E_max = 1.1*max(O, -kB*T*log(A)) + 20*kB*T;

k_max = sqrt(2*mass*E_max)/(hbar);

if (kmax > (2*pi/(2.4e-10)))

parabolicity_infeasible = 1

end

k_thermal = (mass*kB*T / (hbar^2))^(1/2);

kz = linspace(-kmax, kmax, 4001);

kperp = linspace(0, kmax, 2001);

% thermal wavevector
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f_0 = zeros(length(kz),

for i=1 l:length(kz)

for j=l: length(kperp)

f_O(i,j) = (1/(4*pi^3))*(1/( 1 + A*exp(((kz(i))^2 + (kperp(j))^2)/(2*k_ther

end

end

%figure;

%subplot(2,1,1); plot(kperp,

%subplot(2,1,2); plot(kz, (4

'LineWidth',

*pi^3)*f_0(:,1), 'LineWidth',

%THIS DOESN'T WORK BECAUSE

% tau(k) depends on kz and so must be left outside d/dkz[.]

0/

%tau = zeros(length(kz), length(kperp));

%for i=l:length(kz)

% for j=l:length(kperp)

% tau(i,j) = tau_th*( ((kz(i))^2 + (kperp(j))^2)/(2*k_thermal^2) )^(p/2);

% end

%end

%for i=l: length(kz)

% for j=l:length(kperp)

% kperp_matrix(i,j) = kperp(j);

% end

%end

%integrand_2d = f_O0 * ((2*pi) * kperp_matrix);

f_of_kz = zeros(size(kz));
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3);

length(kperp));

(4,pi^3)*f_0(501,:),

.* (tau*(-(q^2)/mass))



for i=l:length(kz)

f_of_kz(i) = trapz( kperp, (f_O(i,:) .* kperp) * (2*pi) * (tau*(-(q^2)/mass)) )

end

kzmid = conv(kz,[0.5 0.51); kzmid = kzmid(2:end-1);

integrand = ( diff(f_of_kz)./diff(kz) ) .* kzmid;

%figure;

%plot(kzmid, integrand, 'r-', 'LineWidth', 2);

Sigma = trapz(kzmid, integrand);

end

function [D] = calculate_diffusivity(mratio, tau, A, T, dAdn)

% CONSTANTS

hbar = (6.626e-34)/(2*pi);

kB = 1.3806503e-23;

mass = mratio*9.11e-31;

q = -1.602e-19;

Planck's constant

Boltzmann's constant

carrier mass

carrier charge

E_max = 1.1*max(O, -kB*T*log(A)) + 20*kB*T;

k_max = sqrt(2*mass*E_max)/(hbar);

if (k_max > (2*pi/(2.4e-10)))

parabolicity_infeasible = 1

end

k_thermal = (mass*kB*T / (hbar^2))^(1/2);

kz = linspace(-k_max, k_max, 4001);

% thermal wavevector

157



kperp = linspace(0, k_max, 2001);

df0dn = zeros(length(kz), length(kperp));

for i=: length(kz)

for j=l: length(kperp)

df0dn(i,j) = (-dAdn/(4*pi^3))*(exp(((kz(i))^2 + (kperp(j))^2)/(2*k_thermal

end

end

f_of_kz = zeros(size(kz));

for i=l:length(kz)

f_of_kz(i) = trapz( kperp, (dfOdn(i,:) .* kperp) * (2*pi) * (tau*(hbar/mass)^2'

end

integrand = f_of_kz .* (kz.^2);

%figure;

%plot(kz, integrand, 'r-', 'LineWidth', 2);

D = trapz(kz, integrand);

end

function ES] = calculate_soret(mratio, tau, A, T, dAdT)

% CONSTANTS

hbar = (6.626e-34)/(2*pi);

kB = 1.3806503e-23;

mass = mratio*9.11e-31;

q = -1.602e-19;

% Planck's constant

% Boltzmann's constant

% carrier mass

% carrier charge
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E_max = 1.1*max(O, -kB*T*log(A)) + 20*kB*T;

k_max = sqrt(2*mass*E_max)/(hbar);

if (k_max > (2*pi/(2.4e-10)))

parabolicity_infeasible = 1

end

k_thermal = (mass*kB*T / (hbar^2))^(1/2); % thermal wavevector

kz = linspace(-k_max, k_max, 4001);

kperp = linspace(0, k_max, 2001);

dfOdT = zeros(length(kz), length(kperp));

for i=l:length(kz)

for j=l: length(kperp)

df0dT(i,j) = (-I/(4*pi^ 3))*(i/( 1 + A*exp(((kz(i))^2 + (kperp(j))^2)/(2*k_t

df0dT(i,j) = df0dT(i,j)*(exp(((kz(i))^2 + (kperp(j))^2)/(2*k_thermal^2)))*(

end

end

f_of_kz = zeros(size(kz));

for i=l: length(kz)

f_of_kz(i) = trapz( kperp, (dfOdT(i,:) .* kperp) * (2*pi) * (tau*(hbar/mass)^2)

end

integrand = f_of_kz .* (kz.^2);

%figure;

%plot(kz, integrand, 'r-', 'LineWidth', 2);

S = trapz(kz, integrand);
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end

function [] = coeff_plots()

T = 300;

tau = 3e-13;

mratio = 0.063;

num_densities = 31;

min_density = le22;

max_density = le25;

for i=1:num_densities

density(i) = min_density * (max_density/min_density)^((i-l)/(num_densities-1));

end

for i=1:num_densities

[outl out2 out3 out4 out5 out6] = Sigma_D_and_S(mratio, tau, density(i), T, 0);

sigma_real(i) = outi;

sigmadrude(i) = out2;

D_real(i) = out3;

D_drude(i) = out4;

S_real(i) = out5;

S_drude(i) = out6;

end

figure;

loglog(density*le-6, sigma_real/100, 'b-', 'MarkerSize', 10, 'LineWidth', 3);

xlabel('Carrier Density (cm^{-3})', 'FontSize', 20);

ylabel('Conductivity (A V^{-1} cm^{-1}) ', 'FontSize', 20);
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set(gca,'LineWidth', 2);

set(gca,'FontSize', 20);

figure;

semilogx(density*le-6, sigma_real./sigma_drude, 'LineWidth', 3);

xlabel('Carrier Density (cm^{-3})', 'FontSize', 20);

ylabel('(Real Conductivity / Boltzmann-Expression Conductivity) Ratio', 'FontSize',

set(gca,'LineWidth', 2);

set(gca,'FontSize', 20);

figure;

loglog(density*le-6, D_real*le4, 'b-', 'MarkerSize', 10, 'LineWidth', 3);

xlabel('Carrier Density (cm^{-3})', 'FontSize', 20);

ylabel('Diffusivity (cm^{2} s^{-1})', 'FontSize', 20);

set(gca,'LineWidth', 2);

set(gca,'FontSize', 20);

figure;

semilogx(density*le-6, D_real./D_drude, 'LineWidth', 3);

xlabel('Carrier Density (cm^{-3})', 'FontSize', 20);

ylabel('(Real Diffusivity / Boltzmann-Expression Diffusivity) Ratio', 'FontSize', 2

set(gca,'LineWidth', 2);

set(gca,'FontSize', 20);

figure;

loglog(density*le-6, S_real/100, 'b-', 'MarkerSize', 10, 'LineWidth', 3);

xlabel('Carrier Density (cm^{-3})', 'FontSize', 20);

ylabel('Soret (K^{-1} cm^{-1} s^{-1})', 'FontSize', 20);

set(gca,'LineWidth', 2);

set(gca,'FontSize', 20);
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figure;

semilogx(density*le-6, S_real./S_drude, 'LineWidth', 3);

xlabel('Carrier Density (cm^{-3})', 'FontSize', 20);

ylabel('(Real Soret / Boltzmann-Expression Soret) Ratio', 'FontSize', 20);

set(gca,'LineWidth', 2);

set(gca,'FontSize', 20);

end

C.2 Seebeck Generalized Drift-Diffusion Solver (MAT-

LAB)

function [field_seebeck diff_end_seebeck conductance_doping] = micro_seebeck_graded

% Program to self-consistently find the density profile of a TE element

%FUNDAMENTAL CONSTANTS

% all units MKS

q = -1.602e-19; %negative carriers

kB = 1.3806503e-23; oboltzmann's constant

epsO = 1*(8.85418782e-12); %permittivity of free space

%MATERIAL PARAMETERS

eff_mass = 0.063*9.11e-31;

tau = 3e-13; %when tau = Ips, then mobility ~= 3 m^2/Vs for m*=0.06

gamma_ratio = gamma((5+p)/2) / gamma(5/2);

temp_diff_coeff = gamma_ratio*(-kB*tau/eff_mass)*(1+(p/2)); % locally, J_T=(temp_di
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diff_coeff = gamma_ratio*(-kB*tau/eff_mass); % locally, J_n=(diff_coeff)*T*gradn

mobility = gamma_ratio*(q/eff_mass)*tau;

% NOTE: TO CHANGE DIELECTRIC CONSTANT, WE MUST CHANGE poisson.m AND

% self_consistent_function.m as well

epsr = (3.255^2); %(GaAs epsr = n^2)

eps = epsr*eps0;

%INPUT PARAMETER INITIALIZATIONS

Th = T_in+0.5; % temp of hot side

Tc = T_in-0.5; % temp of cold side

T_avg = (Th+Tc)/2;

total_size = le-6;

num_grid_points = 401;

dx = total_size/(num_grid_points-1);

%dx = 0.00005;

%num_grid_points = (total_size / dx) + 1;

x = [0:dx:total_size];

xmid = conv(x,[.5 .5]); xmid = xmid(2:end-1);

T = linspace(Th, Tc, numgrid_points);

Tmid = conv(T,[.5 .5]); Tmid = Tmid(2:end-1);

%CREATE DOPANT PROFILE:

f{

n_dopant = linspace(0, 0, size(x,2));

%this is a method to produce a dopant profile with boundaries as passed and

%a center as passed. there should be a SMOOTH transition.

edge_length = round(num_grid_points/10);

for c=1:edge_length

n_dopant(c) = n_edge;
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n_dopant(end-(c-1)) = n_edge;

end

for c=(edge_length+) :2*edge_length

n_dopant(c) = nedge + (n_bulk-n_edge)*((c-edge_length)/edgelength);

n_dopant(end-(c-1)) = nedge + (nbulk-nedge)*((c-edgelength)/edgelength);

end

for c=(2*edgelength):(numgridpoints-(2*edgelength))

n_dopant(c) = n_bulk;

end

n_avg = sum(ndopant)/num_gridpoints;

n = n_dopant;

nmid = conv(n,[.5 .5]); nmid = nmid(2:end-1);

}

ndopant = linspace(O, 0, size(x,2));

%this is a method to produce a dopant profile with boundaries as passed and

Za center as passed. there should be a SHARP transition.

edgelength = round(numgridpoints/10);

for c=1:edgelength

n_dopant(c) = nedge;

n_dopant(end-(c-1)) = nedge;

end

for c=edgelength:(num_gridpoints-edgelength)

n_dopant(c) = n_bulk;

end

n_avg = sum(n_dopant)/num_grid_points;

n = n_dopant;

nmid = conv(n,[.5 .5]); nmid = nmid(2:end-1);

this is a method to create graded n+ boundaries

Xthis is a method to create graded n+ boundaries
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n_avg = 1e20;

n_dopant = linspace(n_avg, n_avg, size(x,2));

edge=20;

dope_slope=0.5/edge;

for c=1:edge

n_dopant(c) = n_dopant(c) + n_avg*dope_slope*(c-edge);

n_dopant(end-(c-1)) = n_dopant(end-(c-1)) + n_avg*dope_slope*(c-edge);

end

for c=(edge+l):(numgridpoints-edge)

n_dopant(c) = ( n_avg*num_grid_points - sum(n_dopant(:edge)+n_dopant(end-(edge

end

}

%this is a method to create n+ boundaries with constant dopant concentration

emitter_length = round(num_grid_points/10);

for c=1:emitter_length

n_dopant(c) = navg*5;

end

for c=emitter_length:num_grid_points

n_dopant(c) = (n_avg*num_grid_points - sum(n_dopant(l1:emitter_length))) / (num_

end

n = n_dopant;

nmid = conv(n,[.5 .5]); nmid = nmid(2:end-1);

%}

%FLOW INITIALIZATIONS

J_T = zeros(l,(num_grid_points-1));

J_n = zeros(l,(num_grid_points-1));

J_E = zeros(1,(num_grid_points-1));
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%GENERAL SOLUTION INITIALIZATIONS

numits = 12; % max number of iterations for self-consistent loop

branch = 4; % branching factor for newton's method

residue = zeros(num_grid_points, );

jacobian = zeros(num_grid_points, num_grid_points);

modsq = sum(residue.*residue); % modulus squared of residue vector

% BRANCHING TEMP VARIABLE INITIALIZATIONS

delta_n = linspace(O, 0, num_grid_points); % n_new = n_old + delta_n

new_n = linspace(O, 0, num_grid_points);

new_nmid = conv(new_n,[.5 .51); new_nmid = new_nmid(2:end-1);

new_T = linspace(0, 0, num_grid_points);

new_Tmid = conv(new_T,[.5 .51); new_Tmid = new_Tmid(2:end-1);

new_residue = zeros(num_grid_points,1);

new_J_n = zeros(l,(num_grid_points-1));

new_J_T = zeros(l,(num_grid_points-1));

new_J_E = zeros(l,(num_grid_points-1));

new_modsq = zeros(1,branch);

% RECORD-KEEPING VARIABLES

damping_record = zeros(1,numits);

modsq_record = zeros(1,numits);

all_modsq_record = zeros(branch,numits);

n_record = zeros(numits+l,num_grid_points);

%J_T = n_avg*temp_diff_coeff.*(diff(T)./diff(x));

%initial guess at J_T -> J_n -> n

J_T = temp_diff_coeff*nmid.*(diff(T)./diff(x));
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J_n = -J_T;

n(1)=0;

for i=2:num_grid_points

n(i) = n(i-1) + (dx * (J_n(i-1) / (Tmid(i-1)*diffcoeff)));

end

n = n + (sum(n_dopant-n)/num_gridpoints);

n_record(1,:) = n;

%n = n_outside;

success = 0;

for j=1:numits

% calculate residue

nmid = conv(n,[.5 .5]); nmid = nmid(2:end-1);

Tmid = conv(T,[.5 .5]); Tmid = Tmid(2:end-1);

for k=l:(num_gridpoints-1)

J_E(k) = (q*mobility*dx/eps)*sum(nmid(l:k)-ndopant(1:k))*nmid(k); %E-field

JT(k) = (tempdiff coeff*nmid(k))*(T(k+1)-T(k))/(x(k+1)-x(k));

Jn(k) = (diff_coeff*Tmid(k))*(n(k+l)-n(k))/(x(k+1)-x(k));

end

residue(1:end-1) = J_T + J_n + J_E;

residue(end) = (leO)*sum(n-n_dopant);

if (mod(j,3)==0)

modsq = sum(residue.*residue); %remove semicolon to print modsq every 3rd i

else

modsq = sum(residue.*residue);

end

modsq_record(j) = modsq;

if (j == 1)

init_modsq = modsq;

end
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if (modsq < ((le-20)*init_modsq))

success = 1;

break;

end

% calculate jacobian

jacobian = zeros(num_grid_points, num_grid_points);

for a=l:(num_grid_points-1)

for b=l:num_grid_points

% fill in J_E terms for jacobian

if (b <= a)

jacobian(a,b) = jacobian(a,b) + nmid(a)*(q*mobility*dx/eps);

end

if ((b == a) II (b == (a+1)))

jacobian(a,b) = jacobian(a,b) + (0.5)*sum(n(l:a)-n_dopant(l:a))*(q*

end

% fill in J_n terms for jacobian

if (b == a)

jacobian(a,b) = jacobian(a,b) - (diff_coeff/dx)*Tmid(a);

end

if (b == (a+l))

jacobian(a,b) = jacobian(a,b) + (diff_coeff/dx)*Tmid(a);

end

% fill in J_T terms for jacobian

if (b == a)

jacobian(a,b) = jacobian(a,b) + (temp_diff_coeff/2)*((T(a+l)-T(a))

end

if (b == (a+l))

jacobian(a,b) = jacobian(a,b) + (temp_diff_coeff/2)*((T(a+l)-T(a)),

end
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end

end

jacobian(end,:) = ones(l,num_grid_points);

% take step

new_modsq = ones(1,branch).*(modsq);

for c=1:branch

% set up damping value for this branch

damping = (0.9)^(c-1);

% calculate new residue for this branch

delta_n = (-l)*damping*inv(jacobian)*residue;

new_n = n + delta n';

new_T = T;

new_nmid = conv(new_n,[.5 .5]); new_nmid = new_nmid(2:end-1);

new_Tmid = conv(new_T,[.5 .5]); new_Tmid = new_Tmid(2:end-1);

for k=1:(num_grid_points-1)

new_J_E(k) = (q*mobility*dx/eps)*new_nmid(k)*sum(new_nmid(1:k)-ndopant

new_J_T(k) = (temp_diff_coeff*new_nmid(k))*(new_T(k+l)-newT(k))/(x(k+1

new_J_n(k) = (diff_coeff*new_Tmid(k))*(newn(k+1)-newn(k))/(x(k+1)-x(k

end

new_residue(1:end-1) = new_J_T + new_J_n + new_J_E;

new_residue(end) = (leO)*sum(new_n-n_dopant);

new_modsq(c) = sum(new_residue.*new_residue);

all modsq_record(c,j) = new_modsq(c);

if (c == branch)

[min_val,min_loc] = min(new_modsq);

if (min_val >= modsq)
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damping_record(j) = (0.9)^(min_loc-1);

error = 'no branch attempted could improve Iresiduel^2'

break;

else

damping = (0.9)^(min_loc-1);

damping_record(j) = damping;

delta_n = (-l)*damping*inv(jacobian)*residue;

n = n + delta_n';

end

n_record(j+1,:) = n;

end

end

% if ((min_val >= modsq) && (c == branch))

% break;

% end

end

%post-processing for output

E_guess = linspace(0, 0, num_grid_points);

E_guess = poisson(n,n_dopant,q,x);

[field_seebeck_self_consistent ECminusEF_self_consistent ECminusEF_orig] = self_cor

if (success == 1)

field_seebeck = (sum(-l*dx*E_guess) - field_seebeck_self_consistent)/(Th-Tc);

DOSbandedgeT = (((pi^(3/2))*sqrt(2))^(-1))*((eff_mass*kB*T)/(((6.626e-34)/(
2 *p

%figure; plot(DOSbandedgeT);

ECminusEF = -kB*T.*log(n./DOSbandedgeT);

%ECminusEF_orig = -kB*T.*log(n_dopant./DOSbandedgeT);

%above NO LONGER USED because uses new T with n_dopant (before Poisson)

%{

170



if (toggleplots == 1)

figure; plot(x,ECminusEF/abs(q),'r','LineWidth',3); ylim([max(ECminusEF/ab,

hold on; plot(x,ECminusEF_self_consistent/abs(q),'b','LineWidth',3);

hold on; plot(x,ECminusEF_orig/abs(q),'g','LineWidth',3);

hold on; plot(x,0,'k:','LineWidth',3);

set(gca,'LineWidth',3); set(gca,'FontSize',20); xlabel('position'); ylabel(

legend('E_C After \nabla T is Applied', 'E_C Before \nabla T is Applied but

end

%I}

diff_end_seebeck = ((ECminusEF(end)-ECminusEF_self_consistent(end))-(ECminusEF(

seebeck = diff_end_seebeck + field_seebeck;

peltier = seebeck * ((Tc+Th)/2);

conductance_doping = (sum(l./n)/num_grid_points)^(-l); %this quantity is the ef

power_factor = (seebeck)^2 * (conductance_doping * mobility * q);

end

if ((success == 1) && (toggle_plots == 1))

EC = zeros(l,num_grid_points);

EC(1) = 0;

for i=2:num_grid_points

EC(i) = EC(i-1) + abs(q)*(E_guess(i-1)+E_guess(i))*(0.5)*dx; %note that the

end

%figure with EC and EF in subplots

figure;

subplot(2,1,1); plot(le9*x,1000*EC/abs(q),'g','LineWidth',3); hold on;

xlim(le9*[x(1) x(end)]);

xlabel('Position (nm)', 'FontSize', 20); ylabel('E_C and E_F (meV)', 'FontSize'

title('Conduction Band', 'FontSize', 20);

set(gca,'LineWidth',3); set(gca,'Fontsize',20);
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subplot(2,1,2); plot(le9*x,1000*(EC-ECminusEF)/abs(q),'b', 'LineWidth',3);

xlim(le9* [x(l) x(end)]);

xlabel('Position (nm)', 'FontSize', 20); ylabel('E_C and E_F (meV)', 'FontSize'

title('Fermi Level', 'FontSize', 20);

set(gca,'LineWidth',3); set(gca,'Fontsize',20);

%{

%figure with EC and EF

figure; plot(x,EC/abs(q),'g','LineWidth',3);

hold on; plot(x,(EC-ECminusEF)/abs(q),'b','LineWidth',3);

ylim([(max(ECminusEF/abs(q))+max(abs(EC)/abs(q)))*(-1.1)-0.1 max(abs(EC)/abs(q)

set(gca, 'LineWidth',3); set(gca,'Fontsize',20);

xlabel('Position (m)'); ylabel('E_C and E_F (electron-Volts)');

legend('E_C', 'E_F', 'Location', 'B');

%figure with just EF

figure; plot(x,(EC-ECminusEF)/abs(q), 'b','LineWidth',3);

ylim([(min((EC-ECminusEF)/abs(q)))-0.002 max((EC-ECminusEF)/abs(q))+0.002]);

set(gca, 'LineWidth',3); set(gca,'Fontsize',20);

xlabel('Position (m)'); ylabel('E_F (electron-Volts)');

}

% NEXT 4 PLOTS TRYING TO FIGURE OUT CENTER DIFFUSION CONTRIB TO grad(EF-EC)

%figure with density gradients

figure; plot(xmid,(n(2:end)-n(1:end-1))./((n(2:end)+n(1:end-1))/2),'b','LineWid

set(gca,'LineWidth',3); set(gca,'Fontsize',20);

xlabel('Position (m)'); ylabel('\Delta n / n (fraction)');

title('Fractional Density Change from Gridpoint to Gridpoint');

%figure with density gradients

figure; plot(xmid,log((n(2:end)-n(l:end-1))./((n(2:end)+n(1:end-1))/2)),'r','LJ
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set(gca,'LineWidth',3); set(gca,'Fontsize',20);

xlabel('Position (m)'); ylabel('\Delta n / n (log of fraction)');

title('Log Fractional Density Change from Gridpoint to Gridpoint');

%figure with density gradients

figure; plot(xmid,n(2:end)./n(1:end-1),'b','LineWidth',3);

set(gca,'LineWidth',3); set(gca,'Fontsize',20);

xlabel('Position (m)'); ylabel('\Delta n / n (fraction)');

title('Density Ratio from Gridpoint to Gridpoint');

%figure with density gradients

figure; plot(xmid,log(n(2:end)./n(l:end-1)),'r','LineWidth',3);

set(gca,'LineWidth',3); set(gca,'Fontsize',20);

xlabel('Position (m)'); ylabel('\Delta n / n (log of fraction)');

title('Log Density Ratio from Gridpoint to Gridpoint');

%figure with just n and n_D

figure;

plot(le9*x,n_dopant*le-6,'r--','LineWidth',5); hold on;

plot(le9*x,n*le-6, 'b', 'LineWidth',4);

xlim(le9 [x(1) x(end)]);

ylim([max(n_dopant*le-6)*0.9997 max(n_dopant*le-6)*1.0003]);

set(gca,'LineWidth',3); set(gca,'Fontsize',20);

title( ['Carrier Density Profile, T=300.5K']);

xlabel('Position (nm)'); ylabel('Number Density (cm^{-3})');

xlabelposition = le9*x(round(num_grid_points/20));

ylabelposition = (n_dopant(round(num_grid_points/20))*le-6)+(le-6)*(ndopant(ro

text(xlabelposition, ylabelposition, 'n_D \newline \downarrow', 'FontSize', 30,

text(le9*x(end-round(num_grid_points/20)), (le-6)*n(end-round(num_grid_points/2

%legend('Dopant Density', 'Carrier Density', 'Location', 'B');
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%figure with delta n (and associated current)

l{

figure; subplot(2,1,1);

plot(x,n,'b','LineWidth',3);

hold on; plot(x,ndopant,'k:','LineWidth',3);

ylim([max(ndopant)*0.9997 max(ndopant)*1.00031);

set(gca, 'LineWidth',3); set(gca,'Fontsize',20);

title('Carrier Density and Associated Current for n-GaAs (n_{dopant} = 1e15 cm
^

xlabel('Position (m)'); ylabel('Number Density (m^{-3})');

legend('Carrier Density', 'Dopant Density', 'Location', 'B');

subplot(2,1,2);

plot(xmid,Jn,'m--','LineWidth',3);

set(gca,'LineWidth',3); set(gca,'Fontsize',20);

xlabel('Position (m)'); ylabel('Particle Flux (# \cdot m^{-2} s^{-1})');

}

%figure with E-field (and associated current)

figure; subplot(2,1,1);

plot(x,Eguess,'g:','LineWidth' ,3);

set(gca,'LineWidth',3); set(gca,'Fontsize',20);

title('Electric Field and Associated Current for n-GaAs (n_{dopant} = 1e15 cm^-

xlabel('Position (m)'); ylabel('Electric Field (V/m)');

subplot(2,1,2);

plot(xmid,J_E,'m--','LineWidth',3);

set(gca,'LineWidth',3); set(gca,'Fontsize',20);

xlabel('Position (m)'); ylabel('Particle Flux (# \cdot m^{-2} s^{-1})');

}
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%figure with currents on same plot

figure;

plot(le9*xmid,q*J_E*le-6r,'r-','LineWidth',2); hold on;

plot(le9*xmid,q*J_n*le-6,'g-','LineWidth',3); hold on;

plot(le9*xmid,q*J_T*le-6,'b-','LineWidth',4); hold on;

plot(le9*xmid,q*(J_E + J_n + J_T)*le-6,'k--','LineWidth',4);

set(gca,'LineWidth',3); set(gca,'Fontsize',20);

flux_range3 = max(abs(q*J_T*le-6));

xlim(1e9*[x(1) x(end)]);

ylim([-1. 1fluxrange3 1. 1flux_range3]);

xlabel('Position (nm)'); ylabel('Current Density (A cm^{-2})');

title('Current Density By Source');

xlabelposE = le9*xmid(round(num_gridpoints*0.6));

ylabelposE = q*le-6*J_E(round(num_gridpoints*0.6))*0.95;

text(xlabelposE, ylabelposE, '\uparrow J_E', 'VerticalAlignment', 'top', 'FontS

xlabelposn = le9*xmid(round(num_grid_points*0.08));

ylabelposn = q*le-6*J_n(round(numgrid_points*0.08));

text(xlabelposn, ylabelposn, '\leftarrow J_{\nablan}', 'FontSize', 30, 'Color',

xlabelposT = le9*xmid(round(numgrid_points*0.2));

ylabelposT = q*le-6*J_T(round(numgridpoints*0.2));

text(xlabelposT, ylabelposT, '\downarrow J_{\nablaT}', 'FontSize', 30, 'Color',

xlabelpostot = le9*xmid(round(num_grid_points*0.94));

ylabelpostot = q*le-6*(J_E(round(num_grid_points*0.94))+Jn(round(numgridpoin

text(xlabelpostot, ylabelpostot, 'J_{tot} \uparrow', 'VerticalAlignment', 'top'

%legend('JE', 'J_{\nabla n}', 'J_{\nabla T}', 'J_{total}', 'Location', 'B');

%figure with currents (in subplots)
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%{

flux_range = max(abs(J_E)) - min(abs(J_E));

flux_range2 = max(abs(J_T));

figure; subplot(2,2,1);

plot(xmid,J_E,'m--','LineWidth',3);

set(gca,'LineWidth',3); set(gca,'Fontsize',20);

ylim( [-1.1flux_range2 0]);

xlabel('Position (m)'); ylabel('Particle Flux (# \cdot m^{-2} s^{-1})');

title('E Driven Current Density (J_E)');

subplot(2,2,2);

plot(xmid,J_n,'m--','LineWidth',3);

set(gca,'LineWidth',3); set(gca,'Fontsize',20);

ylim([-1.1*flux_range2 0]);

xlabel('Position (m)'); ylabel('Particle Flux (# \cdot m^{-2} s^{-1})');

title('\nablan Driven Current Density (J_{\nablan})');

subplot(2,2,3);

plot(xmid,J_T,'m--','LineWidth',3);

set(gca,'LineWidth',3); set(gca,'Fontsize',20);

ylim([0 1.1*flux_range2]);

xlabel('Position (m)'); ylabel('Particle Flux (# \cdot m^{-2} s^{-1})');

title('\nablaT Driven Current Density (J_{\nablaT})');

subplot(2,2,4);

plot(xmid,J_E + J_n + J_T,'m--','LineWidth',3);

set(gca,'LineWidth',3); set(gca,'Fontsize',20);

ylim([-0.55*flux_range2 0.55*flux_range2]);

xlabel('Position (m)'); ylabel('Particle Flux (# \cdot m^{-2} s^{-1})');

title('Net Current Density (J_E+J_{\nablan}+J_{\nablaT})');

%}

end
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%{

if (toggleplots == 1)

%plot figures for output

figure;

subplot (3,2,1);

plot(x,T,'r-','LineWidth',3); hold on;

title('T(x)');

set(gca, 'FontSize', 16);

subplot(3,2,2);

plot (xmid, JT, 'k', 'LineWidth',3);

title('J_T(x)');

set(gca, 'FontSize',16);

set (gca, 'LineWidth',3);

subplot (3,2,3);

plot(x,n-ndopant,'b','LineWidth',3); hold on;

%plot(x,sum(ndopant)/numgrid-points,'k:','LineWidth',2);

%ylim([max([n_avg (n-ndopant)])*(-0.1) max([navg (n-ndopant)])*(1.1)]);

title('\Delta n(x)');

set (gca, 'FontSize', 16);

subplot (3,2,4);

plot (xmid,Jn, 'k', 'LineWidth', 3);

title(' J_n(x) ');

set(gca, 'FontSize',16);

set (gca, 'LineWidth',3);
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subplot(3,2,5);

plot(x,E_guess,'g:','LineWidth',3);

title('E(x)');

set(gca,'FontSize',16);

subplot(3,2,6);

plot(xmid,JE,'k', 'LineWidth',3);

% hold on; plot(x,Eguess.*n*mobility,'r', 'LineWidth',3);

title('J_E(x)');

set(gca,'FontSize',16);

set(gca,'LineWidth',3);

end

}

C.3 Peltier Generalized Drift-Diffusion Solver (MAT-

LAB)

function [n qJdotE xmid modsq_record] = peltier(n_L, n_C, n_R, T_in, qJ_applied, p,

% Program to self-consistently find the density profile of a semiconductor

% homojunction (unipolar) with a current flowing.

%FUNDAMENTAL CONSTANTS

% all units MKS

q = -1.602e-19; %negative carriers

kB = 1.3806503e-23; %boltzmann's constant

epsO = 1*(8.85418782e-12); %permittivity of free space

%MATERIAL PARAMETERS
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eff_mass = 0.063*9.11e-31;

tau = 3e-13; %when tau = 1ps, then mobility -= 3 m^2/Vs for m*=0.06

gammaratio = gamma((5+p)/2) / gamma(5/2);

tempdiff_coeff = gammaratio*(-kB*tau/eff mass)*(l+(p/2)); % locally, JT=(tempdi

diff_coeff = gamma ratio*(-kB*tau/effmass); % locally, Jn=(diff coeff)*T*gradn

mobility = gammaratio*(q/eff_mass)*tau;

% NOTE: TO CHANGE DIELECTRIC CONSTANT, WE MUST CHANGE poisson.m AND

% selfconsistent_function.m as well

%epsr = (3.255^2); %(GaAs epsr = n^2)

epsr = 1; %(GaAs epsr = n^2)

%epsr = 21;

eps = epsr*epsO;

%MESH GENERATION AND BOUNDARY CONDITIONS

Th = T_in; % temp of hot side

Tc = T_in; % temp of cold side

Tavg = (Th+Tc)/2;

total_size = le-6;

num_grid_points = 401;

dx = total_size/(numgridpoints-1);

%dx = 0.00005;

%num_grid_points = (total_size / dx) + 1;

x = [0:dx:total_size];

xmid = conv(x,[.5 .5]); xmid = xmid(2:end-1);

T = linspace(Th, Tc, numgrid_points);

Tmid = conv(T,[.5 .5]); Tmid = Tmid(2:end-1);

%CREATE DOPANT PROFILE:

ndopant = linspace(0, 0, size(x,2));

%this is a method to produce a dopant profile
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%[...n_L...I...n_C...l...n_R...]

% there should be SHARP transitions.

boundary_positionA = round(num_grid_points/3);

boundary_positionB = round(2*num_grid_points/3);

for c=l:boundary_positionA

n_dopant(c) = n_L;

end

for c=(boundary_positionA+1):boundary_positionB

n_dopant(c) = n_C;

end

for c=(boundary_positionB+1):numgridpoints

n_dopant(c) = n_R;

end

navg = sum(n_dopant)/numgridpoints;

n = n_dopant;

conductivity = q*(1/(mean(1./n)))*mobility;

Eapplied = qJapplied / conductivity;

n(round(num_grid_points/2)) = n(round(numgridpoints/2))*1.1;

nmid = conv(n,[.5 .5]); nmid = nmid(2:end-1);

ndopantmid = conv(ndopant, [.5 .5]); ndopant_mid = ndopantmid(2:end-1);

{

if (toggle_plots == 1)

figure; plot(x,ndopant);

ylim([min(n_dopant)-(0.1*(max(ndopant)-min(ndopant))) max(n_dopant)+(0.1*(ma)

end

%}

%FLOW INITIALIZATIONS

J_T = zeros(1,(numgridpoints-1));

J_n = zeros(1,(num_grid_points-1));
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J_E = zeros(1,(num_grid_points-1));

%GENERAL SOLUTION INITIALIZATIONS

numits = 12; % max number of iterations for self-consistent loop

branch = 4; % branching factor for newton's method

residue = zeros(num_grid_points,1);

jacobian = zeros(num_grid_points, num_grid_points);

modsq = sum(residue.*residue); % modulus squared of residue vector

% BRANCHING TEMP VARIABLE INITIALIZATIONS

delta_n = linspace(O, 0, num_grid_points); % n_new = n_old + delta_n

new_n = linspace(0, 0, num_grid_points);

new_nmid = conv(new_n,[.5 .5]); new_nmid = new_nmid(2:end-1);

new_T = linspace(O, 0, num_grid_points);

new_Tmid = conv(new_T,[.5 .5]); new_Tmid = new_Tmid(2:end-1);

new_residue = zeros(num_grid_points,1);

new_J_n = zeros(l,(num_grid_points-1));

new_J_T = zeros(1,(num_grid_points-1));

new_J_E = zeros(1,(numgrid_points-1));

new_modsq = zeros(1,branch);

% RECORD-KEEPING VARIABLES

damping_record = zeros(l,numits);

modsq_record = zeros(1,numits);

all_modsqrecord = zeros(branch,numits);

n_record = zeros(numits+l,num_grid_points);

%initial guess at J_applied -> J_n,J_E -> n

%{
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J_T = temp_diff_coeff*nmid.*(diff(T)./diff(x)); %J_T is irrelevant

J_n = -J_applied;

n(1)=O;

for i=2:num_grid_points

n(i) = n(i-1) + (dx * (J_n(i-1) / (Tmid(i-l)*diff_coeff)));

end

n = n + (sum(n_dopant-n)/num_grid_points);

n = n_dopant;

n_record(l,:) = n;

%n = n_outside;

%}

success = 0;

for j=1:numits

% calculate residue

nmid = conv(n,[.5 .5]); nmid = nmid(2:end-1);

Tmid = conv(T,[.5 .5]); Tmid = Tmid(2:end-1);

for k=1:(num_grid_points-1)

J_E(k) = ((q*dx/eps)*sum(n(l:k)-n_dopant(1:k)) + E_applied)*mobility*nmid(k

J_T(k) = (temp_diff_coeff*nmid(k))*(T(k+1)-T(k))/(x(k+1)-x(k));

J_n(k) = (diff_coeff*Tmid(k))*(n(k+1)-n(k))/(x(k+) -x(k));

end

residue(1:end-1) = J_T + J_n + J_E - (qJ_applied/q);

residue(end) = (leO)*sum(n-n_dopant);

%residue(end)

if (mod(j,3)==0)

modsq = sum(residue.*residue); %remove semicolon to print modsq every 3rd

else

modsq = sum(residue.*residue);

end
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modsq_record(j) = modsq;

if (j == 1)

init_modsq = modsq;

end

if (modsq < ((le-27)*init_modsq))

success = 1

%figure; plot(J_E,'b', 'LineWidth', 3);

%hold on; plot(J_n, 'r', 'LineWidth', 3);

%hold on; plot(J_E+J_n, 'k--', 'LineWidth', 3);

break;

end

% calculate jacobian

jacobian = zeros(num_grid_points, num_grid_points);

for a=: (num_grid_points-1)

for b=l:numgrid_points

% fill in J_E terms for jacobian

if (b <= a)

jacobian(a,b) = jacobian(a,b) + (q*dx/eps)*mobility*nmid(a);

end

if ((b == a) II (b == (a+l)))

jacobian(a,b) = jacobian(a,b) + ((q*dx/eps)*sum(n(l:a)-n_dopant(l:a

end

% fill in J_n terms for jacobian

if (b == a)

jacobian(a,b) = jacobian(a,b) - (diff_coeff/dx)*Tmid(a);

end

if (b == (a+l))

jacobian(a,b) = jacobian(a,b) + (diff_coeff/dx)*Tmid(a);

end
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% fill in J_T terms for jacobian

if (b == a)

jacobian(a,b) = jacobian(a,b) + (temp_diff_coeff/2)*((T(a+l)-T(a))/

end

if (b == (a+l))

jacobian(a,b) = jacobian(a,b) + (temp_diff_coeff/2)*((T(a+l)-T(a))/

end

end

end

jacobian(end,:) = ones(1,num_grid_points);

% take step

%PROBLEM IF IT GETS TO HERE EVEN AFTER SUCCEEDING.

% if (success == 1)

% problem = 1

% end

new_modsq = ones(1,branch).*(modsq);

for c=1:branch

% set up damping value for this branch

damping = (0.6)^(c-1);

% calculate new residue for this branch

delta_n = (-1)*damping*inv(jacobian)*residue;

new_n = n + delta_n';

new_T = T;

new_nmid = conv(new_n,[.5 .51); new_nmid = new_nmid(2:end-1);

new_Tmid = conv(new_T,[.5 .5]); new_Tmid = new_Tmid(2:end-1);

for k=1:(num_grid_points-1)

new_J_E(k) = ((q*dx/eps)*sum(new_n(1:k)-n_dopant(1:k)) + E_applied)*mol

new_J_T(k) = (temp_diff_coeff*new_nmid(k))*(new_T(k+l)-newT(k))/(x(k+:
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new_J_n(k) = (diff_coeff*new_Tmid(k))*(new_n(k+l)-newn(k))/(x(k+l)-x(I

end

new_residue(l:end-1) = new_J_T + new_J_n + newJE - (qJ_applied/q);

new_residue(end) = (leO)*sum(new_n-n_dopant);

new_modsq(c) = sum(new_residue.*new_residue);

all_modsq_record(c,j) = new_modsq(c);

if (c == branch)

[min_val,min_loc] = min(new_modsq);

if (min_val >= modsq)

damping_record(j) = (0.9)^(min_loc-1);

error = 'no branch attempted could improve Iresiduel^2'

break;

else

damping = (0.9)^(min_loc-1);

damping_record(j) = damping;

delta_n = (-l)*damping*inv(jacobian)*residue;

n = n + delta_n';

end

n_record(j+1,:) = n;

end

end

% if ((min_val >= modsq) && (c == branch))

% break;

% end

end

%post-processing for output
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if (success == 1)

%calculate electric field based on output density profile

Efield = linspace(O, 0, num_grid_points);

Efield = poisson mid(n,ndopant,eps,q,x) + E_applied;

% figure; plot(xmid,Efield); hold on; plot(xmid,E_applied);

EC = zeros(1,numgridpoints);

EC(1) = 0;

for i=1:length(Efield)

EC(i+1) = EC(i) + abs(q)*(Efield(i))*dx; %note that the sign convention is

end

DOSbandedgeT = (((pi^(3/2))*sqrt(2))^(-l))*((eff_mass*kB*T)/(((6.626e-34)/(2*pi

% plot(DOSbandedgeT);

% DOSbandedgeT = DOSbandedgeT*2;

ECminusEF = -kB*T.*log(n./DOSbandedgeT);

grad_mu = diff(-l*ECminusEF)./diff(x);

J_solved_for = J_E + J_n + J_T;

qJdotE = q*J_solvedfor .* Efield; %Total Heat

qJapplieddotE = qJapplied * Efield;

qJdotgradmuoverq = q*Jsolved_for .* gradmu / q; %Peltier Heat

end

if ((success == 1) && (toggle_plots == 1))

%figure with J dot E

%PELTIER PLOT

/{

figure; %DEBUGGING

subplot(3,1,1); plot(xmid,JE); hold on; plot(xmid, Japplied);
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subplot(3,1,2); plot(xmid,J_n); hold on; plot(xmid, J_applied);

subplot(3,1,3); plot(xmid,J_T); hold on; plot(xmid, J_applied);

}

figure;

%plot(xmid, qJdotE, 'b', 'LineWidth', 4); hold on;

%plot(xmid, qJdot_grad_mu_overq, 'b', 'LineWidth', 4); hold on;

plot(xmid, qJdotE - qJdot_grad_mu_over_q, 'b', 'LineWidth', 4); hold on;

plot(xmid, 0.*xmid, 'k--', 'LineWidth', 2);

%plot(le9*xmid, qJ_applieddotE, 'r--', 'LineWidth', 2); hold on;

xlim([x(1) x(end)]);

xlabel('Position (m)', 'FontSize', 20); ylabel('J dot E (W m^{-3})', 'FontS

title('-- Heat Density Production from -- Current', 'FontSize', 25);

set(gca,'LineWidth',3); set(gca,'Fontsize',20);

%figure with EC and EF in subplots

%PELTIER PLOT

{

figure;

subplot(2,1,1); plot(le9*x,1000*EC/abs(q),'g','LineWidth',3); hold on;

xlim(le9*[x(1) x(end)]);

xlabel('Position (nm)', 'FontSize', 20); ylabel('E_C (meV)', 'FontSize', 20);

title('Conduction Band', 'FontSize', 20);

set(gca,'LineWidth',3); set(gca,'Fontsize',20);

subplot(2,1,2); plot(le9*x,1000*(EC-ECminusEF)/abs(q),'b','LineWidth',3);

xlim(le9*[x(1) x(end)]);

Escale = min(abs(max(ECminusEF)-min(ECminusEF))*1000/abs(q), (1000*kB*T_in/abs(

ylim([(1000*mean(EC-ECminusEF)/abs(q))-Escale (1000*mean(EC-ECminusEF)/abs(q))+

xlabel('Position (nm)', 'FontSize', 20); ylabel('E_F (meV)', 'FontSize', 20);
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title('Fermi Level', 'FontSize', 20);

set(gca,'LineWidth',3); set(gca,'Fontsize',20);

%}

%figure with EC and EF

%PELTIER PLOT

%{

figure; plot(x,EC/abs(q),'g','LineWidth',3);

hold on; plot(x,(EC-ECminusEF)/abs(q),'b','LineWidth',3);

ylim([(max(ECminusEF/abs(q))+max(abs(EC)/abs(q)))*(-1.1)-0.1 max(abs(EC)/abs(q)

set(gca,'LineWidth',3); set(gca,'Fontsize',20);

xlabel('Position (m)'); ylabel('E_C and E_F (electron-Volts)');

legend('E_C', 'E_F', 'Location', 'B');

%figure with just EF

figure; plot(x,(EC-ECminusEF)/abs(q), 'b', 'LineWidth',3);

ylim([(min((EC-ECminusEF)/abs(q)))-0.002 max((EC-ECminusEF)/abs(q))+0.002]);

set(gca,'LineWidth',3); set(gca,'Fontsize',20);

xlabel('Position (m)'); ylabel('E_F (electron-Volts)');

%}

%figure with just n and n_D

%PELTIER PLOT

%{

figure;

plot(le9*x,ndopant*le-6,'r--','LineWidth',4); hold on;

plot(le9*x,n*le-6,'b', 'LineWidth',4);

xlim(le9*[x(1) x(end)]);

ylim([min(n_dopant*le-6)*0.9 max(n_dopant*1e-6)*1.11);

set(gca,'LineWidth',3); set(gca,'Fontsize',20);

title(['Carrier Density Profile, T=300.5K']);
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xlabel('Position (nm)'); ylabel('Number Density (cm^{-3})');

xlabelposition = le9*x(round(num_grid_points/20));

ylabelposition = (n_dopant(round(num_grid_points/20))*le-6)+(le-6)*(ndopant(rc

text(xlabelposition, ylabelposition, 'n_D \newline \downarrow', 'FontSize', 30,

text(le9*x(end-round(num_grid_points/20)), (le-6)*n(end-round(num_grid_points/2

%legend('Dopant Density', 'Carrier Density', 'Location', 'B');

%}

%figure with currents on same plot

%PELTIER PLOT

%{

figure;

plot(xmid,q*J_E,'r-','LineWidth',2); hold on;

plot(xmid,q*J_n,'g-','LineWidth',3); hold on;

plot(xmid,q*(J_E + J_n),'k--','LineWidth',4);

plot(xmid,qJ_applied,'b--','LineWidth',2);

set(gca,'LineWidth',3); set(gca,'Fontsize',20);

flux_range3 = max([abs(q*J_E) abs(q*J_n)]);

xlim([x(1) x(end)]);

ylim([-1.1*flux_range3 1.1*flux_range3]);

xlabel('Position (m)'); ylabel('Current Density (A m^{-2})');

title('Current Density By Source');

%}

%{

xlabelposE = le9*xmid(round(num_grid_points*0.6));

ylabelposE = q*le-6*J_E(round(numgrid_points*0.6))*0.95;

text(xlabelposE, ylabelposE, '\uparrow J_E', 'VerticalAlignment', 'top', 'FontS

xlabelposn = le9*xmid(round(num_grid_points*0.08));

ylabelposn = q*le-6*J_n(round(num_grid_points*0.08));

text(xlabelposn, ylabelposn, '\leftarrow J_{\nablan}', 'FontSize', 30, 'Color',
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xlabelpostot = le9*xmid(round(num_grid_points*0.94));

ylabelpostot = q*le-6*(J_E(round(num_grid_points*0.94))+Jn(round(numgridpoin

text(xlabelpostot, ylabelpostot, 'J_{tot} \uparrow', 'VerticalAlignment', 'top'

%}

%legend('J_E', 'J_{\nabla n}', 'J_{\nabla T}', 'J_{total}', 'Location', 'B');

end
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